linux/kernel/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events core code:
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   7 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   8 *
   9 * For licensing details see kernel-base/COPYING
  10 */
  11
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/cpu.h>
  15#include <linux/smp.h>
  16#include <linux/idr.h>
  17#include <linux/file.h>
  18#include <linux/poll.h>
  19#include <linux/slab.h>
  20#include <linux/hash.h>
  21#include <linux/tick.h>
  22#include <linux/sysfs.h>
  23#include <linux/dcache.h>
  24#include <linux/percpu.h>
  25#include <linux/ptrace.h>
  26#include <linux/reboot.h>
  27#include <linux/vmstat.h>
  28#include <linux/device.h>
  29#include <linux/export.h>
  30#include <linux/vmalloc.h>
  31#include <linux/hardirq.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/perf_event.h>
  38#include <linux/ftrace_event.h>
  39#include <linux/hw_breakpoint.h>
  40#include <linux/mm_types.h>
  41#include <linux/cgroup.h>
  42
  43#include "internal.h"
  44
  45#include <asm/irq_regs.h>
  46
  47struct remote_function_call {
  48        struct task_struct      *p;
  49        int                     (*func)(void *info);
  50        void                    *info;
  51        int                     ret;
  52};
  53
  54static void remote_function(void *data)
  55{
  56        struct remote_function_call *tfc = data;
  57        struct task_struct *p = tfc->p;
  58
  59        if (p) {
  60                tfc->ret = -EAGAIN;
  61                if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  62                        return;
  63        }
  64
  65        tfc->ret = tfc->func(tfc->info);
  66}
  67
  68/**
  69 * task_function_call - call a function on the cpu on which a task runs
  70 * @p:          the task to evaluate
  71 * @func:       the function to be called
  72 * @info:       the function call argument
  73 *
  74 * Calls the function @func when the task is currently running. This might
  75 * be on the current CPU, which just calls the function directly
  76 *
  77 * returns: @func return value, or
  78 *          -ESRCH  - when the process isn't running
  79 *          -EAGAIN - when the process moved away
  80 */
  81static int
  82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  83{
  84        struct remote_function_call data = {
  85                .p      = p,
  86                .func   = func,
  87                .info   = info,
  88                .ret    = -ESRCH, /* No such (running) process */
  89        };
  90
  91        if (task_curr(p))
  92                smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  93
  94        return data.ret;
  95}
  96
  97/**
  98 * cpu_function_call - call a function on the cpu
  99 * @func:       the function to be called
 100 * @info:       the function call argument
 101 *
 102 * Calls the function @func on the remote cpu.
 103 *
 104 * returns: @func return value or -ENXIO when the cpu is offline
 105 */
 106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
 107{
 108        struct remote_function_call data = {
 109                .p      = NULL,
 110                .func   = func,
 111                .info   = info,
 112                .ret    = -ENXIO, /* No such CPU */
 113        };
 114
 115        smp_call_function_single(cpu, remote_function, &data, 1);
 116
 117        return data.ret;
 118}
 119
 120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 121                       PERF_FLAG_FD_OUTPUT  |\
 122                       PERF_FLAG_PID_CGROUP)
 123
 124/*
 125 * branch priv levels that need permission checks
 126 */
 127#define PERF_SAMPLE_BRANCH_PERM_PLM \
 128        (PERF_SAMPLE_BRANCH_KERNEL |\
 129         PERF_SAMPLE_BRANCH_HV)
 130
 131enum event_type_t {
 132        EVENT_FLEXIBLE = 0x1,
 133        EVENT_PINNED = 0x2,
 134        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 135};
 136
 137/*
 138 * perf_sched_events : >0 events exist
 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 140 */
 141struct static_key_deferred perf_sched_events __read_mostly;
 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
 144
 145static atomic_t nr_mmap_events __read_mostly;
 146static atomic_t nr_comm_events __read_mostly;
 147static atomic_t nr_task_events __read_mostly;
 148static atomic_t nr_freq_events __read_mostly;
 149
 150static LIST_HEAD(pmus);
 151static DEFINE_MUTEX(pmus_lock);
 152static struct srcu_struct pmus_srcu;
 153
 154/*
 155 * perf event paranoia level:
 156 *  -1 - not paranoid at all
 157 *   0 - disallow raw tracepoint access for unpriv
 158 *   1 - disallow cpu events for unpriv
 159 *   2 - disallow kernel profiling for unpriv
 160 */
 161int sysctl_perf_event_paranoid __read_mostly = 1;
 162
 163/* Minimum for 512 kiB + 1 user control page */
 164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 165
 166/*
 167 * max perf event sample rate
 168 */
 169#define DEFAULT_MAX_SAMPLE_RATE         100000
 170#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 171#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 172
 173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 174
 175static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 176static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 177
 178static atomic_t perf_sample_allowed_ns __read_mostly =
 179        ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
 180
 181void update_perf_cpu_limits(void)
 182{
 183        u64 tmp = perf_sample_period_ns;
 184
 185        tmp *= sysctl_perf_cpu_time_max_percent;
 186        do_div(tmp, 100);
 187        atomic_set(&perf_sample_allowed_ns, tmp);
 188}
 189
 190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
 191
 192int perf_proc_update_handler(struct ctl_table *table, int write,
 193                void __user *buffer, size_t *lenp,
 194                loff_t *ppos)
 195{
 196        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 197
 198        if (ret || !write)
 199                return ret;
 200
 201        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 202        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 203        update_perf_cpu_limits();
 204
 205        return 0;
 206}
 207
 208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 209
 210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 211                                void __user *buffer, size_t *lenp,
 212                                loff_t *ppos)
 213{
 214        int ret = proc_dointvec(table, write, buffer, lenp, ppos);
 215
 216        if (ret || !write)
 217                return ret;
 218
 219        update_perf_cpu_limits();
 220
 221        return 0;
 222}
 223
 224/*
 225 * perf samples are done in some very critical code paths (NMIs).
 226 * If they take too much CPU time, the system can lock up and not
 227 * get any real work done.  This will drop the sample rate when
 228 * we detect that events are taking too long.
 229 */
 230#define NR_ACCUMULATED_SAMPLES 128
 231DEFINE_PER_CPU(u64, running_sample_length);
 232
 233void perf_sample_event_took(u64 sample_len_ns)
 234{
 235        u64 avg_local_sample_len;
 236        u64 local_samples_len;
 237
 238        if (atomic_read(&perf_sample_allowed_ns) == 0)
 239                return;
 240
 241        /* decay the counter by 1 average sample */
 242        local_samples_len = __get_cpu_var(running_sample_length);
 243        local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
 244        local_samples_len += sample_len_ns;
 245        __get_cpu_var(running_sample_length) = local_samples_len;
 246
 247        /*
 248         * note: this will be biased artifically low until we have
 249         * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
 250         * from having to maintain a count.
 251         */
 252        avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
 253
 254        if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
 255                return;
 256
 257        if (max_samples_per_tick <= 1)
 258                return;
 259
 260        max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
 261        sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
 262        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 263
 264        printk_ratelimited(KERN_WARNING
 265                        "perf samples too long (%lld > %d), lowering "
 266                        "kernel.perf_event_max_sample_rate to %d\n",
 267                        avg_local_sample_len,
 268                        atomic_read(&perf_sample_allowed_ns),
 269                        sysctl_perf_event_sample_rate);
 270
 271        update_perf_cpu_limits();
 272}
 273
 274static atomic64_t perf_event_id;
 275
 276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 277                              enum event_type_t event_type);
 278
 279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 280                             enum event_type_t event_type,
 281                             struct task_struct *task);
 282
 283static void update_context_time(struct perf_event_context *ctx);
 284static u64 perf_event_time(struct perf_event *event);
 285
 286void __weak perf_event_print_debug(void)        { }
 287
 288extern __weak const char *perf_pmu_name(void)
 289{
 290        return "pmu";
 291}
 292
 293static inline u64 perf_clock(void)
 294{
 295        return local_clock();
 296}
 297
 298static inline struct perf_cpu_context *
 299__get_cpu_context(struct perf_event_context *ctx)
 300{
 301        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 302}
 303
 304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 305                          struct perf_event_context *ctx)
 306{
 307        raw_spin_lock(&cpuctx->ctx.lock);
 308        if (ctx)
 309                raw_spin_lock(&ctx->lock);
 310}
 311
 312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 313                            struct perf_event_context *ctx)
 314{
 315        if (ctx)
 316                raw_spin_unlock(&ctx->lock);
 317        raw_spin_unlock(&cpuctx->ctx.lock);
 318}
 319
 320#ifdef CONFIG_CGROUP_PERF
 321
 322/*
 323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 324 * This is a per-cpu dynamically allocated data structure.
 325 */
 326struct perf_cgroup_info {
 327        u64                             time;
 328        u64                             timestamp;
 329};
 330
 331struct perf_cgroup {
 332        struct cgroup_subsys_state      css;
 333        struct perf_cgroup_info __percpu *info;
 334};
 335
 336/*
 337 * Must ensure cgroup is pinned (css_get) before calling
 338 * this function. In other words, we cannot call this function
 339 * if there is no cgroup event for the current CPU context.
 340 */
 341static inline struct perf_cgroup *
 342perf_cgroup_from_task(struct task_struct *task)
 343{
 344        return container_of(task_css(task, perf_subsys_id),
 345                            struct perf_cgroup, css);
 346}
 347
 348static inline bool
 349perf_cgroup_match(struct perf_event *event)
 350{
 351        struct perf_event_context *ctx = event->ctx;
 352        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 353
 354        /* @event doesn't care about cgroup */
 355        if (!event->cgrp)
 356                return true;
 357
 358        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 359        if (!cpuctx->cgrp)
 360                return false;
 361
 362        /*
 363         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 364         * also enabled for all its descendant cgroups.  If @cpuctx's
 365         * cgroup is a descendant of @event's (the test covers identity
 366         * case), it's a match.
 367         */
 368        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 369                                    event->cgrp->css.cgroup);
 370}
 371
 372static inline bool perf_tryget_cgroup(struct perf_event *event)
 373{
 374        return css_tryget(&event->cgrp->css);
 375}
 376
 377static inline void perf_put_cgroup(struct perf_event *event)
 378{
 379        css_put(&event->cgrp->css);
 380}
 381
 382static inline void perf_detach_cgroup(struct perf_event *event)
 383{
 384        perf_put_cgroup(event);
 385        event->cgrp = NULL;
 386}
 387
 388static inline int is_cgroup_event(struct perf_event *event)
 389{
 390        return event->cgrp != NULL;
 391}
 392
 393static inline u64 perf_cgroup_event_time(struct perf_event *event)
 394{
 395        struct perf_cgroup_info *t;
 396
 397        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 398        return t->time;
 399}
 400
 401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 402{
 403        struct perf_cgroup_info *info;
 404        u64 now;
 405
 406        now = perf_clock();
 407
 408        info = this_cpu_ptr(cgrp->info);
 409
 410        info->time += now - info->timestamp;
 411        info->timestamp = now;
 412}
 413
 414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 415{
 416        struct perf_cgroup *cgrp_out = cpuctx->cgrp;
 417        if (cgrp_out)
 418                __update_cgrp_time(cgrp_out);
 419}
 420
 421static inline void update_cgrp_time_from_event(struct perf_event *event)
 422{
 423        struct perf_cgroup *cgrp;
 424
 425        /*
 426         * ensure we access cgroup data only when needed and
 427         * when we know the cgroup is pinned (css_get)
 428         */
 429        if (!is_cgroup_event(event))
 430                return;
 431
 432        cgrp = perf_cgroup_from_task(current);
 433        /*
 434         * Do not update time when cgroup is not active
 435         */
 436        if (cgrp == event->cgrp)
 437                __update_cgrp_time(event->cgrp);
 438}
 439
 440static inline void
 441perf_cgroup_set_timestamp(struct task_struct *task,
 442                          struct perf_event_context *ctx)
 443{
 444        struct perf_cgroup *cgrp;
 445        struct perf_cgroup_info *info;
 446
 447        /*
 448         * ctx->lock held by caller
 449         * ensure we do not access cgroup data
 450         * unless we have the cgroup pinned (css_get)
 451         */
 452        if (!task || !ctx->nr_cgroups)
 453                return;
 454
 455        cgrp = perf_cgroup_from_task(task);
 456        info = this_cpu_ptr(cgrp->info);
 457        info->timestamp = ctx->timestamp;
 458}
 459
 460#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 461#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 462
 463/*
 464 * reschedule events based on the cgroup constraint of task.
 465 *
 466 * mode SWOUT : schedule out everything
 467 * mode SWIN : schedule in based on cgroup for next
 468 */
 469void perf_cgroup_switch(struct task_struct *task, int mode)
 470{
 471        struct perf_cpu_context *cpuctx;
 472        struct pmu *pmu;
 473        unsigned long flags;
 474
 475        /*
 476         * disable interrupts to avoid geting nr_cgroup
 477         * changes via __perf_event_disable(). Also
 478         * avoids preemption.
 479         */
 480        local_irq_save(flags);
 481
 482        /*
 483         * we reschedule only in the presence of cgroup
 484         * constrained events.
 485         */
 486        rcu_read_lock();
 487
 488        list_for_each_entry_rcu(pmu, &pmus, entry) {
 489                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 490                if (cpuctx->unique_pmu != pmu)
 491                        continue; /* ensure we process each cpuctx once */
 492
 493                /*
 494                 * perf_cgroup_events says at least one
 495                 * context on this CPU has cgroup events.
 496                 *
 497                 * ctx->nr_cgroups reports the number of cgroup
 498                 * events for a context.
 499                 */
 500                if (cpuctx->ctx.nr_cgroups > 0) {
 501                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 502                        perf_pmu_disable(cpuctx->ctx.pmu);
 503
 504                        if (mode & PERF_CGROUP_SWOUT) {
 505                                cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 506                                /*
 507                                 * must not be done before ctxswout due
 508                                 * to event_filter_match() in event_sched_out()
 509                                 */
 510                                cpuctx->cgrp = NULL;
 511                        }
 512
 513                        if (mode & PERF_CGROUP_SWIN) {
 514                                WARN_ON_ONCE(cpuctx->cgrp);
 515                                /*
 516                                 * set cgrp before ctxsw in to allow
 517                                 * event_filter_match() to not have to pass
 518                                 * task around
 519                                 */
 520                                cpuctx->cgrp = perf_cgroup_from_task(task);
 521                                cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 522                        }
 523                        perf_pmu_enable(cpuctx->ctx.pmu);
 524                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 525                }
 526        }
 527
 528        rcu_read_unlock();
 529
 530        local_irq_restore(flags);
 531}
 532
 533static inline void perf_cgroup_sched_out(struct task_struct *task,
 534                                         struct task_struct *next)
 535{
 536        struct perf_cgroup *cgrp1;
 537        struct perf_cgroup *cgrp2 = NULL;
 538
 539        /*
 540         * we come here when we know perf_cgroup_events > 0
 541         */
 542        cgrp1 = perf_cgroup_from_task(task);
 543
 544        /*
 545         * next is NULL when called from perf_event_enable_on_exec()
 546         * that will systematically cause a cgroup_switch()
 547         */
 548        if (next)
 549                cgrp2 = perf_cgroup_from_task(next);
 550
 551        /*
 552         * only schedule out current cgroup events if we know
 553         * that we are switching to a different cgroup. Otherwise,
 554         * do no touch the cgroup events.
 555         */
 556        if (cgrp1 != cgrp2)
 557                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 558}
 559
 560static inline void perf_cgroup_sched_in(struct task_struct *prev,
 561                                        struct task_struct *task)
 562{
 563        struct perf_cgroup *cgrp1;
 564        struct perf_cgroup *cgrp2 = NULL;
 565
 566        /*
 567         * we come here when we know perf_cgroup_events > 0
 568         */
 569        cgrp1 = perf_cgroup_from_task(task);
 570
 571        /* prev can never be NULL */
 572        cgrp2 = perf_cgroup_from_task(prev);
 573
 574        /*
 575         * only need to schedule in cgroup events if we are changing
 576         * cgroup during ctxsw. Cgroup events were not scheduled
 577         * out of ctxsw out if that was not the case.
 578         */
 579        if (cgrp1 != cgrp2)
 580                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 581}
 582
 583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 584                                      struct perf_event_attr *attr,
 585                                      struct perf_event *group_leader)
 586{
 587        struct perf_cgroup *cgrp;
 588        struct cgroup_subsys_state *css;
 589        struct fd f = fdget(fd);
 590        int ret = 0;
 591
 592        if (!f.file)
 593                return -EBADF;
 594
 595        rcu_read_lock();
 596
 597        css = css_from_dir(f.file->f_dentry, &perf_subsys);
 598        if (IS_ERR(css)) {
 599                ret = PTR_ERR(css);
 600                goto out;
 601        }
 602
 603        cgrp = container_of(css, struct perf_cgroup, css);
 604        event->cgrp = cgrp;
 605
 606        /* must be done before we fput() the file */
 607        if (!perf_tryget_cgroup(event)) {
 608                event->cgrp = NULL;
 609                ret = -ENOENT;
 610                goto out;
 611        }
 612
 613        /*
 614         * all events in a group must monitor
 615         * the same cgroup because a task belongs
 616         * to only one perf cgroup at a time
 617         */
 618        if (group_leader && group_leader->cgrp != cgrp) {
 619                perf_detach_cgroup(event);
 620                ret = -EINVAL;
 621        }
 622out:
 623        rcu_read_unlock();
 624        fdput(f);
 625        return ret;
 626}
 627
 628static inline void
 629perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 630{
 631        struct perf_cgroup_info *t;
 632        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 633        event->shadow_ctx_time = now - t->timestamp;
 634}
 635
 636static inline void
 637perf_cgroup_defer_enabled(struct perf_event *event)
 638{
 639        /*
 640         * when the current task's perf cgroup does not match
 641         * the event's, we need to remember to call the
 642         * perf_mark_enable() function the first time a task with
 643         * a matching perf cgroup is scheduled in.
 644         */
 645        if (is_cgroup_event(event) && !perf_cgroup_match(event))
 646                event->cgrp_defer_enabled = 1;
 647}
 648
 649static inline void
 650perf_cgroup_mark_enabled(struct perf_event *event,
 651                         struct perf_event_context *ctx)
 652{
 653        struct perf_event *sub;
 654        u64 tstamp = perf_event_time(event);
 655
 656        if (!event->cgrp_defer_enabled)
 657                return;
 658
 659        event->cgrp_defer_enabled = 0;
 660
 661        event->tstamp_enabled = tstamp - event->total_time_enabled;
 662        list_for_each_entry(sub, &event->sibling_list, group_entry) {
 663                if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
 664                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
 665                        sub->cgrp_defer_enabled = 0;
 666                }
 667        }
 668}
 669#else /* !CONFIG_CGROUP_PERF */
 670
 671static inline bool
 672perf_cgroup_match(struct perf_event *event)
 673{
 674        return true;
 675}
 676
 677static inline void perf_detach_cgroup(struct perf_event *event)
 678{}
 679
 680static inline int is_cgroup_event(struct perf_event *event)
 681{
 682        return 0;
 683}
 684
 685static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
 686{
 687        return 0;
 688}
 689
 690static inline void update_cgrp_time_from_event(struct perf_event *event)
 691{
 692}
 693
 694static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 695{
 696}
 697
 698static inline void perf_cgroup_sched_out(struct task_struct *task,
 699                                         struct task_struct *next)
 700{
 701}
 702
 703static inline void perf_cgroup_sched_in(struct task_struct *prev,
 704                                        struct task_struct *task)
 705{
 706}
 707
 708static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
 709                                      struct perf_event_attr *attr,
 710                                      struct perf_event *group_leader)
 711{
 712        return -EINVAL;
 713}
 714
 715static inline void
 716perf_cgroup_set_timestamp(struct task_struct *task,
 717                          struct perf_event_context *ctx)
 718{
 719}
 720
 721void
 722perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
 723{
 724}
 725
 726static inline void
 727perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 728{
 729}
 730
 731static inline u64 perf_cgroup_event_time(struct perf_event *event)
 732{
 733        return 0;
 734}
 735
 736static inline void
 737perf_cgroup_defer_enabled(struct perf_event *event)
 738{
 739}
 740
 741static inline void
 742perf_cgroup_mark_enabled(struct perf_event *event,
 743                         struct perf_event_context *ctx)
 744{
 745}
 746#endif
 747
 748/*
 749 * set default to be dependent on timer tick just
 750 * like original code
 751 */
 752#define PERF_CPU_HRTIMER (1000 / HZ)
 753/*
 754 * function must be called with interrupts disbled
 755 */
 756static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
 757{
 758        struct perf_cpu_context *cpuctx;
 759        enum hrtimer_restart ret = HRTIMER_NORESTART;
 760        int rotations = 0;
 761
 762        WARN_ON(!irqs_disabled());
 763
 764        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
 765
 766        rotations = perf_rotate_context(cpuctx);
 767
 768        /*
 769         * arm timer if needed
 770         */
 771        if (rotations) {
 772                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
 773                ret = HRTIMER_RESTART;
 774        }
 775
 776        return ret;
 777}
 778
 779/* CPU is going down */
 780void perf_cpu_hrtimer_cancel(int cpu)
 781{
 782        struct perf_cpu_context *cpuctx;
 783        struct pmu *pmu;
 784        unsigned long flags;
 785
 786        if (WARN_ON(cpu != smp_processor_id()))
 787                return;
 788
 789        local_irq_save(flags);
 790
 791        rcu_read_lock();
 792
 793        list_for_each_entry_rcu(pmu, &pmus, entry) {
 794                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 795
 796                if (pmu->task_ctx_nr == perf_sw_context)
 797                        continue;
 798
 799                hrtimer_cancel(&cpuctx->hrtimer);
 800        }
 801
 802        rcu_read_unlock();
 803
 804        local_irq_restore(flags);
 805}
 806
 807static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
 808{
 809        struct hrtimer *hr = &cpuctx->hrtimer;
 810        struct pmu *pmu = cpuctx->ctx.pmu;
 811        int timer;
 812
 813        /* no multiplexing needed for SW PMU */
 814        if (pmu->task_ctx_nr == perf_sw_context)
 815                return;
 816
 817        /*
 818         * check default is sane, if not set then force to
 819         * default interval (1/tick)
 820         */
 821        timer = pmu->hrtimer_interval_ms;
 822        if (timer < 1)
 823                timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
 824
 825        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
 826
 827        hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 828        hr->function = perf_cpu_hrtimer_handler;
 829}
 830
 831static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
 832{
 833        struct hrtimer *hr = &cpuctx->hrtimer;
 834        struct pmu *pmu = cpuctx->ctx.pmu;
 835
 836        /* not for SW PMU */
 837        if (pmu->task_ctx_nr == perf_sw_context)
 838                return;
 839
 840        if (hrtimer_active(hr))
 841                return;
 842
 843        if (!hrtimer_callback_running(hr))
 844                __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
 845                                         0, HRTIMER_MODE_REL_PINNED, 0);
 846}
 847
 848void perf_pmu_disable(struct pmu *pmu)
 849{
 850        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 851        if (!(*count)++)
 852                pmu->pmu_disable(pmu);
 853}
 854
 855void perf_pmu_enable(struct pmu *pmu)
 856{
 857        int *count = this_cpu_ptr(pmu->pmu_disable_count);
 858        if (!--(*count))
 859                pmu->pmu_enable(pmu);
 860}
 861
 862static DEFINE_PER_CPU(struct list_head, rotation_list);
 863
 864/*
 865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 866 * because they're strictly cpu affine and rotate_start is called with IRQs
 867 * disabled, while rotate_context is called from IRQ context.
 868 */
 869static void perf_pmu_rotate_start(struct pmu *pmu)
 870{
 871        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
 872        struct list_head *head = &__get_cpu_var(rotation_list);
 873
 874        WARN_ON(!irqs_disabled());
 875
 876        if (list_empty(&cpuctx->rotation_list))
 877                list_add(&cpuctx->rotation_list, head);
 878}
 879
 880static void get_ctx(struct perf_event_context *ctx)
 881{
 882        WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
 883}
 884
 885static void put_ctx(struct perf_event_context *ctx)
 886{
 887        if (atomic_dec_and_test(&ctx->refcount)) {
 888                if (ctx->parent_ctx)
 889                        put_ctx(ctx->parent_ctx);
 890                if (ctx->task)
 891                        put_task_struct(ctx->task);
 892                kfree_rcu(ctx, rcu_head);
 893        }
 894}
 895
 896static void unclone_ctx(struct perf_event_context *ctx)
 897{
 898        if (ctx->parent_ctx) {
 899                put_ctx(ctx->parent_ctx);
 900                ctx->parent_ctx = NULL;
 901        }
 902}
 903
 904static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
 905{
 906        /*
 907         * only top level events have the pid namespace they were created in
 908         */
 909        if (event->parent)
 910                event = event->parent;
 911
 912        return task_tgid_nr_ns(p, event->ns);
 913}
 914
 915static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
 916{
 917        /*
 918         * only top level events have the pid namespace they were created in
 919         */
 920        if (event->parent)
 921                event = event->parent;
 922
 923        return task_pid_nr_ns(p, event->ns);
 924}
 925
 926/*
 927 * If we inherit events we want to return the parent event id
 928 * to userspace.
 929 */
 930static u64 primary_event_id(struct perf_event *event)
 931{
 932        u64 id = event->id;
 933
 934        if (event->parent)
 935                id = event->parent->id;
 936
 937        return id;
 938}
 939
 940/*
 941 * Get the perf_event_context for a task and lock it.
 942 * This has to cope with with the fact that until it is locked,
 943 * the context could get moved to another task.
 944 */
 945static struct perf_event_context *
 946perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
 947{
 948        struct perf_event_context *ctx;
 949
 950retry:
 951        /*
 952         * One of the few rules of preemptible RCU is that one cannot do
 953         * rcu_read_unlock() while holding a scheduler (or nested) lock when
 954         * part of the read side critical section was preemptible -- see
 955         * rcu_read_unlock_special().
 956         *
 957         * Since ctx->lock nests under rq->lock we must ensure the entire read
 958         * side critical section is non-preemptible.
 959         */
 960        preempt_disable();
 961        rcu_read_lock();
 962        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
 963        if (ctx) {
 964                /*
 965                 * If this context is a clone of another, it might
 966                 * get swapped for another underneath us by
 967                 * perf_event_task_sched_out, though the
 968                 * rcu_read_lock() protects us from any context
 969                 * getting freed.  Lock the context and check if it
 970                 * got swapped before we could get the lock, and retry
 971                 * if so.  If we locked the right context, then it
 972                 * can't get swapped on us any more.
 973                 */
 974                raw_spin_lock_irqsave(&ctx->lock, *flags);
 975                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
 976                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 977                        rcu_read_unlock();
 978                        preempt_enable();
 979                        goto retry;
 980                }
 981
 982                if (!atomic_inc_not_zero(&ctx->refcount)) {
 983                        raw_spin_unlock_irqrestore(&ctx->lock, *flags);
 984                        ctx = NULL;
 985                }
 986        }
 987        rcu_read_unlock();
 988        preempt_enable();
 989        return ctx;
 990}
 991
 992/*
 993 * Get the context for a task and increment its pin_count so it
 994 * can't get swapped to another task.  This also increments its
 995 * reference count so that the context can't get freed.
 996 */
 997static struct perf_event_context *
 998perf_pin_task_context(struct task_struct *task, int ctxn)
 999{
1000        struct perf_event_context *ctx;
1001        unsigned long flags;
1002
1003        ctx = perf_lock_task_context(task, ctxn, &flags);
1004        if (ctx) {
1005                ++ctx->pin_count;
1006                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1007        }
1008        return ctx;
1009}
1010
1011static void perf_unpin_context(struct perf_event_context *ctx)
1012{
1013        unsigned long flags;
1014
1015        raw_spin_lock_irqsave(&ctx->lock, flags);
1016        --ctx->pin_count;
1017        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1018}
1019
1020/*
1021 * Update the record of the current time in a context.
1022 */
1023static void update_context_time(struct perf_event_context *ctx)
1024{
1025        u64 now = perf_clock();
1026
1027        ctx->time += now - ctx->timestamp;
1028        ctx->timestamp = now;
1029}
1030
1031static u64 perf_event_time(struct perf_event *event)
1032{
1033        struct perf_event_context *ctx = event->ctx;
1034
1035        if (is_cgroup_event(event))
1036                return perf_cgroup_event_time(event);
1037
1038        return ctx ? ctx->time : 0;
1039}
1040
1041/*
1042 * Update the total_time_enabled and total_time_running fields for a event.
1043 * The caller of this function needs to hold the ctx->lock.
1044 */
1045static void update_event_times(struct perf_event *event)
1046{
1047        struct perf_event_context *ctx = event->ctx;
1048        u64 run_end;
1049
1050        if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051            event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052                return;
1053        /*
1054         * in cgroup mode, time_enabled represents
1055         * the time the event was enabled AND active
1056         * tasks were in the monitored cgroup. This is
1057         * independent of the activity of the context as
1058         * there may be a mix of cgroup and non-cgroup events.
1059         *
1060         * That is why we treat cgroup events differently
1061         * here.
