linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75#include <linux/context_tracking.h>
  76
  77#include <asm/switch_to.h>
  78#include <asm/tlb.h>
  79#include <asm/irq_regs.h>
  80#include <asm/mutex.h>
  81#ifdef CONFIG_PARAVIRT
  82#include <asm/paravirt.h>
  83#endif
  84
  85#include "sched.h"
  86#include "../workqueue_internal.h"
  87#include "../smpboot.h"
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/sched.h>
  91
  92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  93{
  94        unsigned long delta;
  95        ktime_t soft, hard, now;
  96
  97        for (;;) {
  98                if (hrtimer_active(period_timer))
  99                        break;
 100
 101                now = hrtimer_cb_get_time(period_timer);
 102                hrtimer_forward(period_timer, now, period);
 103
 104                soft = hrtimer_get_softexpires(period_timer);
 105                hard = hrtimer_get_expires(period_timer);
 106                delta = ktime_to_ns(ktime_sub(hard, soft));
 107                __hrtimer_start_range_ns(period_timer, soft, delta,
 108                                         HRTIMER_MODE_ABS_PINNED, 0);
 109        }
 110}
 111
 112DEFINE_MUTEX(sched_domains_mutex);
 113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 114
 115static void update_rq_clock_task(struct rq *rq, s64 delta);
 116
 117void update_rq_clock(struct rq *rq)
 118{
 119        s64 delta;
 120
 121        if (rq->skip_clock_update > 0)
 122                return;
 123
 124        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 125        rq->clock += delta;
 126        update_rq_clock_task(rq, delta);
 127}
 128
 129/*
 130 * Debugging: various feature bits
 131 */
 132
 133#define SCHED_FEAT(name, enabled)       \
 134        (1UL << __SCHED_FEAT_##name) * enabled |
 135
 136const_debug unsigned int sysctl_sched_features =
 137#include "features.h"
 138        0;
 139
 140#undef SCHED_FEAT
 141
 142#ifdef CONFIG_SCHED_DEBUG
 143#define SCHED_FEAT(name, enabled)       \
 144        #name ,
 145
 146static const char * const sched_feat_names[] = {
 147#include "features.h"
 148};
 149
 150#undef SCHED_FEAT
 151
 152static int sched_feat_show(struct seq_file *m, void *v)
 153{
 154        int i;
 155
 156        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 157                if (!(sysctl_sched_features & (1UL << i)))
 158                        seq_puts(m, "NO_");
 159                seq_printf(m, "%s ", sched_feat_names[i]);
 160        }
 161        seq_puts(m, "\n");
 162
 163        return 0;
 164}
 165
 166#ifdef HAVE_JUMP_LABEL
 167
 168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 169#define jump_label_key__false STATIC_KEY_INIT_FALSE
 170
 171#define SCHED_FEAT(name, enabled)       \
 172        jump_label_key__##enabled ,
 173
 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 175#include "features.h"
 176};
 177
 178#undef SCHED_FEAT
 179
 180static void sched_feat_disable(int i)
 181{
 182        if (static_key_enabled(&sched_feat_keys[i]))
 183                static_key_slow_dec(&sched_feat_keys[i]);
 184}
 185
 186static void sched_feat_enable(int i)
 187{
 188        if (!static_key_enabled(&sched_feat_keys[i]))
 189                static_key_slow_inc(&sched_feat_keys[i]);
 190}
 191#else
 192static void sched_feat_disable(int i) { };
 193static void sched_feat_enable(int i) { };
 194#endif /* HAVE_JUMP_LABEL */
 195
 196static int sched_feat_set(char *cmp)
 197{
 198        int i;
 199        int neg = 0;
 200
 201        if (strncmp(cmp, "NO_", 3) == 0) {
 202                neg = 1;
 203                cmp += 3;
 204        }
 205
 206        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 207                if (strcmp(cmp, sched_feat_names[i]) == 0) {
 208                        if (neg) {
 209                                sysctl_sched_features &= ~(1UL << i);
 210                                sched_feat_disable(i);
 211                        } else {
 212                                sysctl_sched_features |= (1UL << i);
 213                                sched_feat_enable(i);
 214                        }
 215                        break;
 216                }
 217        }
 218
 219        return i;
 220}
 221
 222static ssize_t
 223sched_feat_write(struct file *filp, const char __user *ubuf,
 224                size_t cnt, loff_t *ppos)
 225{
 226        char buf[64];
 227        char *cmp;
 228        int i;
 229
 230        if (cnt > 63)
 231                cnt = 63;
 232
 233        if (copy_from_user(&buf, ubuf, cnt))
 234                return -EFAULT;
 235
 236        buf[cnt] = 0;
 237        cmp = strstrip(buf);
 238
 239        i = sched_feat_set(cmp);
 240        if (i == __SCHED_FEAT_NR)
 241                return -EINVAL;
 242
 243        *ppos += cnt;
 244
 245        return cnt;
 246}
 247
 248static int sched_feat_open(struct inode *inode, struct file *filp)
 249{
 250        return single_open(filp, sched_feat_show, NULL);
 251}
 252
 253static const struct file_operations sched_feat_fops = {
 254        .open           = sched_feat_open,
 255        .write          = sched_feat_write,
 256        .read           = seq_read,
 257        .llseek         = seq_lseek,
 258        .release        = single_release,
 259};
 260
 261static __init int sched_init_debug(void)
 262{
 263        debugfs_create_file("sched_features", 0644, NULL, NULL,
 264                        &sched_feat_fops);
 265
 266        return 0;
 267}
 268late_initcall(sched_init_debug);
 269#endif /* CONFIG_SCHED_DEBUG */
 270
 271/*
 272 * Number of tasks to iterate in a single balance run.
 273 * Limited because this is done with IRQs disabled.
 274 */
 275const_debug unsigned int sysctl_sched_nr_migrate = 32;
 276
 277/*
 278 * period over which we average the RT time consumption, measured
 279 * in ms.
 280 *
 281 * default: 1s
 282 */
 283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 284
 285/*
 286 * period over which we measure -rt task cpu usage in us.
 287 * default: 1s
 288 */
 289unsigned int sysctl_sched_rt_period = 1000000;
 290
 291__read_mostly int scheduler_running;
 292
 293/*
 294 * part of the period that we allow rt tasks to run in us.
 295 * default: 0.95s
 296 */
 297int sysctl_sched_rt_runtime = 950000;
 298
 299
 300
 301/*
 302 * __task_rq_lock - lock the rq @p resides on.
 303 */
 304static inline struct rq *__task_rq_lock(struct task_struct *p)
 305        __acquires(rq->lock)
 306{
 307        struct rq *rq;
 308
 309        lockdep_assert_held(&p->pi_lock);
 310
 311        for (;;) {
 312                rq = task_rq(p);
 313                raw_spin_lock(&rq->lock);
 314                if (likely(rq == task_rq(p)))
 315                        return rq;
 316                raw_spin_unlock(&rq->lock);
 317        }
 318}
 319
 320/*
 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 322 */
 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 324        __acquires(p->pi_lock)
 325        __acquires(rq->lock)
 326{
 327        struct rq *rq;
 328
 329        for (;;) {
 330                raw_spin_lock_irqsave(&p->pi_lock, *flags);
 331                rq = task_rq(p);
 332                raw_spin_lock(&rq->lock);
 333                if (likely(rq == task_rq(p)))
 334                        return rq;
 335                raw_spin_unlock(&rq->lock);
 336                raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 337        }
 338}
 339
 340static void __task_rq_unlock(struct rq *rq)
 341        __releases(rq->lock)
 342{
 343        raw_spin_unlock(&rq->lock);
 344}
 345
 346static inline void
 347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 348        __releases(rq->lock)
 349        __releases(p->pi_lock)
 350{
 351        raw_spin_unlock(&rq->lock);
 352        raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 353}
 354
 355/*
 356 * this_rq_lock - lock this runqueue and disable interrupts.
 357 */
 358static struct rq *this_rq_lock(void)
 359        __acquires(rq->lock)
 360{
 361        struct rq *rq;
 362
 363        local_irq_disable();
 364        rq = this_rq();
 365        raw_spin_lock(&rq->lock);
 366
 367        return rq;
 368}
 369
 370#ifdef CONFIG_SCHED_HRTICK
 371/*
 372 * Use HR-timers to deliver accurate preemption points.
 373 */
 374
 375static void hrtick_clear(struct rq *rq)
 376{
 377        if (hrtimer_active(&rq->hrtick_timer))
 378                hrtimer_cancel(&rq->hrtick_timer);
 379}
 380
 381/*
 382 * High-resolution timer tick.
 383 * Runs from hardirq context with interrupts disabled.
 384 */
 385static enum hrtimer_restart hrtick(struct hrtimer *timer)
 386{
 387        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 388
 389        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 390
 391        raw_spin_lock(&rq->lock);
 392        update_rq_clock(rq);
 393        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 394        raw_spin_unlock(&rq->lock);
 395
 396        return HRTIMER_NORESTART;
 397}
 398
 399#ifdef CONFIG_SMP
 400
 401static int __hrtick_restart(struct rq *rq)
 402{
 403        struct hrtimer *timer = &rq->hrtick_timer;
 404        ktime_t time = hrtimer_get_softexpires(timer);
 405
 406        return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
 407}
 408
 409/*
 410 * called from hardirq (IPI) context
 411 */
 412static void __hrtick_start(void *arg)
 413{
 414        struct rq *rq = arg;
 415
 416        raw_spin_lock(&rq->lock);
 417        __hrtick_restart(rq);
 418        rq->hrtick_csd_pending = 0;
 419        raw_spin_unlock(&rq->lock);
 420}
 421
 422/*
 423 * Called to set the hrtick timer state.
 424 *
 425 * called with rq->lock held and irqs disabled
 426 */
 427void hrtick_start(struct rq *rq, u64 delay)
 428{
 429        struct hrtimer *timer = &rq->hrtick_timer;
 430        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 431
 432        hrtimer_set_expires(timer, time);
 433
 434        if (rq == this_rq()) {
 435                __hrtick_restart(rq);
 436        } else if (!rq->hrtick_csd_pending) {
 437                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 438                rq->hrtick_csd_pending = 1;
 439        }
 440}
 441
 442static int
 443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 444{
 445        int cpu = (int)(long)hcpu;
 446
 447        switch (action) {
 448        case CPU_UP_CANCELED:
 449        case CPU_UP_CANCELED_FROZEN:
 450        case CPU_DOWN_PREPARE:
 451        case CPU_DOWN_PREPARE_FROZEN:
 452        case CPU_DEAD:
 453        case CPU_DEAD_FROZEN:
 454                hrtick_clear(cpu_rq(cpu));
 455                return NOTIFY_OK;
 456        }
 457
 458        return NOTIFY_DONE;
 459}
 460
 461static __init void init_hrtick(void)
 462{
 463        hotcpu_notifier(hotplug_hrtick, 0);
 464}
 465#else
 466/*
 467 * Called to set the hrtick timer state.
 468 *
 469 * called with rq->lock held and irqs disabled
 470 */
 471void hrtick_start(struct rq *rq, u64 delay)
 472{
 473        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 474                        HRTIMER_MODE_REL_PINNED, 0);
 475}
 476
 477static inline void init_hrtick(void)
 478{
 479}
 480#endif /* CONFIG_SMP */
 481
 482static void init_rq_hrtick(struct rq *rq)
 483{
 484#ifdef CONFIG_SMP
 485        rq->hrtick_csd_pending = 0;
 486
 487        rq->hrtick_csd.flags = 0;
 488        rq->hrtick_csd.func = __hrtick_start;
 489        rq->hrtick_csd.info = rq;
 490#endif
 491
 492        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 493        rq->hrtick_timer.function = hrtick;
 494}
 495#else   /* CONFIG_SCHED_HRTICK */
 496static inline void hrtick_clear(struct rq *rq)
 497{
 498}
 499
 500static inline void init_rq_hrtick(struct rq *rq)
 501{
 502}
 503
 504static inline void init_hrtick(void)
 505{
 506}
 507#endif  /* CONFIG_SCHED_HRTICK */
 508
 509/*
 510 * resched_task - mark a task 'to be rescheduled now'.
 511 *
 512 * On UP this means the setting of the need_resched flag, on SMP it
 513 * might also involve a cross-CPU call to trigger the scheduler on
 514 * the target CPU.
 515 */
 516#ifdef CONFIG_SMP
 517void resched_task(struct task_struct *p)
 518{
 519        int cpu;
 520
 521        assert_raw_spin_locked(&task_rq(p)->lock);
 522
 523        if (test_tsk_need_resched(p))
 524                return;
 525
 526        set_tsk_need_resched(p);
 527
 528        cpu = task_cpu(p);
 529        if (cpu == smp_processor_id())
 530                return;
 531
 532        /* NEED_RESCHED must be visible before we test polling */
 533        smp_mb();
 534        if (!tsk_is_polling(p))
 535                smp_send_reschedule(cpu);
 536}
 537
 538void resched_cpu(int cpu)
 539{
 540        struct rq *rq = cpu_rq(cpu);
 541        unsigned long flags;
 542
 543        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 544                return;
 545        resched_task(cpu_curr(cpu));
 546        raw_spin_unlock_irqrestore(&rq->lock, flags);
 547}
 548
 549#ifdef CONFIG_NO_HZ_COMMON
 550/*
 551 * In the semi idle case, use the nearest busy cpu for migrating timers
 552 * from an idle cpu.  This is good for power-savings.
 553 *
 554 * We don't do similar optimization for completely idle system, as
 555 * selecting an idle cpu will add more delays to the timers than intended
 556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 557 */
 558int get_nohz_timer_target(void)
 559{
 560        int cpu = smp_processor_id();
 561        int i;
 562        struct sched_domain *sd;
 563
 564        rcu_read_lock();
 565        for_each_domain(cpu, sd) {
 566                for_each_cpu(i, sched_domain_span(sd)) {
 567                        if (!idle_cpu(i)) {
 568                                cpu = i;
 569                                goto unlock;
 570                        }
 571                }
 572        }
 573unlock:
 574        rcu_read_unlock();
 575        return cpu;
 576}
 577/*
 578 * When add_timer_on() enqueues a timer into the timer wheel of an
 579 * idle CPU then this timer might expire before the next timer event
 580 * which is scheduled to wake up that CPU. In case of a completely
 581 * idle system the next event might even be infinite time into the
 582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 583 * leaves the inner idle loop so the newly added timer is taken into
 584 * account when the CPU goes back to idle and evaluates the timer
 585 * wheel for the next timer event.
 586 */
 587static void wake_up_idle_cpu(int cpu)
 588{
 589        struct rq *rq = cpu_rq(cpu);
 590
 591        if (cpu == smp_processor_id())
 592                return;
 593
 594        /*
 595         * This is safe, as this function is called with the timer
 596         * wheel base lock of (cpu) held. When the CPU is on the way
 597         * to idle and has not yet set rq->curr to idle then it will
 598         * be serialized on the timer wheel base lock and take the new
 599         * timer into account automatically.
 600         */
 601        if (rq->curr != rq->idle)
 602                return;
 603
 604        /*
 605         * We can set TIF_RESCHED on the idle task of the other CPU
 606         * lockless. The worst case is that the other CPU runs the
 607         * idle task through an additional NOOP schedule()
 608         */
 609        set_tsk_need_resched(rq->idle);
 610
 611        /* NEED_RESCHED must be visible before we test polling */
 612        smp_mb();
 613        if (!tsk_is_polling(rq->idle))
 614                smp_send_reschedule(cpu);
 615}
 616
 617static bool wake_up_full_nohz_cpu(int cpu)
 618{
 619        if (tick_nohz_full_cpu(cpu)) {
 620                if (cpu != smp_processor_id() ||
 621                    tick_nohz_tick_stopped())
 622                        smp_send_reschedule(cpu);
 623                return true;
 624        }
 625
 626        return false;
 627}
 628
 629void wake_up_nohz_cpu(int cpu)
 630{
 631        if (!wake_up_full_nohz_cpu(cpu))
 632                wake_up_idle_cpu(cpu);
 633}
 634
 635static inline bool got_nohz_idle_kick(void)
 636{
 637        int cpu = smp_processor_id();
 638
 639        if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 640                return false;
 641
 642        if (idle_cpu(cpu) && !need_resched())
 643                return true;
 644
 645        /*
 646         * We can't run Idle Load Balance on this CPU for this time so we
 647         * cancel it and clear NOHZ_BALANCE_KICK
 648         */
 649        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 650        return false;
 651}
 652
 653#else /* CONFIG_NO_HZ_COMMON */
 654
 655static inline bool got_nohz_idle_kick(void)
 656{
 657        return false;
 658}
 659
 660#endif /* CONFIG_NO_HZ_COMMON */
 661
 662#ifdef CONFIG_NO_HZ_FULL
 663bool sched_can_stop_tick(void)
 664{
 665       struct rq *rq;
 666
 667       rq = this_rq();
 668
 669       /* Make sure rq->nr_running update is visible after the IPI */
 670       smp_rmb();
 671
 672       /* More than one running task need preemption */
 673       if (rq->nr_running > 1)
 674               return false;
 675
 676       return true;
 677}
 678#endif /* CONFIG_NO_HZ_FULL */
 679
 680void sched_avg_update(struct rq *rq)
 681{
 682        s64 period = sched_avg_period();
 683
 684        while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 685                /*
 686                 * Inline assembly required to prevent the compiler
 687                 * optimising this loop into a divmod call.
 688                 * See __iter_div_u64_rem() for another example of this.
 689                 */
 690                asm("" : "+rm" (rq->age_stamp));
 691                rq->age_stamp += period;
 692                rq->rt_avg /= 2;
 693        }
 694}
 695
 696#else /* !CONFIG_SMP */
 697void resched_task(struct task_struct *p)
 698{
 699        assert_raw_spin_locked(&task_rq(p)->lock);
 700        set_tsk_need_resched(p);
 701}
 702#endif /* CONFIG_SMP */
 703
 704#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 705                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 706/*
 707 * Iterate task_group tree rooted at *from, calling @down when first entering a
 708 * node and @up when leaving it for the final time.
 709 *
 710 * Caller must hold rcu_lock or sufficient equivalent.