1062         */
1063        if (is_cgroup_event(event))
1064                run_end = perf_cgroup_event_time(event);
1065        else if (ctx->is_active)
1066                run_end = ctx->time;
1067        else
1068                run_end = event->tstamp_stopped;
1069
1070        event->total_time_enabled = run_end - event->tstamp_enabled;
1071
1072        if (event->state == PERF_EVENT_STATE_INACTIVE)
1073                run_end = event->tstamp_stopped;
1074        else
1075                run_end = perf_event_time(event);
1076
1077        event->total_time_running = run_end - event->tstamp_running;
1078
1079}
1080
1081/*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084static void update_group_times(struct perf_event *leader)
1085{
1086        struct perf_event *event;
1087
1088        update_event_times(leader);
1089        list_for_each_entry(event, &leader->sibling_list, group_entry)
1090                update_event_times(event);
1091}
1092
1093static struct list_head *
1094ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095{
1096        if (event->attr.pinned)
1097                return &ctx->pinned_groups;
1098        else
1099                return &ctx->flexible_groups;
1100}
1101
1102/*
1103 * Add a event from the lists for its context.
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
1106static void
1107list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1108{
1109        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110        event->attach_state |= PERF_ATTACH_CONTEXT;
1111
1112        /*
1113         * If we're a stand alone event or group leader, we go to the context
1114         * list, group events are kept attached to the group so that
1115         * perf_group_detach can, at all times, locate all siblings.
1116         */
1117        if (event->group_leader == event) {
1118                struct list_head *list;
1119
1120                if (is_software_event(event))
1121                        event->group_flags |= PERF_GROUP_SOFTWARE;
1122
1123                list = ctx_group_list(event, ctx);
1124                list_add_tail(&event->group_entry, list);
1125        }
1126
1127        if (is_cgroup_event(event))
1128                ctx->nr_cgroups++;
1129
1130        if (has_branch_stack(event))
1131                ctx->nr_branch_stack++;
1132
1133        list_add_rcu(&event->event_entry, &ctx->event_list);
1134        if (!ctx->nr_events)
1135                perf_pmu_rotate_start(ctx->pmu);
1136        ctx->nr_events++;
1137        if (event->attr.inherit_stat)
1138                ctx->nr_stat++;
1139}
1140
1141/*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144static inline void perf_event__state_init(struct perf_event *event)
1145{
1146        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147                                              PERF_EVENT_STATE_INACTIVE;
1148}
1149
1150/*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154static void perf_event__read_size(struct perf_event *event)
1155{
1156        int entry = sizeof(u64); /* value */
1157        int size = 0;
1158        int nr = 1;
1159
1160        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161                size += sizeof(u64);
1162
1163        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164                size += sizeof(u64);
1165
1166        if (event->attr.read_format & PERF_FORMAT_ID)
1167                entry += sizeof(u64);
1168
1169        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170                nr += event->group_leader->nr_siblings;
1171                size += sizeof(u64);
1172        }
1173
1174        size += entry * nr;
1175        event->read_size = size;
1176}
1177
1178static void perf_event__header_size(struct perf_event *event)
1179{
1180        struct perf_sample_data *data;
1181        u64 sample_type = event->attr.sample_type;
1182        u16 size = 0;
1183
1184        perf_event__read_size(event);
1185
1186        if (sample_type & PERF_SAMPLE_IP)
1187                size += sizeof(data->ip);
1188
1189        if (sample_type & PERF_SAMPLE_ADDR)
1190                size += sizeof(data->addr);
1191
1192        if (sample_type & PERF_SAMPLE_PERIOD)
1193                size += sizeof(data->period);
1194
1195        if (sample_type & PERF_SAMPLE_WEIGHT)
1196                size += sizeof(data->weight);
1197
1198        if (sample_type & PERF_SAMPLE_READ)
1199                size += event->read_size;
1200
1201        if (sample_type & PERF_SAMPLE_DATA_SRC)
1202                size += sizeof(data->data_src.val);
1203
1204        event->header_size = size;
1205}
1206
1207static void perf_event__id_header_size(struct perf_event *event)
1208{
1209        struct perf_sample_data *data;
1210        u64 sample_type = event->attr.sample_type;
1211        u16 size = 0;
1212
1213        if (sample_type & PERF_SAMPLE_TID)
1214                size += sizeof(data->tid_entry);
1215
1216        if (sample_type & PERF_SAMPLE_TIME)
1217                size += sizeof(data->time);
1218
1219        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1220                size += sizeof(data->id);
1221
1222        if (sample_type & PERF_SAMPLE_ID)
1223                size += sizeof(data->id);
1224
1225        if (sample_type & PERF_SAMPLE_STREAM_ID)
1226                size += sizeof(data->stream_id);
1227
1228        if (sample_type & PERF_SAMPLE_CPU)
1229                size += sizeof(data->cpu_entry);
1230
1231        event->id_header_size = size;
1232}
1233
1234static void perf_group_attach(struct perf_event *event)
1235{
1236        struct perf_event *group_leader = event->group_leader, *pos;
1237
1238        /*
1239         * We can have double attach due to group movement in perf_event_open.
1240         */
1241        if (event->attach_state & PERF_ATTACH_GROUP)
1242                return;
1243
1244        event->attach_state |= PERF_ATTACH_GROUP;
1245
1246        if (group_leader == event)
1247                return;
1248
1249        if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1250                        !is_software_event(event))
1251                group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1252
1253        list_add_tail(&event->group_entry, &group_leader->sibling_list);
1254        group_leader->nr_siblings++;
1255
1256        perf_event__header_size(group_leader);
1257
1258        list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1259                perf_event__header_size(pos);
1260}
1261
1262/*
1263 * Remove a event from the lists for its context.
1264 * Must be called with ctx->mutex and ctx->lock held.
1265 */
1266static void
1267list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1268{
1269        struct perf_cpu_context *cpuctx;
1270        /*
1271         * We can have double detach due to exit/hot-unplug + close.
1272         */
1273        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1274                return;
1275
1276        event->attach_state &= ~PERF_ATTACH_CONTEXT;
1277
1278        if (is_cgroup_event(event)) {
1279                ctx->nr_cgroups--;
1280                cpuctx = __get_cpu_context(ctx);
1281                /*
1282                 * if there are no more cgroup events
1283                 * then cler cgrp to avoid stale pointer
1284                 * in update_cgrp_time_from_cpuctx()
1285                 */
1286                if (!ctx->nr_cgroups)
1287                        cpuctx->cgrp = NULL;
1288        }
1289
1290        if (has_branch_stack(event))
1291                ctx->nr_branch_stack--;
1292
1293        ctx->nr_events--;
1294        if (event->attr.inherit_stat)
1295                ctx->nr_stat--;
1296
1297        list_del_rcu(&event->event_entry);
1298
1299        if (event->group_leader == event)
1300                list_del_init(&event->group_entry);
1301
1302        update_group_times(event);
1303
1304        /*
1305         * If event was in error state, then keep it
1306         * that way, otherwise bogus counts will be
1307         * returned on read(). The only way to get out
1308         * of error state is by explicit re-enabling
1309         * of the event
1310         */
1311        if (event->state > PERF_EVENT_STATE_OFF)
1312                event->state = PERF_EVENT_STATE_OFF;
1313}
1314
1315static void perf_group_detach(struct perf_event *event)
1316{
1317        struct perf_event *sibling, *tmp;
1318        struct list_head *list = NULL;
1319
1320        /*
1321         * We can have double detach due to exit/hot-unplug + close.
1322         */
1323        if (!(event->attach_state & PERF_ATTACH_GROUP))
1324                return;
1325
1326        event->attach_state &= ~PERF_ATTACH_GROUP;
1327
1328        /*
1329         * If this is a sibling, remove it from its group.
1330         */
1331        if (event->group_leader != event) {
1332                list_del_init(&event->group_entry);
1333                event->group_leader->nr_siblings--;
1334                goto out;
1335        }
1336
1337        if (!list_empty(&event->group_entry))
1338                list = &event->group_entry;
1339
1340        /*
1341         * If this was a group event with sibling events then
1342         * upgrade the siblings to singleton events by adding them
1343         * to whatever list we are on.
1344         */
1345        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1346                if (list)
1347                        list_move_tail(&sibling->group_entry, list);
1348                sibling->group_leader = sibling;
1349
1350                /* Inherit group flags from the previous leader */
1351                sibling->group_flags = event->group_flags;
1352        }
1353
1354out:
1355        perf_event__header_size(event->group_leader);
1356
1357        list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1358                perf_event__header_size(tmp);
1359}
1360
1361static inline int
1362event_filter_match(struct perf_event *event)
1363{
1364        return (event->cpu == -1 || event->cpu == smp_processor_id())
1365            && perf_cgroup_match(event);
1366}
1367
1368static void
1369event_sched_out(struct perf_event *event,
1370                  struct perf_cpu_context *cpuctx,
1371                  struct perf_event_context *ctx)
1372{
1373        u64 tstamp = perf_event_time(event);
1374        u64 delta;
1375        /*
1376         * An event which could not be activated because of
1377         * filter mismatch still needs to have its timings
1378         * maintained, otherwise bogus information is return
1379         * via read() for time_enabled, time_running:
1380         */
1381        if (event->state == PERF_EVENT_STATE_INACTIVE
1382            && !event_filter_match(event)) {
1383                delta = tstamp - event->tstamp_stopped;
1384                event->tstamp_running += delta;
1385                event->tstamp_stopped = tstamp;
1386        }
1387
1388        if (event->state != PERF_EVENT_STATE_ACTIVE)
1389                return;
1390
1391        event->state = PERF_EVENT_STATE_INACTIVE;
1392        if (event->pending_disable) {
1393                event->pending_disable = 0;
1394                event->state = PERF_EVENT_STATE_OFF;
1395        }
1396        event->tstamp_stopped = tstamp;
1397        event->pmu->del(event, 0);
1398        event->oncpu = -1;
1399
1400        if (!is_software_event(event))
1401                cpuctx->active_oncpu--;
1402        ctx->nr_active--;
1403        if (event->attr.freq && event->attr.sample_freq)
1404                ctx->nr_freq--;
1405        if (event->attr.exclusive || !cpuctx->active_oncpu)
1406                cpuctx->exclusive = 0;
1407}
1408
1409static void
1410group_sched_out(struct perf_event *group_event,
1411                struct perf_cpu_context *cpuctx,
1412                struct perf_event_context *ctx)
1413{
1414        struct perf_event *event;
1415        int state = group_event->state;
1416
1417        event_sched_out(group_event, cpuctx, ctx);
1418
1419        /*
1420         * Schedule out siblings (if any):
1421         */
1422        list_for_each_entry(event, &group_event->sibling_list, group_entry)
1423                event_sched_out(event, cpuctx, ctx);
1424
1425        if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1426                cpuctx->exclusive = 0;
1427}
1428
1429/*
1430 * Cross CPU call to remove a performance event
1431 *
1432 * We disable the event on the hardware level first. After that we
1433 * remove it from the context list.
1434 */
1435static int __perf_remove_from_context(void *info)
1436{
1437        struct perf_event *event = info;
1438        struct perf_event_context *ctx = event->ctx;
1439        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1440
1441        raw_spin_lock(&ctx->lock);
1442        event_sched_out(event, cpuctx, ctx);
1443        list_del_event(event, ctx);
1444        if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1445                ctx->is_active = 0;
1446                cpuctx->task_ctx = NULL;
1447        }
1448        raw_spin_unlock(&ctx->lock);
1449
1450        return 0;
1451}
1452
1453
1454/*
1455 * Remove the event from a task's (or a CPU's) list of events.
1456 *
1457 * CPU events are removed with a smp call. For task events we only
1458 * call when the task is on a CPU.
1459 *
1460 * If event->ctx is a cloned context, callers must make sure that
1461 * every task struct that event->ctx->task could possibly point to
1462 * remains valid.  This is OK when called from perf_release since
1463 * that only calls us on the top-level context, which can't be a clone.
1464 * When called from perf_event_exit_task, it's OK because the
1465 * context has been detached from its task.
1466 */
1467static void perf_remove_from_context(struct perf_event *event)
1468{
1469        struct perf_event_context *ctx = event->ctx;
1470        struct task_struct *task = ctx->task;
1471
1472        lockdep_assert_held(&ctx->mutex);
1473
1474        if (!task) {
1475                /*
1476                 * Per cpu events are removed via an smp call and
1477                 * the removal is always successful.
1478                 */
1479                cpu_function_call(event->cpu, __perf_remove_from_context, event);
1480                return;
1481        }
1482
1483retry:
1484        if (!task_function_call(task, __perf_remove_from_context, event))
1485                return;
1486
1487        raw_spin_lock_irq(&ctx->lock);
1488        /*
1489         * If we failed to find a running task, but find the context active now
1490         * that we've acquired the ctx->lock, retry.
1491         */
1492        if (ctx->is_active) {
1493                raw_spin_unlock_irq(&ctx->lock);
1494                goto retry;
1495        }
1496
1497        /*
1498         * Since the task isn't running, its safe to remove the event, us
1499         * holding the ctx->lock ensures the task won't get scheduled in.
1500         */
1501        list_del_event(event, ctx);
1502        raw_spin_unlock_irq(&ctx->lock);
1503}
1504
1505/*
1506 * Cross CPU call to disable a performance event
1507 */
1508int __perf_event_disable(void *info)
1509{
1510        struct perf_event *event = info;
1511        struct perf_event_context *ctx = event->ctx;
1512        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1513
1514        /*
1515         * If this is a per-task event, need to check whether this
1516         * event's task is the current task on this cpu.
1517         *
1518         * Can trigger due to concurrent perf_event_context_sched_out()
1519         * flipping contexts around.
1520         */
1521        if (ctx->task && cpuctx->task_ctx != ctx)
1522                return -EINVAL;
1523
1524        raw_spin_lock(&ctx->lock);
1525
1526        /*
1527         * If the event is on, turn it off.
1528         * If it is in error state, leave it in error state.
1529         */
1530        if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1531                update_context_time(ctx);
1532                update_cgrp_time_from_event(event);
1533                update_group_times(event);
1534                if (event == event->group_leader)
1535                        group_sched_out(event, cpuctx, ctx);
1536                else
1537                        event_sched_out(event, cpuctx, ctx);
1538                event->state = PERF_EVENT_STATE_OFF;
1539        }
1540
1541        raw_spin_unlock(&ctx->lock);
1542
1543        return 0;
1544}
1545
1546/*
1547 * Disable a event.
1548 *
1549 * If event->ctx is a cloned context, callers must make sure that
1550 * every task struct that event->ctx->task could possibly point to
1551 * remains valid.  This condition is satisifed when called through
1552 * perf_event_for_each_child or perf_event_for_each because they
1553 * hold the top-level event's child_mutex, so any descendant that
1554 * goes to exit will block in sync_child_event.
1555 * When called from perf_pending_event it's OK because event->ctx
1556 * is the current context on this CPU and preemption is disabled,
1557 * hence we can't get into perf_event_task_sched_out for this context.
1558 */
1559void perf_event_disable(struct perf_event *event)
1560{
1561        struct perf_event_context *ctx = event->ctx;
1562        struct task_struct *task = ctx->task;
1563
1564        if (!task) {
1565                /*
1566                 * Disable the event on the cpu that it's on
1567                 */
1568                cpu_function_call(event->cpu, __perf_event_disable, event);
1569                return;
1570        }
1571
1572retry:
1573        if (!task_function_call(task, __perf_event_disable, event))
1574                return;
1575
1576        raw_spin_lock_irq(&ctx->lock);
1577        /*
1578         * If the event is still active, we need to retry the cross-call.
1579         */
1580        if (event->state == PERF_EVENT_STATE_ACTIVE) {
1581                raw_spin_unlock_irq(&ctx->lock);
1582                /*
1583                 * Reload the task pointer, it might have been changed by
1584                 * a concurrent perf_event_context_sched_out().
1585                 */
1586                task = ctx->task;
1587                goto retry;
1588        }
1589
1590        /*
1591         * Since we have the lock this context can't be scheduled
1592         * in, so we can change the state safely.
1593         */
1594        if (event->state == PERF_EVENT_STATE_INACTIVE) {
1595                update_group_times(event);
1596                event->state = PERF_EVENT_STATE_OFF;
1597        }
1598        raw_spin_unlock_irq(&ctx->lock);
1599}
1600EXPORT_SYMBOL_GPL(perf_event_disable);
1601
1602static void perf_set_shadow_time(struct perf_event *event,
1603                                 struct perf_event_context *ctx,
1604                                 u64 tstamp)
1605{
1606        /*
1607         * use the correct time source for the time snapshot
1608         *
1609         * We could get by without this by leveraging the
1610         * fact that to get to this function, the caller
1611         * has most likely already called update_context_time()
1612         * and update_cgrp_time_xx() and thus both timestamp
1613         * are identical (or very close). Given that tstamp is,
1614         * already adjusted for cgroup, we could say that:
1615         *    tstamp - ctx->timestamp
1616         * is equivalent to
1617         *    tstamp - cgrp->timestamp.
1618         *
1619         * Then, in perf_output_read(), the calculation would
1620         * work with no changes because:
1621         * - event is guaranteed scheduled in
1622         * - no scheduled out in between
1623         * - thus the timestamp would be the same
1624         *
1625         * But this is a bit hairy.
1626         *
1627         * So instead, we have an explicit cgroup call to remain
1628         * within the time time source all along. We believe it
1629         * is cleaner and simpler to understand.
1630         */
1631        if (is_cgroup_event(event))
1632                perf_cgroup_set_shadow_time(event, tstamp);
1633        else
1634                event->shadow_ctx_time = tstamp - ctx->timestamp;
1635}
1636
1637#define MAX_INTERRUPTS (~0ULL)
1638
1639static void perf_log_throttle(struct perf_event *event, int enable);
1640
1641static int
1642event_sched_in(struct perf_event *event,
1643                 struct perf_cpu_context *cpuctx,
1644                 struct perf_event_context *ctx)
1645{
1646        u64 tstamp = perf_event_time(event);
1647
1648        if (event->state <= PERF_EVENT_STATE_OFF)
1649                return 0;
1650
1651        event->state = PERF_EVENT_STATE_ACTIVE;
1652        event->oncpu = smp_processor_id();
1653
1654        /*
1655         * Unthrottle events, since we scheduled we might have missed several
1656         * ticks already, also for a heavily scheduling task there is little
1657         * guarantee it'll get a tick in a timely manner.
1658         */
1659        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1660                perf_log_throttle(event, 1);
1661                event->hw.interrupts = 0;
1662        }
1663
1664        /*
1665         * The new state must be visible before we turn it on in the hardware:
1666         */
1667        smp_wmb();
1668
1669        if (event->pmu->add(event, PERF_EF_START)) {
1670                event->state = PERF_EVENT_STATE_INACTIVE;
1671                event->oncpu = -1;
1672                return -EAGAIN;
1673        }
1674
1675        event->tstamp_running += tstamp - event->tstamp_stopped;
1676
1677        perf_set_shadow_time(event, ctx, tstamp);
1678
1679        if (!is_software_event(event))
1680                cpuctx->active_oncpu++;
1681        ctx->nr_active++;
1682        if (event->attr.freq && event->attr.sample_freq)
1683                ctx->nr_freq++;
1684
1685        if (event->attr.exclusive)
1686                cpuctx->exclusive = 1;
1687
1688        return 0;
1689}
1690
1691static int
1692group_sched_in(struct perf_event *group_event,
1693               struct perf_cpu_context *cpuctx,
1694               struct perf_event_context *ctx)
1695{
1696        struct perf_event *event, *partial_group = NULL;
1697        struct pmu *pmu = group_event->pmu;
1698        u64 now = ctx->time;
1699        bool simulate = false;
1700
1701        if (group_event->state == PERF_EVENT_STATE_OFF)
1702                return 0;
1703
1704        pmu->start_txn(pmu);
1705
1706        if (event_sched_in(group_event, cpuctx, ctx)) {
1707                pmu->cancel_txn(pmu);
1708                perf_cpu_hrtimer_restart(cpuctx);
1709                return -EAGAIN;
1710        }
1711
1712        /*
1713         * Schedule in siblings as one group (if any):
1714         */
1715        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1716                if (event_sched_in(event, cpuctx, ctx)) {
1717                        partial_group = event;
1718                        goto group_error;
1719                }
1720        }
1721
1722        if (!pmu->commit_txn(pmu))
1723                return 0;
1724
1725group_error:
1726        /*
1727         * Groups can be scheduled in as one unit only, so undo any
1728         * partial group before returning:
1729         * The events up to the failed event are scheduled out normally,
1730         * tstamp_stopped will be updated.
1731         *
1732         * The failed events and the remaining siblings need to have
1733         * their timings updated as if they had gone thru event_sched_in()
1734         * and event_sched_out(). This is required to get consistent timings
1735         * across the group. This also takes care of the case where the group
1736         * could never be scheduled by ensuring tstamp_stopped is set to mark
1737         * the time the event was actually stopped, such that time delta
1738         * calculation in update_event_times() is correct.
1739         */
1740        list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1741                if (event == partial_group)
1742                        simulate = true;
1743
1744                if (simulate) {
1745                        event->tstamp_running += now - event->tstamp_stopped;
1746                        event->tstamp_stopped = now;
1747                } else {
1748                        event_sched_out(event, cpuctx, ctx);
1749                }
1750        }
1751        event_sched_out(group_event, cpuctx, ctx);
1752
1753        pmu->cancel_txn(pmu);
1754
1755        perf_cpu_hrtimer_restart(cpuctx);
1756
1757        return -EAGAIN;
1758}
1759
1760/*
1761 * Work out whether we can put this event group on the CPU now.
1762 */
1763static int group_can_go_on(struct perf_event *event,
1764                           struct perf_cpu_context *cpuctx,
1765                           int can_add_hw)
1766{
1767        /*
1768         * Groups consisting entirely of software events can always go on.
1769         */
1770        if (event->group_flags & PERF_GROUP_SOFTWARE)
1771                return 1;
1772        /*
1773         * If an exclusive group is already on, no other hardware
1774         * events can go on.
1775         */
1776        if (cpuctx->exclusive)
1777                return 0;
1778        /*
1779         * If this group is exclusive and there are already
1780         * events on the CPU, it can't go on.
1781         */
1782        if (event->attr.exclusive && cpuctx->active_oncpu)
1783                return 0;
1784        /*
1785         * Otherwise, try to add it if all previous groups were able
1786         * to go on.
1787         */
1788        return can_add_hw;
1789}
1790
1791static void add_event_to_ctx(struct perf_event *event,
1792                               struct perf_event_context *ctx)
1793{
1794        u64 tstamp = perf_event_time(event);
1795
1796        list_add_event(event, ctx);
1797        perf_group_attach(event);
1798        event->tstamp_enabled = tstamp;
1799        event->tstamp_running = tstamp;
1800        event->tstamp_stopped = tstamp;
1801}
1802
1803static void task_ctx_sched_out(struct perf_event_context *ctx);
1804static void
1805ctx_sched_in(struct perf_event_context *ctx,
1806             struct perf_cpu_context *cpuctx,
1807             enum event_type_t event_type,
1808             struct task_struct *task);
1809
1810static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1811                                struct perf_event_context *ctx,
1812                                struct task_struct *task)
1813{
1814        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1815        if (ctx)
1816                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1817        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1818        if (ctx)
1819                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1820}
1821
1822/*
1823 * Cross CPU call to install and enable a performance event
1824 *
1825 * Must be called with ctx->mutex held
1826 */
1827static int  __perf_install_in_context(void *info)
1828{
1829        struct perf_event *event = info;
1830        struct perf_event_context *ctx = event->ctx;
1831        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1832        struct perf_event_context *task_ctx = cpuctx->task_ctx;
1833        struct task_struct *task = current;
1834
1835        perf_ctx_lock(cpuctx, task_ctx);
1836        perf_pmu_disable(cpuctx->ctx.pmu);
1837
1838        /*
1839         * If there was an active task_ctx schedule it out.
1840         */
1841        if (task_ctx)
1842                task_ctx_sched_out(task_ctx);
1843
1844        /*
1845         * If the context we're installing events in is not the
1846         * active task_ctx, flip them.
1847         */
1848        if (ctx->task && task_ctx != ctx) {
1849                if (task_ctx)
1850                        raw_spin_unlock(&task_ctx->lock);
1851                raw_spin_lock(&ctx->lock);
1852                task_ctx = ctx;
1853        }
1854
1855        if (task_ctx) {
1856                cpuctx->task_ctx = task_ctx;
1857                task = task_ctx->task;
1858        }
1859
1860        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1861
1862        update_context_time(ctx);
1863        /*
1864         * update cgrp time only if current cgrp
1865         * matches event->cgrp. Must be done before
1866         * calling add_event_to_ctx()
1867         */
1868        update_cgrp_time_from_event(event);
1869
1870        add_event_to_ctx(event, ctx);
1871
1872        /*
1873         * Schedule everything back in
1874         */
1875        perf_event_sched_in(cpuctx, task_ctx, task);
1876
1877        perf_pmu_enable(cpuctx->ctx.pmu);
1878        perf_ctx_unlock(cpuctx, task_ctx);
1879
1880        return 0;
1881}
1882
1883/*
1884 * Attach a performance event to a context
1885 *
1886 * First we add the event to the list with the hardware enable bit
1887 * in event->hw_config cleared.
1888 *
1889 * If the event is attached to a task which is on a CPU we use a smp
1890 * call to enable it in the task context. The task might have been
1891 * scheduled away, but we check this in the smp call again.
1892 */
1893static void
1894perf_install_in_context(struct perf_event_context *ctx,
1895                        struct perf_event *event,
1896                        int cpu)
1897{
1898        struct task_struct *task = ctx->task;
1899
1900        lockdep_assert_held(&ctx->mutex);
1901
1902        event->ctx = ctx;
1903        if (event->cpu != -1)
1904                event->cpu = cpu;
1905
1906        if (!task) {
1907                /*
1908                 * Per cpu events are installed via an smp call and
1909                 * the install is always successful.
1910                 */
1911                cpu_function_call(cpu, __perf_install_in_context, event);
1912                return;
1913        }
1914
1915retry:
1916        if (!task_function_call(task, __perf_install_in_context, event))
1917                return;
1918
1919        raw_spin_lock_irq(&ctx->lock);
1920        /*
1921         * If we failed to find a running task, but find the context active now
1922         * that we've acquired the ctx->lock, retry.
1923         */
1924        if (ctx->is_active) {
1925                raw_spin_unlock_irq(&ctx->lock);
1926                goto retry;
1927        }
1928
1929        /*
1930         * Since the task isn't running, its safe to add the event, us holding
1931         * the ctx->lock ensures the task won't get scheduled in.
1932         */
1933        add_event_to_ctx(event, ctx);
1934        raw_spin_unlock_irq(&ctx->lock);
1935}
1936
1937/*
1938 * Put a event into inactive state and update time fields.
1939 * Enabling the leader of a group effectively enables all
1940 * the group members that aren't explicitly disabled, so we
1941 * have to update their ->tstamp_enabled also.
1942 * Note: this works for group members as well as group leaders
1943 * since the non-leader members' sibling_lists will be empty.
1944 */
1945static void __perf_event_mark_enabled(struct perf_event *event)
1946{
1947        struct perf_event *sub;
1948        u64 tstamp = perf_event_time(event);
1949
1950        event->state = PERF_EVENT_STATE_INACTIVE;
1951        event->tstamp_enabled = tstamp - event->total_time_enabled;
1952        list_for_each_entry(sub, &event->sibling_list, group_entry) {
1953                if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1954                        sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1955        }
1956}
1957
1958/*
1959 * Cross CPU call to enable a performance event
1960 */
1961static int __perf_event_enable(void *info)
1962{
1963        struct perf_event *event = info;
1964        struct perf_event_context *ctx = event->ctx;
1965        struct perf_event *leader = event->group_leader;
1966        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1967        int err;
1968
1969        /*
1970         * There's a time window between 'ctx->is_active' check
1971         * in perf_event_enable function and this place having:
1972         *   - IRQs on
1973         *   - ctx->lock unlocked
1974         *
1975         * where the task could be killed and 'ctx' deactivated
1976         * by perf_event_exit_task.
1977         */
1978        if (!ctx->is_active)
1979                return -EINVAL;
1980
1981        raw_spin_lock(&ctx->lock);
1982        update_context_time(ctx);
1983
1984        if (event->state >= PERF_EVENT_STATE_INACTIVE)
1985                goto unlock;
1986
1987        /*
1988         * set current task's cgroup time reference point
1989         */
1990        perf_cgroup_set_timestamp(current, ctx);
1991
1992        __perf_event_mark_enabled(event);
1993
1994        if (!event_filter_match(event)) {
1995                if (is_cgroup_event(event))
1996                        perf_cgroup_defer_enabled(event);
1997                goto unlock;
1998        }
1999
2000        /*
2001         * If the event is in a group and isn't the group leader,
2002         * then don't put it on unless the group is on.
2003         */
2004        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2005                goto unlock;
2006
2007        if (!group_can_go_on(event, cpuctx, 1)) {
2008                err = -EEXIST;
2009        } else {
2010                if (event == leader)
2011                        err = group_sched_in(event, cpuctx, ctx);
2012                else
2013                        err = event_sched_in(event, cpuctx, ctx);
2014        }
2015
2016        if (err) {
2017                /*
2018                 * If this event can't go on and it's part of a
2019                 * group, then the whole group has to come off.
2020                 */
2021                if (leader != event) {
2022                        group_sched_out(leader, cpuctx, ctx);
2023                        perf_cpu_hrtimer_restart(cpuctx);
2024                }
2025                if (leader->attr.pinned) {
2026                        update_group_times(leader);
2027                        leader->state = PERF_EVENT_STATE_ERROR;
2028                }
2029        }
2030
2031unlock:
2032        raw_spin_unlock(&ctx->lock);
2033
2034        return 0;
2035}
2036
2037/*
2038 * Enable a event.
2039 *
2040 * If event->ctx is a cloned context, callers must make sure that
2041 * every task struct that event->ctx->task could possibly point to
2042 * remains valid.  This condition is satisfied when called through
2043 * perf_event_for_each_child or perf_event_for_each as described
2044 * for perf_event_disable.
2045 */
2046void perf_event_enable(struct perf_event *event)
2047{
2048        struct perf_event_context *ctx = event->ctx;
2049        struct task_struct *task = ctx->task;
2050
2051        if (!task) {
2052                /*
2053                 * Enable the event on the cpu that it's on
2054                 */
2055                cpu_function_call(event->cpu, __perf_event_enable, event);
2056                return;
2057        }
2058
2059        raw_spin_lock_irq(&ctx->lock);
2060        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2061                goto out;
2062
2063        /*
2064         * If the event is in error state, clear that first.
2065         * That way, if we see the event in error state below, we
2066         * know that it has gone back into error state, as distinct
2067         * from the task having been scheduled away before the
2068         * cross-call arrived.
2069         */
2070        if (event->state == PERF_EVENT_STATE_ERROR)
2071                event->state = PERF_EVENT_STATE_OFF;
2072
2073retry:
2074        if (!ctx->is_active) {
2075                __perf_event_mark_enabled(event);
2076                goto out;
2077        }
2078
2079        raw_spin_unlock_irq(&ctx->lock);
2080
2081        if (!task_function_call(task, __perf_event_enable, event))
2082                return;
2083
2084        raw_spin_lock_irq(&ctx->lock);
2085
2086        /*
2087         * If the context is active and the event is still off,
2088         * we need to retry the cross-call.
2089         */
2090        if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2091                /*
2092                 * task could have been flipped by a concurrent
2093                 * perf_event_context_sched_out()
2094                 */
2095                task = ctx->task;
2096                goto retry;
2097        }
2098
2099out:
2100        raw_spin_unlock_irq(&ctx->lock);
2101}
2102EXPORT_SYMBOL_GPL(perf_event_enable);
2103
2104int perf_event_refresh(struct perf_event *event, int refresh)
2105{
2106        /*
2107         * not supported on inherited events
2108         */
2109        if (event->attr.inherit || !is_sampling_event(event))
2110                return -EINVAL;
2111
2112        atomic_add(refresh, &event->event_limit);
2113        perf_event_enable(event);
2114
2115        return 0;
2116}
2117EXPORT_SYMBOL_GPL(perf_event_refresh);
2118
2119static void ctx_sched_out(struct perf_event_context *ctx,
2120                          struct perf_cpu_context *cpuctx,
2121                          enum event_type_t event_type)
2122{
2123        struct perf_event *event;
2124        int is_active = ctx->is_active;
2125
2126        ctx->is_active &= ~event_type;
2127        if (likely(!ctx->nr_events))
2128                return;
2129
2130        update_context_time(ctx);
2131        update_cgrp_time_from_cpuctx(cpuctx);
2132        if (!ctx->nr_active)
2133                return;
2134
2135        perf_pmu_disable(ctx->pmu);
2136        if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2137                list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2138                        group_sched_out(event, cpuctx, ctx);
2139        }
2140
2141        if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2142                list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2143                        group_sched_out(event, cpuctx, ctx);
2144        }
2145        perf_pmu_enable(ctx->pmu);
2146}
2147
2148/*
2149 * Test whether two contexts are equivalent, i.e. whether they
2150 * have both been cloned from the same version of the same context
2151 * and they both have the same number of enabled events.
2152 * If the number of enabled events is the same, then the set
2153 * of enabled events should be the same, because these are both
2154 * inherited contexts, therefore we can't access individual events
2155 * in them directly with an fd; we can only enable/disable all
2156 * events via prctl, or enable/disable all events in a family
2157 * via ioctl, which will have the same effect on both contexts.
2158 */
2159static int context_equiv(struct perf_event_context *ctx1,
2160                         struct perf_event_context *ctx2)
2161{
2162        return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2163                && ctx1->parent_gen == ctx2->parent_gen
2164                && !ctx1->pin_count && !ctx2->pin_count;
2165}
2166
2167static void __perf_event_sync_stat(struct perf_event *event,
2168                                     struct perf_event *next_event)
2169{
2170        u64 value;
2171
2172        if (!event->attr.inherit_stat)
2173                return;
2174
2175        /*
2176         * Update the event value, we cannot use perf_event_read()
2177         * because we're in the middle of a context switch and have IRQs
2178         * disabled, which upsets smp_call_function_single(), however
2179         * we know the event must be on the current CPU, therefore we
2180         * don't need to use it.
2181         */
2182        switch (event->state) {
2183        case PERF_EVENT_STATE_ACTIVE:
2184                event->pmu->read(event);
2185                /* fall-through */
2186
2187        case PERF_EVENT_STATE_INACTIVE:
2188                update_event_times(event);
2189                break;
2190
2191        default:
2192                break;
2193        }
2194
2195        /*
2196         * In order to keep per-task stats reliable we need to flip the event
2197         * values when we flip the contexts.
2198         */
2199        value = local64_read(&next_event->count);
2200        value = local64_xchg(&event->count, value);
2201        local64_set(&next_event->count, value);
2202
2203        swap(event->total_time_enabled, next_event->total_time_enabled);
2204        swap(event->total_time_running, next_event->total_time_running);
2205
2206        /*
2207         * Since we swizzled the values, update the user visible data too.
2208         */
2209        perf_event_update_userpage(event);
2210        perf_event_update_userpage(next_event);
2211}
2212
2213#define list_next_entry(pos, member) \
2214        list_entry(pos->member.next, typeof(*pos), member)
2215
2216static void perf_event_sync_stat(struct perf_event_context *ctx,
2217                                   struct perf_event_context *next_ctx)
2218{
2219        struct perf_event *event, *next_event;
2220
2221        if (!ctx->nr_stat)
2222                return;
2223
2224        update_context_time(ctx);
2225
2226        event = list_first_entry(&ctx->event_list,
2227                                   struct perf_event, event_entry);
2228
2229        next_event = list_first_entry(&next_ctx->event_list,
2230                                        struct perf_event, event_entry);
2231
2232        while (&event->event_entry != &ctx->event_list &&
2233               &next_event->event_entry != &next_ctx->event_list) {
2234
2235                __perf_event_sync_stat(event, next_event);
2236
2237                event = list_next_entry(event, event_entry);
2238                next_event = list_next_entry(next_event, event_entry);
2239        }
2240}
2241
2242static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2243                                         struct task_struct *next)
2244{
2245        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2246        struct perf_event_context *next_ctx;
2247        struct perf_event_context *parent;
2248        struct perf_cpu_context *cpuctx;
2249        int do_switch = 1;
2250
2251        if (likely(!ctx))
2252                return;
2253
2254        cpuctx = __get_cpu_context(ctx);
2255        if (!cpuctx->task_ctx)
2256                return;
2257
2258        rcu_read_lock();
2259        parent = rcu_dereference(ctx->parent_ctx);
2260        next_ctx = next->perf_event_ctxp[ctxn];
2261        if (parent && next_ctx &&
2262            rcu_dereference(next_ctx->parent_ctx) == parent) {
2263                /*
2264                 * Looks like the two contexts are clones, so we might be
2265                 * able to optimize the context switch.  We lock both
2266                 * contexts and check that they are clones under the
2267                 * lock (including re-checking that neither has been
2268                 * uncloned in the meantime).  It doesn't matter which
2269                 * order we take the locks because no other cpu could
2270                 * be trying to lock both of these tasks.
2271                 */
2272                raw_spin_lock(&ctx->lock);
2273                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2274                if (context_equiv(ctx, next_ctx)) {
2275                        /*
2276                         * XXX do we need a memory barrier of sorts
2277                         * wrt to rcu_dereference() of perf_event_ctxp
2278                         */
2279                        task->perf_event_ctxp[ctxn] = next_ctx;
2280                        next->perf_event_ctxp[ctxn] = ctx;
2281                        ctx->task = next;
2282                        next_ctx->task = task;
2283                        do_switch = 0;
2284
2285                        perf_event_sync_stat(ctx, next_ctx);
2286                }
2287                raw_spin_unlock(&next_ctx->lock);
2288                raw_spin_unlock(&ctx->lock);
2289        }
2290        rcu_read_unlock();
2291
2292        if (do_switch) {
2293                raw_spin_lock(&ctx->lock);
2294                ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2295                cpuctx->task_ctx = NULL;
2296                raw_spin_unlock(&ctx->lock);
2297        }
2298}
2299
2300#define for_each_task_context_nr(ctxn)                                  \
2301        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2302
2303/*
2304 * Called from scheduler to remove the events of the current task,
2305 * with interrupts disabled.
2306 *
2307 * We stop each event and update the event value in event->count.
2308 *
2309 * This does not protect us against NMI, but disable()
2310 * sets the disabled bit in the control field of event _before_
2311 * accessing the event control register. If a NMI hits, then it will
2312 * not restart the event.
2313 */
2314void __perf_event_task_sched_out(struct task_struct *task,
2315                                 struct task_struct *next)
2316{
2317        int ctxn;
2318
2319        for_each_task_context_nr(ctxn)
2320                perf_event_context_sched_out(task, ctxn, next);
2321
2322        /*
2323         * if cgroup events exist on this CPU, then we need
2324         * to check if we have to switch out PMU state.
2325         * cgroup event are system-wide mode only
2326         */
2327        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2328                perf_cgroup_sched_out(task, next);
2329}
2330
2331static void task_ctx_sched_out(struct perf_event_context *ctx)
2332{
2333        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2334
2335        if (!cpuctx->task_ctx)
2336                return;
2337
2338        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2339                return;
2340
2341        ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2342        cpuctx->task_ctx = NULL;
2343}
2344
2345/*
2346 * Called with IRQs disabled
2347 */
2348static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2349                              enum event_type_t event_type)
2350{
2351        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2352}
2353
2354static void
2355ctx_pinned_sched_in(struct perf_event_context *ctx,
2356                    struct perf_cpu_context *cpuctx)
2357{
2358        struct perf_event *event;
2359
2360        list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2361                if (event->state <= PERF_EVENT_STATE_OFF)
2362                        continue;
2363                if (!event_filter_match(event))
2364                        continue;
2365
2366                /* may need to reset tstamp_enabled */
2367                if (is_cgroup_event(event))
2368                        perf_cgroup_mark_enabled(event, ctx);
2369
2370                if (group_can_go_on(event, cpuctx, 1))
2371                        group_sched_in(event, cpuctx, ctx);
2372
2373                /*
2374                 * If this pinned group hasn't been scheduled,
2375                 * put it in error state.
2376                 */
2377                if (event->state == PERF_EVENT_STATE_INACTIVE) {
2378                        update_group_times(event);
2379                        event->state = PERF_EVENT_STATE_ERROR;
2380                }
2381        }
2382}
2383
2384static void
2385ctx_flexible_sched_in(struct perf_event_context *ctx,
2386                      struct perf_cpu_context *cpuctx)
2387{
2388        struct perf_event *event;
2389        int can_add_hw = 1;
2390
2391        list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2392                /* Ignore events in OFF or ERROR state */
2393                if (event->state <= PERF_EVENT_STATE_OFF)
2394                        continue;
2395                /*
2396                 * Listen to the 'cpu' scheduling filter constraint
2397                 * of events:
2398                 */
2399                if (!event_filter_match(event))
2400                        continue;
2401
2402                /* may need to reset tstamp_enabled */
2403                if (is_cgroup_event(event))
2404                        perf_cgroup_mark_enabled(event, ctx);
2405
2406                if (group_can_go_on(event, cpuctx, can_add_hw)) {
2407                        if (group_sched_in(event, cpuctx, ctx))
2408                                can_add_hw = 0;
2409                }
2410        }
2411}
2412
2413static void
2414ctx_sched_in(struct perf_event_context *ctx,
2415             struct perf_cpu_context *cpuctx,
2416             enum event_type_t event_type,
2417             struct task_struct *task)
2418{
2419        u64 now;
2420        int is_active = ctx->is_active;
2421
2422        ctx->is_active |= event_type;
2423        if (likely(!ctx->nr_events))
2424                return;
2425
2426        now = perf_clock();
2427        ctx->timestamp = now;
2428        perf_cgroup_set_timestamp(task, ctx);
2429        /*
2430         * First go through the list and put on any pinned groups
2431         * in order to give them the best chance of going on.
2432         */
2433        if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2434                ctx_pinned_sched_in(ctx, cpuctx);
2435
2436        /* Then walk through the lower prio flexible groups */
2437        if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2438                ctx_flexible_sched_in(ctx, cpuctx);
2439}
2440
2441static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2442                             enum event_type_t event_type,
2443                             struct task_struct *task)
2444{
2445        struct perf_event_context *ctx = &cpuctx->ctx;
2446
2447        ctx_sched_in(ctx, cpuctx, event_type, task);
2448}
2449
2450static void perf_event_context_sched_in(struct perf_event_context *ctx,
2451                                        struct task_struct *task)
2452{
2453        struct perf_cpu_context *cpuctx;
2454
2455        cpuctx = __get_cpu_context(ctx);
2456        if (cpuctx->task_ctx == ctx)
2457                return;
2458
2459        perf_ctx_lock(cpuctx, ctx);
2460        perf_pmu_disable(ctx->pmu);
2461        /*
2462         * We want to keep the following priority order:
2463         * cpu pinned (that don't need to move), task pinned,
2464         * cpu flexible, task flexible.
2465         */
2466        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2467
2468        if (ctx->nr_events)
2469                cpuctx->task_ctx = ctx;
2470
2471        perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2472
2473        perf_pmu_enable(ctx->pmu);
2474        perf_ctx_unlock(cpuctx, ctx);
2475
2476        /*
2477         * Since these rotations are per-cpu, we need to ensure the
2478         * cpu-context we got scheduled on is actually rotating.
2479         */
2480        perf_pmu_rotate_start(ctx->pmu);
2481}
2482
2483/*
2484 * When sampling the branck stack in system-wide, it may be necessary
2485 * to flush the stack on context switch. This happens when the branch
2486 * stack does not tag its entries with the pid of the current task.
2487 * Otherwise it becomes impossible to associate a branch entry with a
2488 * task. This ambiguity is more likely to appear when the branch stack
2489 * supports priv level filtering and the user sets it to monitor only
2490 * at the user level (which could be a useful measurement in system-wide
2491 * mode). In that case, the risk is high of having a branch stack with
2492 * branch from multiple tasks. Flushing may mean dropping the existing
2493 * entries or stashing them somewhere in the PMU specific code layer.
2494 *
2495 * This function provides the context switch callback to the lower code
2496 * layer. It is invoked ONLY when there is at least one system-wide context
2497 * with at least one active event using taken branch sampling.
2498 */
2499static void perf_branch_stack_sched_in(struct task_struct *prev,
2500                                       struct task_struct *task)
2501{
2502        struct perf_cpu_context *cpuctx;
2503        struct pmu *pmu;
2504        unsigned long flags;
2505
2506        /* no need to flush branch stack if not changing task */
2507        if (prev == task)
2508                return;
2509
2510        local_irq_save(flags);
2511
2512        rcu_read_lock();
2513
2514        list_for_each_entry_rcu(pmu, &pmus, entry) {
2515                cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2516
2517                /*
2518                 * check if the context has at least one
2519                 * event using PERF_SAMPLE_BRANCH_STACK
2520                 */
2521                if (cpuctx->ctx.nr_branch_stack > 0
2522                    && pmu->flush_branch_stack) {
2523
2524                        pmu = cpuctx->ctx.pmu;
2525
2526                        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527
2528                        perf_pmu_disable(pmu);
2529
2530                        pmu->flush_branch_stack();
2531
2532                        perf_pmu_enable(pmu);
2533
2534                        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535                }
2536        }
2537
2538        rcu_read_unlock();
2539
2540        local_irq_restore(flags);
2541}
2542
2543/*
2544 * Called from scheduler to add the events of the current task
2545 * with interrupts disabled.
2546 *
2547 * We restore the event value and then enable it.
2548 *
2549 * This does not protect us against NMI, but enable()
2550 * sets the enabled bit in the control field of event _before_
2551 * accessing the event control register. If a NMI hits, then it will
2552 * keep the event running.
2553 */
2554void __perf_event_task_sched_in(struct task_struct *prev,
2555                                struct task_struct *task)
2556{
2557        struct perf_event_context *ctx;
2558        int ctxn;
2559
2560        for_each_task_context_nr(ctxn) {
2561                ctx = task->perf_event_ctxp[ctxn];
2562                if (likely(!ctx))
2563                        continue;
2564
2565                perf_event_context_sched_in(ctx, task);
2566        }
2567        /*
2568         * if cgroup events exist on this CPU, then we need
2569         * to check if we have to switch in PMU state.
2570         * cgroup event are system-wide mode only
2571         */
2572        if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2573                perf_cgroup_sched_in(prev, task);
2574
2575        /* check for system-wide branch_stack events */
2576        if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2577                perf_branch_stack_sched_in(prev, task);
2578}
2579
2580static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2581{
2582        u64 frequency = event->attr.sample_freq;
2583        u64 sec = NSEC_PER_SEC;
2584        u64 divisor, dividend;
2585
2586        int count_fls, nsec_fls, frequency_fls, sec_fls;
2587
2588        count_fls = fls64(count);
2589        nsec_fls = fls64(nsec);
2590        frequency_fls = fls64(frequency);
2591        sec_fls = 30;
2592
2593        /*
2594         * We got @count in @nsec, with a target of sample_freq HZ
2595         * the target period becomes:
2596         *
2597         *             @count * 10^9
2598         * period = -------------------
2599         *          @nsec * sample_freq
2600         *
2601         */
2602
2603        /*
2604         * Reduce accuracy by one bit such that @a and @b converge
2605         * to a similar magnitude.
2606         */
2607#define REDUCE_FLS(a, b)                \
2608do {                                    \
2609        if (a##_fls > b##_fls) {        \
2610                a >>= 1;                \
2611                a##_fls--;              \
2612        } else {                        \
2613                b >>= 1;                \
2614                b##_fls--;              \
2615        }                               \
2616} while (0)
2617
2618        /*
2619         * Reduce accuracy until either term fits in a u64, then proceed with
2620         * the other, so that finally we can do a u64/u64 division.
2621         */
2622        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2623                REDUCE_FLS(nsec, frequency);
2624                REDUCE_FLS(sec, count);
2625        }
2626
2627        if (count_fls + sec_fls > 64) {
2628                divisor = nsec * frequency;
2629
2630                while (count_fls + sec_fls > 64) {
2631                        REDUCE_FLS(count, sec);
2632                        divisor >>= 1;
2633                }
2634
2635                dividend = count * sec;
2636        } else {
2637                dividend = count * sec;
2638
2639                while (nsec_fls + frequency_fls > 64) {
2640                        REDUCE_FLS(nsec, frequency);
2641                        dividend >>= 1;
2642                }
2643
2644                divisor = nsec * frequency;
2645        }
2646
2647        if (!divisor)
2648                return dividend;
2649
2650        return div64_u64(dividend, divisor);
2651}
2652
2653static DEFINE_PER_CPU(int, perf_throttled_count);
2654static DEFINE_PER_CPU(u64, perf_throttled_seq);
2655
2656static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2657{
2658        struct hw_perf_event *hwc = &event->hw;
2659        s64 period, sample_period;
2660        s64 delta;
2661
2662        period = perf_calculate_period(event, nsec, count);
2663
2664        delta = (s64)(period - hwc->sample_period);
2665        delta = (delta + 7) / 8; /* low pass filter */
2666
2667        sample_period = hwc->sample_period + delta;
2668
2669        if (!sample_period)
2670                sample_period = 1;
2671
2672        hwc->sample_period = sample_period;
2673
2674        if (local64_read(&hwc->period_left) > 8*sample_period) {
2675                if (disable)
2676                        event->pmu->stop(event, PERF_EF_UPDATE);
2677
2678                local64_set(&hwc->period_left, 0);
2679
2680                if (disable)
2681                        event->pmu->start(event, PERF_EF_RELOAD);
2682        }
2683}
2684
2685/*
2686 * combine freq adjustment with unthrottling to avoid two passes over the
2687 * events. At the same time, make sure, having freq events does not change
2688 * the rate of unthrottling as that would introduce bias.
2689 */
2690static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2691                                           int needs_unthr)
2692{
2693        struct perf_event *event;
2694        struct hw_perf_event *hwc;
2695        u64 now, period = TICK_NSEC;
2696        s64 delta;
2697
2698        /*
2699         * only need to iterate over all events iff:
2700         * - context have events in frequency mode (needs freq adjust)
2701         * - there are events to unthrottle on this cpu
2702         */
2703        if (!(ctx->nr_freq || needs_unthr))
2704                return;
2705
2706        raw_spin_lock(&ctx->lock);
2707        perf_pmu_disable(ctx->pmu);
2708
2709        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2710                if (event->state != PERF_EVENT_STATE_ACTIVE)
2711                        continue;
2712
2713                if (!event_filter_match(event))
2714                        continue;
2715
2716                hwc = &event->hw;
2717
2718                if (hwc->interrupts == MAX_INTERRUPTS) {
2719                        hwc->interrupts = 0;
2720                        perf_log_throttle(event, 1);
2721                        event->pmu->start(event, 0);
2722                }
2723
2724                if (!event->attr.freq || !event->attr.sample_freq)
2725                        continue;
2726
2727                /*
2728                 * stop the event and update event->count
2729                 */
2730                event->pmu->stop(event, PERF_EF_UPDATE);
2731
2732                now = local64_read(&event->count);
2733                delta = now - hwc->freq_count_stamp;
2734                hwc->freq_count_stamp = now;
2735
2736                /*
2737                 * restart the event
2738                 * reload only if value has changed
2739                 * we have stopped the event so tell that
2740                 * to perf_adjust_period() to avoid stopping it
2741                 * twice.
2742                 */
2743                if (delta > 0)
2744                        perf_adjust_period(event, period, delta, false);
2745
2746                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2747        }
2748
2749        perf_pmu_enable(ctx->pmu);
2750        raw_spin_unlock(&ctx->lock);
2751}
2752
2753/*
2754 * Round-robin a context's events:
2755 */
2756static void rotate_ctx(struct perf_event_context *ctx)
2757{
2758        /*
2759         * Rotate the first entry last of non-pinned groups. Rotation might be
2760         * disabled by the inheritance code.
2761         */
2762        if (!ctx->rotate_disable)
2763                list_rotate_left(&ctx->flexible_groups);
2764}
2765
2766/*
2767 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2768 * because they're strictly cpu affine and rotate_start is called with IRQs
2769 * disabled, while rotate_context is called from IRQ context.
2770 */
2771static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2772{
2773        struct perf_event_context *ctx = NULL;
2774        int rotate = 0, remove = 1;
2775
2776        if (cpuctx->ctx.nr_events) {
2777                remove = 0;
2778                if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2779                        rotate = 1;
2780        }
2781
2782        ctx = cpuctx->task_ctx;
2783        if (ctx && ctx->nr_events) {
2784                remove = 0;
2785                if (ctx->nr_events != ctx->nr_active)
2786                        rotate = 1;
2787        }
2788
2789        if (!rotate)
2790                goto done;
2791
2792        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2793        perf_pmu_disable(cpuctx->ctx.pmu);
2794
2795        cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2796        if (ctx)
2797                ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2798
2799        rotate_ctx(&cpuctx->ctx);
2800        if (ctx)
2801                rotate_ctx(ctx);
2802
2803        perf_event_sched_in(cpuctx, ctx, current);
2804
2805        perf_pmu_enable(cpuctx->ctx.pmu);
2806        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807done:
2808        if (remove)
2809                list_del_init(&cpuctx->rotation_list);
2810
2811        return rotate;
2812}
2813
2814#ifdef CONFIG_NO_HZ_FULL
2815bool perf_event_can_stop_tick(void)
2816{
2817        if (atomic_read(&nr_freq_events) ||
2818            __this_cpu_read(perf_throttled_count))
2819                return false;
2820        else
2821                return true;
2822}
2823#endif
2824
2825void perf_event_task_tick(void)
2826{
2827        struct list_head *head = &__get_cpu_var(rotation_list);
2828        struct perf_cpu_context *cpuctx, *tmp;
2829        struct perf_event_context *ctx;
2830        int throttled;
2831
2832        WARN_ON(!irqs_disabled());
2833
2834        __this_cpu_inc(perf_throttled_seq);
2835        throttled = __this_cpu_xchg(perf_throttled_count, 0);
2836
2837        list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2838                ctx = &cpuctx->ctx;
2839                perf_adjust_freq_unthr_context(ctx, throttled);
2840
2841                ctx = cpuctx->task_ctx;
2842                if (ctx)
2843                        perf_adjust_freq_unthr_context(ctx, throttled);
2844        }
2845}
2846
2847static int event_enable_on_exec(struct perf_event *event,
2848                                struct perf_event_context *ctx)
2849{
2850        if (!event->attr.enable_on_exec)
2851                return 0;
2852
2853        event->attr.enable_on_exec = 0;
2854        if (event->state >= PERF_EVENT_STATE_INACTIVE)
2855                return 0;
2856
2857        __perf_event_mark_enabled(event);
2858
2859        return 1;
2860}
2861
2862/*
2863 * Enable all of a task's events that have been marked enable-on-exec.
2864 * This expects task == current.
2865 */
2866static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2867{
2868        struct perf_event *event;
2869        unsigned long flags;
2870        int enabled = 0;
2871        int ret;
2872
2873        local_irq_save(flags);
2874        if (!ctx || !ctx->nr_events)
2875                goto out;
2876
2877        /*
2878         * We must ctxsw out cgroup events to avoid conflict
2879         * when invoking perf_task_event_sched_in() later on
2880         * in this function. Otherwise we end up trying to
2881         * ctxswin cgroup events which are already scheduled
2882         * in.
2883         */
2884        perf_cgroup_sched_out(current, NULL);
2885
2886        raw_spin_lock(&ctx->lock);
2887        task_ctx_sched_out(ctx);
2888
2889        list_for_each_entry(event, &ctx->event_list, event_entry) {
2890                ret = event_enable_on_exec(event, ctx);
2891                if (ret)
2892                        enabled = 1;
2893        }
2894
2895        /*
2896         * Unclone this context if we enabled any event.
2897         */
2898        if (enabled)
2899                unclone_ctx(ctx);
2900
2901        raw_spin_unlock(&ctx->lock);
2902
2903        /*
2904         * Also calls ctxswin for cgroup events, if any:
2905         */
2906        perf_event_context_sched_in(ctx, ctx->task);
2907out:
2908        local_irq_restore(flags);
2909}
2910
2911/*
2912 * Cross CPU call to read the hardware event
2913 */
2914static void __perf_event_read(void *info)
2915{
2916        struct perf_event *event = info;
2917        struct perf_event_context *ctx = event->ctx;
2918        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2919
2920        /*
2921         * If this is a task context, we need to check whether it is
2922         * the current task context of this cpu.  If not it has been
2923         * scheduled out before the smp call arrived.  In that case
2924         * event->count would have been updated to a recent sample
2925         * when the event was scheduled out.
2926         */
2927        if (ctx->task && cpuctx->task_ctx != ctx)
2928                return;
2929
2930        raw_spin_lock(&ctx->lock);
2931        if (ctx->is_active) {
2932                update_context_time(ctx);
2933                update_cgrp_time_from_event(event);
2934        }
2935        update_event_times(event);
2936        if (event->state == PERF_EVENT_STATE_ACTIVE)
2937                event->pmu->read(event);
2938        raw_spin_unlock(&ctx->lock);
2939}
2940
2941static inline u64 perf_event_count(struct perf_event *event)
2942{
2943        return local64_read(&event->count) + atomic64_read(&event->child_count);
2944}
2945
2946static u64 perf_event_read(struct perf_event *event)
2947{
2948        /*
2949         * If event is enabled and currently active on a CPU, update the
2950         * value in the event structure:
2951         */
2952        if (event->state == PERF_EVENT_STATE_ACTIVE) {
2953                smp_call_function_single(event->oncpu,
2954                                         __perf_event_read, event, 1);
2955        } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2956                struct perf_event_context *ctx = event->ctx;
2957                unsigned long flags;
2958
2959                raw_spin_lock_irqsave(&ctx->lock, flags);
2960                /*
2961                 * may read while context is not active
2962                 * (e.g., thread is blocked), in that case
2963                 * we cannot update context time
2964                 */
2965                if (ctx->is_active) {
2966                        update_context_time(ctx);
2967                        update_cgrp_time_from_event(event);
2968                }
2969                update_event_times(event);
2970                raw_spin_unlock_irqrestore(&ctx->lock, flags);
2971        }
2972
2973        return perf_event_count(event);
2974}
2975
2976/*
2977 * Initialize the perf_event context in a task_struct:
2978 */
2979static void __perf_event_init_context(struct perf_event_context *ctx)
2980{
2981        raw_spin_lock_init(&ctx->lock);
2982        mutex_init(&ctx->mutex);
2983        INIT_LIST_HEAD(&ctx->pinned_groups);
2984        INIT_LIST_HEAD(&ctx->flexible_groups);
2985        INIT_LIST_HEAD(&ctx->event_list);
2986        atomic_set(&ctx->refcount, 1);
2987}
2988
2989static struct perf_event_context *
2990alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2991{
2992        struct perf_event_context *ctx;
2993
2994        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2995        if (!ctx)
2996                return NULL;
2997
2998        __perf_event_init_context(ctx);
2999        if (task) {
3000                ctx->task = task;
3001                get_task_struct(task);
3002        }
3003        ctx->pmu = pmu;
3004
3005        return ctx;
3006}
3007
3008static struct task_struct *
3009find_lively_task_by_vpid(pid_t vpid)
3010{
3011        struct task_struct *task;
3012        int err;
3013
3014        rcu_read_lock();
3015        if (!vpid)
3016                task = current;
3017        else
3018                task = find_task_by_vpid(vpid);
3019        if (task)
3020                get_task_struct(task);
3021        rcu_read_unlock();
3022
3023        if (!task)
3024                return ERR_PTR(-ESRCH);
3025
3026        /* Reuse ptrace permission checks for now. */
3027        err = -EACCES;
3028        if (!ptrace_may_access(task, PTRACE_MODE_READ))
3029                goto errout;
3030
3031        return task;
3032errout:
3033        put_task_struct(task);
3034        return ERR_PTR(err);
3035
3036}
3037
3038/*
3039 * Returns a matching context with refcount and pincount.