 711 */
 712int walk_tg_tree_from(struct task_group *from,
 713                             tg_visitor down, tg_visitor up, void *data)
 714{
 715        struct task_group *parent, *child;
 716        int ret;
 717
 718        parent = from;
 719
 720down:
 721        ret = (*down)(parent, data);
 722        if (ret)
 723                goto out;
 724        list_for_each_entry_rcu(child, &parent->children, siblings) {
 725                parent = child;
 726                goto down;
 727
 728up:
 729                continue;
 730        }
 731        ret = (*up)(parent, data);
 732        if (ret || parent == from)
 733                goto out;
 734
 735        child = parent;
 736        parent = parent->parent;
 737        if (parent)
 738                goto up;
 739out:
 740        return ret;
 741}
 742
 743int tg_nop(struct task_group *tg, void *data)
 744{
 745        return 0;
 746}
 747#endif
 748
 749static void set_load_weight(struct task_struct *p)
 750{
 751        int prio = p->static_prio - MAX_RT_PRIO;
 752        struct load_weight *load = &p->se.load;
 753
 754        /*
 755         * SCHED_IDLE tasks get minimal weight:
 756         */
 757        if (p->policy == SCHED_IDLE) {
 758                load->weight = scale_load(WEIGHT_IDLEPRIO);
 759                load->inv_weight = WMULT_IDLEPRIO;
 760                return;
 761        }
 762
 763        load->weight = scale_load(prio_to_weight[prio]);
 764        load->inv_weight = prio_to_wmult[prio];
 765}
 766
 767static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 768{
 769        update_rq_clock(rq);
 770        sched_info_queued(p);
 771        p->sched_class->enqueue_task(rq, p, flags);
 772}
 773
 774static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 775{
 776        update_rq_clock(rq);
 777        sched_info_dequeued(p);
 778        p->sched_class->dequeue_task(rq, p, flags);
 779}
 780
 781void activate_task(struct rq *rq, struct task_struct *p, int flags)
 782{
 783        if (task_contributes_to_load(p))
 784                rq->nr_uninterruptible--;
 785
 786        enqueue_task(rq, p, flags);
 787}
 788
 789void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 790{
 791        if (task_contributes_to_load(p))
 792                rq->nr_uninterruptible++;
 793
 794        dequeue_task(rq, p, flags);
 795}
 796
 797static void update_rq_clock_task(struct rq *rq, s64 delta)
 798{
 799/*
 800 * In theory, the compile should just see 0 here, and optimize out the call
 801 * to sched_rt_avg_update. But I don't trust it...
 802 */
 803#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 804        s64 steal = 0, irq_delta = 0;
 805#endif
 806#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 807        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 808
 809        /*
 810         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 811         * this case when a previous update_rq_clock() happened inside a
 812         * {soft,}irq region.
 813         *
 814         * When this happens, we stop ->clock_task and only update the
 815         * prev_irq_time stamp to account for the part that fit, so that a next
 816         * update will consume the rest. This ensures ->clock_task is
 817         * monotonic.
 818         *
 819         * It does however cause some slight miss-attribution of {soft,}irq
 820         * time, a more accurate solution would be to update the irq_time using
 821         * the current rq->clock timestamp, except that would require using
 822         * atomic ops.
 823         */
 824        if (irq_delta > delta)
 825                irq_delta = delta;
 826
 827        rq->prev_irq_time += irq_delta;
 828        delta -= irq_delta;
 829#endif
 830#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 831        if (static_key_false((&paravirt_steal_rq_enabled))) {
 832                u64 st;
 833
 834                steal = paravirt_steal_clock(cpu_of(rq));
 835                steal -= rq->prev_steal_time_rq;
 836
 837                if (unlikely(steal > delta))
 838                        steal = delta;
 839
 840                st = steal_ticks(steal);
 841                steal = st * TICK_NSEC;
 842
 843                rq->prev_steal_time_rq += steal;
 844
 845                delta -= steal;
 846        }
 847#endif
 848
 849        rq->clock_task += delta;
 850
 851#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 852        if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 853                sched_rt_avg_update(rq, irq_delta + steal);
 854#endif
 855}
 856
 857void sched_set_stop_task(int cpu, struct task_struct *stop)
 858{
 859        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 860        struct task_struct *old_stop = cpu_rq(cpu)->stop;
 861
 862        if (stop) {
 863                /*
 864                 * Make it appear like a SCHED_FIFO task, its something
 865                 * userspace knows about and won't get confused about.
 866                 *
 867                 * Also, it will make PI more or less work without too
 868                 * much confusion -- but then, stop work should not
 869                 * rely on PI working anyway.
 870                 */
 871                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 872
 873                stop->sched_class = &stop_sched_class;
 874        }
 875
 876        cpu_rq(cpu)->stop = stop;
 877
 878        if (old_stop) {
 879                /*
 880                 * Reset it back to a normal scheduling class so that
 881                 * it can die in pieces.
 882                 */
 883                old_stop->sched_class = &rt_sched_class;
 884        }
 885}
 886
 887/*
 888 * __normal_prio - return the priority that is based on the static prio
 889 */
 890static inline int __normal_prio(struct task_struct *p)
 891{
 892        return p->static_prio;
 893}
 894
 895/*
 896 * Calculate the expected normal priority: i.e. priority
 897 * without taking RT-inheritance into account. Might be
 898 * boosted by interactivity modifiers. Changes upon fork,
 899 * setprio syscalls, and whenever the interactivity
 900 * estimator recalculates.
 901 */
 902static inline int normal_prio(struct task_struct *p)
 903{
 904        int prio;
 905
 906        if (task_has_rt_policy(p))
 907                prio = MAX_RT_PRIO-1 - p->rt_priority;
 908        else
 909                prio = __normal_prio(p);
 910        return prio;
 911}
 912
 913/*
 914 * Calculate the current priority, i.e. the priority
 915 * taken into account by the scheduler. This value might
 916 * be boosted by RT tasks, or might be boosted by
 917 * interactivity modifiers. Will be RT if the task got
 918 * RT-boosted. If not then it returns p->normal_prio.
 919 */
 920static int effective_prio(struct task_struct *p)
 921{
 922        p->normal_prio = normal_prio(p);
 923        /*
 924         * If we are RT tasks or we were boosted to RT priority,
 925         * keep the priority unchanged. Otherwise, update priority
 926         * to the normal priority:
 927         */
 928        if (!rt_prio(p->prio))
 929                return p->normal_prio;
 930        return p->prio;
 931}
 932
 933/**
 934 * task_curr - is this task currently executing on a CPU?
 935 * @p: the task in question.
 936 *
 937 * Return: 1 if the task is currently executing. 0 otherwise.
 938 */
 939inline int task_curr(const struct task_struct *p)
 940{
 941        return cpu_curr(task_cpu(p)) == p;
 942}
 943
 944static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 945                                       const struct sched_class *prev_class,
 946                                       int oldprio)
 947{
 948        if (prev_class != p->sched_class) {
 949                if (prev_class->switched_from)
 950                        prev_class->switched_from(rq, p);
 951                p->sched_class->switched_to(rq, p);
 952        } else if (oldprio != p->prio)
 953                p->sched_class->prio_changed(rq, p, oldprio);
 954}
 955
 956void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 957{
 958        const struct sched_class *class;
 959
 960        if (p->sched_class == rq->curr->sched_class) {
 961                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 962        } else {
 963                for_each_class(class) {
 964                        if (class == rq->curr->sched_class)
 965                                break;
 966                        if (class == p->sched_class) {
 967                                resched_task(rq->curr);
 968                                break;
 969                        }
 970                }
 971        }
 972
 973        /*
 974         * A queue event has occurred, and we're going to schedule.  In
 975         * this case, we can save a useless back to back clock update.
 976         */
 977        if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 978                rq->skip_clock_update = 1;
 979}
 980
 981#ifdef CONFIG_SMP
 982void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 983{
 984#ifdef CONFIG_SCHED_DEBUG
 985        /*
 986         * We should never call set_task_cpu() on a blocked task,
 987         * ttwu() will sort out the placement.
 988         */
 989        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 990                        !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
 991
 992#ifdef CONFIG_LOCKDEP
 993        /*
 994         * The caller should hold either p->pi_lock or rq->lock, when changing
 995         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 996         *
 997         * sched_move_task() holds both and thus holding either pins the cgroup,
 998         * see task_group().
 999         *
1000         * Furthermore, all task_rq users should acquire both locks, see
1001         * task_rq_lock().
1002         */
1003        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1004                                      lockdep_is_held(&task_rq(p)->lock)));
1005#endif
1006#endif
1007
1008        trace_sched_migrate_task(p, new_cpu);
1009
1010        if (task_cpu(p) != new_cpu) {
1011                if (p->sched_class->migrate_task_rq)
1012                        p->sched_class->migrate_task_rq(p, new_cpu);
1013                p->se.nr_migrations++;
1014                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1015        }
1016
1017        __set_task_cpu(p, new_cpu);
1018}
1019
1020struct migration_arg {
1021        struct task_struct *task;
1022        int dest_cpu;
1023};
1024
1025static int migration_cpu_stop(void *data);
1026
1027/*
1028 * wait_task_inactive - wait for a thread to unschedule.
1029 *
1030 * If @match_state is nonzero, it's the @p->state value just checked and
1031 * not expected to change.  If it changes, i.e. @p might have woken up,
1032 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1033 * we return a positive number (its total switch count).  If a second call
1034 * a short while later returns the same number, the caller can be sure that
1035 * @p has remained unscheduled the whole time.
1036 *
1037 * The caller must ensure that the task *will* unschedule sometime soon,
1038 * else this function might spin for a *long* time. This function can't
1039 * be called with interrupts off, or it may introduce deadlock with
1040 * smp_call_function() if an IPI is sent by the same process we are
1041 * waiting to become inactive.
1042 */
1043unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1044{
1045        unsigned long flags;
1046        int running, on_rq;
1047        unsigned long ncsw;
1048        struct rq *rq;
1049
1050        for (;;) {
1051                /*
1052                 * We do the initial early heuristics without holding
1053                 * any task-queue locks at all. We'll only try to get
1054                 * the runqueue lock when things look like they will
1055                 * work out!
1056                 */
1057                rq = task_rq(p);
1058
1059                /*
1060                 * If the task is actively running on another CPU
1061                 * still, just relax and busy-wait without holding
1062                 * any locks.
1063                 *
1064                 * NOTE! Since we don't hold any locks, it's not
1065                 * even sure that "rq" stays as the right runqueue!
1066                 * But we don't care, since "task_running()" will
1067                 * return false if the runqueue has changed and p
1068                 * is actually now running somewhere else!
1069                 */
1070                while (task_running(rq, p)) {
1071                        if (match_state && unlikely(p->state != match_state))
1072                                return 0;
1073                        cpu_relax();
1074                }
1075
1076                /*
1077                 * Ok, time to look more closely! We need the rq
1078                 * lock now, to be *sure*. If we're wrong, we'll
1079                 * just go back and repeat.
1080                 */
1081                rq = task_rq_lock(p, &flags);
1082                trace_sched_wait_task(p);
1083                running = task_running(rq, p);
1084                on_rq = p->on_rq;
1085                ncsw = 0;
1086                if (!match_state || p->state == match_state)
1087                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1088                task_rq_unlock(rq, p, &flags);
1089
1090                /*
1091                 * If it changed from the expected state, bail out now.
1092                 */
1093                if (unlikely(!ncsw))
1094                        break;
1095
1096                /*
1097                 * Was it really running after all now that we
1098                 * checked with the proper locks actually held?
1099                 *
1100                 * Oops. Go back and try again..
1101                 */
1102                if (unlikely(running)) {
1103                        cpu_relax();
1104                        continue;
1105                }
1106
1107                /*
1108                 * It's not enough that it's not actively running,
1109                 * it must be off the runqueue _entirely_, and not
1110                 * preempted!
1111                 *
1112                 * So if it was still runnable (but just not actively
1113                 * running right now), it's preempted, and we should
1114                 * yield - it could be a while.
1115                 */
1116                if (unlikely(on_rq)) {
1117                        ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1118
1119                        set_current_state(TASK_UNINTERRUPTIBLE);
1120                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1121                        continue;
1122                }
1123
1124                /*
1125                 * Ahh, all good. It wasn't running, and it wasn't
1126                 * runnable, which means that it will never become
1127                 * running in the future either. We're all done!
1128                 */
1129                break;
1130        }
1131
1132        return ncsw;
1133}
1134
1135/***
1136 * kick_process - kick a running thread to enter/exit the kernel
1137 * @p: the to-be-kicked thread
1138 *
1139 * Cause a process which is running on another CPU to enter
1140 * kernel-mode, without any delay. (to get signals handled.)
1141 *
1142 * NOTE: this function doesn't have to take the runqueue lock,
1143 * because all it wants to ensure is that the remote task enters
1144 * the kernel. If the IPI races and the task has been migrated
1145 * to another CPU then no harm is done and the purpose has been
1146 * achieved as well.
1147 */
1148void kick_process(struct task_struct *p)
1149{
1150        int cpu;
1151
1152        preempt_disable();
1153        cpu = task_cpu(p);
1154        if ((cpu != smp_processor_id()) && task_curr(p))
1155                smp_send_reschedule(cpu);
1156        preempt_enable();
1157}
1158EXPORT_SYMBOL_GPL(kick_process);
1159#endif /* CONFIG_SMP */
1160
1161#ifdef CONFIG_SMP
1162/*
1163 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1164 */
1165static int select_fallback_rq(int cpu, struct task_struct *p)
1166{
1167        int nid = cpu_to_node(cpu);
1168        const struct cpumask *nodemask = NULL;
1169        enum { cpuset, possible, fail } state = cpuset;
1170        int dest_cpu;
1171
1172        /*
1173         * If the node that the cpu is on has been offlined, cpu_to_node()
1174         * will return -1. There is no cpu on the node, and we should
1175         * select the cpu on the other node.
1176         */
1177        if (nid != -1) {
1178                nodemask = cpumask_of_node(nid);
1179
1180                /* Look for allowed, online CPU in same node. */
1181                for_each_cpu(dest_cpu, nodemask) {
1182                        if (!cpu_online(dest_cpu))
1183                                continue;
1184                        if (!cpu_active(dest_cpu))
1185                                continue;
1186                        if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1187                                return dest_cpu;
1188                }
1189        }
1190
1191        for (;;) {
1192                /* Any allowed, online CPU? */
1193                for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1194                        if (!cpu_online(dest_cpu))
1195                                continue;
1196                        if (!cpu_active(dest_cpu))
1197                                continue;
1198                        goto out;
1199                }
1200
1201                switch (state) {
1202                case cpuset:
1203                        /* No more Mr. Nice Guy. */
1204                        cpuset_cpus_allowed_fallback(p);
1205                        state = possible;
1206                        break;
1207
1208                case possible:
1209                        do_set_cpus_allowed(p, cpu_possible_mask);
1210                        state = fail;
1211                        break;
1212
1213                case fail:
1214                        BUG();
1215                        break;
1216                }
1217        }
1218
1219out:
1220        if (state != cpuset) {
1221                /*
1222                 * Don't tell them about moving exiting tasks or
1223                 * kernel threads (both mm NULL), since they never
1224                 * leave kernel.
1225                 */
1226                if (p->mm && printk_ratelimit()) {
1227                        printk_sched("process %d (%s) no longer affine to cpu%d\n",
1228                                        task_pid_nr(p), p->comm, cpu);
1229                }
1230        }
1231
1232        return dest_cpu;
1233}
1234
1235/*
1236 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1237 */
1238static inline
1239int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1240{
1241        int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1242
1243        /*
1244         * In order not to call set_task_cpu() on a blocking task we need
1245         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1246         * cpu.
1247         *
1248         * Since this is common to all placement strategies, this lives here.
1249         *
1250         * [ this allows ->select_task() to simply return task_cpu(p) and
1251         *   not worry about this generic constraint ]
1252         */
1253        if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1254                     !cpu_online(cpu)))
1255                cpu = select_fallback_rq(task_cpu(p), p);
1256
1257        return cpu;
1258}
1259
1260static void update_avg(u64 *avg, u64 sample)
1261{
1262        s64 diff = sample - *avg;
1263        *avg += diff >> 3;
1264}
1265#endif
1266
1267static void
1268ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1269{
1270#ifdef CONFIG_SCHEDSTATS
1271        struct rq *rq = this_rq();
1272
1273#ifdef CONFIG_SMP
1274        int this_cpu = smp_processor_id();
1275
1276        if (cpu == this_cpu) {
1277                schedstat_inc(rq, ttwu_local);
1278                schedstat_inc(p, se.statistics.nr_wakeups_local);
1279        } else {
1280                struct sched_domain *sd;
1281
1282                schedstat_inc(p, se.statistics.nr_wakeups_remote);
1283                rcu_read_lock();
1284                for_each_domain(this_cpu, sd) {
1285                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1286                                schedstat_inc(sd, ttwu_wake_remote);
1287                                break;
1288                        }
1289                }
1290                rcu_read_unlock();
1291        }
1292
1293        if (wake_flags & WF_MIGRATED)
1294                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1295
1296#endif /* CONFIG_SMP */
1297
1298        schedstat_inc(rq, ttwu_count);
1299        schedstat_inc(p, se.statistics.nr_wakeups);
1300
1301        if (wake_flags & WF_SYNC)
1302                schedstat_inc(p, se.statistics.nr_wakeups_sync);
1303
1304#endif /* CONFIG_SCHEDSTATS */
1305}
1306
1307static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1308{
1309        activate_task(rq, p, en_flags);
1310        p->on_rq = 1;
1311
1312        /* if a worker is waking up, notify workqueue */
1313        if (p->flags & PF_WQ_WORKER)
1314                wq_worker_waking_up(p, cpu_of(rq));
1315}
1316
1317/*
1318 * Mark the task runnable and perform wakeup-preemption.
1319 */
1320static void
1321ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1322{
1323        check_preempt_curr(rq, p, wake_flags);
1324        trace_sched_wakeup(p, true);
1325
1326        p->state = TASK_RUNNING;
1327#ifdef CONFIG_SMP
1328        if (p->sched_class->task_woken)
1329                p->sched_class->task_woken(rq, p);
1330
1331        if (rq->idle_stamp) {
1332                u64 delta = rq_clock(rq) - rq->idle_stamp;
1333                u64 max = 2*sysctl_sched_migration_cost;
1334
1335                if (delta > max)
1336                        rq->avg_idle = max;
1337                else
1338                        update_avg(&rq->avg_idle, delta);
1339                rq->idle_stamp = 0;
1340        }
1341#endif
1342}
1343
1344static void
1345ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1346{
1347#ifdef CONFIG_SMP
1348        if (p->sched_contributes_to_load)
1349                rq->nr_uninterruptible--;
1350#endif
1351
1352        ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1353        ttwu_do_wakeup(rq, p, wake_flags);
1354}
1355
1356/*
1357 * Called in case the task @p isn't fully descheduled from its runqueue,
1358 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1359 * since all we need to do is flip p->state to TASK_RUNNING, since
1360 * the task is still ->on_rq.
1361 */
1362static int ttwu_remote(struct task_struct *p, int wake_flags)
1363{
1364        struct rq *rq;
1365        int ret = 0;
1366
1367        rq = __task_rq_lock(p);
1368        if (p->on_rq) {
1369                /* check_preempt_curr() may use rq clock */
1370                update_rq_clock(rq);
1371                ttwu_do_wakeup(rq, p, wake_flags);
1372                ret = 1;
1373        }
1374        __task_rq_unlock(rq);
1375
1376        return ret;
1377}
1378
1379#ifdef CONFIG_SMP
1380static void sched_ttwu_pending(void)
1381{
1382        struct rq *rq = this_rq();
1383        struct llist_node *llist = llist_del_all(&rq->wake_list);
1384        struct task_struct *p;
1385
1386        raw_spin_lock(&rq->lock);
1387
1388        while (llist) {
1389                p = llist_entry(llist, struct task_struct, wake_entry);
1390                llist = llist_next(llist);
1391                ttwu_do_activate(rq, p, 0);
1392        }
1393
1394        raw_spin_unlock(&rq->lock);
1395}
1396
1397void scheduler_ipi(void)
1398{
1399        if (llist_empty(&this_rq()->wake_list)
1400                        && !tick_nohz_full_cpu(smp_processor_id())
1401                        && !got_nohz_idle_kick())
1402                return;
1403
1404        /*
1405         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1406         * traditionally all their work was done from the interrupt return
1407         * path. Now that we actually do some work, we need to make sure
1408         * we do call them.
1409         *
1410         * Some archs already do call them, luckily irq_enter/exit nest
1411         * properly.
1412         *
1413         * Arguably we should visit all archs and update all handlers,
1414         * however a fair share of IPIs are still resched only so this would
1415         * somewhat pessimize the simple resched case.
1416         */
1417        irq_enter();
1418        tick_nohz_full_check();
1419        sched_ttwu_pending();
1420
1421        /*
1422         * Check if someone kicked us for doing the nohz idle load balance.
1423         */
1424        if (unlikely(got_nohz_idle_kick())) {
1425                this_rq()->idle_balance = 1;
1426                raise_softirq_irqoff(SCHED_SOFTIRQ);
1427        }
1428        irq_exit();
1429}
1430
1431static void ttwu_queue_remote(struct task_struct *p, int cpu)
1432{
1433        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1434                smp_send_reschedule(cpu);
1435}
1436
1437bool cpus_share_cache(int this_cpu, int that_cpu)
1438{
1439        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1440}
1441#endif /* CONFIG_SMP */
1442
1443static void ttwu_queue(struct task_struct *p, int cpu)
1444{
1445        struct rq *rq = cpu_rq(cpu);
1446
1447#if defined(CONFIG_SMP)
1448        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1449                sched_clock_cpu(cpu); /* sync clocks x-cpu */
1450                ttwu_queue_remote(p, cpu);
1451                return;
1452        }
1453#endif
1454
1455        raw_spin_lock(&rq->lock);
1456        ttwu_do_activate(rq, p, 0);
1457        raw_spin_unlock(&rq->lock);
1458}
1459
1460/**
1461 * try_to_wake_up - wake up a thread
1462 * @p: the thread to be awakened
1463 * @state: the mask of task states that can be woken
1464 * @wake_flags: wake modifier flags (WF_*)
1465 *
1466 * Put it on the run-queue if it's not already there. The "current"
1467 * thread is always on the run-queue (except when the actual
1468 * re-schedule is in progress), and as such you're allowed to do
1469 * the simpler "current->state = TASK_RUNNING" to mark yourself
1470 * runnable without the overhead of this.
1471 *
1472 * Return: %true if @p was woken up, %false if it was already running.
1473 * or @state didn't match @p's state.
1474 */
1475static int
1476try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1477{
1478        unsigned long flags;
1479        int cpu, success = 0;
1480
1481        /*
1482         * If we are going to wake up a thread waiting for CONDITION we
1483         * need to ensure that CONDITION=1 done by the caller can not be
1484         * reordered with p->state check below. This pairs with mb() in
1485         * set_current_state() the waiting thread does.
1486         */
1487        smp_mb__before_spinlock();
1488        raw_spin_lock_irqsave(&p->pi_lock, flags);
1489        if (!(p->state & state))
1490                goto out;
1491
1492        success = 1; /* we're going to change ->state */
1493        cpu = task_cpu(p);
1494
1495        if (p->on_rq && ttwu_remote(p, wake_flags))
1496                goto stat;
1497
1498#ifdef CONFIG_SMP
1499        /*
1500         * If the owning (remote) cpu is still in the middle of schedule() with
1501         * this task as prev, wait until its done referencing the task.
1502         */
1503        while (p->on_cpu)
1504                cpu_relax();
1505        /*
1506         * Pairs with the smp_wmb() in finish_lock_switch().
1507         */
1508        smp_rmb();
1509
1510        p->sched_contributes_to_load = !!task_contributes_to_load(p);
1511        p->state = TASK_WAKING;
1512
1513        if (p->sched_class->task_waking)
1514                p->sched_class->task_waking(p);
1515
1516        cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1517        if (task_cpu(p) != cpu) {
1518                wake_flags |= WF_MIGRATED;
1519                set_task_cpu(p, cpu);
1520        }
1521#endif /* CONFIG_SMP */
1522
1523        ttwu_queue(p, cpu);
1524stat:
1525        ttwu_stat(p, cpu, wake_flags);
1526out:
1527        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1528
1529        return success;
1530}
1531
1532/**
1533 * try_to_wake_up_local - try to wake up a local task with rq lock held
1534 * @p: the thread to be awakened
1535 *
1536 * Put @p on the run-queue if it's not already there. The caller must
1537 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1538 * the current task.
1539 */
1540static void try_to_wake_up_local(struct task_struct *p)
1541{
1542        struct rq *rq = task_rq(p);
1543
1544        if (WARN_ON_ONCE(rq != this_rq()) ||
1545            WARN_ON_ONCE(p == current))
1546                return;
1547
1548        lockdep_assert_held(&rq->lock);
1549
1550        if (!raw_spin_trylock(&p->pi_lock)) {
1551                raw_spin_unlock(&rq->lock);
1552                raw_spin_lock(&p->pi_lock);
1553                raw_spin_lock(&rq->lock);
1554        }
1555
1556        if (!(p->state & TASK_NORMAL))
1557                goto out;
1558
1559        if (!p->on_rq)
1560                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1561
1562        ttwu_do_wakeup(rq, p, 0);
1563        ttwu_stat(p, smp_processor_id(), 0);
1564out:
1565        raw_spin_unlock(&p->pi_lock);
1566}
1567
1568/**
1569 * wake_up_process - Wake up a specific process
1570 * @p: The process to be woken up.
1571 *
1572 * Attempt to wake up the nominated process and move it to the set of runnable
1573 * processes.
1574 *
1575 * Return: 1 if the process was woken up, 0 if it was already running.
1576 *
1577 * It may be assumed that this function implies a write memory barrier before
1578 * changing the task state if and only if any tasks are woken up.
1579 */
1580int wake_up_process(struct task_struct *p)
1581{
1582        WARN_ON(task_is_stopped_or_traced(p));
1583        return try_to_wake_up(p, TASK_NORMAL, 0);
1584}
1585EXPORT_SYMBOL(wake_up_process);
1586
1587int wake_up_state(struct task_struct *p, unsigned int state)
1588{
1589        return try_to_wake_up(p, state, 0);
1590}
1591
1592/*
1593 * Perform scheduler related setup for a newly forked process p.
1594 * p is forked by current.
1595 *
1596 * __sched_fork() is basic setup used by init_idle() too:
1597 */
1598static void __sched_fork(struct task_struct *p)
1599{
1600        p->on_rq                        = 0;
1601
1602        p->se.on_rq                     = 0;
1603        p->se.exec_start                = 0;
1604        p->se.sum_exec_runtime          = 0;
1605        p->se.prev_sum_exec_runtime     = 0;
1606        p->se.nr_migrations             = 0;
1607        p->se.vruntime                  = 0;
1608        INIT_LIST_HEAD(&p->se.group_node);
1609
1610#ifdef CONFIG_SCHEDSTATS
1611        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1612#endif
1613
1614        INIT_LIST_HEAD(&p->rt.run_list);
1615
1616#ifdef CONFIG_PREEMPT_NOTIFIERS
1617        INIT_HLIST_HEAD(&p->preempt_notifiers);
1618#endif
1619
1620#ifdef CONFIG_NUMA_BALANCING
1621        if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1622                p->mm->numa_next_scan = jiffies;
1623                p->mm->numa_next_reset = jiffies;
1624                p->mm->numa_scan_seq = 0;
1625        }
1626
1627        p->node_stamp = 0ULL;
1628        p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1629        p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1630        p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1631        p->numa_work.next = &p->numa_work;
1632#endif /* CONFIG_NUMA_BALANCING */
1633}
1634
1635#ifdef CONFIG_NUMA_BALANCING
1636#ifdef CONFIG_SCHED_DEBUG
1637void set_numabalancing_state(bool enabled)
1638{
1639        if (enabled)
1640                sched_feat_set("NUMA");
1641        else
1642                sched_feat_set("NO_NUMA");
1643}
1644#else
1645__read_mostly bool numabalancing_enabled;
1646
1647void set_numabalancing_state(bool enabled)
1648{
1649        numabalancing_enabled = enabled;
1650}
1651#endif /* CONFIG_SCHED_DEBUG */
1652#endif /* CONFIG_NUMA_BALANCING */
1653
1654/*
1655 * fork()/clone()-time setup:
1656 */
1657void sched_fork(struct task_struct *p)
1658{
1659        unsigned long flags;
1660        int cpu = get_cpu();
1661
1662        __sched_fork(p);
1663        /*
1664         * We mark the process as running here. This guarantees that
1665         * nobody will actually run it, and a signal or other external
1666         * event cannot wake it up and insert it on the runqueue either.
1667         */
1668        p->state = TASK_RUNNING;
1669
1670        /*
1671         * Make sure we do not leak PI boosting priority to the child.
1672         */
1673        p->prio = current->normal_prio;
1674
1675        /*
1676         * Revert to default priority/policy on fork if requested.
1677         */
1678        if (unlikely(p->sched_reset_on_fork)) {
1679                if (task_has_rt_policy(p)) {
1680                        p->policy = SCHED_NORMAL;
1681                        p->static_prio = NICE_TO_PRIO(0);
1682                        p->rt_priority = 0;
1683                } else if (PRIO_TO_NICE(p->static_prio) < 0)
1684                        p->static_prio = NICE_TO_PRIO(0);
1685
1686                p->prio = p->normal_prio = __normal_prio(p);
1687                set_load_weight(p);
1688
1689                /*
1690                 * We don't need the reset flag anymore after the fork. It has
1691                 * fulfilled its duty:
1692                 */
1693                p->sched_reset_on_fork = 0;
1694        }
1695
1696        if (!rt_prio(p->prio))
1697                p->sched_class = &fair_sched_class;
1698
1699        if (p->sched_class->task_fork)
1700                p->sched_class->task_fork(p);
1701
1702        /*
1703         * The child is not yet in the pid-hash so no cgroup attach races,
1704         * and the cgroup is pinned to this child due to cgroup_fork()
1705         * is ran before sched_fork().
1706         *
1707         * Silence PROVE_RCU.
1708         */
1709        raw_spin_lock_irqsave(&p->pi_lock, flags);
1710        set_task_cpu(p, cpu);
1711        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1712
1713#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1714        if (likely(sched_info_on()))
1715                memset(&p->sched_info, 0, sizeof(p->sched_info));
1716#endif
1717#if defined(CONFIG_SMP)
1718        p->on_cpu = 0;
1719#endif
1720#ifdef CONFIG_PREEMPT_COUNT
1721        /* Want to start with kernel preemption disabled. */
1722        task_thread_info(p)->preempt_count = 1;
1723#endif
1724#ifdef CONFIG_SMP
1725        plist_node_init(&p->pushable_tasks, MAX_PRIO);
1726#endif
1727
1728        put_cpu();
1729}
1730
1731/*
1732 * wake_up_new_task - wake up a newly created task for the first time.
1733 *
1734 * This function will do some initial scheduler statistics housekeeping
1735 * that must be done for every newly created context, then puts the task
1736 * on the runqueue and wakes it.
1737 */
1738void wake_up_new_task(struct task_struct *p)
1739{
1740        unsigned long flags;
1741        struct rq *rq;
1742
1743        raw_spin_lock_irqsave(&p->pi_lock, flags);
1744#ifdef CONFIG_SMP
1745        /*
1746         * Fork balancing, do it here and not earlier because:
1747         *  - cpus_allowed can change in the fork path
1748         *  - any previously selected cpu might disappear through hotplug
1749         */
1750        set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1751#endif
1752
1753        /* Initialize new task's runnable average */
1754        init_task_runnable_average(p);
1755        rq = __task_rq_lock(p);
1756        activate_task(rq, p, 0);
1757        p->on_rq = 1;
1758        trace_sched_wakeup_new(p, true);
1759        check_preempt_curr(rq, p, WF_FORK);
1760#ifdef CONFIG_SMP
1761        if (p->sched_class->task_woken)
1762                p->sched_class->task_woken(rq, p);
1763#endif
1764        task_rq_unlock(rq, p, &flags);
1765}
1766
1767#ifdef CONFIG_PREEMPT_NOTIFIERS
1768
1769/**
1770 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1771 * @notifier: notifier struct to register
1772 */
1773void preempt_notifier_register(struct preempt_notifier *notifier)
1774{
1775        hlist_add_head(&notifier->link, &current->preempt_notifiers);
1776}
1777EXPORT_SYMBOL_GPL(preempt_notifier_register);
1778
1779/**
1780 * preempt_notifier_unregister - no longer interested in preemption notifications
1781 * @notifier: notifier struct to unregister
1782 *
1783 * This is safe to call from within a preemption notifier.
1784 */
1785void preempt_notifier_unregister(struct preempt_notifier *notifier)
1786{
1787        hlist_del(&notifier->link);
1788}
1789EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1790
1791static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1792{
1793        struct preempt_notifier *notifier;
1794
1795        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1796                notifier->ops->sched_in(notifier, raw_smp_processor_id());
1797}
1798
1799static void
1800fire_sched_out_preempt_notifiers(struct task_struct *curr,
1801                                 struct task_struct *next)
1802{
1803        struct preempt_notifier *notifier;
1804
1805        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1806                notifier->ops->sched_out(notifier, next);
1807}
1808
1809#else /* !CONFIG_PREEMPT_NOTIFIERS */
1810
1811static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1812{
1813}
1814
1815static void
1816fire_sched_out_preempt_notifiers(struct task_struct *curr,
1817                                 struct task_struct *next)
1818{
1819}
1820
1821#endif /* CONFIG_PREEMPT_NOTIFIERS */
1822
1823/**
1824 * prepare_task_switch - prepare to switch tasks
1825 * @rq: the runqueue preparing to switch
1826 * @prev: the current task that is being switched out
1827 * @next: the task we are going to switch to.
1828 *
1829 * This is called with the rq lock held and interrupts off. It must
1830 * be paired with a subsequent finish_task_switch after the context
1831 * switch.
1832 *
1833 * prepare_task_switch sets up locking and calls architecture specific
1834 * hooks.
1835 */
1836static inline void
1837prepare_task_switch(struct rq *rq, struct task_struct *prev,
1838                    struct task_struct *next)
1839{
1840        trace_sched_switch(prev, next);
1841        sched_info_switch(prev, next);
1842        perf_event_task_sched_out(prev, next);
1843        fire_sched_out_preempt_notifiers(prev, next);
1844        prepare_lock_switch(rq, next);
1845        prepare_arch_switch(next);
1846}
1847
1848/**
1849 * finish_task_switch - clean up after a task-switch
1850 * @rq: runqueue associated with task-switch
1851 * @prev: the thread we just switched away from.
1852 *
1853 * finish_task_switch must be called after the context switch, paired
1854 * with a prepare_task_switch call before the context switch.
1855 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1856 * and do any other architecture-specific cleanup actions.
1857 *
1858 * Note that we may have delayed dropping an mm in context_switch(). If
1859 * so, we finish that here outside of the runqueue lock. (Doing it
1860 * with the lock held can cause deadlocks; see schedule() for
1861 * details.)
1862 */
1863static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1864        __releases(rq->lock)
1865{
1866        struct mm_struct *mm = rq->prev_mm;
1867        long prev_state;
1868
1869        rq->prev_mm = NULL;
1870
1871        /*
1872         * A task struct has one reference for the use as "current".
1873         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1874         * schedule one last time. The schedule call will never return, and
1875         * the scheduled task must drop that reference.
1876         * The test for TASK_DEAD must occur while the runqueue locks are
1877         * still held, otherwise prev could be scheduled on another cpu, die
1878         * there before we look at prev->state, and then the reference would
1879         * be dropped twice.
1880         *              Manfred Spraul <manfred@colorfullife.com>
1881         */
1882        prev_state = prev->state;
1883        vtime_task_switch(prev);
1884        finish_arch_switch(prev);
1885        perf_event_task_sched_in(prev, current);
1886        finish_lock_switch(rq, prev);
1887        finish_arch_post_lock_switch();
1888
1889        fire_sched_in_preempt_notifiers(current);
1890        if (mm)
1891                mmdrop(mm);
1892        if (unlikely(prev_state == TASK_DEAD)) {
1893                /*
1894                 * Remove function-return probe instances associated with this
1895                 * task and put them back on the free list.
1896                 */
1897                kprobe_flush_task(prev);
1898                put_task_struct(prev);
1899        }
1900
1901        tick_nohz_task_switch(current);
1902}
1903
1904#ifdef CONFIG_SMP
1905
1906/* assumes rq->lock is held */
1907static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1908{
1909        if (prev->sched_class->pre_schedule)
1910                prev->sched_class->pre_schedule(rq, prev);
1911}
1912
1913/* rq->lock is NOT held, but preemption is disabled */
1914static inline void post_schedule(struct rq *rq)
1915{
1916        if (rq->post_schedule) {
1917                unsigned long flags;
1918
1919                raw_spin_lock_irqsave(&rq->lock, flags);
1920                if (rq->curr->sched_class->post_schedule)
1921                        rq->curr->sched_class->post_schedule(rq);
1922                raw_spin_unlock_irqrestore(&rq->lock, flags);
1923
1924                rq->post_schedule = 0;
1925        }
1926}
1927
1928#else
1929
1930static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1931{
1932}
1933
1934static inline void post_schedule(struct rq *rq)
1935{
1936}
1937
1938#endif
1939
1940/**
1941 * schedule_tail - first thing a freshly forked thread must call.
1942 * @prev: the thread we just switched away from.
1943 */
1944asmlinkage void schedule_tail(struct task_struct *prev)
1945        __releases(rq->lock)
1946{
1947        struct rq *rq = this_rq();
1948
1949        finish_task_switch(rq, prev);
1950
1951        /*
1952         * FIXME: do we need to worry about rq being invalidated by the
1953         * task_switch?
1954         */
1955        post_schedule(rq);
1956
1957#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1958        /* In this case, finish_task_switch does not reenable preemption */
1959        preempt_enable();
1960#endif
1961        if (current->set_child_tid)
1962                put_user(task_pid_vnr(current), current->set_child_tid);
1963}
1964
1965/*
1966 * context_switch - switch to the new MM and the new
1967 * thread's register state.
1968 */
1969static inline void
1970context_switch(struct rq *rq, struct task_struct *prev,
1971               struct task_struct *next)
1972{
1973        struct mm_struct *mm, *oldmm;
1974
1975        prepare_task_switch(rq, prev, next);
1976
1977        mm = next->mm;
1978        oldmm = prev->active_mm;
1979        /*
1980         * For paravirt, this is coupled with an exit in switch_to to
1981         * combine the page table reload and the switch backend into
1982         * one hypercall.
1983         */
1984        arch_start_context_switch(prev);
1985
1986        if (!mm) {
1987                next->active_mm = oldmm;
1988                atomic_inc(&oldmm->mm_count);
1989                enter_lazy_tlb(oldmm, next);
1990        } else
1991                switch_mm(oldmm, mm, next);
1992
1993        if (!prev->mm) {
1994                prev->active_mm = NULL;
1995                rq->prev_mm = oldmm;
1996        }
1997        /*
1998         * Since the runqueue lock will be released by the next
1999         * task (which is an invalid locking op but in the case
2000         * of the scheduler it's an obvious special-case), so we
2001         * do an early lockdep release here:
2002         */
2003#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2004        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2005#endif
2006
2007        context_tracking_task_switch(prev, next);
2008        /* Here we just switch the register state and the stack. */
2009        switch_to(prev, next, prev);
2010
2011        barrier();
2012        /*
2013         * this_rq must be evaluated again because prev may have moved
2014         * CPUs since it called schedule(), thus the 'rq' on its stack
2015         * frame will be invalid.