3040 */
3041static struct perf_event_context *
3042find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3043{
3044        struct perf_event_context *ctx;
3045        struct perf_cpu_context *cpuctx;
3046        unsigned long flags;
3047        int ctxn, err;
3048
3049        if (!task) {
3050                /* Must be root to operate on a CPU event: */
3051                if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3052                        return ERR_PTR(-EACCES);
3053
3054                /*
3055                 * We could be clever and allow to attach a event to an
3056                 * offline CPU and activate it when the CPU comes up, but
3057                 * that's for later.
3058                 */
3059                if (!cpu_online(cpu))
3060                        return ERR_PTR(-ENODEV);
3061
3062                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3063                ctx = &cpuctx->ctx;
3064                get_ctx(ctx);
3065                ++ctx->pin_count;
3066
3067                return ctx;
3068        }
3069
3070        err = -EINVAL;
3071        ctxn = pmu->task_ctx_nr;
3072        if (ctxn < 0)
3073                goto errout;
3074
3075retry:
3076        ctx = perf_lock_task_context(task, ctxn, &flags);
3077        if (ctx) {
3078                unclone_ctx(ctx);
3079                ++ctx->pin_count;
3080                raw_spin_unlock_irqrestore(&ctx->lock, flags);
3081        } else {
3082                ctx = alloc_perf_context(pmu, task);
3083                err = -ENOMEM;
3084                if (!ctx)
3085                        goto errout;
3086
3087                err = 0;
3088                mutex_lock(&task->perf_event_mutex);
3089                /*
3090                 * If it has already passed perf_event_exit_task().
3091                 * we must see PF_EXITING, it takes this mutex too.
3092                 */
3093                if (task->flags & PF_EXITING)
3094                        err = -ESRCH;
3095                else if (task->perf_event_ctxp[ctxn])
3096                        err = -EAGAIN;
3097                else {
3098                        get_ctx(ctx);
3099                        ++ctx->pin_count;
3100                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3101                }
3102                mutex_unlock(&task->perf_event_mutex);
3103
3104                if (unlikely(err)) {
3105                        put_ctx(ctx);
3106
3107                        if (err == -EAGAIN)
3108                                goto retry;
3109                        goto errout;
3110                }
3111        }
3112
3113        return ctx;
3114
3115errout:
3116        return ERR_PTR(err);
3117}
3118
3119static void perf_event_free_filter(struct perf_event *event);
3120
3121static void free_event_rcu(struct rcu_head *head)
3122{
3123        struct perf_event *event;
3124
3125        event = container_of(head, struct perf_event, rcu_head);
3126        if (event->ns)
3127                put_pid_ns(event->ns);
3128        perf_event_free_filter(event);
3129        kfree(event);
3130}
3131
3132static void ring_buffer_put(struct ring_buffer *rb);
3133static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3134
3135static void unaccount_event_cpu(struct perf_event *event, int cpu)
3136{
3137        if (event->parent)
3138                return;
3139
3140        if (has_branch_stack(event)) {
3141                if (!(event->attach_state & PERF_ATTACH_TASK))
3142                        atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3143        }
3144        if (is_cgroup_event(event))
3145                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3146}
3147
3148static void unaccount_event(struct perf_event *event)
3149{
3150        if (event->parent)
3151                return;
3152
3153        if (event->attach_state & PERF_ATTACH_TASK)
3154                static_key_slow_dec_deferred(&perf_sched_events);
3155        if (event->attr.mmap || event->attr.mmap_data)
3156                atomic_dec(&nr_mmap_events);
3157        if (event->attr.comm)
3158                atomic_dec(&nr_comm_events);
3159        if (event->attr.task)
3160                atomic_dec(&nr_task_events);
3161        if (event->attr.freq)
3162                atomic_dec(&nr_freq_events);
3163        if (is_cgroup_event(event))
3164                static_key_slow_dec_deferred(&perf_sched_events);
3165        if (has_branch_stack(event))
3166                static_key_slow_dec_deferred(&perf_sched_events);
3167
3168        unaccount_event_cpu(event, event->cpu);
3169}
3170
3171static void __free_event(struct perf_event *event)
3172{
3173        if (!event->parent) {
3174                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3175                        put_callchain_buffers();
3176        }
3177
3178        if (event->destroy)
3179                event->destroy(event);
3180
3181        if (event->ctx)
3182                put_ctx(event->ctx);
3183
3184        call_rcu(&event->rcu_head, free_event_rcu);
3185}
3186static void free_event(struct perf_event *event)
3187{
3188        irq_work_sync(&event->pending);
3189
3190        unaccount_event(event);
3191
3192        if (event->rb) {
3193                struct ring_buffer *rb;
3194
3195                /*
3196                 * Can happen when we close an event with re-directed output.
3197                 *
3198                 * Since we have a 0 refcount, perf_mmap_close() will skip
3199                 * over us; possibly making our ring_buffer_put() the last.
3200                 */
3201                mutex_lock(&event->mmap_mutex);
3202                rb = event->rb;
3203                if (rb) {
3204                        rcu_assign_pointer(event->rb, NULL);
3205                        ring_buffer_detach(event, rb);
3206                        ring_buffer_put(rb); /* could be last */
3207                }
3208                mutex_unlock(&event->mmap_mutex);
3209        }
3210
3211        if (is_cgroup_event(event))
3212                perf_detach_cgroup(event);
3213
3214
3215        __free_event(event);
3216}
3217
3218int perf_event_release_kernel(struct perf_event *event)
3219{
3220        struct perf_event_context *ctx = event->ctx;
3221
3222        WARN_ON_ONCE(ctx->parent_ctx);
3223        /*
3224         * There are two ways this annotation is useful:
3225         *
3226         *  1) there is a lock recursion from perf_event_exit_task
3227         *     see the comment there.
3228         *
3229         *  2) there is a lock-inversion with mmap_sem through
3230         *     perf_event_read_group(), which takes faults while
3231         *     holding ctx->mutex, however this is called after
3232         *     the last filedesc died, so there is no possibility
3233         *     to trigger the AB-BA case.
3234         */
3235        mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3236        raw_spin_lock_irq(&ctx->lock);
3237        perf_group_detach(event);
3238        raw_spin_unlock_irq(&ctx->lock);
3239        perf_remove_from_context(event);
3240        mutex_unlock(&ctx->mutex);
3241
3242        free_event(event);
3243
3244        return 0;
3245}
3246EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3247
3248/*
3249 * Called when the last reference to the file is gone.
3250 */
3251static void put_event(struct perf_event *event)
3252{
3253        struct task_struct *owner;
3254
3255        if (!atomic_long_dec_and_test(&event->refcount))
3256                return;
3257
3258        rcu_read_lock();
3259        owner = ACCESS_ONCE(event->owner);
3260        /*
3261         * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3262         * !owner it means the list deletion is complete and we can indeed
3263         * free this event, otherwise we need to serialize on
3264         * owner->perf_event_mutex.
3265         */
3266        smp_read_barrier_depends();
3267        if (owner) {
3268                /*
3269                 * Since delayed_put_task_struct() also drops the last
3270                 * task reference we can safely take a new reference
3271                 * while holding the rcu_read_lock().
3272                 */
3273                get_task_struct(owner);
3274        }
3275        rcu_read_unlock();
3276
3277        if (owner) {
3278                mutex_lock(&owner->perf_event_mutex);
3279                /*
3280                 * We have to re-check the event->owner field, if it is cleared
3281                 * we raced with perf_event_exit_task(), acquiring the mutex
3282                 * ensured they're done, and we can proceed with freeing the
3283                 * event.
3284                 */
3285                if (event->owner)
3286                        list_del_init(&event->owner_entry);
3287                mutex_unlock(&owner->perf_event_mutex);
3288                put_task_struct(owner);
3289        }
3290
3291        perf_event_release_kernel(event);
3292}
3293
3294static int perf_release(struct inode *inode, struct file *file)
3295{
3296        put_event(file->private_data);
3297        return 0;
3298}
3299
3300u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3301{
3302        struct perf_event *child;
3303        u64 total = 0;
3304
3305        *enabled = 0;
3306        *running = 0;
3307
3308        mutex_lock(&event->child_mutex);
3309        total += perf_event_read(event);
3310        *enabled += event->total_time_enabled +
3311                        atomic64_read(&event->child_total_time_enabled);
3312        *running += event->total_time_running +
3313                        atomic64_read(&event->child_total_time_running);
3314
3315        list_for_each_entry(child, &event->child_list, child_list) {
3316                total += perf_event_read(child);
3317                *enabled += child->total_time_enabled;
3318                *running += child->total_time_running;
3319        }
3320        mutex_unlock(&event->child_mutex);
3321
3322        return total;
3323}
3324EXPORT_SYMBOL_GPL(perf_event_read_value);
3325
3326static int perf_event_read_group(struct perf_event *event,
3327                                   u64 read_format, char __user *buf)
3328{
3329        struct perf_event *leader = event->group_leader, *sub;
3330        int n = 0, size = 0, ret = -EFAULT;
3331        struct perf_event_context *ctx = leader->ctx;
3332        u64 values[5];
3333        u64 count, enabled, running;
3334
3335        mutex_lock(&ctx->mutex);
3336        count = perf_event_read_value(leader, &enabled, &running);
3337
3338        values[n++] = 1 + leader->nr_siblings;
3339        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3340                values[n++] = enabled;
3341        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3342                values[n++] = running;
3343        values[n++] = count;
3344        if (read_format & PERF_FORMAT_ID)
3345                values[n++] = primary_event_id(leader);
3346
3347        size = n * sizeof(u64);
3348
3349        if (copy_to_user(buf, values, size))
3350                goto unlock;
3351
3352        ret = size;
3353
3354        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3355                n = 0;
3356
3357                values[n++] = perf_event_read_value(sub, &enabled, &running);
3358                if (read_format & PERF_FORMAT_ID)
3359                        values[n++] = primary_event_id(sub);
3360
3361                size = n * sizeof(u64);
3362
3363                if (copy_to_user(buf + ret, values, size)) {
3364                        ret = -EFAULT;
3365                        goto unlock;
3366                }
3367
3368                ret += size;
3369        }
3370unlock:
3371        mutex_unlock(&ctx->mutex);
3372
3373        return ret;
3374}
3375
3376static int perf_event_read_one(struct perf_event *event,
3377                                 u64 read_format, char __user *buf)
3378{
3379        u64 enabled, running;
3380        u64 values[4];
3381        int n = 0;
3382
3383        values[n++] = perf_event_read_value(event, &enabled, &running);
3384        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3385                values[n++] = enabled;
3386        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3387                values[n++] = running;
3388        if (read_format & PERF_FORMAT_ID)
3389                values[n++] = primary_event_id(event);
3390
3391        if (copy_to_user(buf, values, n * sizeof(u64)))
3392                return -EFAULT;
3393
3394        return n * sizeof(u64);
3395}
3396
3397/*
3398 * Read the performance event - simple non blocking version for now
3399 */
3400static ssize_t
3401perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3402{
3403        u64 read_format = event->attr.read_format;
3404        int ret;
3405
3406        /*
3407         * Return end-of-file for a read on a event that is in
3408         * error state (i.e. because it was pinned but it couldn't be
3409         * scheduled on to the CPU at some point).
3410         */
3411        if (event->state == PERF_EVENT_STATE_ERROR)
3412                return 0;
3413
3414        if (count < event->read_size)
3415                return -ENOSPC;
3416
3417        WARN_ON_ONCE(event->ctx->parent_ctx);
3418        if (read_format & PERF_FORMAT_GROUP)
3419                ret = perf_event_read_group(event, read_format, buf);
3420        else
3421                ret = perf_event_read_one(event, read_format, buf);
3422
3423        return ret;
3424}
3425
3426static ssize_t
3427perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3428{
3429        struct perf_event *event = file->private_data;
3430
3431        return perf_read_hw(event, buf, count);
3432}
3433
3434static unsigned int perf_poll(struct file *file, poll_table *wait)
3435{
3436        struct perf_event *event = file->private_data;
3437        struct ring_buffer *rb;
3438        unsigned int events = POLL_HUP;
3439
3440        /*
3441         * Pin the event->rb by taking event->mmap_mutex; otherwise
3442         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3443         */
3444        mutex_lock(&event->mmap_mutex);
3445        rb = event->rb;
3446        if (rb)
3447                events = atomic_xchg(&rb->poll, 0);
3448        mutex_unlock(&event->mmap_mutex);
3449
3450        poll_wait(file, &event->waitq, wait);
3451
3452        return events;
3453}
3454
3455static void perf_event_reset(struct perf_event *event)
3456{
3457        (void)perf_event_read(event);
3458        local64_set(&event->count, 0);
3459        perf_event_update_userpage(event);
3460}
3461
3462/*
3463 * Holding the top-level event's child_mutex means that any
3464 * descendant process that has inherited this event will block
3465 * in sync_child_event if it goes to exit, thus satisfying the
3466 * task existence requirements of perf_event_enable/disable.
3467 */
3468static void perf_event_for_each_child(struct perf_event *event,
3469                                        void (*func)(struct perf_event *))
3470{
3471        struct perf_event *child;
3472
3473        WARN_ON_ONCE(event->ctx->parent_ctx);
3474        mutex_lock(&event->child_mutex);
3475        func(event);
3476        list_for_each_entry(child, &event->child_list, child_list)
3477                func(child);
3478        mutex_unlock(&event->child_mutex);
3479}
3480
3481static void perf_event_for_each(struct perf_event *event,
3482                                  void (*func)(struct perf_event *))
3483{
3484        struct perf_event_context *ctx = event->ctx;
3485        struct perf_event *sibling;
3486
3487        WARN_ON_ONCE(ctx->parent_ctx);
3488        mutex_lock(&ctx->mutex);
3489        event = event->group_leader;
3490
3491        perf_event_for_each_child(event, func);
3492        list_for_each_entry(sibling, &event->sibling_list, group_entry)
3493                perf_event_for_each_child(sibling, func);
3494        mutex_unlock(&ctx->mutex);
3495}
3496
3497static int perf_event_period(struct perf_event *event, u64 __user *arg)
3498{
3499        struct perf_event_context *ctx = event->ctx;
3500        int ret = 0;
3501        u64 value;
3502
3503        if (!is_sampling_event(event))
3504                return -EINVAL;
3505
3506        if (copy_from_user(&value, arg, sizeof(value)))
3507                return -EFAULT;
3508
3509        if (!value)
3510                return -EINVAL;
3511
3512        raw_spin_lock_irq(&ctx->lock);
3513        if (event->attr.freq) {
3514                if (value > sysctl_perf_event_sample_rate) {
3515                        ret = -EINVAL;
3516                        goto unlock;
3517                }
3518
3519                event->attr.sample_freq = value;
3520        } else {
3521                event->attr.sample_period = value;
3522                event->hw.sample_period = value;
3523        }
3524unlock:
3525        raw_spin_unlock_irq(&ctx->lock);
3526
3527        return ret;
3528}
3529
3530static const struct file_operations perf_fops;
3531
3532static inline int perf_fget_light(int fd, struct fd *p)
3533{
3534        struct fd f = fdget(fd);
3535        if (!f.file)
3536                return -EBADF;
3537
3538        if (f.file->f_op != &perf_fops) {
3539                fdput(f);
3540                return -EBADF;
3541        }
3542        *p = f;
3543        return 0;
3544}
3545
3546static int perf_event_set_output(struct perf_event *event,
3547                                 struct perf_event *output_event);
3548static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3549
3550static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3551{
3552        struct perf_event *event = file->private_data;
3553        void (*func)(struct perf_event *);
3554        u32 flags = arg;
3555
3556        switch (cmd) {
3557        case PERF_EVENT_IOC_ENABLE:
3558                func = perf_event_enable;
3559                break;
3560        case PERF_EVENT_IOC_DISABLE:
3561                func = perf_event_disable;
3562                break;
3563        case PERF_EVENT_IOC_RESET:
3564                func = perf_event_reset;
3565                break;
3566
3567        case PERF_EVENT_IOC_REFRESH:
3568                return perf_event_refresh(event, arg);
3569
3570        case PERF_EVENT_IOC_PERIOD:
3571                return perf_event_period(event, (u64 __user *)arg);
3572
3573        case PERF_EVENT_IOC_ID:
3574        {
3575                u64 id = primary_event_id(event);
3576
3577                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3578                        return -EFAULT;
3579                return 0;
3580        }
3581
3582        case PERF_EVENT_IOC_SET_OUTPUT:
3583        {
3584                int ret;
3585                if (arg != -1) {
3586                        struct perf_event *output_event;
3587                        struct fd output;
3588                        ret = perf_fget_light(arg, &output);
3589                        if (ret)
3590                                return ret;
3591                        output_event = output.file->private_data;
3592                        ret = perf_event_set_output(event, output_event);
3593                        fdput(output);
3594                } else {
3595                        ret = perf_event_set_output(event, NULL);
3596                }
3597                return ret;
3598        }
3599
3600        case PERF_EVENT_IOC_SET_FILTER:
3601                return perf_event_set_filter(event, (void __user *)arg);
3602
3603        default:
3604                return -ENOTTY;
3605        }
3606
3607        if (flags & PERF_IOC_FLAG_GROUP)
3608                perf_event_for_each(event, func);
3609        else
3610                perf_event_for_each_child(event, func);
3611
3612        return 0;
3613}
3614
3615int perf_event_task_enable(void)
3616{
3617        struct perf_event *event;
3618
3619        mutex_lock(&current->perf_event_mutex);
3620        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3621                perf_event_for_each_child(event, perf_event_enable);
3622        mutex_unlock(&current->perf_event_mutex);
3623
3624        return 0;
3625}
3626
3627int perf_event_task_disable(void)
3628{
3629        struct perf_event *event;
3630
3631        mutex_lock(&current->perf_event_mutex);
3632        list_for_each_entry(event, &current->perf_event_list, owner_entry)
3633                perf_event_for_each_child(event, perf_event_disable);
3634        mutex_unlock(&current->perf_event_mutex);
3635
3636        return 0;
3637}
3638
3639static int perf_event_index(struct perf_event *event)
3640{
3641        if (event->hw.state & PERF_HES_STOPPED)
3642                return 0;
3643
3644        if (event->state != PERF_EVENT_STATE_ACTIVE)
3645                return 0;
3646
3647        return event->pmu->event_idx(event);
3648}
3649
3650static void calc_timer_values(struct perf_event *event,
3651                                u64 *now,
3652                                u64 *enabled,
3653                                u64 *running)
3654{
3655        u64 ctx_time;
3656
3657        *now = perf_clock();
3658        ctx_time = event->shadow_ctx_time + *now;
3659        *enabled = ctx_time - event->tstamp_enabled;
3660        *running = ctx_time - event->tstamp_running;
3661}
3662
3663static void perf_event_init_userpage(struct perf_event *event)
3664{
3665        struct perf_event_mmap_page *userpg;
3666        struct ring_buffer *rb;
3667
3668        rcu_read_lock();
3669        rb = rcu_dereference(event->rb);
3670        if (!rb)
3671                goto unlock;
3672
3673        userpg = rb->user_page;
3674
3675        /* Allow new userspace to detect that bit 0 is deprecated */
3676        userpg->cap_bit0_is_deprecated = 1;
3677        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3678
3679unlock:
3680        rcu_read_unlock();
3681}
3682
3683void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3684{
3685}
3686
3687/*
3688 * Callers need to ensure there can be no nesting of this function, otherwise
3689 * the seqlock logic goes bad. We can not serialize this because the arch
3690 * code calls this from NMI context.
3691 */
3692void perf_event_update_userpage(struct perf_event *event)
3693{
3694        struct perf_event_mmap_page *userpg;
3695        struct ring_buffer *rb;
3696        u64 enabled, running, now;
3697
3698        rcu_read_lock();
3699        rb = rcu_dereference(event->rb);
3700        if (!rb)
3701                goto unlock;
3702
3703        /*
3704         * compute total_time_enabled, total_time_running
3705         * based on snapshot values taken when the event
3706         * was last scheduled in.
3707         *
3708         * we cannot simply called update_context_time()
3709         * because of locking issue as we can be called in
3710         * NMI context
3711         */
3712        calc_timer_values(event, &now, &enabled, &running);
3713
3714        userpg = rb->user_page;
3715        /*
3716         * Disable preemption so as to not let the corresponding user-space
3717         * spin too long if we get preempted.
3718         */
3719        preempt_disable();
3720        ++userpg->lock;
3721        barrier();
3722        userpg->index = perf_event_index(event);
3723        userpg->offset = perf_event_count(event);
3724        if (userpg->index)
3725                userpg->offset -= local64_read(&event->hw.prev_count);
3726
3727        userpg->time_enabled = enabled +
3728                        atomic64_read(&event->child_total_time_enabled);
3729
3730        userpg->time_running = running +
3731                        atomic64_read(&event->child_total_time_running);
3732
3733        arch_perf_update_userpage(userpg, now);
3734
3735        barrier();
3736        ++userpg->lock;
3737        preempt_enable();
3738unlock:
3739        rcu_read_unlock();
3740}
3741
3742static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3743{
3744        struct perf_event *event = vma->vm_file->private_data;
3745        struct ring_buffer *rb;
3746        int ret = VM_FAULT_SIGBUS;
3747
3748        if (vmf->flags & FAULT_FLAG_MKWRITE) {
3749                if (vmf->pgoff == 0)
3750                        ret = 0;
3751                return ret;
3752        }
3753
3754        rcu_read_lock();
3755        rb = rcu_dereference(event->rb);
3756        if (!rb)
3757                goto unlock;
3758
3759        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3760                goto unlock;
3761
3762        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3763        if (!vmf->page)
3764                goto unlock;
3765
3766        get_page(vmf->page);
3767        vmf->page->mapping = vma->vm_file->f_mapping;
3768        vmf->page->index   = vmf->pgoff;
3769
3770        ret = 0;
3771unlock:
3772        rcu_read_unlock();
3773
3774        return ret;
3775}
3776
3777static void ring_buffer_attach(struct perf_event *event,
3778                               struct ring_buffer *rb)
3779{
3780        unsigned long flags;
3781
3782        if (!list_empty(&event->rb_entry))
3783                return;
3784
3785        spin_lock_irqsave(&rb->event_lock, flags);
3786        if (list_empty(&event->rb_entry))
3787                list_add(&event->rb_entry, &rb->event_list);
3788        spin_unlock_irqrestore(&rb->event_lock, flags);
3789}
3790
3791static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3792{
3793        unsigned long flags;
3794
3795        if (list_empty(&event->rb_entry))
3796                return;
3797
3798        spin_lock_irqsave(&rb->event_lock, flags);
3799        list_del_init(&event->rb_entry);
3800        wake_up_all(&event->waitq);
3801        spin_unlock_irqrestore(&rb->event_lock, flags);
3802}
3803
3804static void ring_buffer_wakeup(struct perf_event *event)
3805{
3806        struct ring_buffer *rb;
3807
3808        rcu_read_lock();
3809        rb = rcu_dereference(event->rb);
3810        if (rb) {
3811                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3812                        wake_up_all(&event->waitq);
3813        }
3814        rcu_read_unlock();
3815}
3816
3817static void rb_free_rcu(struct rcu_head *rcu_head)
3818{
3819        struct ring_buffer *rb;
3820
3821        rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3822        rb_free(rb);
3823}
3824
3825static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3826{
3827        struct ring_buffer *rb;
3828
3829        rcu_read_lock();
3830        rb = rcu_dereference(event->rb);
3831        if (rb) {
3832                if (!atomic_inc_not_zero(&rb->refcount))
3833                        rb = NULL;
3834        }
3835        rcu_read_unlock();
3836
3837        return rb;
3838}
3839
3840static void ring_buffer_put(struct ring_buffer *rb)
3841{
3842        if (!atomic_dec_and_test(&rb->refcount))
3843                return;
3844
3845        WARN_ON_ONCE(!list_empty(&rb->event_list));
3846
3847        call_rcu(&rb->rcu_head, rb_free_rcu);
3848}
3849
3850static void perf_mmap_open(struct vm_area_struct *vma)
3851{
3852        struct perf_event *event = vma->vm_file->private_data;
3853
3854        atomic_inc(&event->mmap_count);
3855        atomic_inc(&event->rb->mmap_count);
3856}
3857
3858/*
3859 * A buffer can be mmap()ed multiple times; either directly through the same
3860 * event, or through other events by use of perf_event_set_output().
3861 *
3862 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3863 * the buffer here, where we still have a VM context. This means we need
3864 * to detach all events redirecting to us.
3865 */
3866static void perf_mmap_close(struct vm_area_struct *vma)
3867{
3868        struct perf_event *event = vma->vm_file->private_data;
3869
3870        struct ring_buffer *rb = event->rb;
3871        struct user_struct *mmap_user = rb->mmap_user;
3872        int mmap_locked = rb->mmap_locked;
3873        unsigned long size = perf_data_size(rb);
3874
3875        atomic_dec(&rb->mmap_count);
3876
3877        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3878                return;
3879
3880        /* Detach current event from the buffer. */
3881        rcu_assign_pointer(event->rb, NULL);
3882        ring_buffer_detach(event, rb);
3883        mutex_unlock(&event->mmap_mutex);
3884
3885        /* If there's still other mmap()s of this buffer, we're done. */
3886        if (atomic_read(&rb->mmap_count)) {
3887                ring_buffer_put(rb); /* can't be last */
3888                return;
3889        }
3890
3891        /*
3892         * No other mmap()s, detach from all other events that might redirect
3893         * into the now unreachable buffer. Somewhat complicated by the
3894         * fact that rb::event_lock otherwise nests inside mmap_mutex.
3895         */
3896again:
3897        rcu_read_lock();
3898        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3899                if (!atomic_long_inc_not_zero(&event->refcount)) {
3900                        /*
3901                         * This event is en-route to free_event() which will
3902                         * detach it and remove it from the list.
3903                         */
3904                        continue;
3905                }
3906                rcu_read_unlock();
3907
3908                mutex_lock(&event->mmap_mutex);
3909                /*
3910                 * Check we didn't race with perf_event_set_output() which can
3911                 * swizzle the rb from under us while we were waiting to
3912                 * acquire mmap_mutex.
3913                 *
3914                 * If we find a different rb; ignore this event, a next
3915                 * iteration will no longer find it on the list. We have to
3916                 * still restart the iteration to make sure we're not now
3917                 * iterating the wrong list.
3918                 */
3919                if (event->rb == rb) {
3920                        rcu_assign_pointer(event->rb, NULL);
3921                        ring_buffer_detach(event, rb);
3922                        ring_buffer_put(rb); /* can't be last, we still have one */
3923                }
3924                mutex_unlock(&event->mmap_mutex);
3925                put_event(event);
3926
3927                /*
3928                 * Restart the iteration; either we're on the wrong list or
3929                 * destroyed its integrity by doing a deletion.
3930                 */
3931                goto again;
3932        }
3933        rcu_read_unlock();
3934
3935        /*
3936         * It could be there's still a few 0-ref events on the list; they'll
3937         * get cleaned up by free_event() -- they'll also still have their
3938         * ref on the rb and will free it whenever they are done with it.
3939         *
3940         * Aside from that, this buffer is 'fully' detached and unmapped,
3941         * undo the VM accounting.
3942         */
3943
3944        atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3945        vma->vm_mm->pinned_vm -= mmap_locked;
3946        free_uid(mmap_user);
3947
3948        ring_buffer_put(rb); /* could be last */
3949}
3950
3951static const struct vm_operations_struct perf_mmap_vmops = {
3952        .open           = perf_mmap_open,
3953        .close          = perf_mmap_close,
3954        .fault          = perf_mmap_fault,
3955        .page_mkwrite   = perf_mmap_fault,
3956};
3957
3958static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3959{
3960        struct perf_event *event = file->private_data;
3961        unsigned long user_locked, user_lock_limit;
3962        struct user_struct *user = current_user();
3963        unsigned long locked, lock_limit;
3964        struct ring_buffer *rb;
3965        unsigned long vma_size;
3966        unsigned long nr_pages;
3967        long user_extra, extra;
3968        int ret = 0, flags = 0;
3969
3970        /*
3971         * Don't allow mmap() of inherited per-task counters. This would
3972         * create a performance issue due to all children writing to the
3973         * same rb.
3974         */
3975        if (event->cpu == -1 && event->attr.inherit)
3976                return -EINVAL;
3977
3978        if (!(vma->vm_flags & VM_SHARED))
3979                return -EINVAL;
3980
3981        vma_size = vma->vm_end - vma->vm_start;
3982        nr_pages = (vma_size / PAGE_SIZE) - 1;
3983
3984        /*
3985         * If we have rb pages ensure they're a power-of-two number, so we
3986         * can do bitmasks instead of modulo.
3987         */
3988        if (nr_pages != 0 && !is_power_of_2(nr_pages))
3989                return -EINVAL;
3990
3991        if (vma_size != PAGE_SIZE * (1 + nr_pages))
3992                return -EINVAL;
3993
3994        if (vma->vm_pgoff != 0)
3995                return -EINVAL;
3996
3997        WARN_ON_ONCE(event->ctx->parent_ctx);
3998again:
3999        mutex_lock(&event->mmap_mutex);
4000        if (event->rb) {
4001                if (event->rb->nr_pages != nr_pages) {
4002                        ret = -EINVAL;
4003                        goto unlock;
4004                }
4005
4006                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4007                        /*
4008                         * Raced against perf_mmap_close() through
4009                         * perf_event_set_output(). Try again, hope for better
4010                         * luck.
4011                         */
4012                        mutex_unlock(&event->mmap_mutex);
4013                        goto again;
4014                }
4015
4016                goto unlock;
4017        }
4018
4019        user_extra = nr_pages + 1;
4020        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4021
4022        /*
4023         * Increase the limit linearly with more CPUs:
4024         */
4025        user_lock_limit *= num_online_cpus();
4026
4027        user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4028
4029        extra = 0;
4030        if (user_locked > user_lock_limit)
4031                extra = user_locked - user_lock_limit;
4032
4033        lock_limit = rlimit(RLIMIT_MEMLOCK);
4034        lock_limit >>= PAGE_SHIFT;
4035        locked = vma->vm_mm->pinned_vm + extra;
4036
4037        if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4038                !capable(CAP_IPC_LOCK)) {
4039                ret = -EPERM;
4040                goto unlock;
4041        }
4042
4043        WARN_ON(event->rb);
4044
4045        if (vma->vm_flags & VM_WRITE)
4046                flags |= RING_BUFFER_WRITABLE;
4047
4048        rb = rb_alloc(nr_pages, 
4049                event->attr.watermark ? event->attr.wakeup_watermark : 0,
4050                event->cpu, flags);
4051
4052        if (!rb) {
4053                ret = -ENOMEM;
4054                goto unlock;
4055        }
4056
4057        atomic_set(&rb->mmap_count, 1);
4058        rb->mmap_locked = extra;
4059        rb->mmap_user = get_current_user();
4060
4061        atomic_long_add(user_extra, &user->locked_vm);
4062        vma->vm_mm->pinned_vm += extra;
4063
4064        ring_buffer_attach(event, rb);
4065        rcu_assign_pointer(event->rb, rb);
4066
4067        perf_event_init_userpage(event);
4068        perf_event_update_userpage(event);
4069
4070unlock:
4071        if (!ret)
4072                atomic_inc(&event->mmap_count);
4073        mutex_unlock(&event->mmap_mutex);
4074
4075        /*
4076         * Since pinned accounting is per vm we cannot allow fork() to copy our
4077         * vma.
4078         */
4079        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4080        vma->vm_ops = &perf_mmap_vmops;
4081
4082        return ret;
4083}
4084
4085static int perf_fasync(int fd, struct file *filp, int on)
4086{
4087        struct inode *inode = file_inode(filp);
4088        struct perf_event *event = filp->private_data;
4089        int retval;
4090
4091        mutex_lock(&inode->i_mutex);
4092        retval = fasync_helper(fd, filp, on, &event->fasync);
4093        mutex_unlock(&inode->i_mutex);
4094
4095        if (retval < 0)
4096                return retval;
4097
4098        return 0;
4099}
4100
4101static const struct file_operations perf_fops = {
4102        .llseek                 = no_llseek,
4103        .release                = perf_release,
4104        .read                   = perf_read,
4105        .poll                   = perf_poll,
4106        .unlocked_ioctl         = perf_ioctl,
4107        .compat_ioctl           = perf_ioctl,
4108        .mmap                   = perf_mmap,
4109        .fasync                 = perf_fasync,
4110};
4111
4112/*
4113 * Perf event wakeup
4114 *
4115 * If there's data, ensure we set the poll() state and publish everything
4116 * to user-space before waking everybody up.
4117 */
4118
4119void perf_event_wakeup(struct perf_event *event)
4120{
4121        ring_buffer_wakeup(event);
4122
4123        if (event->pending_kill) {
4124                kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4125                event->pending_kill = 0;
4126        }
4127}
4128
4129static void perf_pending_event(struct irq_work *entry)
4130{
4131        struct perf_event *event = container_of(entry,
4132                        struct perf_event, pending);
4133
4134        if (event->pending_disable) {
4135                event->pending_disable = 0;
4136                __perf_event_disable(event);
4137        }
4138
4139        if (event->pending_wakeup) {
4140                event->pending_wakeup = 0;
4141                perf_event_wakeup(event);
4142        }
4143}
4144
4145/*
4146 * We assume there is only KVM supporting the callbacks.
4147 * Later on, we might change it to a list if there is
4148 * another virtualization implementation supporting the callbacks.
4149 */
4150struct perf_guest_info_callbacks *perf_guest_cbs;
4151
4152int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4153{
4154        perf_guest_cbs = cbs;
4155        return 0;
4156}
4157EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4158
4159int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4160{
4161        perf_guest_cbs = NULL;
4162        return 0;
4163}
4164EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4165
4166static void
4167perf_output_sample_regs(struct perf_output_handle *handle,
4168                        struct pt_regs *regs, u64 mask)
4169{
4170        int bit;
4171
4172        for_each_set_bit(bit, (const unsigned long *) &mask,
4173                         sizeof(mask) * BITS_PER_BYTE) {
4174                u64 val;
4175
4176                val = perf_reg_value(regs, bit);
4177                perf_output_put(handle, val);
4178        }
4179}
4180
4181static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4182                                  struct pt_regs *regs)
4183{
4184        if (!user_mode(regs)) {
4185                if (current->mm)
4186                        regs = task_pt_regs(current);
4187                else
4188                        regs = NULL;
4189        }
4190
4191        if (regs) {
4192                regs_user->regs = regs;
4193                regs_user->abi  = perf_reg_abi(current);
4194        }
4195}
4196
4197/*
4198 * Get remaining task size from user stack pointer.
4199 *
4200 * It'd be better to take stack vma map and limit this more
4201 * precisly, but there's no way to get it safely under interrupt,
4202 * so using TASK_SIZE as limit.
4203 */
4204static u64 perf_ustack_task_size(struct pt_regs *regs)
4205{
4206        unsigned long addr = perf_user_stack_pointer(regs);
4207
4208        if (!addr || addr >= TASK_SIZE)
4209                return 0;
4210
4211        return TASK_SIZE - addr;
4212}
4213
4214static u16
4215perf_sample_ustack_size(u16 stack_size, u16 header_size,
4216                        struct pt_regs *regs)
4217{
4218        u64 task_size;
4219
4220        /* No regs, no stack pointer, no dump. */
4221        if (!regs)
4222                return 0;
4223
4224        /*
4225         * Check if we fit in with the requested stack size into the:
4226         * - TASK_SIZE
4227         *   If we don't, we limit the size to the TASK_SIZE.
4228         *
4229         * - remaining sample size
4230         *   If we don't, we customize the stack size to
4231         *   fit in to the remaining sample size.
4232         */
4233
4234        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4235        stack_size = min(stack_size, (u16) task_size);
4236
4237        /* Current header size plus static size and dynamic size. */
4238        header_size += 2 * sizeof(u64);
4239
4240        /* Do we fit in with the current stack dump size? */
4241        if ((u16) (header_size + stack_size) < header_size) {
4242                /*
4243                 * If we overflow the maximum size for the sample,
4244                 * we customize the stack dump size to fit in.
4245                 */
4246                stack_size = USHRT_MAX - header_size - sizeof(u64);
4247                stack_size = round_up(stack_size, sizeof(u64));
4248        }
4249
4250        return stack_size;
4251}
4252
4253static void
4254perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4255                          struct pt_regs *regs)
4256{
4257        /* Case of a kernel thread, nothing to dump */
4258        if (!regs) {
4259                u64 size = 0;
4260                perf_output_put(handle, size);
4261        } else {
4262                unsigned long sp;
4263                unsigned int rem;
4264                u64 dyn_size;
4265
4266                /*
4267                 * We dump:
4268                 * static size
4269                 *   - the size requested by user or the best one we can fit
4270                 *     in to the sample max size
4271                 * data
4272                 *   - user stack dump data
4273                 * dynamic size
4274                 *   - the actual dumped size
4275                 */
4276
4277                /* Static size. */
4278                perf_output_put(handle, dump_size);
4279
4280                /* Data. */
4281                sp = perf_user_stack_pointer(regs);
4282                rem = __output_copy_user(handle, (void *) sp, dump_size);
4283                dyn_size = dump_size - rem;
4284
4285                perf_output_skip(handle, rem);
4286
4287                /* Dynamic size. */
4288                perf_output_put(handle, dyn_size);
4289        }
4290}
4291
4292static void __perf_event_header__init_id(struct perf_event_header *header,
4293                                         struct perf_sample_data *data,
4294                                         struct perf_event *event)
4295{
4296        u64 sample_type = event->attr.sample_type;
4297
4298        data->type = sample_type;
4299        header->size += event->id_header_size;
4300
4301        if (sample_type & PERF_SAMPLE_TID) {
4302                /* namespace issues */
4303                data->tid_entry.pid = perf_event_pid(event, current);
4304                data->tid_entry.tid = perf_event_tid(event, current);
4305        }
4306
4307        if (sample_type & PERF_SAMPLE_TIME)
4308                data->time = perf_clock();
4309
4310        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4311                data->id = primary_event_id(event);
4312
4313        if (sample_type & PERF_SAMPLE_STREAM_ID)
4314                data->stream_id = event->id;
4315
4316        if (sample_type & PERF_SAMPLE_CPU) {
4317                data->cpu_entry.cpu      = raw_smp_processor_id();
4318                data->cpu_entry.reserved = 0;
4319        }
4320}
4321
4322void perf_event_header__init_id(struct perf_event_header *header,
4323                                struct perf_sample_data *data,
4324                                struct perf_event *event)
4325{
4326        if (event->attr.sample_id_all)
4327                __perf_event_header__init_id(header, data, event);
4328}
4329
4330static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4331                                           struct perf_sample_data *data)
4332{
4333        u64 sample_type = data->type;
4334
4335        if (sample_type & PERF_SAMPLE_TID)
4336                perf_output_put(handle, data->tid_entry);
4337
4338        if (sample_type & PERF_SAMPLE_TIME)
4339                perf_output_put(handle, data->time);
4340
4341        if (sample_type & PERF_SAMPLE_ID)
4342                perf_output_put(handle, data->id);
4343
4344        if (sample_type & PERF_SAMPLE_STREAM_ID)
4345                perf_output_put(handle, data->stream_id);
4346
4347        if (sample_type & PERF_SAMPLE_CPU)
4348                perf_output_put(handle, data->cpu_entry);
4349
4350        if (sample_type & PERF_SAMPLE_IDENTIFIER)
4351                perf_output_put(handle, data->id);
4352}
4353
4354void perf_event__output_id_sample(struct perf_event *event,
4355                                  struct perf_output_handle *handle,
4356                                  struct perf_sample_data *sample)
4357{
4358        if (event->attr.sample_id_all)
4359                __perf_event__output_id_sample(handle, sample);
4360}
4361
4362static void perf_output_read_one(struct perf_output_handle *handle,
4363                                 struct perf_event *event,
4364                                 u64 enabled, u64 running)
4365{
4366        u64 read_format = event->attr.read_format;
4367        u64 values[4];
4368        int n = 0;
4369
4370        values[n++] = perf_event_count(event);
4371        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4372                values[n++] = enabled +
4373                        atomic64_read(&event->child_total_time_enabled);
4374        }
4375        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4376                values[n++] = running +
4377                        atomic64_read(&event->child_total_time_running);
4378        }
4379        if (read_format & PERF_FORMAT_ID)
4380                values[n++] = primary_event_id(event);
4381
4382        __output_copy(handle, values, n * sizeof(u64));
4383}
4384
4385/*
4386 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4387 */
4388static void perf_output_read_group(struct perf_output_handle *handle,
4389                            struct perf_event *event,
4390                            u64 enabled, u64 running)
4391{
4392        struct perf_event *leader = event->group_leader, *sub;
4393        u64 read_format = event->attr.read_format;
4394        u64 values[5];
4395        int n = 0;
4396
4397        values[n++] = 1 + leader->nr_siblings;
4398
4399        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4400                values[n++] = enabled;
4401
4402        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4403                values[n++] = running;
4404
4405        if (leader != event)
4406                leader->pmu->read(leader);
4407
4408        values[n++] = perf_event_count(leader);
4409        if (read_format & PERF_FORMAT_ID)
4410                values[n++] = primary_event_id(leader);
4411
4412        __output_copy(handle, values, n * sizeof(u64));
4413
4414        list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4415                n = 0;
4416
4417                if ((sub != event) &&
4418                    (sub->state == PERF_EVENT_STATE_ACTIVE))
4419                        sub->pmu->read(sub);
4420
4421                values[n++] = perf_event_count(sub);
4422                if (read_format & PERF_FORMAT_ID)
4423                        values[n++] = primary_event_id(sub);
4424
4425                __output_copy(handle, values, n * sizeof(u64));
4426        }
4427}
4428
4429#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4430                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
4431
4432static void perf_output_read(struct perf_output_handle *handle,
4433                             struct perf_event *event)
4434{
4435        u64 enabled = 0, running = 0, now;
4436        u64 read_format = event->attr.read_format;
4437
4438        /*
4439         * compute total_time_enabled, total_time_running
4440         * based on snapshot values taken when the event
4441         * was last scheduled in.
4442         *
4443         * we cannot simply called update_context_time()
4444         * because of locking issue as we are called in
4445         * NMI context
4446         */
4447        if (read_format & PERF_FORMAT_TOTAL_TIMES)
4448                calc_timer_values(event, &now, &enabled, &running);
4449
4450        if (event->attr.read_format & PERF_FORMAT_GROUP)
4451                perf_output_read_group(handle, event, enabled, running);
4452        else
4453                perf_output_read_one(handle, event, enabled, running);
4454}
4455
4456void perf_output_sample(struct perf_output_handle *handle,
4457                        struct perf_event_header *header,
4458                        struct perf_sample_data *data,
4459                        struct perf_event *event)
4460{
4461        u64 sample_type = data->type;
4462
4463        perf_output_put(handle, *header);
4464
4465        if (sample_type & PERF_SAMPLE_IDENTIFIER)
4466                perf_output_put(handle, data->id);
4467
4468        if (sample_type & PERF_SAMPLE_IP)
4469                perf_output_put(handle, data->ip);
4470
4471        if (sample_type & PERF_SAMPLE_TID)
4472                perf_output_put(handle, data->tid_entry);
4473
4474        if (sample_type & PERF_SAMPLE_TIME)
4475                perf_output_put(handle, data->time);
4476
4477        if (sample_type & PERF_SAMPLE_ADDR)
4478                perf_output_put(handle, data->addr);
4479
4480        if (sample_type & PERF_SAMPLE_ID)
4481                perf_output_put(handle, data->id);
4482
4483        if (sample_type & PERF_SAMPLE_STREAM_ID)
4484                perf_output_put(handle, data->stream_id);
4485
4486        if (sample_type & PERF_SAMPLE_CPU)
4487                perf_output_put(handle, data->cpu_entry);
4488
4489        if (sample_type & PERF_SAMPLE_PERIOD)
4490                perf_output_put(handle, data->period);
4491
4492        if (sample_type & PERF_SAMPLE_READ)
4493                perf_output_read(handle, event);
4494
4495        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4496                if (data->callchain) {
4497                        int size = 1;
4498
4499                        if (data->callchain)
4500                                size += data->callchain->nr;
4501
4502                        size *= sizeof(u64);
4503
4504                        __output_copy(handle, data->callchain, size);
4505                } else {
4506                        u64 nr = 0;
4507                        perf_output_put(handle, nr);
4508                }
4509        }
4510
4511        if (sample_type & PERF_SAMPLE_RAW) {
4512                if (data->raw) {
4513                        perf_output_put(handle, data->raw->size);
4514                        __output_copy(handle, data->raw->data,
4515                                           data->raw->size);
4516                } else {
4517                        struct {
4518                                u32     size;
4519                                u32     data;
4520                        } raw = {
4521                                .size = sizeof(u32),
4522                                .data = 0,
4523                        };
4524                        perf_output_put(handle, raw);
4525                }
4526        }
4527
4528        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4529                if (data->br_stack) {
4530                        size_t size;
4531
4532                        size = data->br_stack->nr
4533                             * sizeof(struct perf_branch_entry);
4534
4535                        perf_output_put(handle, data->br_stack->nr);
4536                        perf_output_copy(handle, data->br_stack->entries, size);
4537                } else {
4538                        /*
4539                         * we always store at least the value of nr
4540                         */
4541                        u64 nr = 0;
4542                        perf_output_put(handle, nr);
4543                }
4544        }
4545
4546        if (sample_type & PERF_SAMPLE_REGS_USER) {
4547                u64 abi = data->regs_user.abi;
4548
4549                /*
4550                 * If there are no regs to dump, notice it through
4551                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4552                 */
4553                perf_output_put(handle, abi);
4554
4555                if (abi) {
4556                        u64 mask = event->attr.sample_regs_user;
4557                        perf_output_sample_regs(handle,
4558                                                data->regs_user.regs,
4559                                                mask);
4560                }
4561        }
4562
4563        if (sample_type & PERF_SAMPLE_STACK_USER) {
4564                perf_output_sample_ustack(handle,
4565                                          data->stack_user_size,
4566                                          data->regs_user.regs);
4567        }
4568
4569        if (sample_type & PERF_SAMPLE_WEIGHT)
4570                perf_output_put(handle, data->weight);
4571
4572        if (sample_type & PERF_SAMPLE_DATA_SRC)
4573                perf_output_put(handle, data->data_src.val);
4574
4575        if (!event->attr.watermark) {
4576                int wakeup_events = event->attr.wakeup_events;
4577
4578                if (wakeup_events) {
4579                        struct ring_buffer *rb = handle->rb;
4580                        int events = local_inc_return(&rb->events);
4581
4582                        if (events >= wakeup_events) {
4583                                local_sub(wakeup_events, &rb->events);
4584                                local_inc(&rb->wakeup);
4585                        }
4586                }
4587        }
4588}
4589
4590void perf_prepare_sample(struct perf_event_header *header,
4591                         struct perf_sample_data *data,
4592                         struct perf_event *event,
4593                         struct pt_regs *regs)
4594{
4595        u64 sample_type = event->attr.sample_type;
4596
4597        header->type = PERF_RECORD_SAMPLE;
4598        header->size = sizeof(*header) + event->header_size;
4599
4600        header->misc = 0;
4601        header->misc |= perf_misc_flags(regs);
4602
4603        __perf_event_header__init_id(header, data, event);
4604
4605        if (sample_type & PERF_SAMPLE_IP)
4606                data->ip = perf_instruction_pointer(regs);
4607
4608        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4609                int size = 1;
4610
4611                data->callchain = perf_callchain(event, regs);
4612
4613                if (data->callchain)
4614                        size += data->callchain->nr;
4615
4616                header->size += size * sizeof(u64);
4617        }
4618
4619        if (sample_type & PERF_SAMPLE_RAW) {
4620                int size = sizeof(u32);
4621
4622                if (data->raw)
4623                        size += data->raw->size;
4624                else
4625                        size += sizeof(u32);
4626
4627                WARN_ON_ONCE(size & (sizeof(u64)-1));
4628                header->size += size;
4629        }
4630
4631        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4632                int size = sizeof(u64); /* nr */
4633                if (data->br_stack) {
4634                        size += data->br_stack->nr
4635                              * sizeof(struct perf_branch_entry);
4636                }
4637                header->size += size;
4638        }
4639
4640        if (sample_type & PERF_SAMPLE_REGS_USER) {
4641                /* regs dump ABI info */
4642                int size = sizeof(u64);
4643
4644                perf_sample_regs_user(&data->regs_user, regs);
4645
4646                if (data->regs_user.regs) {
4647                        u64 mask = event->attr.sample_regs_user;
4648                        size += hweight64(mask) * sizeof(u64);
4649                }
4650
4651                header->size += size;
4652        }
4653
4654        if (sample_type & PERF_SAMPLE_STACK_USER) {
4655                /*
4656                 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4657                 * processed as the last one or have additional check added
4658                 * in case new sample type is added, because we could eat
4659                 * up the rest of the sample size.
4660                 */
4661                struct perf_regs_user *uregs = &data->regs_user;
4662                u16 stack_size = event->attr.sample_stack_user;
4663                u16 size = sizeof(u64);
4664
4665                if (!uregs->abi)
4666                        perf_sample_regs_user(uregs, regs);
4667
4668                stack_size = perf_sample_ustack_size(stack_size, header->size,
4669                                                     uregs->regs);
4670
4671                /*
4672                 * If there is something to dump, add space for the dump
4673                 * itself and for the field that tells the dynamic size,
4674                 * which is how many have been actually dumped.
4675                 */
4676                if (stack_size)
4677                        size += sizeof(u64) + stack_size;
4678
4679                data->stack_user_size = stack_size;
4680                header->size += size;
4681        }
4682}
4683
4684static void perf_event_output(struct perf_event *event,
4685                                struct perf_sample_data *data,
4686                                struct pt_regs *regs)
4687{
4688        struct perf_output_handle handle;
4689        struct perf_event_header header;
4690
4691        /* protect the callchain buffers */
4692        rcu_read_lock();
4693
4694        perf_prepare_sample(&header, data, event, regs);
4695
4696        if (perf_output_begin(&handle, event, header.size))
4697                goto exit;
4698
4699        perf_output_sample(&handle, &header, data, event);
4700
4701        perf_output_end(&handle);
4702
4703exit:
4704        rcu_read_unlock();
4705}
4706
4707/*
4708 * read event_id
4709 */
4710
4711struct perf_read_event {
4712        struct perf_event_header        header;
4713
4714        u32                             pid;
4715        u32                             tid;
4716};
4717
4718static void
4719perf_event_read_event(struct perf_event *event,
4720                        struct task_struct *task)
4721{
4722        struct perf_output_handle handle;
4723        struct perf_sample_data sample;
4724        struct perf_read_event read_event = {
4725                .header = {
4726                        .type = PERF_RECORD_READ,
4727                        .misc = 0,
4728                        .size = sizeof(read_event) + event->read_size,
4729                },
4730                .pid = perf_event_pid(event, task),
4731                .tid = perf_event_tid(event, task),
4732        };
4733        int ret;
4734
4735        perf_event_header__init_id(&read_event.header, &sample, event);
4736        ret = perf_output_begin(&handle, event, read_event.header.size);
4737        if (ret)
4738                return;
4739
4740        perf_output_put(&handle, read_event);
4741        perf_output_read(&handle, event);
4742        perf_event__output_id_sample(event, &handle, &sample);
4743
4744        perf_output_end(&handle);
4745}
4746
4747typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4748
4749static void
4750perf_event_aux_ctx(struct perf_event_context *ctx,
4751                   perf_event_aux_output_cb output,
4752                   void *data)
4753{
4754        struct perf_event *event;
4755
4756        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4757                if (event->state < PERF_EVENT_STATE_INACTIVE)
4758                        continue;
4759                if (!event_filter_match(event))
4760                        continue;
4761                output(event, data);
4762        }
4763}
4764
4765static void
4766perf_event_aux(perf_event_aux_output_cb output, void *data,
4767               struct perf_event_context *task_ctx)
4768{
4769        struct perf_cpu_context *cpuctx;
4770        struct perf_event_context *ctx;
4771        struct pmu *pmu;
4772        int ctxn;
4773
4774        rcu_read_lock();
4775        list_for_each_entry_rcu(pmu, &pmus, entry) {
4776                cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4777                if (cpuctx->unique_pmu != pmu)
4778                        goto next;
4779                perf_event_aux_ctx(&cpuctx->ctx, output, data);
4780                if (task_ctx)
4781                        goto next;
4782                ctxn = pmu->task_ctx_nr;
4783                if (ctxn < 0)
4784                        goto next;
4785                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4786                if (ctx)
4787                        perf_event_aux_ctx(ctx, output, data);
4788next:
4789                put_cpu_ptr(pmu->pmu_cpu_context);
4790        }
4791
4792        if (task_ctx) {
4793                preempt_disable();
4794                perf_event_aux_ctx(task_ctx, output, data);
4795                preempt_enable();
4796        }
4797        rcu_read_unlock();
4798}
4799
4800/*
4801 * task tracking -- fork/exit
4802 *
4803 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4804 */
4805
4806struct perf_task_event {
4807        struct task_struct              *task;
4808        struct perf_event_context       *task_ctx;
4809
4810        struct {
4811                struct perf_event_header        header;
4812
4813                u32                             pid;
4814                u32                             ppid;
4815                u32                             tid;
4816                u32                             ptid;
4817                u64                             time;
4818        } event_id;
4819};
4820
4821static int perf_event_task_match(struct perf_event *event)
4822{
4823        return event->attr.comm  || event->attr.mmap ||
4824               event->attr.mmap2 || event->attr.mmap_data ||
4825               event->attr.task;
4826}
4827
4828static void perf_event_task_output(struct perf_event *event,
4829                                   void *data)
4830{
4831        struct perf_task_event *task_event = data;
4832        struct perf_output_handle handle;
4833        struct perf_sample_data sample;
4834        struct task_struct *task = task_event->task;
4835        int ret, size = task_event->event_id.header.size;
4836
4837        if (!perf_event_task_match(event))
4838                return;
4839
4840        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4841
4842        ret = perf_output_begin(&handle, event,
4843                                task_event->event_id.header.size);
4844        if (ret)
4845                goto out;
4846
4847        task_event->event_id.pid = perf_event_pid(event, task);
4848        task_event->event_id.ppid = perf_event_pid(event, current);
4849
4850        task_event->event_id.tid = perf_event_tid(event, task);
4851        task_event->event_id.ptid = perf_event_tid(event, current);
4852
4853        perf_output_put(&handle, task_event->event_id);
4854
4855        perf_event__output_id_sample(event, &handle, &sample);
4856
4857        perf_output_end(&handle);
4858out:
4859        task_event->event_id.header.size = size;
4860}
4861
4862static void perf_event_task(struct task_struct *task,
4863                              struct perf_event_context *task_ctx,
4864                              int new)
4865{
4866        struct perf_task_event task_event;
4867
4868        if (!atomic_read(&nr_comm_events) &&
4869            !atomic_read(&nr_mmap_events) &&
4870            !atomic_read(&nr_task_events))
4871                return;
4872
4873        task_event = (struct perf_task_event){
4874                .task     = task,
4875                .task_ctx = task_ctx,
4876                .event_id    = {
4877                        .header = {
4878                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4879                                .misc = 0,
4880                                .size = sizeof(task_event.event_id),
4881                        },
4882                        /* .pid  */
4883                        /* .ppid */
4884                        /* .tid  */
4885                        /* .ptid */
4886                        .time = perf_clock(),
4887                },
4888        };
4889
4890        perf_event_aux(perf_event_task_output,
4891                       &task_event,
4892                       task_ctx);
4893}
4894
4895void perf_event_fork(struct task_struct *task)
4896{
4897        perf_event_task(task, NULL, 1);
4898}
4899
4900/*
4901 * comm tracking
4902 */
4903
4904struct perf_comm_event {
4905        struct task_struct      *task;
4906        char                    *comm;
4907        int                     comm_size;
4908
4909        struct {
4910                struct perf_event_header        header;
4911
4912                u32                             pid;
4913                u32                             tid;
4914        } event_id;
4915};
4916
4917static int perf_event_comm_match(struct perf_event *event)
4918{
4919        return event->attr.comm;
4920}
4921
4922static void perf_event_comm_output(struct perf_event *event,
4923                                   void *data)
4924{
4925        struct perf_comm_event *comm_event = data;
4926        struct perf_output_handle handle;
4927        struct perf_sample_data sample;
4928        int size = comm_event->event_id.header.size;
4929        int ret;
4930
4931        if (!perf_event_comm_match(event))
4932                return;
4933
4934        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4935        ret = perf_output_begin(&handle, event,
4936                                comm_event->event_id.header.size);
4937
4938        if (ret)
4939                goto out;
4940
4941        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4942        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4943
4944        perf_output_put(&handle, comm_event->event_id);
4945        __output_copy(&handle, comm_event->comm,
4946                                   comm_event->comm_size);
4947
4948        perf_event__output_id_sample(event, &handle, &sample);
4949
4950        perf_output_end(&handle);
4951out:
4952        comm_event->event_id.header.size = size;
4953}
4954
4955static void perf_event_comm_event(struct perf_comm_event *comm_event)
4956{
4957        char comm[TASK_COMM_LEN];
4958        unsigned int size;
4959
4960        memset(comm, 0, sizeof(comm));
4961        strlcpy(comm, comm_event->task->comm, sizeof(comm));
4962        size = ALIGN(strlen(comm)+1, sizeof(u64));
4963
4964        comm_event->comm = comm;
4965        comm_event->comm_size = size;
4966
4967        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4968
4969        perf_event_aux(perf_event_comm_output,
4970                       comm_event,
4971                       NULL);
4972}
4973
4974void perf_event_comm(struct task_struct *task)
4975{
4976        struct perf_comm_event comm_event;
4977        struct perf_event_context *ctx;
4978        int ctxn;
4979
4980        rcu_read_lock();
4981        for_each_task_context_nr(ctxn) {
4982                ctx = task->perf_event_ctxp[ctxn];
4983                if (!ctx)
4984                        continue;
4985
4986                perf_event_enable_on_exec(ctx);
4987        }
4988        rcu_read_unlock();
4989
4990        if (!atomic_read(&nr_comm_events))
4991                return;
4992
4993        comm_event = (struct perf_comm_event){
4994                .task   = task,
4995                /* .comm      */
4996                /* .comm_size */
4997                .event_id  = {
4998                        .header = {
4999                                .type = PERF_RECORD_COMM,
5000                                .misc = 0,
5001                                /* .size */
5002                        },
5003                        /* .pid */
5004                        /* .tid */
5005                },
5006        };
5007
5008        perf_event_comm_event(&comm_event);
5009}
5010
5011/*
5012 * mmap tracking
5013 */
5014
5015struct perf_mmap_event {
5016        struct vm_area_struct   *vma;
5017
5018        const char              *file_name;
5019        int                     file_size;
5020        int                     maj, min;
5021        u64                     ino;
5022        u64                     ino_generation;
5023
5024        struct {
5025                struct perf_event_header        header;
5026
5027                u32                             pid;
5028                u32                             tid;
5029                u64                             start;
5030                u64                             len;
5031                u64                             pgoff;
5032        } event_id;
5033};
5034
5035static int perf_event_mmap_match(struct perf_event *event,
5036                                 void *data)
5037{
5038        struct perf_mmap_event *mmap_event = data;
5039        struct vm_area_struct *vma = mmap_event->vma;
5040        int executable = vma->vm_flags & VM_EXEC;
5041
5042        return (!executable && event->attr.mmap_data) ||
5043               (executable && (event->attr.mmap || event->attr.mmap2));
5044}
5045
5046static void perf_event_mmap_output(struct perf_event *event,
5047                                   void *data)
5048{
5049        struct perf_mmap_event *mmap_event = data;
5050        struct perf_output_handle handle;
5051        struct perf_sample_data sample;
5052        int size = mmap_event->event_id.header.size;
5053        int ret;
5054
5055        if (!perf_event_mmap_match(event, data))
5056                return;
5057
5058        if (event->attr.mmap2) {
5059                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5060                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5061                mmap_event->event_id.header.size += sizeof(mmap_event->min);
5062                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5063                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5064        }
5065
5066        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5067        ret = perf_output_begin(&handle, event,
5068                                mmap_event->event_id.header.size);
5069        if (ret)
5070                goto out;
5071
5072        mmap_event->event_id.pid = perf_event_pid(event, current);
5073        mmap_event->event_id.tid = perf_event_tid(event, current);
5074
5075        perf_output_put(&handle, mmap_event->event_id);
5076
5077        if (event->attr.mmap2) {
5078                perf_output_put(&handle, mmap_event->maj);
5079                perf_output_put(&handle, mmap_event->min);
5080                perf_output_put(&handle, mmap_event->ino);
5081                perf_output_put(&handle, mmap_event->ino_generation);
5082        }
5083
5084        __output_copy(&handle, mmap_event->file_name,
5085                                   mmap_event->file_size);
5086
5087        perf_event__output_id_sample(event, &handle, &sample);
5088
5089        perf_output_end(&handle);
5090out:
5091        mmap_event->event_id.header.size = size;
5092}
5093
5094static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5095{
5096        struct vm_area_struct *vma = mmap_event->vma;
5097        struct file *file = vma->vm_file;
5098        int maj = 0, min = 0;
5099        u64 ino = 0, gen = 0;
5100        unsigned int size;
5101        char tmp[16];
5102        char *buf = NULL;
5103        const char *name;
5104
5105        memset(tmp, 0, sizeof(tmp));
5106
5107        if (file) {
5108                struct inode *inode;
5109                dev_t dev;
5110                /*
5111                 * d_path works from the end of the rb backwards, so we
5112                 * need to add enough zero bytes after the string to handle
5113                 * the 64bit alignment we do later.