2016         */
2017        finish_task_switch(this_rq(), prev);
2018}
2019
2020/*
2021 * nr_running and nr_context_switches:
2022 *
2023 * externally visible scheduler statistics: current number of runnable
2024 * threads, total number of context switches performed since bootup.
2025 */
2026unsigned long nr_running(void)
2027{
2028        unsigned long i, sum = 0;
2029
2030        for_each_online_cpu(i)
2031                sum += cpu_rq(i)->nr_running;
2032
2033        return sum;
2034}
2035
2036unsigned long long nr_context_switches(void)
2037{
2038        int i;
2039        unsigned long long sum = 0;
2040
2041        for_each_possible_cpu(i)
2042                sum += cpu_rq(i)->nr_switches;
2043
2044        return sum;
2045}
2046
2047unsigned long nr_iowait(void)
2048{
2049        unsigned long i, sum = 0;
2050
2051        for_each_possible_cpu(i)
2052                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2053
2054        return sum;
2055}
2056
2057unsigned long nr_iowait_cpu(int cpu)
2058{
2059        struct rq *this = cpu_rq(cpu);
2060        return atomic_read(&this->nr_iowait);
2061}
2062
2063#ifdef CONFIG_SMP
2064
2065/*
2066 * sched_exec - execve() is a valuable balancing opportunity, because at
2067 * this point the task has the smallest effective memory and cache footprint.
2068 */
2069void sched_exec(void)
2070{
2071        struct task_struct *p = current;
2072        unsigned long flags;
2073        int dest_cpu;
2074
2075        raw_spin_lock_irqsave(&p->pi_lock, flags);
2076        dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2077        if (dest_cpu == smp_processor_id())
2078                goto unlock;
2079
2080        if (likely(cpu_active(dest_cpu))) {
2081                struct migration_arg arg = { p, dest_cpu };
2082
2083                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2084                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2085                return;
2086        }
2087unlock:
2088        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2089}
2090
2091#endif
2092
2093DEFINE_PER_CPU(struct kernel_stat, kstat);
2094DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2095
2096EXPORT_PER_CPU_SYMBOL(kstat);
2097EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2098
2099/*
2100 * Return any ns on the sched_clock that have not yet been accounted in
2101 * @p in case that task is currently running.
2102 *
2103 * Called with task_rq_lock() held on @rq.
2104 */
2105static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2106{
2107        u64 ns = 0;
2108
2109        if (task_current(rq, p)) {
2110                update_rq_clock(rq);
2111                ns = rq_clock_task(rq) - p->se.exec_start;
2112                if ((s64)ns < 0)
2113                        ns = 0;
2114        }
2115
2116        return ns;
2117}
2118
2119unsigned long long task_delta_exec(struct task_struct *p)
2120{
2121        unsigned long flags;
2122        struct rq *rq;
2123        u64 ns = 0;
2124
2125        rq = task_rq_lock(p, &flags);
2126        ns = do_task_delta_exec(p, rq);
2127        task_rq_unlock(rq, p, &flags);
2128
2129        return ns;
2130}
2131
2132/*
2133 * Return accounted runtime for the task.
2134 * In case the task is currently running, return the runtime plus current's
2135 * pending runtime that have not been accounted yet.
2136 */
2137unsigned long long task_sched_runtime(struct task_struct *p)
2138{
2139        unsigned long flags;
2140        struct rq *rq;
2141        u64 ns = 0;
2142
2143        rq = task_rq_lock(p, &flags);
2144        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2145        task_rq_unlock(rq, p, &flags);
2146
2147        return ns;
2148}
2149
2150/*
2151 * This function gets called by the timer code, with HZ frequency.
2152 * We call it with interrupts disabled.
2153 */
2154void scheduler_tick(void)
2155{
2156        int cpu = smp_processor_id();
2157        struct rq *rq = cpu_rq(cpu);
2158        struct task_struct *curr = rq->curr;
2159
2160        sched_clock_tick();
2161
2162        raw_spin_lock(&rq->lock);
2163        update_rq_clock(rq);
2164        curr->sched_class->task_tick(rq, curr, 0);
2165        update_cpu_load_active(rq);
2166        raw_spin_unlock(&rq->lock);
2167
2168        perf_event_task_tick();
2169
2170#ifdef CONFIG_SMP
2171        rq->idle_balance = idle_cpu(cpu);
2172        trigger_load_balance(rq, cpu);
2173#endif
2174        rq_last_tick_reset(rq);
2175}
2176
2177#ifdef CONFIG_NO_HZ_FULL
2178/**
2179 * scheduler_tick_max_deferment
2180 *
2181 * Keep at least one tick per second when a single
2182 * active task is running because the scheduler doesn't
2183 * yet completely support full dynticks environment.
2184 *
2185 * This makes sure that uptime, CFS vruntime, load
2186 * balancing, etc... continue to move forward, even
2187 * with a very low granularity.
2188 *
2189 * Return: Maximum deferment in nanoseconds.
2190 */
2191u64 scheduler_tick_max_deferment(void)
2192{
2193        struct rq *rq = this_rq();
2194        unsigned long next, now = ACCESS_ONCE(jiffies);
2195
2196        next = rq->last_sched_tick + HZ;
2197
2198        if (time_before_eq(next, now))
2199                return 0;
2200
2201        return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2202}
2203#endif
2204
2205notrace unsigned long get_parent_ip(unsigned long addr)
2206{
2207        if (in_lock_functions(addr)) {
2208                addr = CALLER_ADDR2;
2209                if (in_lock_functions(addr))
2210                        addr = CALLER_ADDR3;
2211        }
2212        return addr;
2213}
2214
2215#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2216                                defined(CONFIG_PREEMPT_TRACER))
2217
2218void __kprobes add_preempt_count(int val)
2219{
2220#ifdef CONFIG_DEBUG_PREEMPT
2221        /*
2222         * Underflow?
2223         */
2224        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2225                return;
2226#endif
2227        preempt_count() += val;
2228#ifdef CONFIG_DEBUG_PREEMPT
2229        /*
2230         * Spinlock count overflowing soon?
2231         */
2232        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2233                                PREEMPT_MASK - 10);
2234#endif
2235        if (preempt_count() == val)
2236                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2237}
2238EXPORT_SYMBOL(add_preempt_count);
2239
2240void __kprobes sub_preempt_count(int val)
2241{
2242#ifdef CONFIG_DEBUG_PREEMPT
2243        /*
2244         * Underflow?
2245         */
2246        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2247                return;
2248        /*
2249         * Is the spinlock portion underflowing?
2250         */
2251        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2252                        !(preempt_count() & PREEMPT_MASK)))
2253                return;
2254#endif
2255
2256        if (preempt_count() == val)
2257                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2258        preempt_count() -= val;
2259}
2260EXPORT_SYMBOL(sub_preempt_count);
2261
2262#endif
2263
2264/*
2265 * Print scheduling while atomic bug:
2266 */
2267static noinline void __schedule_bug(struct task_struct *prev)
2268{
2269        if (oops_in_progress)
2270                return;
2271
2272        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2273                prev->comm, prev->pid, preempt_count());
2274
2275        debug_show_held_locks(prev);
2276        print_modules();
2277        if (irqs_disabled())
2278                print_irqtrace_events(prev);
2279        dump_stack();
2280        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2281}
2282
2283/*
2284 * Various schedule()-time debugging checks and statistics:
2285 */
2286static inline void schedule_debug(struct task_struct *prev)
2287{
2288        /*
2289         * Test if we are atomic. Since do_exit() needs to call into
2290         * schedule() atomically, we ignore that path for now.
2291         * Otherwise, whine if we are scheduling when we should not be.
2292         */
2293        if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2294                __schedule_bug(prev);
2295        rcu_sleep_check();
2296
2297        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2298
2299        schedstat_inc(this_rq(), sched_count);
2300}
2301
2302static void put_prev_task(struct rq *rq, struct task_struct *prev)
2303{
2304        if (prev->on_rq || rq->skip_clock_update < 0)
2305                update_rq_clock(rq);
2306        prev->sched_class->put_prev_task(rq, prev);
2307}
2308
2309/*
2310 * Pick up the highest-prio task:
2311 */
2312static inline struct task_struct *
2313pick_next_task(struct rq *rq)
2314{
2315        const struct sched_class *class;
2316        struct task_struct *p;
2317
2318        /*
2319         * Optimization: we know that if all tasks are in
2320         * the fair class we can call that function directly:
2321         */
2322        if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2323                p = fair_sched_class.pick_next_task(rq);
2324                if (likely(p))
2325                        return p;
2326        }
2327
2328        for_each_class(class) {
2329                p = class->pick_next_task(rq);
2330                if (p)
2331                        return p;
2332        }
2333
2334        BUG(); /* the idle class will always have a runnable task */
2335}
2336
2337/*
2338 * __schedule() is the main scheduler function.
2339 *
2340 * The main means of driving the scheduler and thus entering this function are:
2341 *
2342 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2343 *
2344 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2345 *      paths. For example, see arch/x86/entry_64.S.
2346 *
2347 *      To drive preemption between tasks, the scheduler sets the flag in timer
2348 *      interrupt handler scheduler_tick().
2349 *
2350 *   3. Wakeups don't really cause entry into schedule(). They add a
2351 *      task to the run-queue and that's it.
2352 *
2353 *      Now, if the new task added to the run-queue preempts the current
2354 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2355 *      called on the nearest possible occasion:
2356 *
2357 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2358 *
2359 *         - in syscall or exception context, at the next outmost
2360 *           preempt_enable(). (this might be as soon as the wake_up()'s
2361 *           spin_unlock()!)
2362 *
2363 *         - in IRQ context, return from interrupt-handler to
2364 *           preemptible context
2365 *
2366 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2367 *         then at the next:
2368 *
2369 *          - cond_resched() call
2370 *          - explicit schedule() call
2371 *          - return from syscall or exception to user-space
2372 *          - return from interrupt-handler to user-space
2373 */
2374static void __sched __schedule(void)
2375{
2376        struct task_struct *prev, *next;
2377        unsigned long *switch_count;
2378        struct rq *rq;
2379        int cpu;
2380
2381need_resched:
2382        preempt_disable();
2383        cpu = smp_processor_id();
2384        rq = cpu_rq(cpu);
2385        rcu_note_context_switch(cpu);
2386        prev = rq->curr;
2387
2388        schedule_debug(prev);
2389
2390        if (sched_feat(HRTICK))
2391                hrtick_clear(rq);
2392
2393        /*
2394         * Make sure that signal_pending_state()->signal_pending() below
2395         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2396         * done by the caller to avoid the race with signal_wake_up().
2397         */
2398        smp_mb__before_spinlock();
2399        raw_spin_lock_irq(&rq->lock);
2400
2401        switch_count = &prev->nivcsw;
2402        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2403                if (unlikely(signal_pending_state(prev->state, prev))) {
2404                        prev->state = TASK_RUNNING;
2405                } else {
2406                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
2407                        prev->on_rq = 0;
2408
2409                        /*
2410                         * If a worker went to sleep, notify and ask workqueue
2411                         * whether it wants to wake up a task to maintain
2412                         * concurrency.
2413                         */
2414                        if (prev->flags & PF_WQ_WORKER) {
2415                                struct task_struct *to_wakeup;
2416
2417                                to_wakeup = wq_worker_sleeping(prev, cpu);
2418                                if (to_wakeup)
2419                                        try_to_wake_up_local(to_wakeup);
2420                        }
2421                }
2422                switch_count = &prev->nvcsw;
2423        }
2424
2425        pre_schedule(rq, prev);
2426
2427        if (unlikely(!rq->nr_running))
2428                idle_balance(cpu, rq);
2429
2430        put_prev_task(rq, prev);
2431        next = pick_next_task(rq);
2432        clear_tsk_need_resched(prev);
2433        rq->skip_clock_update = 0;
2434
2435        if (likely(prev != next)) {
2436                rq->nr_switches++;
2437                rq->curr = next;
2438                ++*switch_count;
2439
2440                context_switch(rq, prev, next); /* unlocks the rq */
2441                /*
2442                 * The context switch have flipped the stack from under us
2443                 * and restored the local variables which were saved when
2444                 * this task called schedule() in the past. prev == current
2445                 * is still correct, but it can be moved to another cpu/rq.
2446                 */
2447                cpu = smp_processor_id();
2448                rq = cpu_rq(cpu);
2449        } else
2450                raw_spin_unlock_irq(&rq->lock);
2451
2452        post_schedule(rq);
2453
2454        sched_preempt_enable_no_resched();
2455        if (need_resched())
2456                goto need_resched;
2457}
2458
2459static inline void sched_submit_work(struct task_struct *tsk)
2460{
2461        if (!tsk->state || tsk_is_pi_blocked(tsk))
2462                return;
2463        /*
2464         * If we are going to sleep and we have plugged IO queued,
2465         * make sure to submit it to avoid deadlocks.
2466         */
2467        if (blk_needs_flush_plug(tsk))
2468                blk_schedule_flush_plug(tsk);
2469}
2470
2471asmlinkage void __sched schedule(void)
2472{
2473        struct task_struct *tsk = current;
2474
2475        sched_submit_work(tsk);
2476        __schedule();
2477}
2478EXPORT_SYMBOL(schedule);
2479
2480#ifdef CONFIG_CONTEXT_TRACKING
2481asmlinkage void __sched schedule_user(void)
2482{
2483        /*
2484         * If we come here after a random call to set_need_resched(),
2485         * or we have been woken up remotely but the IPI has not yet arrived,
2486         * we haven't yet exited the RCU idle mode. Do it here manually until
2487         * we find a better solution.
2488         */
2489        user_exit();
2490        schedule();
2491        user_enter();
2492}
2493#endif
2494
2495/**
2496 * schedule_preempt_disabled - called with preemption disabled
2497 *
2498 * Returns with preemption disabled. Note: preempt_count must be 1
2499 */
2500void __sched schedule_preempt_disabled(void)
2501{
2502        sched_preempt_enable_no_resched();
2503        schedule();
2504        preempt_disable();
2505}
2506
2507#ifdef CONFIG_PREEMPT
2508/*
2509 * this is the entry point to schedule() from in-kernel preemption
2510 * off of preempt_enable. Kernel preemptions off return from interrupt
2511 * occur there and call schedule directly.
2512 */
2513asmlinkage void __sched notrace preempt_schedule(void)
2514{
2515        /*
2516         * If there is a non-zero preempt_count or interrupts are disabled,
2517         * we do not want to preempt the current task. Just return..
2518         */
2519        if (likely(!preemptible()))
2520                return;
2521
2522        do {
2523                add_preempt_count_notrace(PREEMPT_ACTIVE);
2524                __schedule();
2525                sub_preempt_count_notrace(PREEMPT_ACTIVE);
2526
2527                /*
2528                 * Check again in case we missed a preemption opportunity
2529                 * between schedule and now.
2530                 */
2531                barrier();
2532        } while (need_resched());
2533}
2534EXPORT_SYMBOL(preempt_schedule);
2535
2536/*
2537 * this is the entry point to schedule() from kernel preemption
2538 * off of irq context.
2539 * Note, that this is called and return with irqs disabled. This will
2540 * protect us against recursive calling from irq.
2541 */
2542asmlinkage void __sched preempt_schedule_irq(void)
2543{
2544        struct thread_info *ti = current_thread_info();
2545        enum ctx_state prev_state;
2546
2547        /* Catch callers which need to be fixed */
2548        BUG_ON(ti->preempt_count || !irqs_disabled());
2549
2550        prev_state = exception_enter();
2551
2552        do {
2553                add_preempt_count(PREEMPT_ACTIVE);
2554                local_irq_enable();
2555                __schedule();
2556                local_irq_disable();
2557                sub_preempt_count(PREEMPT_ACTIVE);
2558
2559                /*
2560                 * Check again in case we missed a preemption opportunity
2561                 * between schedule and now.
2562                 */
2563                barrier();
2564        } while (need_resched());
2565
2566        exception_exit(prev_state);
2567}
2568
2569#endif /* CONFIG_PREEMPT */
2570
2571int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2572                          void *key)
2573{
2574        return try_to_wake_up(curr->private, mode, wake_flags);
2575}
2576EXPORT_SYMBOL(default_wake_function);
2577
2578/*
2579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2581 * number) then we wake all the non-exclusive tasks and one exclusive task.
2582 *
2583 * There are circumstances in which we can try to wake a task which has already
2584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2586 */
2587static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2588                        int nr_exclusive, int wake_flags, void *key)
2589{
2590        wait_queue_t *curr, *next;
2591
2592        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
2593                unsigned flags = curr->flags;
2594
2595                if (curr->func(curr, mode, wake_flags, key) &&
2596                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
2597                        break;
2598        }
2599}
2600
2601/**
2602 * __wake_up - wake up threads blocked on a waitqueue.
2603 * @q: the waitqueue
2604 * @mode: which threads
2605 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2606 * @key: is directly passed to the wakeup function
2607 *
2608 * It may be assumed that this function implies a write memory barrier before
2609 * changing the task state if and only if any tasks are woken up.
2610 */
2611void __wake_up(wait_queue_head_t *q, unsigned int mode,
2612                        int nr_exclusive, void *key)
2613{
2614        unsigned long flags;
2615
2616        spin_lock_irqsave(&q->lock, flags);
2617        __wake_up_common(q, mode, nr_exclusive, 0, key);
2618        spin_unlock_irqrestore(&q->lock, flags);
2619}
2620EXPORT_SYMBOL(__wake_up);
2621
2622/*
2623 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2624 */
2625void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
2626{
2627        __wake_up_common(q, mode, nr, 0, NULL);
2628}
2629EXPORT_SYMBOL_GPL(__wake_up_locked);
2630
2631void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2632{
2633        __wake_up_common(q, mode, 1, 0, key);
2634}
2635EXPORT_SYMBOL_GPL(__wake_up_locked_key);
2636
2637/**
2638 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
2639 * @q: the waitqueue
2640 * @mode: which threads
2641 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2642 * @key: opaque value to be passed to wakeup targets
2643 *
2644 * The sync wakeup differs that the waker knows that it will schedule
2645 * away soon, so while the target thread will be woken up, it will not
2646 * be migrated to another CPU - ie. the two threads are 'synchronized'
2647 * with each other. This can prevent needless bouncing between CPUs.
2648 *
2649 * On UP it can prevent extra preemption.
2650 *
2651 * It may be assumed that this function implies a write memory barrier before
2652 * changing the task state if and only if any tasks are woken up.