5114                 */
5115                buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
5116                if (!buf) {
5117                        name = strncpy(tmp, "//enomem", sizeof(tmp));
5118                        goto got_name;
5119                }
5120                name = d_path(&file->f_path, buf, PATH_MAX);
5121                if (IS_ERR(name)) {
5122                        name = strncpy(tmp, "//toolong", sizeof(tmp));
5123                        goto got_name;
5124                }
5125                inode = file_inode(vma->vm_file);
5126                dev = inode->i_sb->s_dev;
5127                ino = inode->i_ino;
5128                gen = inode->i_generation;
5129                maj = MAJOR(dev);
5130                min = MINOR(dev);
5131
5132        } else {
5133                if (arch_vma_name(mmap_event->vma)) {
5134                        name = strncpy(tmp, arch_vma_name(mmap_event->vma),
5135                                       sizeof(tmp) - 1);
5136                        tmp[sizeof(tmp) - 1] = '\0';
5137                        goto got_name;
5138                }
5139
5140                if (!vma->vm_mm) {
5141                        name = strncpy(tmp, "[vdso]", sizeof(tmp));
5142                        goto got_name;
5143                } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5144                                vma->vm_end >= vma->vm_mm->brk) {
5145                        name = strncpy(tmp, "[heap]", sizeof(tmp));
5146                        goto got_name;
5147                } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5148                                vma->vm_end >= vma->vm_mm->start_stack) {
5149                        name = strncpy(tmp, "[stack]", sizeof(tmp));
5150                        goto got_name;
5151                }
5152
5153                name = strncpy(tmp, "//anon", sizeof(tmp));
5154                goto got_name;
5155        }
5156
5157got_name:
5158        size = ALIGN(strlen(name)+1, sizeof(u64));
5159
5160        mmap_event->file_name = name;
5161        mmap_event->file_size = size;
5162        mmap_event->maj = maj;
5163        mmap_event->min = min;
5164        mmap_event->ino = ino;
5165        mmap_event->ino_generation = gen;
5166
5167        if (!(vma->vm_flags & VM_EXEC))
5168                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5169
5170        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5171
5172        perf_event_aux(perf_event_mmap_output,
5173                       mmap_event,
5174                       NULL);
5175
5176        kfree(buf);
5177}
5178
5179void perf_event_mmap(struct vm_area_struct *vma)
5180{
5181        struct perf_mmap_event mmap_event;
5182
5183        if (!atomic_read(&nr_mmap_events))
5184                return;
5185
5186        mmap_event = (struct perf_mmap_event){
5187                .vma    = vma,
5188                /* .file_name */
5189                /* .file_size */
5190                .event_id  = {
5191                        .header = {
5192                                .type = PERF_RECORD_MMAP,
5193                                .misc = PERF_RECORD_MISC_USER,
5194                                /* .size */
5195                        },
5196                        /* .pid */
5197                        /* .tid */
5198                        .start  = vma->vm_start,
5199                        .len    = vma->vm_end - vma->vm_start,
5200                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5201                },
5202                /* .maj (attr_mmap2 only) */
5203                /* .min (attr_mmap2 only) */
5204                /* .ino (attr_mmap2 only) */
5205                /* .ino_generation (attr_mmap2 only) */
5206        };
5207
5208        perf_event_mmap_event(&mmap_event);
5209}
5210
5211/*
5212 * IRQ throttle logging
5213 */
5214
5215static void perf_log_throttle(struct perf_event *event, int enable)
5216{
5217        struct perf_output_handle handle;
5218        struct perf_sample_data sample;
5219        int ret;
5220
5221        struct {
5222                struct perf_event_header        header;
5223                u64                             time;
5224                u64                             id;
5225                u64                             stream_id;
5226        } throttle_event = {
5227                .header = {
5228                        .type = PERF_RECORD_THROTTLE,
5229                        .misc = 0,
5230                        .size = sizeof(throttle_event),
5231                },
5232                .time           = perf_clock(),
5233                .id             = primary_event_id(event),
5234                .stream_id      = event->id,
5235        };
5236
5237        if (enable)
5238                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5239
5240        perf_event_header__init_id(&throttle_event.header, &sample, event);
5241
5242        ret = perf_output_begin(&handle, event,
5243                                throttle_event.header.size);
5244        if (ret)
5245                return;
5246
5247        perf_output_put(&handle, throttle_event);
5248        perf_event__output_id_sample(event, &handle, &sample);
5249        perf_output_end(&handle);
5250}
5251
5252/*
5253 * Generic event overflow handling, sampling.
5254 */
5255
5256static int __perf_event_overflow(struct perf_event *event,
5257                                   int throttle, struct perf_sample_data *data,
5258                                   struct pt_regs *regs)
5259{
5260        int events = atomic_read(&event->event_limit);
5261        struct hw_perf_event *hwc = &event->hw;
5262        u64 seq;
5263        int ret = 0;
5264
5265        /*
5266         * Non-sampling counters might still use the PMI to fold short
5267         * hardware counters, ignore those.
5268         */
5269        if (unlikely(!is_sampling_event(event)))
5270                return 0;
5271
5272        seq = __this_cpu_read(perf_throttled_seq);
5273        if (seq != hwc->interrupts_seq) {
5274                hwc->interrupts_seq = seq;
5275                hwc->interrupts = 1;
5276        } else {
5277                hwc->interrupts++;
5278                if (unlikely(throttle
5279                             && hwc->interrupts >= max_samples_per_tick)) {
5280                        __this_cpu_inc(perf_throttled_count);
5281                        hwc->interrupts = MAX_INTERRUPTS;
5282                        perf_log_throttle(event, 0);
5283                        tick_nohz_full_kick();
5284                        ret = 1;
5285                }
5286        }
5287
5288        if (event->attr.freq) {
5289                u64 now = perf_clock();
5290                s64 delta = now - hwc->freq_time_stamp;
5291
5292                hwc->freq_time_stamp = now;
5293
5294                if (delta > 0 && delta < 2*TICK_NSEC)
5295                        perf_adjust_period(event, delta, hwc->last_period, true);
5296        }
5297
5298        /*
5299         * XXX event_limit might not quite work as expected on inherited
5300         * events
5301         */
5302
5303        event->pending_kill = POLL_IN;
5304        if (events && atomic_dec_and_test(&event->event_limit)) {
5305                ret = 1;
5306                event->pending_kill = POLL_HUP;
5307                event->pending_disable = 1;
5308                irq_work_queue(&event->pending);
5309        }
5310
5311        if (event->overflow_handler)
5312                event->overflow_handler(event, data, regs);
5313        else
5314                perf_event_output(event, data, regs);
5315
5316        if (event->fasync && event->pending_kill) {
5317                event->pending_wakeup = 1;
5318                irq_work_queue(&event->pending);
5319        }
5320
5321        return ret;
5322}
5323
5324int perf_event_overflow(struct perf_event *event,
5325                          struct perf_sample_data *data,
5326                          struct pt_regs *regs)
5327{
5328        return __perf_event_overflow(event, 1, data, regs);
5329}
5330
5331/*
5332 * Generic software event infrastructure
5333 */
5334
5335struct swevent_htable {
5336        struct swevent_hlist            *swevent_hlist;
5337        struct mutex                    hlist_mutex;
5338        int                             hlist_refcount;
5339
5340        /* Recursion avoidance in each contexts */
5341        int                             recursion[PERF_NR_CONTEXTS];
5342};
5343
5344static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5345
5346/*
5347 * We directly increment event->count and keep a second value in
5348 * event->hw.period_left to count intervals. This period event
5349 * is kept in the range [-sample_period, 0] so that we can use the
5350 * sign as trigger.
5351 */
5352
5353u64 perf_swevent_set_period(struct perf_event *event)
5354{
5355        struct hw_perf_event *hwc = &event->hw;
5356        u64 period = hwc->last_period;
5357        u64 nr, offset;
5358        s64 old, val;
5359
5360        hwc->last_period = hwc->sample_period;
5361
5362again:
5363        old = val = local64_read(&hwc->period_left);
5364        if (val < 0)
5365                return 0;
5366
5367        nr = div64_u64(period + val, period);
5368        offset = nr * period;
5369        val -= offset;
5370        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5371                goto again;
5372
5373        return nr;
5374}
5375
5376static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5377                                    struct perf_sample_data *data,
5378                                    struct pt_regs *regs)
5379{
5380        struct hw_perf_event *hwc = &event->hw;
5381        int throttle = 0;
5382
5383        if (!overflow)
5384                overflow = perf_swevent_set_period(event);
5385
5386        if (hwc->interrupts == MAX_INTERRUPTS)
5387                return;
5388
5389        for (; overflow; overflow--) {
5390                if (__perf_event_overflow(event, throttle,
5391                                            data, regs)) {
5392                        /*
5393                         * We inhibit the overflow from happening when
5394                         * hwc->interrupts == MAX_INTERRUPTS.
5395                         */
5396                        break;
5397                }
5398                throttle = 1;
5399        }
5400}
5401
5402static void perf_swevent_event(struct perf_event *event, u64 nr,
5403                               struct perf_sample_data *data,
5404                               struct pt_regs *regs)
5405{
5406        struct hw_perf_event *hwc = &event->hw;
5407
5408        local64_add(nr, &event->count);
5409
5410        if (!regs)
5411                return;
5412
5413        if (!is_sampling_event(event))
5414                return;
5415
5416        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5417                data->period = nr;
5418                return perf_swevent_overflow(event, 1, data, regs);
5419        } else
5420                data->period = event->hw.last_period;
5421
5422        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5423                return perf_swevent_overflow(event, 1, data, regs);
5424
5425        if (local64_add_negative(nr, &hwc->period_left))
5426                return;
5427
5428        perf_swevent_overflow(event, 0, data, regs);
5429}
5430
5431static int perf_exclude_event(struct perf_event *event,
5432                              struct pt_regs *regs)
5433{
5434        if (event->hw.state & PERF_HES_STOPPED)
5435                return 1;
5436
5437        if (regs) {
5438                if (event->attr.exclude_user && user_mode(regs))
5439                        return 1;
5440
5441                if (event->attr.exclude_kernel && !user_mode(regs))
5442                        return 1;
5443        }
5444
5445        return 0;
5446}
5447
5448static int perf_swevent_match(struct perf_event *event,
5449                                enum perf_type_id type,
5450                                u32 event_id,
5451                                struct perf_sample_data *data,
5452                                struct pt_regs *regs)
5453{
5454        if (event->attr.type != type)
5455                return 0;
5456
5457        if (event->attr.config != event_id)
5458                return 0;
5459
5460        if (perf_exclude_event(event, regs))
5461                return 0;
5462
5463        return 1;
5464}
5465
5466static inline u64 swevent_hash(u64 type, u32 event_id)
5467{
5468        u64 val = event_id | (type << 32);
5469
5470        return hash_64(val, SWEVENT_HLIST_BITS);
5471}
5472
5473static inline struct hlist_head *
5474__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5475{
5476        u64 hash = swevent_hash(type, event_id);
5477
5478        return &hlist->heads[hash];
5479}
5480
5481/* For the read side: events when they trigger */
5482static inline struct hlist_head *
5483find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5484{
5485        struct swevent_hlist *hlist;
5486
5487        hlist = rcu_dereference(swhash->swevent_hlist);
5488        if (!hlist)
5489                return NULL;
5490
5491        return __find_swevent_head(hlist, type, event_id);
5492}
5493
5494/* For the event head insertion and removal in the hlist */
5495static inline struct hlist_head *
5496find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5497{
5498        struct swevent_hlist *hlist;
5499        u32 event_id = event->attr.config;
5500        u64 type = event->attr.type;
5501
5502        /*
5503         * Event scheduling is always serialized against hlist allocation
5504         * and release. Which makes the protected version suitable here.
5505         * The context lock guarantees that.
5506         */
5507        hlist = rcu_dereference_protected(swhash->swevent_hlist,
5508                                          lockdep_is_held(&event->ctx->lock));
5509        if (!hlist)
5510                return NULL;
5511
5512        return __find_swevent_head(hlist, type, event_id);
5513}
5514
5515static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5516                                    u64 nr,
5517                                    struct perf_sample_data *data,
5518                                    struct pt_regs *regs)
5519{
5520        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5521        struct perf_event *event;
5522        struct hlist_head *head;
5523
5524        rcu_read_lock();
5525        head = find_swevent_head_rcu(swhash, type, event_id);
5526        if (!head)
5527                goto end;
5528
5529        hlist_for_each_entry_rcu(event, head, hlist_entry) {
5530                if (perf_swevent_match(event, type, event_id, data, regs))
5531                        perf_swevent_event(event, nr, data, regs);
5532        }
5533end:
5534        rcu_read_unlock();
5535}
5536
5537int perf_swevent_get_recursion_context(void)
5538{
5539        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5540
5541        return get_recursion_context(swhash->recursion);
5542}
5543EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5544
5545inline void perf_swevent_put_recursion_context(int rctx)
5546{
5547        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5548
5549        put_recursion_context(swhash->recursion, rctx);
5550}
5551
5552void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5553{
5554        struct perf_sample_data data;
5555        int rctx;
5556
5557        preempt_disable_notrace();
5558        rctx = perf_swevent_get_recursion_context();
5559        if (rctx < 0)
5560                return;
5561
5562        perf_sample_data_init(&data, addr, 0);
5563
5564        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5565
5566        perf_swevent_put_recursion_context(rctx);
5567        preempt_enable_notrace();
5568}
5569
5570static void perf_swevent_read(struct perf_event *event)
5571{
5572}
5573
5574static int perf_swevent_add(struct perf_event *event, int flags)
5575{
5576        struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5577        struct hw_perf_event *hwc = &event->hw;
5578        struct hlist_head *head;
5579
5580        if (is_sampling_event(event)) {
5581                hwc->last_period = hwc->sample_period;
5582                perf_swevent_set_period(event);
5583        }
5584
5585        hwc->state = !(flags & PERF_EF_START);
5586
5587        head = find_swevent_head(swhash, event);
5588        if (WARN_ON_ONCE(!head))
5589                return -EINVAL;
5590
5591        hlist_add_head_rcu(&event->hlist_entry, head);
5592
5593        return 0;
5594}
5595
5596static void perf_swevent_del(struct perf_event *event, int flags)
5597{
5598        hlist_del_rcu(&event->hlist_entry);
5599}
5600
5601static void perf_swevent_start(struct perf_event *event, int flags)
5602{
5603        event->hw.state = 0;
5604}
5605
5606static void perf_swevent_stop(struct perf_event *event, int flags)
5607{
5608        event->hw.state = PERF_HES_STOPPED;
5609}
5610
5611/* Deref the hlist from the update side */
5612static inline struct swevent_hlist *
5613swevent_hlist_deref(struct swevent_htable *swhash)
5614{
5615        return rcu_dereference_protected(swhash->swevent_hlist,
5616                                         lockdep_is_held(&swhash->hlist_mutex));
5617}
5618
5619static void swevent_hlist_release(struct swevent_htable *swhash)
5620{
5621        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5622
5623        if (!hlist)
5624                return;
5625
5626        rcu_assign_pointer(swhash->swevent_hlist, NULL);
5627        kfree_rcu(hlist, rcu_head);
5628}
5629
5630static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5631{
5632        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5633
5634        mutex_lock(&swhash->hlist_mutex);
5635
5636        if (!--swhash->hlist_refcount)
5637                swevent_hlist_release(swhash);
5638
5639        mutex_unlock(&swhash->hlist_mutex);
5640}
5641
5642static void swevent_hlist_put(struct perf_event *event)
5643{
5644        int cpu;
5645
5646        if (event->cpu != -1) {
5647                swevent_hlist_put_cpu(event, event->cpu);
5648                return;
5649        }
5650
5651        for_each_possible_cpu(cpu)
5652                swevent_hlist_put_cpu(event, cpu);
5653}
5654
5655static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5656{
5657        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5658        int err = 0;
5659
5660        mutex_lock(&swhash->hlist_mutex);
5661
5662        if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5663                struct swevent_hlist *hlist;
5664
5665                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5666                if (!hlist) {
5667                        err = -ENOMEM;
5668                        goto exit;
5669                }
5670                rcu_assign_pointer(swhash->swevent_hlist, hlist);
5671        }
5672        swhash->hlist_refcount++;
5673exit:
5674        mutex_unlock(&swhash->hlist_mutex);
5675
5676        return err;
5677}
5678
5679static int swevent_hlist_get(struct perf_event *event)
5680{
5681        int err;
5682        int cpu, failed_cpu;
5683
5684        if (event->cpu != -1)
5685                return swevent_hlist_get_cpu(event, event->cpu);
5686
5687        get_online_cpus();
5688        for_each_possible_cpu(cpu) {
5689                err = swevent_hlist_get_cpu(event, cpu);
5690                if (err) {
5691                        failed_cpu = cpu;
5692                        goto fail;
5693                }
5694        }
5695        put_online_cpus();
5696
5697        return 0;
5698fail:
5699        for_each_possible_cpu(cpu) {
5700                if (cpu == failed_cpu)
5701                        break;
5702                swevent_hlist_put_cpu(event, cpu);
5703        }
5704
5705        put_online_cpus();
5706        return err;
5707}
5708
5709struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5710
5711static void sw_perf_event_destroy(struct perf_event *event)
5712{
5713        u64 event_id = event->attr.config;
5714
5715        WARN_ON(event->parent);
5716
5717        static_key_slow_dec(&perf_swevent_enabled[event_id]);
5718        swevent_hlist_put(event);
5719}
5720
5721static int perf_swevent_init(struct perf_event *event)
5722{
5723        u64 event_id = event->attr.config;
5724
5725        if (event->attr.type != PERF_TYPE_SOFTWARE)
5726                return -ENOENT;
5727
5728        /*
5729         * no branch sampling for software events
5730         */
5731        if (has_branch_stack(event))
5732                return -EOPNOTSUPP;
5733
5734        switch (event_id) {
5735        case PERF_COUNT_SW_CPU_CLOCK:
5736        case PERF_COUNT_SW_TASK_CLOCK:
5737                return -ENOENT;
5738
5739        default:
5740                break;
5741        }
5742
5743        if (event_id >= PERF_COUNT_SW_MAX)
5744                return -ENOENT;
5745
5746        if (!event->parent) {
5747                int err;
5748
5749                err = swevent_hlist_get(event);
5750                if (err)
5751                        return err;
5752
5753                static_key_slow_inc(&perf_swevent_enabled[event_id]);
5754                event->destroy = sw_perf_event_destroy;
5755        }
5756
5757        return 0;
5758}
5759
5760static int perf_swevent_event_idx(struct perf_event *event)
5761{
5762        return 0;
5763}
5764
5765static struct pmu perf_swevent = {
5766        .task_ctx_nr    = perf_sw_context,
5767
5768        .event_init     = perf_swevent_init,
5769        .add            = perf_swevent_add,
5770        .del            = perf_swevent_del,
5771        .start          = perf_swevent_start,
5772        .stop           = perf_swevent_stop,
5773        .read           = perf_swevent_read,
5774
5775        .event_idx      = perf_swevent_event_idx,
5776};
5777
5778#ifdef CONFIG_EVENT_TRACING
5779
5780static int perf_tp_filter_match(struct perf_event *event,
5781                                struct perf_sample_data *data)
5782{
5783        void *record = data->raw->data;
5784
5785        if (likely(!event->filter) || filter_match_preds(event->filter, record))
5786                return 1;
5787        return 0;
5788}
5789
5790static int perf_tp_event_match(struct perf_event *event,
5791                                struct perf_sample_data *data,
5792                                struct pt_regs *regs)
5793{
5794        if (event->hw.state & PERF_HES_STOPPED)
5795                return 0;
5796        /*
5797         * All tracepoints are from kernel-space.
5798         */
5799        if (event->attr.exclude_kernel)
5800                return 0;
5801
5802        if (!perf_tp_filter_match(event, data))
5803                return 0;
5804
5805        return 1;
5806}
5807
5808void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5809                   struct pt_regs *regs, struct hlist_head *head, int rctx,
5810                   struct task_struct *task)
5811{
5812        struct perf_sample_data data;
5813        struct perf_event *event;
5814
5815        struct perf_raw_record raw = {
5816                .size = entry_size,
5817                .data = record,
5818        };
5819
5820        perf_sample_data_init(&data, addr, 0);
5821        data.raw = &raw;
5822
5823        hlist_for_each_entry_rcu(event, head, hlist_entry) {
5824                if (perf_tp_event_match(event, &data, regs))
5825                        perf_swevent_event(event, count, &data, regs);
5826        }
5827
5828        /*
5829         * If we got specified a target task, also iterate its context and
5830         * deliver this event there too.
5831         */
5832        if (task && task != current) {
5833                struct perf_event_context *ctx;
5834                struct trace_entry *entry = record;
5835
5836                rcu_read_lock();
5837                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5838                if (!ctx)
5839                        goto unlock;
5840
5841                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5842                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5843                                continue;
5844                        if (event->attr.config != entry->type)
5845                                continue;
5846                        if (perf_tp_event_match(event, &data, regs))
5847                                perf_swevent_event(event, count, &data, regs);
5848                }
5849unlock:
5850                rcu_read_unlock();
5851        }
5852
5853        perf_swevent_put_recursion_context(rctx);
5854}
5855EXPORT_SYMBOL_GPL(perf_tp_event);
5856
5857static void tp_perf_event_destroy(struct perf_event *event)
5858{
5859        perf_trace_destroy(event);
5860}
5861
5862static int perf_tp_event_init(struct perf_event *event)
5863{
5864        int err;
5865
5866        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5867                return -ENOENT;
5868
5869        /*
5870         * no branch sampling for tracepoint events
5871         */
5872        if (has_branch_stack(event))
5873                return -EOPNOTSUPP;
5874
5875        err = perf_trace_init(event);
5876        if (err)
5877                return err;
5878
5879        event->destroy = tp_perf_event_destroy;
5880
5881        return 0;
5882}
5883
5884static struct pmu perf_tracepoint = {
5885        .task_ctx_nr    = perf_sw_context,
5886
5887        .event_init     = perf_tp_event_init,
5888        .add            = perf_trace_add,
5889        .del            = perf_trace_del,
5890        .start          = perf_swevent_start,
5891        .stop           = perf_swevent_stop,
5892        .read           = perf_swevent_read,
5893
5894        .event_idx      = perf_swevent_event_idx,
5895};
5896
5897static inline void perf_tp_register(void)
5898{
5899        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5900}
5901
5902static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5903{
5904        char *filter_str;
5905        int ret;
5906
5907        if (event->attr.type != PERF_TYPE_TRACEPOINT)
5908                return -EINVAL;
5909
5910        filter_str = strndup_user(arg, PAGE_SIZE);
5911        if (IS_ERR(filter_str))
5912                return PTR_ERR(filter_str);
5913
5914        ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5915
5916        kfree(filter_str);
5917        return ret;
5918}
5919
5920static void perf_event_free_filter(struct perf_event *event)
5921{
5922        ftrace_profile_free_filter(event);
5923}
5924
5925#else
5926
5927static inline void perf_tp_register(void)
5928{
5929}
5930
5931static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5932{
5933        return -ENOENT;
5934}
5935
5936static void perf_event_free_filter(struct perf_event *event)
5937{
5938}
5939
5940#endif /* CONFIG_EVENT_TRACING */
5941
5942#ifdef CONFIG_HAVE_HW_BREAKPOINT
5943void perf_bp_event(struct perf_event *bp, void *data)
5944{
5945        struct perf_sample_data sample;
5946        struct pt_regs *regs = data;
5947
5948        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5949
5950        if (!bp->hw.state && !perf_exclude_event(bp, regs))
5951                perf_swevent_event(bp, 1, &sample, regs);
5952}
5953#endif
5954
5955/*
5956 * hrtimer based swevent callback
5957 */
5958
5959static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5960{
5961        enum hrtimer_restart ret = HRTIMER_RESTART;
5962        struct perf_sample_data data;
5963        struct pt_regs *regs;
5964        struct perf_event *event;
5965        u64 period;
5966
5967        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5968
5969        if (event->state != PERF_EVENT_STATE_ACTIVE)
5970                return HRTIMER_NORESTART;
5971
5972        event->pmu->read(event);
5973
5974        perf_sample_data_init(&data, 0, event->hw.last_period);
5975        regs = get_irq_regs();
5976
5977        if (regs && !perf_exclude_event(event, regs)) {
5978                if (!(event->attr.exclude_idle && is_idle_task(current)))
5979                        if (__perf_event_overflow(event, 1, &data, regs))
5980                                ret = HRTIMER_NORESTART;
5981        }
5982
5983        period = max_t(u64, 10000, event->hw.sample_period);
5984        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5985
5986        return ret;
5987}
5988
5989static void perf_swevent_start_hrtimer(struct perf_event *event)
5990{
5991        struct hw_perf_event *hwc = &event->hw;
5992        s64 period;
5993
5994        if (!is_sampling_event(event))
5995                return;
5996
5997        period = local64_read(&hwc->period_left);
5998        if (period) {
5999                if (period < 0)
6000                        period = 10000;
6001
6002                local64_set(&hwc->period_left, 0);
6003        } else {
6004                period = max_t(u64, 10000, hwc->sample_period);
6005        }
6006        __hrtimer_start_range_ns(&hwc->hrtimer,
6007                                ns_to_ktime(period), 0,
6008                                HRTIMER_MODE_REL_PINNED, 0);
6009}
6010
6011static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6012{
6013        struct hw_perf_event *hwc = &event->hw;
6014
6015        if (is_sampling_event(event)) {
6016                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6017                local64_set(&hwc->period_left, ktime_to_ns(remaining));
6018
6019                hrtimer_cancel(&hwc->hrtimer);
6020        }
6021}
6022
6023static void perf_swevent_init_hrtimer(struct perf_event *event)
6024{
6025        struct hw_perf_event *hwc = &event->hw;
6026
6027        if (!is_sampling_event(event))
6028                return;
6029
6030        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6031        hwc->hrtimer.function = perf_swevent_hrtimer;
6032
6033        /*
6034         * Since hrtimers have a fixed rate, we can do a static freq->period
6035         * mapping and avoid the whole period adjust feedback stuff.
6036         */
6037        if (event->attr.freq) {
6038                long freq = event->attr.sample_freq;
6039
6040                event->attr.sample_period = NSEC_PER_SEC / freq;
6041                hwc->sample_period = event->attr.sample_period;
6042                local64_set(&hwc->period_left, hwc->sample_period);
6043                hwc->last_period = hwc->sample_period;
6044                event->attr.freq = 0;
6045        }
6046}
6047
6048/*
6049 * Software event: cpu wall time clock
6050 */
6051
6052static void cpu_clock_event_update(struct perf_event *event)
6053{
6054        s64 prev;
6055        u64 now;
6056
6057        now = local_clock();
6058        prev = local64_xchg(&event->hw.prev_count, now);
6059        local64_add(now - prev, &event->count);
6060}
6061
6062static void cpu_clock_event_start(struct perf_event *event, int flags)
6063{
6064        local64_set(&event->hw.prev_count, local_clock());
6065        perf_swevent_start_hrtimer(event);
6066}
6067
6068static void cpu_clock_event_stop(struct perf_event *event, int flags)
6069{
6070        perf_swevent_cancel_hrtimer(event);
6071        cpu_clock_event_update(event);
6072}
6073
6074static int cpu_clock_event_add(struct perf_event *event, int flags)
6075{
6076        if (flags & PERF_EF_START)
6077                cpu_clock_event_start(event, flags);
6078
6079        return 0;
6080}
6081
6082static void cpu_clock_event_del(struct perf_event *event, int flags)
6083{
6084        cpu_clock_event_stop(event, flags);
6085}
6086
6087static void cpu_clock_event_read(struct perf_event *event)
6088{
6089        cpu_clock_event_update(event);
6090}
6091
6092static int cpu_clock_event_init(struct perf_event *event)
6093{
6094        if (event->attr.type != PERF_TYPE_SOFTWARE)
6095                return -ENOENT;
6096
6097        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6098                return -ENOENT;
6099
6100        /*
6101         * no branch sampling for software events
6102         */
6103        if (has_branch_stack(event))
6104                return -EOPNOTSUPP;
6105
6106        perf_swevent_init_hrtimer(event);
6107
6108        return 0;
6109}
6110
6111static struct pmu perf_cpu_clock = {
6112        .task_ctx_nr    = perf_sw_context,
6113
6114        .event_init     = cpu_clock_event_init,
6115        .add            = cpu_clock_event_add,
6116        .del            = cpu_clock_event_del,
6117        .start          = cpu_clock_event_start,
6118        .stop           = cpu_clock_event_stop,
6119        .read           = cpu_clock_event_read,
6120
6121        .event_idx      = perf_swevent_event_idx,
6122};
6123
6124/*
6125 * Software event: task time clock
6126 */
6127
6128static void task_clock_event_update(struct perf_event *event, u64 now)
6129{
6130        u64 prev;
6131        s64 delta;
6132
6133        prev = local64_xchg(&event->hw.prev_count, now);
6134        delta = now - prev;
6135        local64_add(delta, &event->count);
6136}
6137
6138static void task_clock_event_start(struct perf_event *event, int flags)
6139{
6140        local64_set(&event->hw.prev_count, event->ctx->time);
6141        perf_swevent_start_hrtimer(event);
6142}
6143
6144static void task_clock_event_stop(struct perf_event *event, int flags)
6145{
6146        perf_swevent_cancel_hrtimer(event);
6147        task_clock_event_update(event, event->ctx->time);
6148}
6149
6150static int task_clock_event_add(struct perf_event *event, int flags)
6151{
6152        if (flags & PERF_EF_START)
6153                task_clock_event_start(event, flags);
6154
6155        return 0;
6156}
6157
6158static void task_clock_event_del(struct perf_event *event, int flags)
6159{
6160        task_clock_event_stop(event, PERF_EF_UPDATE);
6161}
6162
6163static void task_clock_event_read(struct perf_event *event)
6164{
6165        u64 now = perf_clock();
6166        u64 delta = now - event->ctx->timestamp;
6167        u64 time = event->ctx->time + delta;
6168
6169        task_clock_event_update(event, time);
6170}
6171
6172static int task_clock_event_init(struct perf_event *event)
6173{
6174        if (event->attr.type != PERF_TYPE_SOFTWARE)
6175                return -ENOENT;
6176
6177        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6178                return -ENOENT;
6179
6180        /*
6181         * no branch sampling for software events
6182         */
6183        if (has_branch_stack(event))
6184                return -EOPNOTSUPP;
6185
6186        perf_swevent_init_hrtimer(event);
6187
6188        return 0;
6189}
6190
6191static struct pmu perf_task_clock = {
6192        .task_ctx_nr    = perf_sw_context,
6193
6194        .event_init     = task_clock_event_init,
6195        .add            = task_clock_event_add,
6196        .del            = task_clock_event_del,
6197        .start          = task_clock_event_start,
6198        .stop           = task_clock_event_stop,
6199        .read           = task_clock_event_read,
6200
6201        .event_idx      = perf_swevent_event_idx,
6202};
6203
6204static void perf_pmu_nop_void(struct pmu *pmu)
6205{
6206}
6207
6208static int perf_pmu_nop_int(struct pmu *pmu)
6209{
6210        return 0;
6211}
6212
6213static void perf_pmu_start_txn(struct pmu *pmu)
6214{
6215        perf_pmu_disable(pmu);
6216}
6217
6218static int perf_pmu_commit_txn(struct pmu *pmu)
6219{
6220        perf_pmu_enable(pmu);
6221        return 0;
6222}
6223
6224static void perf_pmu_cancel_txn(struct pmu *pmu)
6225{
6226        perf_pmu_enable(pmu);
6227}
6228
6229static int perf_event_idx_default(struct perf_event *event)
6230{
6231        return event->hw.idx + 1;
6232}
6233
6234/*
6235 * Ensures all contexts with the same task_ctx_nr have the same
6236 * pmu_cpu_context too.
6237 */
6238static void *find_pmu_context(int ctxn)
6239{
6240        struct pmu *pmu;
6241
6242        if (ctxn < 0)
6243                return NULL;
6244
6245        list_for_each_entry(pmu, &pmus, entry) {
6246                if (pmu->task_ctx_nr == ctxn)
6247                        return pmu->pmu_cpu_context;
6248        }
6249
6250        return NULL;
6251}
6252
6253static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6254{
6255        int cpu;
6256
6257        for_each_possible_cpu(cpu) {
6258                struct perf_cpu_context *cpuctx;
6259
6260                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6261
6262                if (cpuctx->unique_pmu == old_pmu)
6263                        cpuctx->unique_pmu = pmu;
6264        }
6265}
6266
6267static void free_pmu_context(struct pmu *pmu)
6268{
6269        struct pmu *i;
6270
6271        mutex_lock(&pmus_lock);
6272        /*
6273         * Like a real lame refcount.
6274         */
6275        list_for_each_entry(i, &pmus, entry) {
6276                if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6277                        update_pmu_context(i, pmu);
6278                        goto out;
6279                }
6280        }
6281
6282        free_percpu(pmu->pmu_cpu_context);
6283out:
6284        mutex_unlock(&pmus_lock);
6285}
6286static struct idr pmu_idr;
6287
6288static ssize_t
6289type_show(struct device *dev, struct device_attribute *attr, char *page)
6290{
6291        struct pmu *pmu = dev_get_drvdata(dev);
6292
6293        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6294}
6295
6296static ssize_t
6297perf_event_mux_interval_ms_show(struct device *dev,
6298                                struct device_attribute *attr,
6299                                char *page)
6300{
6301        struct pmu *pmu = dev_get_drvdata(dev);
6302
6303        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6304}
6305
6306static ssize_t
6307perf_event_mux_interval_ms_store(struct device *dev,
6308                                 struct device_attribute *attr,
6309                                 const char *buf, size_t count)
6310{
6311        struct pmu *pmu = dev_get_drvdata(dev);
6312        int timer, cpu, ret;
6313
6314        ret = kstrtoint(buf, 0, &timer);
6315        if (ret)
6316                return ret;
6317
6318        if (timer < 1)
6319                return -EINVAL;
6320
6321        /* same value, noting to do */
6322        if (timer == pmu->hrtimer_interval_ms)
6323                return count;
6324
6325        pmu->hrtimer_interval_ms = timer;
6326
6327        /* update all cpuctx for this PMU */
6328        for_each_possible_cpu(cpu) {
6329                struct perf_cpu_context *cpuctx;
6330                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6331                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6332
6333                if (hrtimer_active(&cpuctx->hrtimer))
6334                        hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6335        }
6336
6337        return count;
6338}
6339
6340static struct device_attribute pmu_dev_attrs[] = {
6341        __ATTR_RO(type),
6342        __ATTR_RW(perf_event_mux_interval_ms),
6343        __ATTR_NULL,
6344};
6345
6346static int pmu_bus_running;
6347static struct bus_type pmu_bus = {
6348        .name           = "event_source",
6349        .dev_attrs      = pmu_dev_attrs,
6350};
6351
6352static void pmu_dev_release(struct device *dev)
6353{
6354        kfree(dev);
6355}
6356
6357static int pmu_dev_alloc(struct pmu *pmu)
6358{
6359        int ret = -ENOMEM;
6360
6361        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6362        if (!pmu->dev)
6363                goto out;
6364
6365        pmu->dev->groups = pmu->attr_groups;
6366        device_initialize(pmu->dev);
6367        ret = dev_set_name(pmu->dev, "%s", pmu->name);
6368        if (ret)
6369                goto free_dev;
6370
6371        dev_set_drvdata(pmu->dev, pmu);
6372        pmu->dev->bus = &pmu_bus;
6373        pmu->dev->release = pmu_dev_release;
6374        ret = device_add(pmu->dev);
6375        if (ret)
6376                goto free_dev;
6377
6378out:
6379        return ret;
6380
6381free_dev:
6382        put_device(pmu->dev);
6383        goto out;
6384}
6385
6386static struct lock_class_key cpuctx_mutex;
6387static struct lock_class_key cpuctx_lock;
6388
6389int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6390{
6391        int cpu, ret;
6392
6393        mutex_lock(&pmus_lock);
6394        ret = -ENOMEM;
6395        pmu->pmu_disable_count = alloc_percpu(int);
6396        if (!pmu->pmu_disable_count)
6397                goto unlock;
6398
6399        pmu->type = -1;
6400        if (!name)
6401                goto skip_type;
6402        pmu->name = name;
6403
6404        if (type < 0) {
6405                type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6406                if (type < 0) {
6407                        ret = type;
6408                        goto free_pdc;
6409                }
6410        }
6411        pmu->type = type;
6412
6413        if (pmu_bus_running) {
6414                ret = pmu_dev_alloc(pmu);
6415                if (ret)
6416                        goto free_idr;
6417        }
6418
6419skip_type:
6420        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6421        if (pmu->pmu_cpu_context)
6422                goto got_cpu_context;
6423
6424        ret = -ENOMEM;
6425        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6426        if (!pmu->pmu_cpu_context)
6427                goto free_dev;
6428
6429        for_each_possible_cpu(cpu) {
6430                struct perf_cpu_context *cpuctx;
6431
6432                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6433                __perf_event_init_context(&cpuctx->ctx);
6434                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6435                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6436                cpuctx->ctx.type = cpu_context;
6437                cpuctx->ctx.pmu = pmu;
6438
6439                __perf_cpu_hrtimer_init(cpuctx, cpu);
6440
6441                INIT_LIST_HEAD(&cpuctx->rotation_list);
6442                cpuctx->unique_pmu = pmu;
6443        }
6444
6445got_cpu_context:
6446        if (!pmu->start_txn) {
6447                if (pmu->pmu_enable) {
6448                        /*
6449                         * If we have pmu_enable/pmu_disable calls, install
6450                         * transaction stubs that use that to try and batch
6451                         * hardware accesses.
6452                         */
6453                        pmu->start_txn  = perf_pmu_start_txn;
6454                        pmu->commit_txn = perf_pmu_commit_txn;
6455                        pmu->cancel_txn = perf_pmu_cancel_txn;
6456                } else {
6457                        pmu->start_txn  = perf_pmu_nop_void;
6458                        pmu->commit_txn = perf_pmu_nop_int;
6459                        pmu->cancel_txn = perf_pmu_nop_void;
6460                }
6461        }
6462
6463        if (!pmu->pmu_enable) {
6464                pmu->pmu_enable  = perf_pmu_nop_void;
6465                pmu->pmu_disable = perf_pmu_nop_void;
6466        }
6467
6468        if (!pmu->event_idx)
6469                pmu->event_idx = perf_event_idx_default;
6470
6471        list_add_rcu(&pmu->entry, &pmus);
6472        ret = 0;
6473unlock:
6474        mutex_unlock(&pmus_lock);
6475
6476        return ret;
6477
6478free_dev:
6479        device_del(pmu->dev);
6480        put_device(pmu->dev);
6481
6482free_idr:
6483        if (pmu->type >= PERF_TYPE_MAX)
6484                idr_remove(&pmu_idr, pmu->type);
6485
6486free_pdc:
6487        free_percpu(pmu->pmu_disable_count);
6488        goto unlock;
6489}
6490
6491void perf_pmu_unregister(struct pmu *pmu)
6492{
6493        mutex_lock(&pmus_lock);
6494        list_del_rcu(&pmu->entry);
6495        mutex_unlock(&pmus_lock);
6496
6497        /*
6498         * We dereference the pmu list under both SRCU and regular RCU, so
6499         * synchronize against both of those.
6500         */
6501        synchronize_srcu(&pmus_srcu);
6502        synchronize_rcu();
6503
6504        free_percpu(pmu->pmu_disable_count);
6505        if (pmu->type >= PERF_TYPE_MAX)
6506                idr_remove(&pmu_idr, pmu->type);
6507        device_del(pmu->dev);
6508        put_device(pmu->dev);
6509        free_pmu_context(pmu);
6510}
6511
6512struct pmu *perf_init_event(struct perf_event *event)
6513{
6514        struct pmu *pmu = NULL;
6515        int idx;
6516        int ret;
6517
6518        idx = srcu_read_lock(&pmus_srcu);
6519
6520        rcu_read_lock();
6521        pmu = idr_find(&pmu_idr, event->attr.type);
6522        rcu_read_unlock();
6523        if (pmu) {
6524                event->pmu = pmu;
6525                ret = pmu->event_init(event);
6526                if (ret)
6527                        pmu = ERR_PTR(ret);
6528                goto unlock;
6529        }
6530
6531        list_for_each_entry_rcu(pmu, &pmus, entry) {
6532                event->pmu = pmu;
6533                ret = pmu->event_init(event);
6534                if (!ret)
6535                        goto unlock;
6536
6537                if (ret != -ENOENT) {
6538                        pmu = ERR_PTR(ret);
6539                        goto unlock;
6540                }
6541        }
6542        pmu = ERR_PTR(-ENOENT);
6543unlock:
6544        srcu_read_unlock(&pmus_srcu, idx);
6545
6546        return pmu;
6547}
6548
6549static void account_event_cpu(struct perf_event *event, int cpu)
6550{
6551        if (event->parent)
6552                return;
6553
6554        if (has_branch_stack(event)) {
6555                if (!(event->attach_state & PERF_ATTACH_TASK))
6556                        atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6557        }
6558        if (is_cgroup_event(event))
6559                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6560}
6561
6562static void account_event(struct perf_event *event)
6563{
6564        if (event->parent)
6565                return;
6566
6567        if (event->attach_state & PERF_ATTACH_TASK)
6568                static_key_slow_inc(&perf_sched_events.key);
6569        if (event->attr.mmap || event->attr.mmap_data)
6570                atomic_inc(&nr_mmap_events);
6571        if (event->attr.comm)
6572                atomic_inc(&nr_comm_events);
6573        if (event->attr.task)
6574                atomic_inc(&nr_task_events);
6575        if (event->attr.freq) {
6576                if (atomic_inc_return(&nr_freq_events) == 1)
6577                        tick_nohz_full_kick_all();
6578        }
6579        if (has_branch_stack(event))
6580                static_key_slow_inc(&perf_sched_events.key);
6581        if (is_cgroup_event(event))
6582                static_key_slow_inc(&perf_sched_events.key);
6583
6584        account_event_cpu(event, event->cpu);
6585}
6586
6587/*
6588 * Allocate and initialize a event structure
6589 */
6590static struct perf_event *
6591perf_event_alloc(struct perf_event_attr *attr, int cpu,
6592                 struct task_struct *task,
6593                 struct perf_event *group_leader,
6594                 struct perf_event *parent_event,
6595                 perf_overflow_handler_t overflow_handler,
6596                 void *context)
6597{
6598        struct pmu *pmu;
6599        struct perf_event *event;
6600        struct hw_perf_event *hwc;
6601        long err = -EINVAL;
6602
6603        if ((unsigned)cpu >= nr_cpu_ids) {
6604                if (!task || cpu != -1)
6605                        return ERR_PTR(-EINVAL);
6606        }
6607
6608        event = kzalloc(sizeof(*event), GFP_KERNEL);
6609        if (!event)
6610                return ERR_PTR(-ENOMEM);
6611
6612        /*
6613         * Single events are their own group leaders, with an
6614         * empty sibling list:
6615         */
6616        if (!group_leader)
6617                group_leader = event;
6618
6619        mutex_init(&event->child_mutex);
6620        INIT_LIST_HEAD(&event->child_list);
6621
6622        INIT_LIST_HEAD(&event->group_entry);
6623        INIT_LIST_HEAD(&event->event_entry);
6624        INIT_LIST_HEAD(&event->sibling_list);
6625        INIT_LIST_HEAD(&event->rb_entry);
6626
6627        init_waitqueue_head(&event->waitq);
6628        init_irq_work(&event->pending, perf_pending_event);
6629
6630        mutex_init(&event->mmap_mutex);
6631
6632        atomic_long_set(&event->refcount, 1);
6633        event->cpu              = cpu;
6634        event->attr             = *attr;
6635        event->group_leader     = group_leader;
6636        event->pmu              = NULL;
6637        event->oncpu            = -1;
6638
6639        event->parent           = parent_event;
6640
6641        event->ns               = get_pid_ns(task_active_pid_ns(current));
6642        event->id               = atomic64_inc_return(&perf_event_id);
6643
6644        event->state            = PERF_EVENT_STATE_INACTIVE;
6645
6646        if (task) {
6647                event->attach_state = PERF_ATTACH_TASK;
6648
6649                if (attr->type == PERF_TYPE_TRACEPOINT)
6650                        event->hw.tp_target = task;
6651#ifdef CONFIG_HAVE_HW_BREAKPOINT
6652                /*
6653                 * hw_breakpoint is a bit difficult here..
6654                 */
6655                else if (attr->type == PERF_TYPE_BREAKPOINT)
6656                        event->hw.bp_target = task;
6657#endif
6658        }
6659
6660        if (!overflow_handler && parent_event) {
6661                overflow_handler = parent_event->overflow_handler;
6662                context = parent_event->overflow_handler_context;
6663        }
6664
6665        event->overflow_handler = overflow_handler;
6666        event->overflow_handler_context = context;
6667
6668        perf_event__state_init(event);
6669
6670        pmu = NULL;
6671
6672        hwc = &event->hw;
6673        hwc->sample_period = attr->sample_period;
6674        if (attr->freq && attr->sample_freq)
6675                hwc->sample_period = 1;
6676        hwc->last_period = hwc->sample_period;
6677
6678        local64_set(&hwc->period_left, hwc->sample_period);
6679
6680        /*
6681         * we currently do not support PERF_FORMAT_GROUP on inherited events
6682         */
6683        if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6684                goto err_ns;
6685
6686        pmu = perf_init_event(event);
6687        if (!pmu)
6688                goto err_ns;
6689        else if (IS_ERR(pmu)) {
6690                err = PTR_ERR(pmu);
6691                goto err_ns;
6692        }
6693
6694        if (!event->parent) {
6695                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6696                        err = get_callchain_buffers();
6697                        if (err)
6698                                goto err_pmu;
6699                }
6700        }
6701
6702        return event;
6703
6704err_pmu:
6705        if (event->destroy)
6706                event->destroy(event);
6707err_ns:
6708        if (event->ns)
6709                put_pid_ns(event->ns);
6710        kfree(event);
6711
6712        return ERR_PTR(err);
6713}
6714
6715static int perf_copy_attr(struct perf_event_attr __user *uattr,
6716                          struct perf_event_attr *attr)
6717{
6718        u32 size;
6719        int ret;
6720
6721        if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6722                return -EFAULT;
6723
6724        /*
6725         * zero the full structure, so that a short copy will be nice.
6726         */
6727        memset(attr, 0, sizeof(*attr));
6728
6729        ret = get_user(size, &uattr->size);
6730        if (ret)
6731                return ret;
6732
6733        if (size > PAGE_SIZE)   /* silly large */
6734                goto err_size;
6735
6736        if (!size)              /* abi compat */
6737                size = PERF_ATTR_SIZE_VER0;
6738
6739        if (size < PERF_ATTR_SIZE_VER0)
6740                goto err_size;
6741
6742        /*
6743         * If we're handed a bigger struct than we know of,
6744         * ensure all the unknown bits are 0 - i.e. new
6745         * user-space does not rely on any kernel feature
6746         * extensions we dont know about yet.
6747         */
6748        if (size > sizeof(*attr)) {
6749                unsigned char __user *addr;
6750                unsigned char __user *end;
6751                unsigned char val;
6752
6753                addr = (void __user *)uattr + sizeof(*attr);
6754                end  = (void __user *)uattr + size;
6755
6756                for (; addr < end; addr++) {
6757                        ret = get_user(val, addr);
6758                        if (ret)
6759                                return ret;
6760                        if (val)
6761                                goto err_size;
6762                }
6763                size = sizeof(*attr);
6764        }
6765
6766        ret = copy_from_user(attr, uattr, size);
6767        if (ret)
6768                return -EFAULT;
6769
6770        /* disabled for now */
6771        if (attr->mmap2)
6772                return -EINVAL;
6773
6774        if (attr->__reserved_1)
6775                return -EINVAL;
6776
6777        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6778                return -EINVAL;
6779
6780        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6781                return -EINVAL;
6782
6783        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6784                u64 mask = attr->branch_sample_type;
6785
6786                /* only using defined bits */
6787                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6788                        return -EINVAL;
6789
6790                /* at least one branch bit must be set */
6791                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6792                        return -EINVAL;
6793
6794                /* propagate priv level, when not set for branch */
6795                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6796
6797                        /* exclude_kernel checked on syscall entry */
6798                        if (!attr->exclude_kernel)
6799                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
6800
6801                        if (!attr->exclude_user)
6802                                mask |= PERF_SAMPLE_BRANCH_USER;
6803
6804                        if (!attr->exclude_hv)
6805                                mask |= PERF_SAMPLE_BRANCH_HV;
6806                        /*
6807                         * adjust user setting (for HW filter setup)
6808                         */
6809                        attr->branch_sample_type = mask;
6810                }
6811                /* privileged levels capture (kernel, hv): check permissions */
6812                if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6813                    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6814                        return -EACCES;
6815        }
6816
6817        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6818                ret = perf_reg_validate(attr->sample_regs_user);
6819                if (ret)
6820                        return ret;
6821        }
6822
6823        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6824                if (!arch_perf_have_user_stack_dump())
6825                        return -ENOSYS;
6826
6827                /*
6828                 * We have __u32 type for the size, but so far
6829                 * we can only use __u16 as maximum due to the
6830                 * __u16 sample size limit.
6831                 */
6832                if (attr->sample_stack_user >= USHRT_MAX)
6833                        ret = -EINVAL;
6834                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6835                        ret = -EINVAL;
6836        }
6837
6838out:
6839        return ret;
6840
6841err_size:
6842        put_user(sizeof(*attr), &uattr->size);
6843        ret = -E2BIG;
6844        goto out;
6845}
6846
6847static int
6848perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6849{
6850        struct ring_buffer *rb = NULL, *old_rb = NULL;
6851        int ret = -EINVAL;
6852
6853        if (!output_event)
6854                goto set;
6855
6856        /* don't allow circular references */
6857        if (event == output_event)
6858                goto out;
6859
6860        /*
6861         * Don't allow cross-cpu buffers
6862         */
6863        if (output_event->cpu != event->cpu)
6864                goto out;
6865
6866        /*
6867         * If its not a per-cpu rb, it must be the same task.
6868         */
6869        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6870                goto out;
6871
6872set:
6873        mutex_lock(&event->mmap_mutex);
6874        /* Can't redirect output if we've got an active mmap() */
6875        if (atomic_read(&event->mmap_count))
6876                goto unlock;
6877
6878        old_rb = event->rb;
6879
6880        if (output_event) {
6881                /* get the rb we want to redirect to */
6882                rb = ring_buffer_get(output_event);
6883                if (!rb)
6884                        goto unlock;
6885        }
6886
6887        if (old_rb)
6888                ring_buffer_detach(event, old_rb);
6889
6890        if (rb)
6891                ring_buffer_attach(event, rb);
6892
6893        rcu_assign_pointer(event->rb, rb);
6894
6895        if (old_rb) {
6896                ring_buffer_put(old_rb);
6897                /*
6898                 * Since we detached before setting the new rb, so that we
6899                 * could attach the new rb, we could have missed a wakeup.
6900                 * Provide it now.
6901                 */
6902                wake_up_all(&event->waitq);
6903        }
6904
6905        ret = 0;
6906unlock:
6907        mutex_unlock(&event->mmap_mutex);
6908
6909out:
6910        return ret;
6911}
6912
6913/**
6914 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6915 *
6916 * @attr_uptr:  event_id type attributes for monitoring/sampling
6917 * @pid:                target pid
6918 * @cpu:                target cpu
6919 * @group_fd:           group leader event fd
6920 */
6921SYSCALL_DEFINE5(perf_event_open,
6922                struct perf_event_attr __user *, attr_uptr,
6923                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6924{
6925        struct perf_event *group_leader = NULL, *output_event = NULL;
6926        struct perf_event *event, *sibling;
6927        struct perf_event_attr attr;
6928        struct perf_event_context *ctx;
6929        struct file *event_file = NULL;
6930        struct fd group = {NULL, 0};
6931        struct task_struct *task = NULL;
6932        struct pmu *pmu;
6933        int event_fd;
6934        int move_group = 0;
6935        int err;
6936
6937        /* for future expandability... */
6938        if (flags & ~PERF_FLAG_ALL)
6939                return -EINVAL;
6940
6941        err = perf_copy_attr(attr_uptr, &attr);
6942        if (err)
6943                return err;
6944
6945        if (!attr.exclude_kernel) {
6946                if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6947                        return -EACCES;
6948        }
6949
6950        if (attr.freq) {
6951                if (attr.sample_freq > sysctl_perf_event_sample_rate)
6952                        return -EINVAL;
6953        }
6954
6955        /*
6956         * In cgroup mode, the pid argument is used to pass the fd
6957         * opened to the cgroup directory in cgroupfs. The cpu argument
6958         * designates the cpu on which to monitor threads from that
6959         * cgroup.
6960         */
6961        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6962                return -EINVAL;
6963
6964        event_fd = get_unused_fd();
6965        if (event_fd < 0)
6966                return event_fd;
6967
6968        if (group_fd != -1) {
6969                err = perf_fget_light(group_fd, &group);
6970                if (err)
6971                        goto err_fd;
6972                group_leader = group.file->private_data;
6973                if (flags & PERF_FLAG_FD_OUTPUT)
6974                        output_event = group_leader;
6975                if (flags & PERF_FLAG_FD_NO_GROUP)
6976                        group_leader = NULL;
6977        }
6978
6979        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6980                task = find_lively_task_by_vpid(pid);
6981                if (IS_ERR(task)) {
6982                        err = PTR_ERR(task);
6983                        goto err_group_fd;
6984                }
6985        }
6986
6987        get_online_cpus();
6988
6989        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6990                                 NULL, NULL);
6991        if (IS_ERR(event)) {
6992                err = PTR_ERR(event);
6993                goto err_task;
6994        }
6995
6996        if (flags & PERF_FLAG_PID_CGROUP) {
6997                err = perf_cgroup_connect(pid, event, &attr, group_leader);
6998                if (err) {
6999                        __free_event(event);
7000                        goto err_task;
7001                }
7002        }
7003
7004        account_event(event);
7005
7006        /*
7007         * Special case software events and allow them to be part of
7008         * any hardware group.