2653 */
2654void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2655                        int nr_exclusive, void *key)
2656{
2657        unsigned long flags;
2658        int wake_flags = WF_SYNC;
2659
2660        if (unlikely(!q))
2661                return;
2662
2663        if (unlikely(nr_exclusive != 1))
2664                wake_flags = 0;
2665
2666        spin_lock_irqsave(&q->lock, flags);
2667        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
2668        spin_unlock_irqrestore(&q->lock, flags);
2669}
2670EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2671
2672/*
2673 * __wake_up_sync - see __wake_up_sync_key()
2674 */
2675void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2676{
2677        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2678}
2679EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
2680
2681/**
2682 * complete: - signals a single thread waiting on this completion
2683 * @x:  holds the state of this particular completion
2684 *
2685 * This will wake up a single thread waiting on this completion. Threads will be
2686 * awakened in the same order in which they were queued.
2687 *
2688 * See also complete_all(), wait_for_completion() and related routines.
2689 *
2690 * It may be assumed that this function implies a write memory barrier before
2691 * changing the task state if and only if any tasks are woken up.
2692 */
2693void complete(struct completion *x)
2694{
2695        unsigned long flags;
2696
2697        spin_lock_irqsave(&x->wait.lock, flags);
2698        x->done++;
2699        __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
2700        spin_unlock_irqrestore(&x->wait.lock, flags);
2701}
2702EXPORT_SYMBOL(complete);
2703
2704/**
2705 * complete_all: - signals all threads waiting on this completion
2706 * @x:  holds the state of this particular completion
2707 *
2708 * This will wake up all threads waiting on this particular completion event.
2709 *
2710 * It may be assumed that this function implies a write memory barrier before
2711 * changing the task state if and only if any tasks are woken up.
2712 */
2713void complete_all(struct completion *x)
2714{
2715        unsigned long flags;
2716
2717        spin_lock_irqsave(&x->wait.lock, flags);
2718        x->done += UINT_MAX/2;
2719        __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
2720        spin_unlock_irqrestore(&x->wait.lock, flags);
2721}
2722EXPORT_SYMBOL(complete_all);
2723
2724static inline long __sched
2725do_wait_for_common(struct completion *x,
2726                   long (*action)(long), long timeout, int state)
2727{
2728        if (!x->done) {
2729                DECLARE_WAITQUEUE(wait, current);
2730
2731                __add_wait_queue_tail_exclusive(&x->wait, &wait);
2732                do {
2733                        if (signal_pending_state(state, current)) {
2734                                timeout = -ERESTARTSYS;
2735                                break;
2736                        }
2737                        __set_current_state(state);
2738                        spin_unlock_irq(&x->wait.lock);
2739                        timeout = action(timeout);
2740                        spin_lock_irq(&x->wait.lock);
2741                } while (!x->done && timeout);
2742                __remove_wait_queue(&x->wait, &wait);
2743                if (!x->done)
2744                        return timeout;
2745        }
2746        x->done--;
2747        return timeout ?: 1;
2748}
2749
2750static inline long __sched
2751__wait_for_common(struct completion *x,
2752                  long (*action)(long), long timeout, int state)
2753{
2754        might_sleep();
2755
2756        spin_lock_irq(&x->wait.lock);
2757        timeout = do_wait_for_common(x, action, timeout, state);
2758        spin_unlock_irq(&x->wait.lock);
2759        return timeout;
2760}
2761
2762static long __sched
2763wait_for_common(struct completion *x, long timeout, int state)
2764{
2765        return __wait_for_common(x, schedule_timeout, timeout, state);
2766}
2767
2768static long __sched
2769wait_for_common_io(struct completion *x, long timeout, int state)
2770{
2771        return __wait_for_common(x, io_schedule_timeout, timeout, state);
2772}
2773
2774/**
2775 * wait_for_completion: - waits for completion of a task
2776 * @x:  holds the state of this particular completion
2777 *
2778 * This waits to be signaled for completion of a specific task. It is NOT
2779 * interruptible and there is no timeout.
2780 *
2781 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2782 * and interrupt capability. Also see complete().
2783 */
2784void __sched wait_for_completion(struct completion *x)
2785{
2786        wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2787}
2788EXPORT_SYMBOL(wait_for_completion);
2789
2790/**
2791 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2792 * @x:  holds the state of this particular completion
2793 * @timeout:  timeout value in jiffies
2794 *
2795 * This waits for either a completion of a specific task to be signaled or for a
2796 * specified timeout to expire. The timeout is in jiffies. It is not
2797 * interruptible.
2798 *
2799 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2800 * till timeout) if completed.
2801 */
2802unsigned long __sched
2803wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2804{
2805        return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
2806}
2807EXPORT_SYMBOL(wait_for_completion_timeout);
2808
2809/**
2810 * wait_for_completion_io: - waits for completion of a task
2811 * @x:  holds the state of this particular completion
2812 *
2813 * This waits to be signaled for completion of a specific task. It is NOT
2814 * interruptible and there is no timeout. The caller is accounted as waiting
2815 * for IO.
2816 */
2817void __sched wait_for_completion_io(struct completion *x)
2818{
2819        wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2820}
2821EXPORT_SYMBOL(wait_for_completion_io);
2822
2823/**
2824 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2825 * @x:  holds the state of this particular completion
2826 * @timeout:  timeout value in jiffies
2827 *
2828 * This waits for either a completion of a specific task to be signaled or for a
2829 * specified timeout to expire. The timeout is in jiffies. It is not
2830 * interruptible. The caller is accounted as waiting for IO.
2831 *
2832 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2833 * till timeout) if completed.
2834 */
2835unsigned long __sched
2836wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2837{
2838        return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2839}
2840EXPORT_SYMBOL(wait_for_completion_io_timeout);
2841
2842/**
2843 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2844 * @x:  holds the state of this particular completion
2845 *
2846 * This waits for completion of a specific task to be signaled. It is
2847 * interruptible.
2848 *
2849 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2850 */
2851int __sched wait_for_completion_interruptible(struct completion *x)
2852{
2853        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2854        if (t == -ERESTARTSYS)
2855                return t;
2856        return 0;
2857}
2858EXPORT_SYMBOL(wait_for_completion_interruptible);
2859
2860/**
2861 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2862 * @x:  holds the state of this particular completion
2863 * @timeout:  timeout value in jiffies
2864 *
2865 * This waits for either a completion of a specific task to be signaled or for a
2866 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
2867 *
2868 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2869 * or number of jiffies left till timeout) if completed.
2870 */
2871long __sched
2872wait_for_completion_interruptible_timeout(struct completion *x,
2873                                          unsigned long timeout)
2874{
2875        return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
2876}
2877EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
2878
2879/**
2880 * wait_for_completion_killable: - waits for completion of a task (killable)
2881 * @x:  holds the state of this particular completion
2882 *
2883 * This waits to be signaled for completion of a specific task. It can be
2884 * interrupted by a kill signal.
2885 *
2886 * Return: -ERESTARTSYS if interrupted, 0 if completed.
2887 */
2888int __sched wait_for_completion_killable(struct completion *x)
2889{
2890        long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2891        if (t == -ERESTARTSYS)
2892                return t;
2893        return 0;
2894}
2895EXPORT_SYMBOL(wait_for_completion_killable);
2896
2897/**
2898 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2899 * @x:  holds the state of this particular completion
2900 * @timeout:  timeout value in jiffies
2901 *
2902 * This waits for either a completion of a specific task to be
2903 * signaled or for a specified timeout to expire. It can be
2904 * interrupted by a kill signal. The timeout is in jiffies.
2905 *
2906 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2907 * or number of jiffies left till timeout) if completed.
2908 */
2909long __sched
2910wait_for_completion_killable_timeout(struct completion *x,
2911                                     unsigned long timeout)
2912{
2913        return wait_for_common(x, timeout, TASK_KILLABLE);
2914}
2915EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2916
2917/**
2918 *      try_wait_for_completion - try to decrement a completion without blocking
2919 *      @x:     completion structure
2920 *
2921 *      Return: 0 if a decrement cannot be done without blocking
2922 *               1 if a decrement succeeded.
2923 *
2924 *      If a completion is being used as a counting completion,
2925 *      attempt to decrement the counter without blocking. This
2926 *      enables us to avoid waiting if the resource the completion
2927 *      is protecting is not available.
2928 */
2929bool try_wait_for_completion(struct completion *x)
2930{
2931        unsigned long flags;
2932        int ret = 1;
2933
2934        spin_lock_irqsave(&x->wait.lock, flags);
2935        if (!x->done)
2936                ret = 0;
2937        else
2938                x->done--;
2939        spin_unlock_irqrestore(&x->wait.lock, flags);
2940        return ret;
2941}
2942EXPORT_SYMBOL(try_wait_for_completion);
2943
2944/**
2945 *      completion_done - Test to see if a completion has any waiters
2946 *      @x:     completion structure
2947 *
2948 *      Return: 0 if there are waiters (wait_for_completion() in progress)
2949 *               1 if there are no waiters.
2950 *
2951 */
2952bool completion_done(struct completion *x)
2953{
2954        unsigned long flags;
2955        int ret = 1;
2956
2957        spin_lock_irqsave(&x->wait.lock, flags);
2958        if (!x->done)
2959                ret = 0;
2960        spin_unlock_irqrestore(&x->wait.lock, flags);
2961        return ret;
2962}
2963EXPORT_SYMBOL(completion_done);
2964
2965static long __sched
2966sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2967{
2968        unsigned long flags;
2969        wait_queue_t wait;
2970
2971        init_waitqueue_entry(&wait, current);
2972
2973        __set_current_state(state);
2974
2975        spin_lock_irqsave(&q->lock, flags);
2976        __add_wait_queue(q, &wait);
2977        spin_unlock(&q->lock);
2978        timeout = schedule_timeout(timeout);
2979        spin_lock_irq(&q->lock);
2980        __remove_wait_queue(q, &wait);
2981        spin_unlock_irqrestore(&q->lock, flags);
2982
2983        return timeout;
2984}
2985
2986void __sched interruptible_sleep_on(wait_queue_head_t *q)
2987{
2988        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2989}
2990EXPORT_SYMBOL(interruptible_sleep_on);
2991
2992long __sched
2993interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2994{
2995        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2996}
2997EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2998
2999void __sched sleep_on(wait_queue_head_t *q)
3000{
3001        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3002}
3003EXPORT_SYMBOL(sleep_on);
3004
3005long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3006{
3007        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3008}
3009EXPORT_SYMBOL(sleep_on_timeout);
3010
3011#ifdef CONFIG_RT_MUTEXES
3012
3013/*
3014 * rt_mutex_setprio - set the current priority of a task
3015 * @p: task
3016 * @prio: prio value (kernel-internal form)
3017 *
3018 * This function changes the 'effective' priority of a task. It does
3019 * not touch ->normal_prio like __setscheduler().
3020 *
3021 * Used by the rt_mutex code to implement priority inheritance logic.
3022 */
3023void rt_mutex_setprio(struct task_struct *p, int prio)
3024{
3025        int oldprio, on_rq, running;
3026        struct rq *rq;
3027        const struct sched_class *prev_class;
3028
3029        BUG_ON(prio < 0 || prio > MAX_PRIO);
3030
3031        rq = __task_rq_lock(p);
3032
3033        /*
3034         * Idle task boosting is a nono in general. There is one
3035         * exception, when PREEMPT_RT and NOHZ is active:
3036         *
3037         * The idle task calls get_next_timer_interrupt() and holds
3038         * the timer wheel base->lock on the CPU and another CPU wants
3039         * to access the timer (probably to cancel it). We can safely
3040         * ignore the boosting request, as the idle CPU runs this code
3041         * with interrupts disabled and will complete the lock
3042         * protected section without being interrupted. So there is no
3043         * real need to boost.
3044         */
3045        if (unlikely(p == rq->idle)) {
3046                WARN_ON(p != rq->curr);
3047                WARN_ON(p->pi_blocked_on);
3048                goto out_unlock;
3049        }
3050
3051        trace_sched_pi_setprio(p, prio);
3052        oldprio = p->prio;
3053        prev_class = p->sched_class;
3054        on_rq = p->on_rq;
3055        running = task_current(rq, p);
3056        if (on_rq)
3057                dequeue_task(rq, p, 0);
3058        if (running)
3059                p->sched_class->put_prev_task(rq, p);
3060
3061        if (rt_prio(prio))
3062                p->sched_class = &rt_sched_class;
3063        else
3064                p->sched_class = &fair_sched_class;
3065
3066        p->prio = prio;
3067
3068        if (running)
3069                p->sched_class->set_curr_task(rq);
3070        if (on_rq)
3071                enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3072
3073        check_class_changed(rq, p, prev_class, oldprio);
3074out_unlock:
3075        __task_rq_unlock(rq);
3076}
3077#endif
3078void set_user_nice(struct task_struct *p, long nice)
3079{
3080        int old_prio, delta, on_rq;
3081        unsigned long flags;
3082        struct rq *rq;
3083
3084        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3085                return;
3086        /*
3087         * We have to be careful, if called from sys_setpriority(),
3088         * the task might be in the middle of scheduling on another CPU.
3089         */
3090        rq = task_rq_lock(p, &flags);
3091        /*
3092         * The RT priorities are set via sched_setscheduler(), but we still
3093         * allow the 'normal' nice value to be set - but as expected
3094         * it wont have any effect on scheduling until the task is
3095         * SCHED_FIFO/SCHED_RR:
3096         */
3097        if (task_has_rt_policy(p)) {
3098                p->static_prio = NICE_TO_PRIO(nice);
3099                goto out_unlock;
3100        }
3101        on_rq = p->on_rq;
3102        if (on_rq)
3103                dequeue_task(rq, p, 0);
3104
3105        p->static_prio = NICE_TO_PRIO(nice);
3106        set_load_weight(p);
3107        old_prio = p->prio;
3108        p->prio = effective_prio(p);
3109        delta = p->prio - old_prio;
3110
3111        if (on_rq) {
3112                enqueue_task(rq, p, 0);
3113                /*
3114                 * If the task increased its priority or is running and
3115                 * lowered its priority, then reschedule its CPU:
3116                 */
3117                if (delta < 0 || (delta > 0 && task_running(rq, p)))
3118                        resched_task(rq->curr);
3119        }
3120out_unlock:
3121        task_rq_unlock(rq, p, &flags);
3122}
3123EXPORT_SYMBOL(set_user_nice);
3124
3125/*
3126 * can_nice - check if a task can reduce its nice value
3127 * @p: task
3128 * @nice: nice value
3129 */
3130int can_nice(const struct task_struct *p, const int nice)
3131{
3132        /* convert nice value [19,-20] to rlimit style value [1,40] */
3133        int nice_rlim = 20 - nice;
3134
3135        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3136                capable(CAP_SYS_NICE));
3137}
3138
3139#ifdef __ARCH_WANT_SYS_NICE
3140
3141/*
3142 * sys_nice - change the priority of the current process.
3143 * @increment: priority increment
3144 *
3145 * sys_setpriority is a more generic, but much slower function that
3146 * does similar things.
3147 */
3148SYSCALL_DEFINE1(nice, int, increment)
3149{
3150        long nice, retval;
3151
3152        /*
3153         * Setpriority might change our priority at the same moment.
3154         * We don't have to worry. Conceptually one call occurs first
3155         * and we have a single winner.
3156         */
3157        if (increment < -40)
3158                increment = -40;
3159        if (increment > 40)
3160                increment = 40;
3161
3162        nice = TASK_NICE(current) + increment;
3163        if (nice < -20)
3164                nice = -20;
3165        if (nice > 19)
3166                nice = 19;
3167
3168        if (increment < 0 && !can_nice(current, nice))
3169                return -EPERM;
3170
3171        retval = security_task_setnice(current, nice);
3172        if (retval)
3173                return retval;
3174
3175        set_user_nice(current, nice);
3176        return 0;
3177}
3178
3179#endif
3180
3181/**
3182 * task_prio - return the priority value of a given task.
3183 * @p: the task in question.
3184 *
3185 * Return: The priority value as seen by users in /proc.
3186 * RT tasks are offset by -200. Normal tasks are centered
3187 * around 0, value goes from -16 to +15.
3188 */
3189int task_prio(const struct task_struct *p)
3190{
3191        return p->prio - MAX_RT_PRIO;
3192}
3193
3194/**
3195 * task_nice - return the nice value of a given task.
3196 * @p: the task in question.
3197 *
3198 * Return: The nice value [ -20 ... 0 ... 19 ].
3199 */
3200int task_nice(const struct task_struct *p)
3201{
3202        return TASK_NICE(p);
3203}
3204EXPORT_SYMBOL(task_nice);
3205
3206/**
3207 * idle_cpu - is a given cpu idle currently?
3208 * @cpu: the processor in question.
3209 *
3210 * Return: 1 if the CPU is currently idle. 0 otherwise.
3211 */
3212int idle_cpu(int cpu)
3213{
3214        struct rq *rq = cpu_rq(cpu);
3215
3216        if (rq->curr != rq->idle)
3217                return 0;
3218
3219        if (rq->nr_running)
3220                return 0;
3221
3222#ifdef CONFIG_SMP
3223        if (!llist_empty(&rq->wake_list))
3224                return 0;
3225#endif
3226
3227        return 1;
3228}
3229
3230/**
3231 * idle_task - return the idle task for a given cpu.
3232 * @cpu: the processor in question.
3233 *
3234 * Return: The idle task for the cpu @cpu.
3235 */
3236struct task_struct *idle_task(int cpu)
3237{
3238        return cpu_rq(cpu)->idle;
3239}
3240
3241/**
3242 * find_process_by_pid - find a process with a matching PID value.
3243 * @pid: the pid in question.
3244 *
3245 * The task of @pid, if found. %NULL otherwise.
3246 */
3247static struct task_struct *find_process_by_pid(pid_t pid)
3248{
3249        return pid ? find_task_by_vpid(pid) : current;
3250}
3251
3252/* Actually do priority change: must hold rq lock. */
3253static void
3254__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3255{
3256        p->policy = policy;
3257        p->rt_priority = prio;
3258        p->normal_prio = normal_prio(p);
3259        /* we are holding p->pi_lock already */
3260        p->prio = rt_mutex_getprio(p);
3261        if (rt_prio(p->prio))
3262                p->sched_class = &rt_sched_class;
3263        else
3264                p->sched_class = &fair_sched_class;
3265        set_load_weight(p);
3266}
3267
3268/*
3269 * check the target process has a UID that matches the current process's
3270 */
3271static bool check_same_owner(struct task_struct *p)
3272{
3273        const struct cred *cred = current_cred(), *pcred;
3274        bool match;
3275
3276        rcu_read_lock();
3277        pcred = __task_cred(p);
3278        match = (uid_eq(cred->euid, pcred->euid) ||
3279                 uid_eq(cred->euid, pcred->uid));
3280        rcu_read_unlock();
3281        return match;
3282}
3283
3284static int __sched_setscheduler(struct task_struct *p, int policy,
3285                                const struct sched_param *param, bool user)
3286{
3287        int retval, oldprio, oldpolicy = -1, on_rq, running;
3288        unsigned long flags;
3289        const struct sched_class *prev_class;
3290        struct rq *rq;
3291        int reset_on_fork;
3292
3293        /* may grab non-irq protected spin_locks */
3294        BUG_ON(in_interrupt());
3295recheck:
3296        /* double check policy once rq lock held */
3297        if (policy < 0) {
3298                reset_on_fork = p->sched_reset_on_fork;
3299                policy = oldpolicy = p->policy;
3300        } else {
3301                reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3302                policy &= ~SCHED_RESET_ON_FORK;
3303
3304                if (policy != SCHED_FIFO && policy != SCHED_RR &&
3305                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3306                                policy != SCHED_IDLE)
3307                        return -EINVAL;
3308        }
3309
3310        /*
3311         * Valid priorities for SCHED_FIFO and SCHED_RR are
3312         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3313         * SCHED_BATCH and SCHED_IDLE is 0.