7009         */
7010        pmu = event->pmu;
7011
7012        if (group_leader &&
7013            (is_software_event(event) != is_software_event(group_leader))) {
7014                if (is_software_event(event)) {
7015                        /*
7016                         * If event and group_leader are not both a software
7017                         * event, and event is, then group leader is not.
7018                         *
7019                         * Allow the addition of software events to !software
7020                         * groups, this is safe because software events never
7021                         * fail to schedule.
7022                         */
7023                        pmu = group_leader->pmu;
7024                } else if (is_software_event(group_leader) &&
7025                           (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7026                        /*
7027                         * In case the group is a pure software group, and we
7028                         * try to add a hardware event, move the whole group to
7029                         * the hardware context.
7030                         */
7031                        move_group = 1;
7032                }
7033        }
7034
7035        /*
7036         * Get the target context (task or percpu):
7037         */
7038        ctx = find_get_context(pmu, task, event->cpu);
7039        if (IS_ERR(ctx)) {
7040                err = PTR_ERR(ctx);
7041                goto err_alloc;
7042        }
7043
7044        if (task) {
7045                put_task_struct(task);
7046                task = NULL;
7047        }
7048
7049        /*
7050         * Look up the group leader (we will attach this event to it):
7051         */
7052        if (group_leader) {
7053                err = -EINVAL;
7054
7055                /*
7056                 * Do not allow a recursive hierarchy (this new sibling
7057                 * becoming part of another group-sibling):
7058                 */
7059                if (group_leader->group_leader != group_leader)
7060                        goto err_context;
7061                /*
7062                 * Do not allow to attach to a group in a different
7063                 * task or CPU context:
7064                 */
7065                if (move_group) {
7066                        if (group_leader->ctx->type != ctx->type)
7067                                goto err_context;
7068                } else {
7069                        if (group_leader->ctx != ctx)
7070                                goto err_context;
7071                }
7072
7073                /*
7074                 * Only a group leader can be exclusive or pinned
7075                 */
7076                if (attr.exclusive || attr.pinned)
7077                        goto err_context;
7078        }
7079
7080        if (output_event) {
7081                err = perf_event_set_output(event, output_event);
7082                if (err)
7083                        goto err_context;
7084        }
7085
7086        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7087        if (IS_ERR(event_file)) {
7088                err = PTR_ERR(event_file);
7089                goto err_context;
7090        }
7091
7092        if (move_group) {
7093                struct perf_event_context *gctx = group_leader->ctx;
7094
7095                mutex_lock(&gctx->mutex);
7096                perf_remove_from_context(group_leader);
7097
7098                /*
7099                 * Removing from the context ends up with disabled
7100                 * event. What we want here is event in the initial
7101                 * startup state, ready to be add into new context.
7102                 */
7103                perf_event__state_init(group_leader);
7104                list_for_each_entry(sibling, &group_leader->sibling_list,
7105                                    group_entry) {
7106                        perf_remove_from_context(sibling);
7107                        perf_event__state_init(sibling);
7108                        put_ctx(gctx);
7109                }
7110                mutex_unlock(&gctx->mutex);
7111                put_ctx(gctx);
7112        }
7113
7114        WARN_ON_ONCE(ctx->parent_ctx);
7115        mutex_lock(&ctx->mutex);
7116
7117        if (move_group) {
7118                synchronize_rcu();
7119                perf_install_in_context(ctx, group_leader, event->cpu);
7120                get_ctx(ctx);
7121                list_for_each_entry(sibling, &group_leader->sibling_list,
7122                                    group_entry) {
7123                        perf_install_in_context(ctx, sibling, event->cpu);
7124                        get_ctx(ctx);
7125                }
7126        }
7127
7128        perf_install_in_context(ctx, event, event->cpu);
7129        ++ctx->generation;
7130        perf_unpin_context(ctx);
7131        mutex_unlock(&ctx->mutex);
7132
7133        put_online_cpus();
7134
7135        event->owner = current;
7136
7137        mutex_lock(&current->perf_event_mutex);
7138        list_add_tail(&event->owner_entry, &current->perf_event_list);
7139        mutex_unlock(&current->perf_event_mutex);
7140
7141        /*
7142         * Precalculate sample_data sizes
7143         */
7144        perf_event__header_size(event);
7145        perf_event__id_header_size(event);
7146
7147        /*
7148         * Drop the reference on the group_event after placing the
7149         * new event on the sibling_list. This ensures destruction
7150         * of the group leader will find the pointer to itself in
7151         * perf_group_detach().
7152         */
7153        fdput(group);
7154        fd_install(event_fd, event_file);
7155        return event_fd;
7156
7157err_context:
7158        perf_unpin_context(ctx);
7159        put_ctx(ctx);
7160err_alloc:
7161        free_event(event);
7162err_task:
7163        put_online_cpus();
7164        if (task)
7165                put_task_struct(task);
7166err_group_fd:
7167        fdput(group);
7168err_fd:
7169        put_unused_fd(event_fd);
7170        return err;
7171}
7172
7173/**
7174 * perf_event_create_kernel_counter
7175 *
7176 * @attr: attributes of the counter to create
7177 * @cpu: cpu in which the counter is bound
7178 * @task: task to profile (NULL for percpu)
7179 */
7180struct perf_event *
7181perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7182                                 struct task_struct *task,
7183                                 perf_overflow_handler_t overflow_handler,
7184                                 void *context)
7185{
7186        struct perf_event_context *ctx;
7187        struct perf_event *event;
7188        int err;
7189
7190        /*
7191         * Get the target context (task or percpu):
7192         */
7193
7194        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7195                                 overflow_handler, context);
7196        if (IS_ERR(event)) {
7197                err = PTR_ERR(event);
7198                goto err;
7199        }
7200
7201        account_event(event);
7202
7203        ctx = find_get_context(event->pmu, task, cpu);
7204        if (IS_ERR(ctx)) {
7205                err = PTR_ERR(ctx);
7206                goto err_free;
7207        }
7208
7209        WARN_ON_ONCE(ctx->parent_ctx);
7210        mutex_lock(&ctx->mutex);
7211        perf_install_in_context(ctx, event, cpu);
7212        ++ctx->generation;
7213        perf_unpin_context(ctx);
7214        mutex_unlock(&ctx->mutex);
7215
7216        return event;
7217
7218err_free:
7219        free_event(event);
7220err:
7221        return ERR_PTR(err);
7222}
7223EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7224
7225void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7226{
7227        struct perf_event_context *src_ctx;
7228        struct perf_event_context *dst_ctx;
7229        struct perf_event *event, *tmp;
7230        LIST_HEAD(events);
7231
7232        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7233        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7234
7235        mutex_lock(&src_ctx->mutex);
7236        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7237                                 event_entry) {
7238                perf_remove_from_context(event);
7239                unaccount_event_cpu(event, src_cpu);
7240                put_ctx(src_ctx);
7241                list_add(&event->migrate_entry, &events);
7242        }
7243        mutex_unlock(&src_ctx->mutex);
7244
7245        synchronize_rcu();
7246
7247        mutex_lock(&dst_ctx->mutex);
7248        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7249                list_del(&event->migrate_entry);
7250                if (event->state >= PERF_EVENT_STATE_OFF)
7251                        event->state = PERF_EVENT_STATE_INACTIVE;
7252                account_event_cpu(event, dst_cpu);
7253                perf_install_in_context(dst_ctx, event, dst_cpu);
7254                get_ctx(dst_ctx);
7255        }
7256        mutex_unlock(&dst_ctx->mutex);
7257}
7258EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7259
7260static void sync_child_event(struct perf_event *child_event,
7261                               struct task_struct *child)
7262{
7263        struct perf_event *parent_event = child_event->parent;
7264        u64 child_val;
7265
7266        if (child_event->attr.inherit_stat)
7267                perf_event_read_event(child_event, child);
7268
7269        child_val = perf_event_count(child_event);
7270
7271        /*
7272         * Add back the child's count to the parent's count:
7273         */
7274        atomic64_add(child_val, &parent_event->child_count);
7275        atomic64_add(child_event->total_time_enabled,
7276                     &parent_event->child_total_time_enabled);
7277        atomic64_add(child_event->total_time_running,
7278                     &parent_event->child_total_time_running);
7279
7280        /*
7281         * Remove this event from the parent's list
7282         */
7283        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7284        mutex_lock(&parent_event->child_mutex);
7285        list_del_init(&child_event->child_list);
7286        mutex_unlock(&parent_event->child_mutex);
7287
7288        /*
7289         * Release the parent event, if this was the last
7290         * reference to it.
7291         */
7292        put_event(parent_event);
7293}
7294
7295static void
7296__perf_event_exit_task(struct perf_event *child_event,
7297                         struct perf_event_context *child_ctx,
7298                         struct task_struct *child)
7299{
7300        if (child_event->parent) {
7301                raw_spin_lock_irq(&child_ctx->lock);
7302                perf_group_detach(child_event);
7303                raw_spin_unlock_irq(&child_ctx->lock);
7304        }
7305
7306        perf_remove_from_context(child_event);
7307
7308        /*
7309         * It can happen that the parent exits first, and has events
7310         * that are still around due to the child reference. These
7311         * events need to be zapped.
7312         */
7313        if (child_event->parent) {
7314                sync_child_event(child_event, child);
7315                free_event(child_event);
7316        }
7317}
7318
7319static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7320{
7321        struct perf_event *child_event, *tmp;
7322        struct perf_event_context *child_ctx;
7323        unsigned long flags;
7324
7325        if (likely(!child->perf_event_ctxp[ctxn])) {
7326                perf_event_task(child, NULL, 0);
7327                return;
7328        }
7329
7330        local_irq_save(flags);
7331        /*
7332         * We can't reschedule here because interrupts are disabled,
7333         * and either child is current or it is a task that can't be
7334         * scheduled, so we are now safe from rescheduling changing
7335         * our context.
7336         */
7337        child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7338
7339        /*
7340         * Take the context lock here so that if find_get_context is
7341         * reading child->perf_event_ctxp, we wait until it has
7342         * incremented the context's refcount before we do put_ctx below.
7343         */
7344        raw_spin_lock(&child_ctx->lock);
7345        task_ctx_sched_out(child_ctx);
7346        child->perf_event_ctxp[ctxn] = NULL;
7347        /*
7348         * If this context is a clone; unclone it so it can't get
7349         * swapped to another process while we're removing all
7350         * the events from it.
7351         */
7352        unclone_ctx(child_ctx);
7353        update_context_time(child_ctx);
7354        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7355
7356        /*
7357         * Report the task dead after unscheduling the events so that we
7358         * won't get any samples after PERF_RECORD_EXIT. We can however still
7359         * get a few PERF_RECORD_READ events.
7360         */
7361        perf_event_task(child, child_ctx, 0);
7362
7363        /*
7364         * We can recurse on the same lock type through:
7365         *
7366         *   __perf_event_exit_task()
7367         *     sync_child_event()
7368         *       put_event()
7369         *         mutex_lock(&ctx->mutex)
7370         *
7371         * But since its the parent context it won't be the same instance.
7372         */
7373        mutex_lock(&child_ctx->mutex);
7374
7375again:
7376        list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7377                                 group_entry)
7378                __perf_event_exit_task(child_event, child_ctx, child);
7379
7380        list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7381                                 group_entry)
7382                __perf_event_exit_task(child_event, child_ctx, child);
7383
7384        /*
7385         * If the last event was a group event, it will have appended all
7386         * its siblings to the list, but we obtained 'tmp' before that which
7387         * will still point to the list head terminating the iteration.
7388         */
7389        if (!list_empty(&child_ctx->pinned_groups) ||
7390            !list_empty(&child_ctx->flexible_groups))
7391                goto again;
7392
7393        mutex_unlock(&child_ctx->mutex);
7394
7395        put_ctx(child_ctx);
7396}
7397
7398/*
7399 * When a child task exits, feed back event values to parent events.
7400 */
7401void perf_event_exit_task(struct task_struct *child)
7402{
7403        struct perf_event *event, *tmp;
7404        int ctxn;
7405
7406        mutex_lock(&child->perf_event_mutex);
7407        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7408                                 owner_entry) {
7409                list_del_init(&event->owner_entry);
7410
7411                /*
7412                 * Ensure the list deletion is visible before we clear
7413                 * the owner, closes a race against perf_release() where
7414                 * we need to serialize on the owner->perf_event_mutex.
7415                 */
7416                smp_wmb();
7417                event->owner = NULL;
7418        }
7419        mutex_unlock(&child->perf_event_mutex);
7420
7421        for_each_task_context_nr(ctxn)
7422                perf_event_exit_task_context(child, ctxn);
7423}
7424
7425static void perf_free_event(struct perf_event *event,
7426                            struct perf_event_context *ctx)
7427{
7428        struct perf_event *parent = event->parent;
7429
7430        if (WARN_ON_ONCE(!parent))
7431                return;
7432
7433        mutex_lock(&parent->child_mutex);
7434        list_del_init(&event->child_list);
7435        mutex_unlock(&parent->child_mutex);
7436
7437        put_event(parent);
7438
7439        perf_group_detach(event);
7440        list_del_event(event, ctx);
7441        free_event(event);
7442}
7443
7444/*
7445 * free an unexposed, unused context as created by inheritance by
7446 * perf_event_init_task below, used by fork() in case of fail.
7447 */
7448void perf_event_free_task(struct task_struct *task)
7449{
7450        struct perf_event_context *ctx;
7451        struct perf_event *event, *tmp;
7452        int ctxn;
7453
7454        for_each_task_context_nr(ctxn) {
7455                ctx = task->perf_event_ctxp[ctxn];
7456                if (!ctx)
7457                        continue;
7458
7459                mutex_lock(&ctx->mutex);
7460again:
7461                list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7462                                group_entry)
7463                        perf_free_event(event, ctx);
7464
7465                list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7466                                group_entry)
7467                        perf_free_event(event, ctx);
7468
7469                if (!list_empty(&ctx->pinned_groups) ||
7470                                !list_empty(&ctx->flexible_groups))
7471                        goto again;
7472
7473                mutex_unlock(&ctx->mutex);
7474
7475                put_ctx(ctx);
7476        }
7477}
7478
7479void perf_event_delayed_put(struct task_struct *task)
7480{
7481        int ctxn;
7482
7483        for_each_task_context_nr(ctxn)
7484                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7485}
7486
7487/*
7488 * inherit a event from parent task to child task:
7489 */
7490static struct perf_event *
7491inherit_event(struct perf_event *parent_event,
7492              struct task_struct *parent,
7493              struct perf_event_context *parent_ctx,
7494              struct task_struct *child,
7495              struct perf_event *group_leader,
7496              struct perf_event_context *child_ctx)
7497{
7498        struct perf_event *child_event;
7499        unsigned long flags;
7500
7501        /*
7502         * Instead of creating recursive hierarchies of events,
7503         * we link inherited events back to the original parent,
7504         * which has a filp for sure, which we use as the reference
7505         * count:
7506         */
7507        if (parent_event->parent)
7508                parent_event = parent_event->parent;
7509
7510        child_event = perf_event_alloc(&parent_event->attr,
7511                                           parent_event->cpu,
7512                                           child,
7513                                           group_leader, parent_event,
7514                                           NULL, NULL);
7515        if (IS_ERR(child_event))
7516                return child_event;
7517
7518        if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7519                free_event(child_event);
7520                return NULL;
7521        }
7522
7523        get_ctx(child_ctx);
7524
7525        /*
7526         * Make the child state follow the state of the parent event,
7527         * not its attr.disabled bit.  We hold the parent's mutex,
7528         * so we won't race with perf_event_{en, dis}able_family.
7529         */
7530        if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7531                child_event->state = PERF_EVENT_STATE_INACTIVE;
7532        else
7533                child_event->state = PERF_EVENT_STATE_OFF;
7534
7535        if (parent_event->attr.freq) {
7536                u64 sample_period = parent_event->hw.sample_period;
7537                struct hw_perf_event *hwc = &child_event->hw;
7538
7539                hwc->sample_period = sample_period;
7540                hwc->last_period   = sample_period;
7541
7542                local64_set(&hwc->period_left, sample_period);
7543        }
7544
7545        child_event->ctx = child_ctx;
7546        child_event->overflow_handler = parent_event->overflow_handler;
7547        child_event->overflow_handler_context
7548                = parent_event->overflow_handler_context;
7549
7550        /*
7551         * Precalculate sample_data sizes
7552         */
7553        perf_event__header_size(child_event);
7554        perf_event__id_header_size(child_event);
7555
7556        /*
7557         * Link it up in the child's context:
7558         */
7559        raw_spin_lock_irqsave(&child_ctx->lock, flags);
7560        add_event_to_ctx(child_event, child_ctx);
7561        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7562
7563        /*
7564         * Link this into the parent event's child list
7565         */
7566        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7567        mutex_lock(&parent_event->child_mutex);
7568        list_add_tail(&child_event->child_list, &parent_event->child_list);
7569        mutex_unlock(&parent_event->child_mutex);
7570
7571        return child_event;
7572}
7573
7574static int inherit_group(struct perf_event *parent_event,
7575              struct task_struct *parent,
7576              struct perf_event_context *parent_ctx,
7577              struct task_struct *child,
7578              struct perf_event_context *child_ctx)
7579{
7580        struct perf_event *leader;
7581        struct perf_event *sub;
7582        struct perf_event *child_ctr;
7583
7584        leader = inherit_event(parent_event, parent, parent_ctx,
7585                                 child, NULL, child_ctx);
7586        if (IS_ERR(leader))
7587                return PTR_ERR(leader);
7588        list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7589                child_ctr = inherit_event(sub, parent, parent_ctx,
7590                                            child, leader, child_ctx);
7591                if (IS_ERR(child_ctr))
7592                        return PTR_ERR(child_ctr);
7593        }
7594        return 0;
7595}
7596
7597static int
7598inherit_task_group(struct perf_event *event, struct task_struct *parent,
7599                   struct perf_event_context *parent_ctx,
7600                   struct task_struct *child, int ctxn,
7601                   int *inherited_all)
7602{
7603        int ret;
7604        struct perf_event_context *child_ctx;
7605
7606        if (!event->attr.inherit) {
7607                *inherited_all = 0;
7608                return 0;
7609        }
7610
7611        child_ctx = child->perf_event_ctxp[ctxn];
7612        if (!child_ctx) {
7613                /*
7614                 * This is executed from the parent task context, so
7615                 * inherit events that have been marked for cloning.
7616                 * First allocate and initialize a context for the
7617                 * child.
7618                 */
7619
7620                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7621                if (!child_ctx)
7622                        return -ENOMEM;
7623
7624                child->perf_event_ctxp[ctxn] = child_ctx;
7625        }
7626
7627        ret = inherit_group(event, parent, parent_ctx,
7628                            child, child_ctx);
7629
7630        if (ret)
7631                *inherited_all = 0;
7632
7633        return ret;
7634}
7635
7636/*
7637 * Initialize the perf_event context in task_struct
7638 */
7639int perf_event_init_context(struct task_struct *child, int ctxn)
7640{
7641        struct perf_event_context *child_ctx, *parent_ctx;
7642        struct perf_event_context *cloned_ctx;
7643        struct perf_event *event;
7644        struct task_struct *parent = current;
7645        int inherited_all = 1;
7646        unsigned long flags;
7647        int ret = 0;
7648
7649        if (likely(!parent->perf_event_ctxp[ctxn]))
7650                return 0;
7651
7652        /*
7653         * If the parent's context is a clone, pin it so it won't get
7654         * swapped under us.
7655         */
7656        parent_ctx = perf_pin_task_context(parent, ctxn);
7657
7658        /*
7659         * No need to check if parent_ctx != NULL here; since we saw
7660         * it non-NULL earlier, the only reason for it to become NULL
7661         * is if we exit, and since we're currently in the middle of
7662         * a fork we can't be exiting at the same time.
7663         */
7664
7665        /*
7666         * Lock the parent list. No need to lock the child - not PID
7667         * hashed yet and not running, so nobody can access it.
7668         */
7669        mutex_lock(&parent_ctx->mutex);
7670
7671        /*
7672         * We dont have to disable NMIs - we are only looking at
7673         * the list, not manipulating it:
7674         */
7675        list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7676                ret = inherit_task_group(event, parent, parent_ctx,
7677                                         child, ctxn, &inherited_all);
7678                if (ret)
7679                        break;
7680        }
7681
7682        /*
7683         * We can't hold ctx->lock when iterating the ->flexible_group list due
7684         * to allocations, but we need to prevent rotation because
7685         * rotate_ctx() will change the list from interrupt context.
7686         */
7687        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7688        parent_ctx->rotate_disable = 1;
7689        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7690
7691        list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7692                ret = inherit_task_group(event, parent, parent_ctx,
7693                                         child, ctxn, &inherited_all);
7694                if (ret)
7695                        break;
7696        }
7697
7698        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7699        parent_ctx->rotate_disable = 0;
7700
7701        child_ctx = child->perf_event_ctxp[ctxn];
7702
7703        if (child_ctx && inherited_all) {
7704                /*
7705                 * Mark the child context as a clone of the parent
7706                 * context, or of whatever the parent is a clone of.
7707                 *
7708                 * Note that if the parent is a clone, the holding of
7709                 * parent_ctx->lock avoids it from being uncloned.
7710                 */
7711                cloned_ctx = parent_ctx->parent_ctx;
7712                if (cloned_ctx) {
7713                        child_ctx->parent_ctx = cloned_ctx;
7714                        child_ctx->parent_gen = parent_ctx->parent_gen;
7715                } else {
7716                        child_ctx->parent_ctx = parent_ctx;
7717                        child_ctx->parent_gen = parent_ctx->generation;
7718                }
7719                get_ctx(child_ctx->parent_ctx);
7720        }
7721
7722        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7723        mutex_unlock(&parent_ctx->mutex);
7724
7725        perf_unpin_context(parent_ctx);
7726        put_ctx(parent_ctx);
7727
7728        return ret;
7729}
7730
7731/*
7732 * Initialize the perf_event context in task_struct
7733 */
7734int perf_event_init_task(struct task_struct *child)
7735{
7736        int ctxn, ret;
7737
7738        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7739        mutex_init(&child->perf_event_mutex);
7740        INIT_LIST_HEAD(&child->perf_event_list);
7741
7742        for_each_task_context_nr(ctxn) {
7743                ret = perf_event_init_context(child, ctxn);
7744                if (ret)
7745                        return ret;
7746        }
7747
7748        return 0;
7749}
7750
7751static void __init perf_event_init_all_cpus(void)
7752{
7753        struct swevent_htable *swhash;
7754        int cpu;
7755
7756        for_each_possible_cpu(cpu) {
7757                swhash = &per_cpu(swevent_htable, cpu);
7758                mutex_init(&swhash->hlist_mutex);
7759                INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7760        }
7761}
7762
7763static void perf_event_init_cpu(int cpu)
7764{
7765        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7766
7767        mutex_lock(&swhash->hlist_mutex);
7768        if (swhash->hlist_refcount > 0) {
7769                struct swevent_hlist *hlist;
7770
7771                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7772                WARN_ON(!hlist);
7773                rcu_assign_pointer(swhash->swevent_hlist, hlist);
7774        }
7775        mutex_unlock(&swhash->hlist_mutex);
7776}
7777
7778#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7779static void perf_pmu_rotate_stop(struct pmu *pmu)
7780{
7781        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7782
7783        WARN_ON(!irqs_disabled());
7784
7785        list_del_init(&cpuctx->rotation_list);
7786}
7787
7788static void __perf_event_exit_context(void *__info)
7789{
7790        struct perf_event_context *ctx = __info;
7791        struct perf_event *event, *tmp;
7792
7793        perf_pmu_rotate_stop(ctx->pmu);
7794
7795        list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7796                __perf_remove_from_context(event);
7797        list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7798                __perf_remove_from_context(event);
7799}
7800
7801static void perf_event_exit_cpu_context(int cpu)
7802{
7803        struct perf_event_context *ctx;
7804        struct pmu *pmu;
7805        int idx;
7806
7807        idx = srcu_read_lock(&pmus_srcu);
7808        list_for_each_entry_rcu(pmu, &pmus, entry) {
7809                ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7810
7811                mutex_lock(&ctx->mutex);
7812                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7813                mutex_unlock(&ctx->mutex);
7814        }
7815        srcu_read_unlock(&pmus_srcu, idx);
7816}
7817
7818static void perf_event_exit_cpu(int cpu)
7819{
7820        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7821
7822        mutex_lock(&swhash->hlist_mutex);
7823        swevent_hlist_release(swhash);
7824        mutex_unlock(&swhash->hlist_mutex);
7825
7826        perf_event_exit_cpu_context(cpu);
7827}
7828#else
7829static inline void perf_event_exit_cpu(int cpu) { }
7830#endif
7831
7832static int
7833perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7834{
7835        int cpu;
7836
7837        for_each_online_cpu(cpu)
7838                perf_event_exit_cpu(cpu);
7839
7840        return NOTIFY_OK;
7841}
7842
7843/*
7844 * Run the perf reboot notifier at the very last possible moment so that
7845 * the generic watchdog code runs as long as possible.
7846 */
7847static struct notifier_block perf_reboot_notifier = {
7848        .notifier_call = perf_reboot,
7849        .priority = INT_MIN,
7850};
7851
7852static int
7853perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7854{
7855        unsigned int cpu = (long)hcpu;
7856
7857        switch (action & ~CPU_TASKS_FROZEN) {
7858
7859        case CPU_UP_PREPARE:
7860        case CPU_DOWN_FAILED:
7861                perf_event_init_cpu(cpu);
7862                break;
7863
7864        case CPU_UP_CANCELED:
7865        case CPU_DOWN_PREPARE:
7866                perf_event_exit_cpu(cpu);
7867                break;
7868        default:
7869                break;
7870        }
7871
7872        return NOTIFY_OK;
7873}
7874
7875void __init perf_event_init(void)
7876{
7877        int ret;
7878
7879        idr_init(&pmu_idr);
7880
7881        perf_event_init_all_cpus();
7882        init_srcu_struct(&pmus_srcu);
7883        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7884        perf_pmu_register(&perf_cpu_clock, NULL, -1);
7885        perf_pmu_register(&perf_task_clock, NULL, -1);
7886        perf_tp_register();
7887        perf_cpu_notifier(perf_cpu_notify);
7888        register_reboot_notifier(&perf_reboot_notifier);
7889
7890        ret = init_hw_breakpoint();
7891        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7892
7893        /* do not patch jump label more than once per second */
7894        jump_label_rate_limit(&perf_sched_events, HZ);
7895
7896        /*
7897         * Build time assertion that we keep the data_head at the intended
7898         * location.  IOW, validation we got the __reserved[] size right.
7899         */
7900        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7901                     != 1024);
7902}
7903
7904static int __init perf_event_sysfs_init(void)
7905{
7906        struct pmu *pmu;
7907        int ret;
7908
7909        mutex_lock(&pmus_lock);
7910
7911        ret = bus_register(&pmu_bus);
7912        if (ret)
7913                goto unlock;
7914
7915        list_for_each_entry(pmu, &pmus, entry) {
7916                if (!pmu->name || pmu->type < 0)
7917                        continue;
7918
7919                ret = pmu_dev_alloc(pmu);
7920                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7921        }
7922        pmu_bus_running = 1;
7923        ret = 0;
7924
7925unlock:
7926        mutex_unlock(&pmus_lock);
7927
7928        return ret;
7929}
7930device_initcall(perf_event_sysfs_init);
7931
7932#ifdef CONFIG_CGROUP_PERF
7933static struct cgroup_subsys_state *
7934perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7935{
7936        struct perf_cgroup *jc;
7937
7938        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7939        if (!jc)
7940                return ERR_PTR(-ENOMEM);
7941
7942        jc->info = alloc_percpu(struct perf_cgroup_info);
7943        if (!jc->info) {
7944                kfree(jc);
7945                return ERR_PTR(-ENOMEM);
7946        }
7947
7948        return &jc->css;
7949}
7950
7951static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7952{
7953        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7954
7955        free_percpu(jc->info);
7956        kfree(jc);
7957}
7958
7959static int __perf_cgroup_move(void *info)
7960{
7961        struct task_struct *task = info;
7962        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7963        return 0;
7964}
7965
7966static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7967                               struct cgroup_taskset *tset)
7968{
7969        struct task_struct *task;
7970
7971        cgroup_taskset_for_each(task, css, tset)
7972                task_function_call(task, __perf_cgroup_move, task);
7973}
7974
7975static void perf_cgroup_exit(struct cgroup_subsys_state *css,
7976                             struct cgroup_subsys_state *old_css,
7977                             struct task_struct *task)
7978{
7979        /*
7980         * cgroup_exit() is called in the copy_process() failure path.
7981         * Ignore this case since the task hasn't ran yet, this avoids
7982         * trying to poke a half freed task state from generic code.
7983         */
7984        if (!(task->flags & PF_EXITING))
7985                return;
7986
7987        task_function_call(task, __perf_cgroup_move, task);
7988}
7989
7990struct cgroup_subsys perf_subsys = {
7991        .name           = "perf_event",
7992        .subsys_id      = perf_subsys_id,
7993        .css_alloc      = perf_cgroup_css_alloc,
7994        .css_free       = perf_cgroup_css_free,
7995        .exit           = perf_cgroup_exit,
7996        .attach         = perf_cgroup_attach,
7997};
7998#endif /* CONFIG_CGROUP_PERF */
7999