3314         */
3315        if (param->sched_priority < 0 ||
3316            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3317            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3318                return -EINVAL;
3319        if (rt_policy(policy) != (param->sched_priority != 0))
3320                return -EINVAL;
3321
3322        /*
3323         * Allow unprivileged RT tasks to decrease priority:
3324         */
3325        if (user && !capable(CAP_SYS_NICE)) {
3326                if (rt_policy(policy)) {
3327                        unsigned long rlim_rtprio =
3328                                        task_rlimit(p, RLIMIT_RTPRIO);
3329
3330                        /* can't set/change the rt policy */
3331                        if (policy != p->policy && !rlim_rtprio)
3332                                return -EPERM;
3333
3334                        /* can't increase priority */
3335                        if (param->sched_priority > p->rt_priority &&
3336                            param->sched_priority > rlim_rtprio)
3337                                return -EPERM;
3338                }
3339
3340                /*
3341                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3342                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3343                 */
3344                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3345                        if (!can_nice(p, TASK_NICE(p)))
3346                                return -EPERM;
3347                }
3348
3349                /* can't change other user's priorities */
3350                if (!check_same_owner(p))
3351                        return -EPERM;
3352
3353                /* Normal users shall not reset the sched_reset_on_fork flag */
3354                if (p->sched_reset_on_fork && !reset_on_fork)
3355                        return -EPERM;
3356        }
3357
3358        if (user) {
3359                retval = security_task_setscheduler(p);
3360                if (retval)
3361                        return retval;
3362        }
3363
3364        /*
3365         * make sure no PI-waiters arrive (or leave) while we are
3366         * changing the priority of the task:
3367         *
3368         * To be able to change p->policy safely, the appropriate
3369         * runqueue lock must be held.
3370         */
3371        rq = task_rq_lock(p, &flags);
3372
3373        /*
3374         * Changing the policy of the stop threads its a very bad idea
3375         */
3376        if (p == rq->stop) {
3377                task_rq_unlock(rq, p, &flags);
3378                return -EINVAL;
3379        }
3380
3381        /*
3382         * If not changing anything there's no need to proceed further:
3383         */
3384        if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3385                        param->sched_priority == p->rt_priority))) {
3386                task_rq_unlock(rq, p, &flags);
3387                return 0;
3388        }
3389
3390#ifdef CONFIG_RT_GROUP_SCHED
3391        if (user) {
3392                /*
3393                 * Do not allow realtime tasks into groups that have no runtime
3394                 * assigned.
3395                 */
3396                if (rt_bandwidth_enabled() && rt_policy(policy) &&
3397                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3398                                !task_group_is_autogroup(task_group(p))) {
3399                        task_rq_unlock(rq, p, &flags);
3400                        return -EPERM;
3401                }
3402        }
3403#endif
3404
3405        /* recheck policy now with rq lock held */
3406        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3407                policy = oldpolicy = -1;
3408                task_rq_unlock(rq, p, &flags);
3409                goto recheck;
3410        }
3411        on_rq = p->on_rq;
3412        running = task_current(rq, p);
3413        if (on_rq)
3414                dequeue_task(rq, p, 0);
3415        if (running)
3416                p->sched_class->put_prev_task(rq, p);
3417
3418        p->sched_reset_on_fork = reset_on_fork;
3419
3420        oldprio = p->prio;
3421        prev_class = p->sched_class;
3422        __setscheduler(rq, p, policy, param->sched_priority);
3423
3424        if (running)
3425                p->sched_class->set_curr_task(rq);
3426        if (on_rq)
3427                enqueue_task(rq, p, 0);
3428
3429        check_class_changed(rq, p, prev_class, oldprio);
3430        task_rq_unlock(rq, p, &flags);
3431
3432        rt_mutex_adjust_pi(p);
3433
3434        return 0;
3435}
3436
3437/**
3438 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3439 * @p: the task in question.
3440 * @policy: new policy.
3441 * @param: structure containing the new RT priority.
3442 *
3443 * Return: 0 on success. An error code otherwise.
3444 *
3445 * NOTE that the task may be already dead.
3446 */
3447int sched_setscheduler(struct task_struct *p, int policy,
3448                       const struct sched_param *param)
3449{
3450        return __sched_setscheduler(p, policy, param, true);
3451}
3452EXPORT_SYMBOL_GPL(sched_setscheduler);
3453
3454/**
3455 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3456 * @p: the task in question.
3457 * @policy: new policy.
3458 * @param: structure containing the new RT priority.
3459 *
3460 * Just like sched_setscheduler, only don't bother checking if the
3461 * current context has permission.  For example, this is needed in
3462 * stop_machine(): we create temporary high priority worker threads,
3463 * but our caller might not have that capability.
3464 *
3465 * Return: 0 on success. An error code otherwise.
3466 */
3467int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3468                               const struct sched_param *param)
3469{
3470        return __sched_setscheduler(p, policy, param, false);
3471}
3472
3473static int
3474do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3475{
3476        struct sched_param lparam;
3477        struct task_struct *p;
3478        int retval;
3479
3480        if (!param || pid < 0)
3481                return -EINVAL;
3482        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3483                return -EFAULT;
3484
3485        rcu_read_lock();
3486        retval = -ESRCH;
3487        p = find_process_by_pid(pid);
3488        if (p != NULL)
3489                retval = sched_setscheduler(p, policy, &lparam);
3490        rcu_read_unlock();
3491
3492        return retval;
3493}
3494
3495/**
3496 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3497 * @pid: the pid in question.
3498 * @policy: new policy.
3499 * @param: structure containing the new RT priority.
3500 *
3501 * Return: 0 on success. An error code otherwise.
3502 */
3503SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3504                struct sched_param __user *, param)
3505{
3506        /* negative values for policy are not valid */
3507        if (policy < 0)
3508                return -EINVAL;
3509
3510        return do_sched_setscheduler(pid, policy, param);
3511}
3512
3513/**
3514 * sys_sched_setparam - set/change the RT priority of a thread
3515 * @pid: the pid in question.
3516 * @param: structure containing the new RT priority.
3517 *
3518 * Return: 0 on success. An error code otherwise.
3519 */
3520SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3521{
3522        return do_sched_setscheduler(pid, -1, param);
3523}
3524
3525/**
3526 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3527 * @pid: the pid in question.
3528 *
3529 * Return: On success, the policy of the thread. Otherwise, a negative error
3530 * code.
3531 */
3532SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3533{
3534        struct task_struct *p;
3535        int retval;
3536
3537        if (pid < 0)
3538                return -EINVAL;
3539
3540        retval = -ESRCH;
3541        rcu_read_lock();
3542        p = find_process_by_pid(pid);
3543        if (p) {
3544                retval = security_task_getscheduler(p);
3545                if (!retval)
3546                        retval = p->policy
3547                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3548        }
3549        rcu_read_unlock();
3550        return retval;
3551}
3552
3553/**
3554 * sys_sched_getparam - get the RT priority of a thread
3555 * @pid: the pid in question.
3556 * @param: structure containing the RT priority.
3557 *
3558 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3559 * code.
3560 */
3561SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3562{
3563        struct sched_param lp;
3564        struct task_struct *p;
3565        int retval;
3566
3567        if (!param || pid < 0)
3568                return -EINVAL;
3569
3570        rcu_read_lock();
3571        p = find_process_by_pid(pid);
3572        retval = -ESRCH;
3573        if (!p)
3574                goto out_unlock;
3575
3576        retval = security_task_getscheduler(p);
3577        if (retval)
3578                goto out_unlock;
3579
3580        lp.sched_priority = p->rt_priority;
3581        rcu_read_unlock();
3582
3583        /*
3584         * This one might sleep, we cannot do it with a spinlock held ...
3585         */
3586        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3587
3588        return retval;
3589
3590out_unlock:
3591        rcu_read_unlock();
3592        return retval;
3593}
3594
3595long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3596{
3597        cpumask_var_t cpus_allowed, new_mask;
3598        struct task_struct *p;
3599        int retval;
3600
3601        get_online_cpus();
3602        rcu_read_lock();
3603
3604        p = find_process_by_pid(pid);
3605        if (!p) {
3606                rcu_read_unlock();
3607                put_online_cpus();
3608                return -ESRCH;
3609        }
3610
3611        /* Prevent p going away */
3612        get_task_struct(p);
3613        rcu_read_unlock();
3614
3615        if (p->flags & PF_NO_SETAFFINITY) {
3616                retval = -EINVAL;
3617                goto out_put_task;
3618        }
3619        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3620                retval = -ENOMEM;
3621                goto out_put_task;
3622        }
3623        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3624                retval = -ENOMEM;
3625                goto out_free_cpus_allowed;
3626        }
3627        retval = -EPERM;
3628        if (!check_same_owner(p)) {
3629                rcu_read_lock();
3630                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3631                        rcu_read_unlock();
3632                        goto out_unlock;
3633                }
3634                rcu_read_unlock();
3635        }
3636
3637        retval = security_task_setscheduler(p);
3638        if (retval)
3639                goto out_unlock;
3640
3641        cpuset_cpus_allowed(p, cpus_allowed);
3642        cpumask_and(new_mask, in_mask, cpus_allowed);
3643again:
3644        retval = set_cpus_allowed_ptr(p, new_mask);
3645
3646        if (!retval) {
3647                cpuset_cpus_allowed(p, cpus_allowed);
3648                if (!cpumask_subset(new_mask, cpus_allowed)) {
3649                        /*
3650                         * We must have raced with a concurrent cpuset
3651                         * update. Just reset the cpus_allowed to the
3652                         * cpuset's cpus_allowed
3653                         */
3654                        cpumask_copy(new_mask, cpus_allowed);
3655                        goto again;
3656                }
3657        }
3658out_unlock:
3659        free_cpumask_var(new_mask);
3660out_free_cpus_allowed:
3661        free_cpumask_var(cpus_allowed);
3662out_put_task:
3663        put_task_struct(p);
3664        put_online_cpus();
3665        return retval;
3666}
3667
3668static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3669                             struct cpumask *new_mask)
3670{
3671        if (len < cpumask_size())
3672                cpumask_clear(new_mask);
3673        else if (len > cpumask_size())
3674                len = cpumask_size();
3675
3676        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3677}
3678
3679/**
3680 * sys_sched_setaffinity - set the cpu affinity of a process
3681 * @pid: pid of the process
3682 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3683 * @user_mask_ptr: user-space pointer to the new cpu mask
3684 *
3685 * Return: 0 on success. An error code otherwise.
3686 */
3687SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3688                unsigned long __user *, user_mask_ptr)
3689{
3690        cpumask_var_t new_mask;
3691        int retval;
3692
3693        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3694                return -ENOMEM;
3695
3696        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3697        if (retval == 0)
3698                retval = sched_setaffinity(pid, new_mask);
3699        free_cpumask_var(new_mask);
3700        return retval;
3701}
3702
3703long sched_getaffinity(pid_t pid, struct cpumask *mask)
3704{
3705        struct task_struct *p;
3706        unsigned long flags;
3707        int retval;
3708
3709        get_online_cpus();
3710        rcu_read_lock();
3711
3712        retval = -ESRCH;
3713        p = find_process_by_pid(pid);
3714        if (!p)
3715                goto out_unlock;
3716
3717        retval = security_task_getscheduler(p);
3718        if (retval)
3719                goto out_unlock;
3720
3721        raw_spin_lock_irqsave(&p->pi_lock, flags);
3722        cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
3723        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3724
3725out_unlock:
3726        rcu_read_unlock();
3727        put_online_cpus();
3728
3729        return retval;
3730}
3731
3732/**
3733 * sys_sched_getaffinity - get the cpu affinity of a process
3734 * @pid: pid of the process
3735 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3736 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3737 *
3738 * Return: 0 on success. An error code otherwise.
3739 */
3740SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3741                unsigned long __user *, user_mask_ptr)
3742{
3743        int ret;
3744        cpumask_var_t mask;
3745
3746        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3747                return -EINVAL;
3748        if (len & (sizeof(unsigned long)-1))
3749                return -EINVAL;
3750
3751        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3752                return -ENOMEM;
3753
3754        ret = sched_getaffinity(pid, mask);
3755        if (ret == 0) {
3756                size_t retlen = min_t(size_t, len, cpumask_size());
3757
3758                if (copy_to_user(user_mask_ptr, mask, retlen))
3759                        ret = -EFAULT;
3760                else
3761                        ret = retlen;
3762        }
3763        free_cpumask_var(mask);
3764
3765        return ret;
3766}
3767
3768/**
3769 * sys_sched_yield - yield the current processor to other threads.
3770 *
3771 * This function yields the current CPU to other tasks. If there are no
3772 * other threads running on this CPU then this function will return.
3773 *
3774 * Return: 0.
3775 */
3776SYSCALL_DEFINE0(sched_yield)
3777{
3778        struct rq *rq = this_rq_lock();
3779
3780        schedstat_inc(rq, yld_count);
3781        current->sched_class->yield_task(rq);
3782
3783        /*
3784         * Since we are going to call schedule() anyway, there's
3785         * no need to preempt or enable interrupts:
3786         */
3787        __release(rq->lock);
3788        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3789        do_raw_spin_unlock(&rq->lock);
3790        sched_preempt_enable_no_resched();
3791
3792        schedule();
3793
3794        return 0;
3795}
3796
3797static inline int should_resched(void)
3798{
3799        return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3800}
3801
3802static void __cond_resched(void)
3803{
3804        add_preempt_count(PREEMPT_ACTIVE);
3805        __schedule();
3806        sub_preempt_count(PREEMPT_ACTIVE);
3807}
3808
3809int __sched _cond_resched(void)
3810{
3811        if (should_resched()) {
3812                __cond_resched();
3813                return 1;
3814        }
3815        return 0;
3816}
3817EXPORT_SYMBOL(_cond_resched);
3818
3819/*
3820 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3821 * call schedule, and on return reacquire the lock.
3822 *
3823 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3824 * operations here to prevent schedule() from being called twice (once via
3825 * spin_unlock(), once by hand).
3826 */
3827int __cond_resched_lock(spinlock_t *lock)
3828{
3829        int resched = should_resched();
3830        int ret = 0;
3831
3832        lockdep_assert_held(lock);
3833
3834        if (spin_needbreak(lock) || resched) {
3835                spin_unlock(lock);
3836                if (resched)
3837                        __cond_resched();
3838                else
3839                        cpu_relax();
3840                ret = 1;
3841                spin_lock(lock);
3842        }
3843        return ret;
3844}
3845EXPORT_SYMBOL(__cond_resched_lock);
3846
3847int __sched __cond_resched_softirq(void)
3848{
3849        BUG_ON(!in_softirq());
3850
3851        if (should_resched()) {
3852                local_bh_enable();
3853                __cond_resched();
3854                local_bh_disable();
3855                return 1;
3856        }
3857        return 0;
3858}
3859EXPORT_SYMBOL(__cond_resched_softirq);
3860
3861/**
3862 * yield - yield the current processor to other threads.
3863 *
3864 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3865 *
3866 * The scheduler is at all times free to pick the calling task as the most
3867 * eligible task to run, if removing the yield() call from your code breaks
3868 * it, its already broken.
3869 *
3870 * Typical broken usage is:
3871 *
3872 * while (!event)
3873 *      yield();
3874 *
3875 * where one assumes that yield() will let 'the other' process run that will
3876 * make event true. If the current task is a SCHED_FIFO task that will never
3877 * happen. Never use yield() as a progress guarantee!!
3878 *
3879 * If you want to use yield() to wait for something, use wait_event().
3880 * If you want to use yield() to be 'nice' for others, use cond_resched().
3881 * If you still want to use yield(), do not!
3882 */
3883void __sched yield(void)
3884{
3885        set_current_state(TASK_RUNNING);
3886        sys_sched_yield();
3887}
3888EXPORT_SYMBOL(yield);
3889
3890/**
3891 * yield_to - yield the current processor to another thread in
3892 * your thread group, or accelerate that thread toward the
3893 * processor it's on.
3894 * @p: target task
3895 * @preempt: whether task preemption is allowed or not
3896 *
3897 * It's the caller's job to ensure that the target task struct
3898 * can't go away on us before we can do any checks.
3899 *
3900 * Return:
3901 *      true (>0) if we indeed boosted the target task.
3902 *      false (0) if we failed to boost the target.
3903 *      -ESRCH if there's no task to yield to.
3904 */
3905bool __sched yield_to(struct task_struct *p, bool preempt)
3906{
3907        struct task_struct *curr = current;
3908        struct rq *rq, *p_rq;
3909        unsigned long flags;
3910        int yielded = 0;
3911
3912        local_irq_save(flags);
3913        rq = this_rq();
3914
3915again:
3916        p_rq = task_rq(p);
3917        /*
3918         * If we're the only runnable task on the rq and target rq also
3919         * has only one task, there's absolutely no point in yielding.
3920         */
3921        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3922                yielded = -ESRCH;
3923                goto out_irq;
3924        }
3925
3926        double_rq_lock(rq, p_rq);
3927        while (task_rq(p) != p_rq) {
3928                double_rq_unlock(rq, p_rq);
3929                goto again;
3930        }
3931
3932        if (!curr->sched_class->yield_to_task)
3933                goto out_unlock;
3934
3935        if (curr->sched_class != p->sched_class)
3936                goto out_unlock;
3937
3938        if (task_running(p_rq, p) || p->state)
3939                goto out_unlock;
3940
3941        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3942        if (yielded) {
3943                schedstat_inc(rq, yld_count);
3944                /*
3945                 * Make p's CPU reschedule; pick_next_entity takes care of
3946                 * fairness.
3947                 */
3948                if (preempt && rq != p_rq)
3949                        resched_task(p_rq->curr);
3950        }
3951
3952out_unlock:
3953        double_rq_unlock(rq, p_rq);
3954out_irq:
3955        local_irq_restore(flags);
3956
3957        if (yielded > 0)
3958                schedule();
3959
3960        return yielded;
3961}
3962EXPORT_SYMBOL_GPL(yield_to);
3963
3964/*
3965 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3966 * that process accounting knows that this is a task in IO wait state.
3967 */
3968void __sched io_schedule(void)
3969{
3970        struct rq *rq = raw_rq();
3971
3972        delayacct_blkio_start();
3973        atomic_inc(&rq->nr_iowait);
3974        blk_flush_plug(current);
3975        current->in_iowait = 1;
3976        schedule();
3977        current->in_iowait = 0;
3978        atomic_dec(&rq->nr_iowait);
3979        delayacct_blkio_end();
3980}
3981EXPORT_SYMBOL(io_schedule);
3982
3983long __sched io_schedule_timeout(long timeout)
3984{
3985        struct rq *rq = raw_rq();
3986        long ret;
3987
3988        delayacct_blkio_start();
3989        atomic_inc(&rq->nr_iowait);
3990        blk_flush_plug(current);
3991        current->in_iowait = 1;
3992        ret = schedule_timeout(timeout);
3993        current->in_iowait = 0;
3994        atomic_dec(&rq->nr_iowait);
3995        delayacct_blkio_end();
3996        return ret;
3997}
3998
3999/**
4000 * sys_sched_get_priority_max - return maximum RT priority.
4001 * @policy: scheduling class.
4002 *
4003 * Return: On success, this syscall returns the maximum
4004 * rt_priority that can be used by a given scheduling class.
4005 * On failure, a negative error code is returned.
4006 */
4007SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4008{
4009        int ret = -EINVAL;
4010
4011        switch (policy) {
4012        case SCHED_FIFO:
4013        case SCHED_RR:
4014                ret = MAX_USER_RT_PRIO-1;
4015                break;
4016        case SCHED_NORMAL:
4017        case SCHED_BATCH:
4018        case SCHED_IDLE:
4019                ret = 0;
4020                break;
4021        }
4022        return ret;
4023}
4024
4025/**
4026 * sys_sched_get_priority_min - return minimum RT priority.
4027 * @policy: scheduling class.
4028 *
4029 * Return: On success, this syscall returns the minimum
4030 * rt_priority that can be used by a given scheduling class.
4031 * On failure, a negative error code is returned.
4032 */
4033SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4034{
4035        int ret = -EINVAL;
4036
4037        switch (policy) {
4038        case SCHED_FIFO:
4039        case SCHED_RR:
4040                ret = 1;
4041                break;
4042        case SCHED_NORMAL:
4043        case SCHED_BATCH:
4044        case SCHED_IDLE:
4045                ret = 0;
4046        }
4047        return ret;
4048}
4049
4050/**
4051 * sys_sched_rr_get_interval - return the default timeslice of a process.
4052 * @pid: pid of the process.
4053 * @interval: userspace pointer to the timeslice value.
4054 *
4055 * this syscall writes the default timeslice value of a given process
4056 * into the user-space timespec buffer. A value of '0' means infinity.
4057 *
4058 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4059 * an error code.
4060 */
4061SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4062                struct timespec __user *, interval)
4063{
4064        struct task_struct *p;
4065        unsigned int time_slice;
4066        unsigned long flags;
4067        struct rq *rq;
4068        int retval;
4069        struct timespec t;
4070
4071        if (pid < 0)
4072                return -EINVAL;
4073
4074        retval = -ESRCH;
4075        rcu_read_lock();
4076        p = find_process_by_pid(pid);
4077        if (!p)
4078                goto out_unlock;
4079
4080        retval = security_task_getscheduler(p);
4081        if (retval)
4082                goto out_unlock;
4083
4084        rq = task_rq_lock(p, &flags);
4085        time_slice = p->sched_class->get_rr_interval(rq, p);
4086        task_rq_unlock(rq, p, &flags);
4087
4088        rcu_read_unlock();
4089        jiffies_to_timespec(time_slice, &t);
4090        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4091        return retval;
4092
4093out_unlock:
4094        rcu_read_unlock();
4095        return retval;
4096}
4097
4098static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4099
4100void sched_show_task(struct task_struct *p)
4101{
4102        unsigned long free = 0;
4103        int ppid;
4104        unsigned state;
4105
4106        state = p->state ? __ffs(p->state) + 1 : 0;
4107        printk(KERN_INFO "%-15.15s %c", p->comm,
4108                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4109#if BITS_PER_LONG == 32
4110        if (state == TASK_RUNNING)
4111                printk(KERN_CONT " running  ");
4112        else
4113                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4114#else
4115        if (state == TASK_RUNNING)
4116                printk(KERN_CONT "  running task    ");
4117        else
4118                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4119#endif
4120#ifdef CONFIG_DEBUG_STACK_USAGE
4121        free = stack_not_used(p);
4122#endif
4123        rcu_read_lock();
4124        ppid = task_pid_nr(rcu_dereference(p->real_parent));
4125        rcu_read_unlock();
4126        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4127                task_pid_nr(p), ppid,
4128                (unsigned long)task_thread_info(p)->flags);
4129
4130        print_worker_info(KERN_INFO, p);
4131        show_stack(p, NULL);
4132}
4133
4134void show_state_filter(unsigned long state_filter)
4135{
4136        struct task_struct *g, *p;
4137
4138#if BITS_PER_LONG == 32
4139        printk(KERN_INFO
4140                "  task                PC stack   pid father\n");
4141#else
4142        printk(KERN_INFO
4143                "  task                        PC stack   pid father\n");
4144#endif
4145        rcu_read_lock();
4146        do_each_thread(g, p) {
4147                /*
4148                 * reset the NMI-timeout, listing all files on a slow
4149                 * console might take a lot of time:
4150                 */
4151                touch_nmi_watchdog();
4152                if (!state_filter || (p->state & state_filter))
4153                        sched_show_task(p);
4154        } while_each_thread(g, p);
4155
4156        touch_all_softlockup_watchdogs();
4157
4158#ifdef CONFIG_SCHED_DEBUG
4159        sysrq_sched_debug_show();
4160#endif
4161        rcu_read_unlock();
4162        /*
4163         * Only show locks if all tasks are dumped:
4164         */
4165        if (!state_filter)
4166                debug_show_all_locks();
4167}
4168
4169void init_idle_bootup_task(struct task_struct *idle)
4170{
4171        idle->sched_class = &idle_sched_class;
4172}
4173
4174/**
4175 * init_idle - set up an idle thread for a given CPU
4176 * @idle: task in question
4177 * @cpu: cpu the idle task belongs to
4178 *
4179 * NOTE: this function does not set the idle thread's NEED_RESCHED
4180 * flag, to make booting more robust.
4181 */
4182void init_idle(struct task_struct *idle, int cpu)
4183{
4184        struct rq *rq = cpu_rq(cpu);
4185        unsigned long flags;
4186
4187        raw_spin_lock_irqsave(&rq->lock, flags);
4188
4189        __sched_fork(idle);
4190        idle->state = TASK_RUNNING;
4191        idle->se.exec_start = sched_clock();
4192
4193        do_set_cpus_allowed(idle, cpumask_of(cpu));
4194        /*
4195         * We're having a chicken and egg problem, even though we are
4196         * holding rq->lock, the cpu isn't yet set to this cpu so the
4197         * lockdep check in task_group() will fail.
4198         *
4199         * Similar case to sched_fork(). / Alternatively we could
4200         * use task_rq_lock() here and obtain the other rq->lock.
4201         *
4202         * Silence PROVE_RCU
4203         */
4204        rcu_read_lock();
4205        __set_task_cpu(idle, cpu);
4206        rcu_read_unlock();
4207
4208        rq->curr = rq->idle = idle;
4209#if defined(CONFIG_SMP)
4210        idle->on_cpu = 1;
4211#endif
4212        raw_spin_unlock_irqrestore(&rq->lock, flags);
4213
4214        /* Set the preempt count _outside_ the spinlocks! */
4215        task_thread_info(idle)->preempt_count = 0;
4216
4217        /*
4218         * The idle tasks have their own, simple scheduling class:
4219         */
4220        idle->sched_class = &idle_sched_class;
4221        ftrace_graph_init_idle_task(idle, cpu);
4222        vtime_init_idle(idle, cpu);
4223#if defined(CONFIG_SMP)
4224        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4225#endif
4226}
4227
4228#ifdef CONFIG_SMP
4229void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4230{
4231        if (p->sched_class && p->sched_class->set_cpus_allowed)
4232                p->sched_class->set_cpus_allowed(p, new_mask);
4233
4234        cpumask_copy(&p->cpus_allowed, new_mask);
4235        p->nr_cpus_allowed = cpumask_weight(new_mask);
4236}
4237
4238/*
4239 * This is how migration works:
4240 *
4241 * 1) we invoke migration_cpu_stop() on the target CPU using
4242 *    stop_one_cpu().
4243 * 2) stopper starts to run (implicitly forcing the migrated thread
4244 *    off the CPU)
4245 * 3) it checks whether the migrated task is still in the wrong runqueue.
4246 * 4) if it's in the wrong runqueue then the migration thread removes
4247 *    it and puts it into the right queue.
4248 * 5) stopper completes and stop_one_cpu() returns and the migration
4249 *    is done.
4250 */
4251
4252/*
4253 * Change a given task's CPU affinity. Migrate the thread to a
4254 * proper CPU and schedule it away if the CPU it's executing on
4255 * is removed from the allowed bitmask.
4256 *
4257 * NOTE: the caller must have a valid reference to the task, the
4258 * task must not exit() & deallocate itself prematurely. The
4259 * call is not atomic; no spinlocks may be held.
4260 */
4261int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4262{
4263        unsigned long flags;
4264        struct rq *rq;
4265        unsigned int dest_cpu;
4266        int ret = 0;
4267
4268        rq = task_rq_lock(p, &flags);
4269
4270        if (cpumask_equal(&p->cpus_allowed, new_mask))
4271                goto out;
4272
4273        if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4274                ret = -EINVAL;
4275                goto out;
4276        }
4277
4278        do_set_cpus_allowed(p, new_mask);
4279
4280        /* Can the task run on the task's current CPU? If so, we're done */
4281        if (cpumask_test_cpu(task_cpu(p), new_mask))
4282                goto out;
4283
4284        dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4285        if (p->on_rq) {
4286                struct migration_arg arg = { p, dest_cpu };
4287                /* Need help from migration thread: drop lock and wait. */
4288                task_rq_unlock(rq, p, &flags);
4289                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4290                tlb_migrate_finish(p->mm);
4291                return 0;
4292        }
4293out:
4294        task_rq_unlock(rq, p, &flags);
4295
4296        return ret;
4297}
4298EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4299
4300/*
4301 * Move (not current) task off this cpu, onto dest cpu. We're doing
4302 * this because either it can't run here any more (set_cpus_allowed()
4303 * away from this CPU, or CPU going down), or because we're
4304 * attempting to rebalance this task on exec (sched_exec).
4305 *
4306 * So we race with normal scheduler movements, but that's OK, as long
4307 * as the task is no longer on this CPU.
4308 *
4309 * Returns non-zero if task was successfully migrated.
4310 */
4311static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4312{
4313        struct rq *rq_dest, *rq_src;
4314        int ret = 0;
4315
4316        if (unlikely(!cpu_active(dest_cpu)))
4317                return ret;
4318
4319        rq_src = cpu_rq(src_cpu);
4320        rq_dest = cpu_rq(dest_cpu);
4321
4322        raw_spin_lock(&p->pi_lock);
4323        double_rq_lock(rq_src, rq_dest);
4324        /* Already moved. */
4325        if (task_cpu(p) != src_cpu)
4326                goto done;
4327        /* Affinity changed (again). */
4328        if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4329                goto fail;
4330
4331        /*
4332         * If we're not on a rq, the next wake-up will ensure we're
4333         * placed properly.
4334         */
4335        if (p->on_rq) {
4336                dequeue_task(rq_src, p, 0);
4337                set_task_cpu(p, dest_cpu);
4338                enqueue_task(rq_dest, p, 0);
4339                check_preempt_curr(rq_dest, p, 0);
4340        }
4341done:
4342        ret = 1;
4343fail:
4344        double_rq_unlock(rq_src, rq_dest);
4345        raw_spin_unlock(&p->pi_lock);
4346        return ret;
4347}
4348
4349/*
4350 * migration_cpu_stop - this will be executed by a highprio stopper thread
4351 * and performs thread migration by bumping thread off CPU then
4352 * 'pushing' onto another runqueue.
4353 */
4354static int migration_cpu_stop(void *data)
4355{
4356        struct migration_arg *arg = data;
4357
4358        /*
4359         * The original target cpu might have gone down and we might
4360         * be on another cpu but it doesn't matter.
4361         */
4362        local_irq_disable();
4363        __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4364        local_irq_enable();
4365        return 0;
4366}
4367
4368#ifdef CONFIG_HOTPLUG_CPU
4369
4370/*
4371 * Ensures that the idle task is using init_mm right before its cpu goes
4372 * offline.
4373 */
4374void idle_task_exit(void)
4375{
4376        struct mm_struct *mm = current->active_mm;
4377
4378        BUG_ON(cpu_online(smp_processor_id()));
4379
4380        if (mm != &init_mm)
4381                switch_mm(mm, &init_mm, current);
4382        mmdrop(mm);
4383}
4384
4385/*
4386 * Since this CPU is going 'away' for a while, fold any nr_active delta
4387 * we might have. Assumes we're called after migrate_tasks() so that the
4388 * nr_active count is stable.
4389 *
4390 * Also see the comment "Global load-average calculations".
4391 */
4392static void calc_load_migrate(struct rq *rq)
4393{
4394        long delta = calc_load_fold_active(rq);
4395        if (delta)
4396                atomic_long_add(delta, &calc_load_tasks);
4397}
4398
4399/*
4400 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4401 * try_to_wake_up()->select_task_rq().
4402 *
4403 * Called with rq->lock held even though we'er in stop_machine() and
4404 * there's no concurrency possible, we hold the required locks anyway
4405 * because of lock validation efforts.
4406 */
4407static void migrate_tasks(unsigned int dead_cpu)
4408{
4409        struct rq *rq = cpu_rq(dead_cpu);
4410        struct task_struct *next, *stop = rq->stop;
4411        int dest_cpu;
4412
4413        /*
4414         * Fudge the rq selection such that the below task selection loop
4415         * doesn't get stuck on the currently eligible stop task.
4416         *
4417         * We're currently inside stop_machine() and the rq is either stuck
4418         * in the stop_machine_cpu_stop() loop, or we're executing this code,
4419         * either way we should never end up calling schedule() until we're
4420         * done here.
4421         */
4422        rq->stop = NULL;
4423
4424        /*
4425         * put_prev_task() and pick_next_task() sched
4426         * class method both need to have an up-to-date
4427         * value of rq->clock[_task]
4428         */
4429        update_rq_clock(rq);
4430
4431        for ( ; ; ) {
4432                /*
4433                 * There's this thread running, bail when that's the only
4434                 * remaining thread.
4435                 */
4436                if (rq->nr_running == 1)
4437                        break;
4438
4439                next = pick_next_task(rq);
4440                BUG_ON(!next);
4441                next->sched_class->put_prev_task(rq, next);
4442
4443                /* Find suitable destination for @next, with force if needed. */
4444                dest_cpu = select_fallback_rq(dead_cpu, next);
4445                raw_spin_unlock(&rq->lock);
4446
4447                __migrate_task(next, dead_cpu, dest_cpu);
4448
4449                raw_spin_lock(&rq->lock);
4450        }
4451
4452        rq->stop = stop;
4453}
4454
4455#endif /* CONFIG_HOTPLUG_CPU */
4456
4457#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4458
4459static struct ctl_table sd_ctl_dir[] = {
4460        {
4461                .procname       = "sched_domain",
4462                .mode           = 0555,
4463        },
4464        {}
4465};
4466
4467static struct ctl_table sd_ctl_root[] = {
4468        {
4469                .procname       = "kernel",
4470                .mode           = 0555,
4471                .child          = sd_ctl_dir,
4472        },
4473        {}
4474};
4475
4476static struct ctl_table *sd_alloc_ctl_entry(int n)
4477{
4478        struct ctl_table *entry =
4479                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4480
4481        return entry;
4482}
4483
4484static void sd_free_ctl_entry(struct ctl_table **tablep)
4485{
4486        struct ctl_table *entry;
4487
4488        /*
4489         * In the intermediate directories, both the child directory and
4490         * procname are dynamically allocated and could fail but the mode
4491         * will always be set. In the lowest directory the names are
4492         * static strings and all have proc handlers.
4493         */
4494        for (entry = *tablep; entry->mode; entry++) {
4495                if (entry->child)
4496                        sd_free_ctl_entry(&entry->child);
4497                if (entry->proc_handler == NULL)
4498                        kfree(entry->procname);
4499        }
4500
4501        kfree(*tablep);
4502        *tablep = NULL;
4503}
4504
4505static int min_load_idx = 0;
4506static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4507
4508static void
4509set_table_entry(struct ctl_table *entry,
4510                const char *procname, void *data, int maxlen,
4511                umode_t mode, proc_handler *proc_handler,
4512                bool load_idx)
4513{
4514        entry->procname = procname;
4515        entry->data = data;
4516        entry->maxlen = maxlen;
4517        entry->mode = mode;
4518        entry->proc_handler = proc_handler;
4519
4520        if (load_idx) {
4521                entry->extra1 = &min_load_idx;
4522                entry->extra2 = &max_load_idx;
4523        }
4524}
4525
4526static struct ctl_table *
4527sd_alloc_ctl_domain_table(struct sched_domain *sd)
4528{
4529        struct ctl_table *table = sd_alloc_ctl_entry(13);
4530
4531        if (table == NULL)
4532                return NULL;
4533
4534        set_table_entry(&table[0], "min_interval", &sd->min_interval,
4535                sizeof(long), 0644, proc_doulongvec_minmax, false);
4536        set_table_entry(&table[1], "max_interval", &sd->max_interval,
4537                sizeof(long), 0644, proc_doulongvec_minmax, false);
4538        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4539                sizeof(int), 0644, proc_dointvec_minmax, true);
4540        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4541                sizeof(int), 0644, proc_dointvec_minmax, true);
4542        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4543                sizeof(int), 0644, proc_dointvec_minmax, true);
4544        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4545                sizeof(int), 0644, proc_dointvec_minmax, true);
4546        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4547                sizeof(int), 0644, proc_dointvec_minmax, true);
4548        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4549                sizeof(int), 0644, proc_dointvec_minmax, false);
4550        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4551                sizeof(int), 0644, proc_dointvec_minmax, false);
4552        set_table_entry(&table[9], "cache_nice_tries",
4553                &sd->cache_nice_tries,
4554                sizeof(int), 0644, proc_dointvec_minmax, false);
4555        set_table_entry(&table[10], "flags", &sd->flags,
4556                sizeof(int), 0644, proc_dointvec_minmax, false);
4557        set_table_entry(&table[11], "name", sd->name,
4558                CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4559        /* &table[12] is terminator */
4560
4561        return table;
4562}
4563
4564static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4565{
4566        struct ctl_table *entry, *table;
4567        struct sched_domain *sd;
4568        int domain_num = 0, i;
4569        char buf[32];
4570
4571        for_each_domain(cpu, sd)
4572                domain_num++;
4573        entry = table = sd_alloc_ctl_entry(domain_num + 1);
4574        if (table == NULL)
4575                return NULL;
4576
4577        i = 0;
4578        for_each_domain(cpu, sd) {
4579                snprintf(buf, 32, "domain%d", i);
4580                entry->procname = kstrdup(buf, GFP_KERNEL);
4581                entry->mode = 0555;
4582                entry->child = sd_alloc_ctl_domain_table(sd);
4583                entry++;
4584                i++;
4585        }
4586        return table;
4587}
4588
4589static struct ctl_table_header *sd_sysctl_header;
4590static void register_sched_domain_sysctl(void)
4591{
4592        int i, cpu_num = num_possible_cpus();
4593        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4594        char buf[32];
4595
4596        WARN_ON(sd_ctl_dir[0].child);
4597        sd_ctl_dir[0].child = entry;
4598
4599        if (entry == NULL)
4600                return;
4601
4602        for_each_possible_cpu(i) {
4603                snprintf(buf, 32, "cpu%d", i);
4604                entry->procname = kstrdup(buf, GFP_KERNEL);
4605                entry->mode = 0555;
4606                entry->child = sd_alloc_ctl_cpu_table(i);
4607                entry++;
4608        }
4609
4610        WARN_ON(sd_sysctl_header);
4611        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4612}
4613
4614/* may be called multiple times per register */
4615static void unregister_sched_domain_sysctl(void)
4616{
4617        if (sd_sysctl_header)
4618                unregister_sysctl_table(sd_sysctl_header);
4619        sd_sysctl_header = NULL;
4620        if (sd_ctl_dir[0].child)
4621                sd_free_ctl_entry(&sd_ctl_dir[0].child);
4622}
4623#else
4624static void register_sched_domain_sysctl(void)
4625{
4626}
4627static void unregister_sched_domain_sysctl(void)
4628{
4629}
4630#endif
4631
4632static void set_rq_online(struct rq *rq)
4633{
4634        if (!rq->online) {
4635                const struct sched_class *class;
4636
4637                cpumask_set_cpu(rq->cpu, rq->rd->online);
4638                rq->online = 1;
4639
4640                for_each_class(class) {
4641                        if (class->rq_online)
4642                                class->rq_online(rq);
4643                }
4644        }
4645}
4646
4647static void set_rq_offline(struct rq *rq)
4648{
4649        if (rq->online) {
4650                const struct sched_class *class;
4651
4652                for_each_class(class) {
4653                        if (class->rq_offline)
4654                                class->rq_offline(rq);
4655                }
4656
4657                cpumask_clear_cpu(rq->cpu, rq->rd->online);
4658                rq->online = 0;
4659        }
4660}
4661
4662/*
4663 * migration_call - callback that gets triggered when a CPU is added.
4664 * Here we can start up the necessary migration thread for the new CPU.
4665 */
4666static int
4667migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4668{
4669        int cpu = (long)hcpu;
4670        unsigned long flags;
4671        struct rq *rq = cpu_rq(cpu);
4672
4673        switch (action & ~CPU_TASKS_FROZEN) {
4674
4675        case CPU_UP_PREPARE:
4676                rq->calc_load_update = calc_load_update;
4677                break;
4678
4679        case CPU_ONLINE:
4680                /* Update our root-domain */
4681                raw_spin_lock_irqsave(&rq->lock, flags);
4682                if (rq->rd) {
4683                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4684
4685                        set_rq_online(rq);
4686                }
4687                raw_spin_unlock_irqrestore(&rq->lock, flags);
4688                break;
4689
4690#ifdef CONFIG_HOTPLUG_CPU
4691        case CPU_DYING:
4692                sched_ttwu_pending();
4693                /* Update our root-domain */
4694                raw_spin_lock_irqsave(&rq->lock, flags);
4695                if (rq->rd) {
4696                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4697                        set_rq_offline(rq);
4698                }
4699                migrate_tasks(cpu);
4700                BUG_ON(rq->nr_running != 1); /* the migration thread */
4701                raw_spin_unlock_irqrestore(&rq->lock, flags);
4702                break;
4703
4704        case CPU_DEAD:
4705                calc_load_migrate(rq);
4706                break;
4707#endif
4708        }
4709
4710        update_max_interval();
4711
4712        return NOTIFY_OK;
4713}
4714
4715/*
4716 * Register at high priority so that task migration (migrate_all_tasks)
4717 * happens before everything else.  This has to be lower priority than
4718 * the notifier in the perf_event subsystem, though.
4719 */
4720static struct notifier_block migration_notifier = {
4721        .notifier_call = migration_call,
4722        .priority = CPU_PRI_MIGRATION,
4723};
4724
4725static int sched_cpu_active(struct notifier_block *nfb,
4726                                      unsigned long action, void *hcpu)
4727{
4728        switch (action & ~CPU_TASKS_FROZEN) {
4729        case CPU_STARTING:
4730        case CPU_DOWN_FAILED:
4731                set_cpu_active((long)hcpu, true);
4732                return NOTIFY_OK;
4733        default:
4734                return NOTIFY_DONE;
4735        }
4736}
4737
4738static int sched_cpu_inactive(struct notifier_block *nfb,
4739                                        unsigned long action, void *hcpu)
4740{
4741        switch (action & ~CPU_TASKS_FROZEN) {
4742        case CPU_DOWN_PREPARE:
4743                set_cpu_active((long)hcpu, false);
4744                return NOTIFY_OK;
4745        default:
4746                return NOTIFY_DONE;
4747        }
4748}
4749
4750static int __init migration_init(void)
4751{
4752        void *cpu = (void *)(long)smp_processor_id();
4753        int err;
4754
4755        /* Initialize migration for the boot CPU */
4756        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4757        BUG_ON(err == NOTIFY_BAD);
4758        migration_call(&migration_notifier, CPU_ONLINE, cpu);
4759        register_cpu_notifier(&migration_notifier);
4760
4761        /* Register cpu active notifiers */
4762        cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4763        cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4764
4765        return 0;
4766}
4767early_initcall(migration_init);
4768#endif
4769
4770#ifdef CONFIG_SMP
4771
4772static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4773
4774#ifdef CONFIG_SCHED_DEBUG
4775
4776static __read_mostly int sched_debug_enabled;
4777
4778static int __init sched_debug_setup(char *str)
4779{
4780        sched_debug_enabled = 1;
4781
4782        return 0;
4783}
4784early_param("sched_debug", sched_debug_setup);
4785
4786static inline bool sched_debug(void)
4787{
4788        return sched_debug_enabled;
4789}
4790
4791static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4792                                  struct cpumask *groupmask)
4793{
4794        struct sched_group *group = sd->groups;
4795        char str[256];
4796
4797        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4798        cpumask_clear(groupmask);
4799
4800        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4801
4802        if (!(sd->flags & SD_LOAD_BALANCE)) {
4803                printk("does not load-balance\n");
4804                if (sd->parent)
4805                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4806                                        " has parent");
4807                return -1;
4808        }
4809
4810        printk(KERN_CONT "span %s level %s\n", str, sd->name);
4811
4812        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4813                printk(KERN_ERR "ERROR: domain->span does not contain "
4814                                "CPU%d\n", cpu);
4815        }
4816        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4817                printk(KERN_ERR "ERROR: domain->groups does not contain"
4818                                " CPU%d\n", cpu);
4819        }
4820
4821        printk(KERN_DEBUG "%*s groups:", level + 1, "");
4822        do {
4823                if (!group) {
4824                        printk("\n");
4825                        printk(KERN_ERR "ERROR: group is NULL\n");
4826                        break;
4827                }
4828
4829                /*
4830                 * Even though we initialize ->power to something semi-sane,
4831                 * we leave power_orig unset. This allows us to detect if
4832                 * domain iteration is still funny without causing /0 traps.
4833                 */
4834                if (!group->sgp->power_orig) {
4835                        printk(KERN_CONT "\n");
4836                        printk(KERN_ERR "ERROR: domain->cpu_power not "
4837                                        "set\n");
4838                        break;
4839                }
4840
4841                if (!cpumask_weight(sched_group_cpus(group))) {
4842                        printk(KERN_CONT "\n");
4843                        printk(KERN_ERR "ERROR: empty group\n");
4844                        break;
4845                }
4846
4847                if (!(sd->flags & SD_OVERLAP) &&
4848                    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4849                        printk(KERN_CONT "\n");
4850                        printk(KERN_ERR "ERROR: repeated CPUs\n");
4851                        break;
4852                }
4853
4854                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4855
4856                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4857
4858                printk(KERN_CONT " %s", str);
4859                if (group->sgp->power != SCHED_POWER_SCALE) {
4860                        printk(KERN_CONT " (cpu_power = %d)",
4861                                group->sgp->power);
4862                }
4863
4864                group = group->next;
4865        } while (group != sd->groups);
4866        printk(KERN_CONT "\n");
4867
4868        if (!cpumask_equal(sched_domain_span(sd), groupmask))
4869                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4870
4871        if (sd->parent &&
4872            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4873                printk(KERN_ERR "ERROR: parent span is not a superset "
4874                        "of domain->span\n");
4875        return 0;
4876}
4877
4878static void sched_domain_debug(struct sched_domain *sd, int cpu)
4879{
4880        int level = 0;
4881
4882        if (!sched_debug_enabled)
4883                return;
4884
4885        if (!sd) {
4886                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4887                return;
4888        }
4889
4890        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4891
4892        for (;;) {
4893                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4894                        break;
4895                level++;
4896                sd = sd->parent;
4897                if (!sd)
4898                        break;
4899        }
4900}
4901#else /* !CONFIG_SCHED_DEBUG */
4902# define sched_domain_debug(sd, cpu) do { } while (0)
4903static inline bool sched_debug(void)
4904{
4905        return false;
4906}
4907#endif /* CONFIG_SCHED_DEBUG */
4908
4909static int sd_degenerate(struct sched_domain *sd)
4910{
4911        if (cpumask_weight(sched_domain_span(sd)) == 1)
4912                return 1;
4913
4914        /* Following flags need at least 2 groups */
4915        if (sd->flags & (SD_LOAD_BALANCE |
4916                         SD_BALANCE_NEWIDLE |
4917                         SD_BALANCE_FORK |
4918                         SD_BALANCE_EXEC |
4919                         SD_SHARE_CPUPOWER |
4920                         SD_SHARE_PKG_RESOURCES)) {
4921                if (sd->groups != sd->groups->next)
4922                        return 0;
4923        }
4924
4925        /* Following flags don't use groups */
4926        if (sd->flags & (SD_WAKE_AFFINE))
4927                return 0;
4928
4929        return 1;
4930}
4931
4932static int
4933sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4934{
4935        unsigned long cflags = sd->flags, pflags = parent->flags;
4936
4937        if (sd_degenerate(parent))
4938                return 1;
4939
4940        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4941                return 0;
4942
4943        /* Flags needing groups don't count if only 1 group in parent */
4944        if (parent->groups == parent->groups->next) {
4945                pflags &= ~(SD_LOAD_BALANCE |
4946                                SD_BALANCE_NEWIDLE |
4947                                SD_BALANCE_FORK |
4948                                SD_BALANCE_EXEC |
4949                                SD_SHARE_CPUPOWER |
4950                                SD_SHARE_PKG_RESOURCES |
4951                                SD_PREFER_SIBLING);
4952                if (nr_node_ids == 1)
4953                        pflags &= ~SD_SERIALIZE;
4954        }
4955        if (~cflags & pflags)
4956                return 0;
4957
4958        return 1;
4959}
4960
4961static void free_rootdomain(struct rcu_head *rcu)
4962{
4963        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4964
4965        cpupri_cleanup(&rd->cpupri);
4966        free_cpumask_var(rd->rto_mask);
4967        free_cpumask_var(rd->online);
4968        free_cpumask_var(rd->span);
4969        kfree(rd);
4970}
4971
4972static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4973{
4974        struct root_domain *old_rd = NULL;
4975        unsigned long flags;
4976
4977        raw_spin_lock_irqsave(&rq->lock, flags);
4978
4979        if (rq->rd) {
4980                old_rd = rq->rd;
4981
4982                if (cpumask_test_cpu(rq->cpu, old_rd->online))
4983                        set_rq_offline(rq);
4984
4985                cpumask_clear_cpu(rq->cpu, old_rd->span);
4986
4987                /*
4988                 * If we dont want to free the old_rt yet then
4989                 * set old_rd to NULL to skip the freeing later
4990                 * in this function:
4991                 */
4992                if (!atomic_dec_and_test(&old_rd->refcount))
4993                        old_rd = NULL;
4994        }
4995
4996        atomic_inc(&rd->refcount);
4997        rq->rd = rd;
4998
4999        cpumask_set_cpu(rq->cpu, rd->span);
5000        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5001                set_rq_online(rq);
5002
5003        raw_spin_unlock_irqrestore(&rq->lock, flags);
5004
5005        if (old_rd)
5006                call_rcu_sched(&old_rd->rcu, free_rootdomain);
5007}
5008
5009static int init_rootdomain(struct root_domain *rd)
5010{
5011        memset(rd, 0, sizeof(*rd));
5012
5013        if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5014                goto out;
5015        if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5016                goto free_span;
5017        if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5018                goto free_online;
5019
5020        if (cpupri_init(&rd->cpupri) != 0)
5021                goto free_rto_mask;
5022        return 0;
5023
5024free_rto_mask:
5025        free_cpumask_var(rd->rto_mask);
5026free_online:
5027        free_cpumask_var(rd->online);
5028free_span:
5029        free_cpumask_var(rd->span);
5030out:
5031        return -ENOMEM;
5032}
5033
5034/*
5035 * By default the system creates a single root-domain with all cpus as
5036 * members (mimicking the global state we have today).
5037 */
5038struct root_domain def_root_domain;
5039
5040static void init_defrootdomain(void)
5041{
5042        init_rootdomain(&def_root_domain);
5043
5044        atomic_set(&def_root_domain.refcount, 1);
5045}
5046
5047static struct root_domain *alloc_rootdomain(void)
5048{
5049        struct root_domain *rd;
5050
5051        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5052        if (!rd)
5053                return NULL;
5054
5055        if (init_rootdomain(rd) != 0) {
5056                kfree(rd);
5057                return NULL;
5058        }
5059
5060        return rd;
5061}
5062
5063static void free_sched_groups(struct sched_group *sg, int free_sgp)
5064{
5065        struct sched_group *tmp, *first;
5066
5067        if (!sg)
5068                return;
5069
5070        first = sg;
5071        do {
5072                tmp = sg->next;
5073
5074                if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5075                        kfree(sg->sgp);
5076
5077                kfree(sg);
5078                sg = tmp;
5079        } while (sg != first);
5080}
5081
5082static void free_sched_domain(struct rcu_head *rcu)
5083{
5084        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5085
5086        /*
5087         * If its an overlapping domain it has private groups, iterate and
5088         * nuke them all.
5089         */
5090        if (sd->flags & SD_OVERLAP) {
5091                free_sched_groups(sd->groups, 1);
5092        } else if (atomic_dec_and_test(&sd->groups->ref)) {
5093                kfree(sd->groups->sgp);
5094                kfree(sd->groups);
5095        }
5096        kfree(sd);
5097}
5098
5099static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5100{
5101        call_rcu(&sd->rcu, free_sched_domain);
5102}
5103
5104static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5105{
5106        for (; sd; sd = sd->parent)
5107                destroy_sched_domain(sd, cpu);
5108}
5109
5110/*
5111 * Keep a special pointer to the highest sched_domain that has
5112 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5113 * allows us to avoid some pointer chasing select_idle_sibling().
5114 *
5115 * Also keep a unique ID per domain (we use the first cpu number in
5116 * the cpumask of the domain), this allows us to quickly tell if
5117 * two cpus are in the same cache domain, see cpus_share_cache().
5118 */
5119DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5120DEFINE_PER_CPU(int, sd_llc_size);
5121DEFINE_PER_CPU(int, sd_llc_id);
5122
5123static void update_top_cache_domain(int cpu)
5124{
5125        struct sched_domain *sd;
5126        int id = cpu;
5127        int size = 1;
5128
5129        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5130        if (sd) {
5131                id = cpumask_first(sched_domain_span(sd));
5132                size = cpumask_weight(sched_domain_span(sd));
5133        }
5134
5135        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5136        per_cpu(sd_llc_size, cpu) = size;
5137        per_cpu(sd_llc_id, cpu) = id;
5138}
5139
5140/*
5141 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5142 * hold the hotplug lock.
5143 */
5144static void
5145cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5146{
5147        struct rq *rq = cpu_rq(cpu);
5148        struct sched_domain *tmp;
5149
5150        /* Remove the sched domains which do not contribute to scheduling. */
5151        for (tmp = sd; tmp; ) {
5152                struct sched_domain *parent = tmp->parent;
5153                if (!parent)
5154                        break;
5155
5156                if (sd_parent_degenerate(tmp, parent)) {
5157                        tmp->parent = parent->parent;
5158                        if (parent->parent)
5159                                parent->parent->child = tmp;
5160                        /*
5161                         * Transfer SD_PREFER_SIBLING down in case of a
5162                         * degenerate parent; the spans match for this
5163                         * so the property transfers.
5164                         */
5165                        if (parent->flags & SD_PREFER_SIBLING)
5166                                tmp->flags |= SD_PREFER_SIBLING;
5167                        destroy_sched_domain(parent, cpu);
5168                } else
5169                        tmp = tmp->parent;
5170        }
5171
5172        if (sd && sd_degenerate(sd)) {
5173                tmp = sd;
5174                sd = sd->parent;
5175                destroy_sched_domain(tmp, cpu);
5176                if (sd)
5177                        sd->child = NULL;
5178        }
5179
5180        sched_domain_debug(sd, cpu);
5181
5182        rq_attach_root(rq, rd);
5183        tmp = rq->sd;
5184        rcu_assign_pointer(rq->sd, sd);
5185        destroy_sched_domains(tmp, cpu);
5186
5187        update_top_cache_domain(cpu);
5188}
5189
5190/* cpus with isolated domains */
5191static cpumask_var_t cpu_isolated_map;
5192
5193/* Setup the mask of cpus configured for isolated domains */
5194static int __init isolated_cpu_setup(char *str)
5195{
5196        alloc_bootmem_cpumask_var(&cpu_isolated_map);
5197        cpulist_parse(str, cpu_isolated_map);
5198        return 1;
5199}
5200
5201__setup("isolcpus=", isolated_cpu_setup);
5202
5203static const struct cpumask *cpu_cpu_mask(int cpu)
5204{
5205        return cpumask_of_node(cpu_to_node(cpu));
5206}
5207
5208struct sd_data {
5209        struct sched_domain **__percpu sd;
5210        struct sched_group **__percpu sg;
5211        struct sched_group_power **__percpu sgp;
5212};
5213
5214struct s_data {
5215        struct sched_domain ** __percpu sd;
5216        struct root_domain      *rd;
5217};
5218
5219enum s_alloc {
5220        sa_rootdomain,
5221        sa_sd,
5222        sa_sd_storage,
5223        sa_none,
5224};
5225
5226struct sched_domain_topology_level;
5227
5228typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5229typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5230
5231#define SDTL_OVERLAP    0x01
5232
5233struct sched_domain_topology_level {
5234        sched_domain_init_f init;
5235        sched_domain_mask_f mask;
5236        int                 flags;
5237        int                 numa_level;
5238        struct sd_data      data;
5239};
5240
5241/*
5242 * Build an iteration mask that can exclude certain CPUs from the upwards
5243 * domain traversal.
5244 *
5245 * Asymmetric node setups can result in situations where the domain tree is of
5246 * unequal depth, make sure to skip domains that already cover the entire
5247 * range.
5248 *
5249 * In that case build_sched_domains() will have terminated the iteration early
5250 * and our sibling sd spans will be empty. Domains should always include the
5251 * cpu they're built on, so check that.
5252 *
5253 */
5254static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5255{
5256        const struct cpumask *span = sched_domain_span(sd);
5257        struct sd_data *sdd = sd->private;
5258        struct sched_domain *sibling;
5259        int i;
5260
5261        for_each_cpu(i, span) {
5262                sibling = *per_cpu_ptr(sdd->sd, i);
5263                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5264                        continue;
5265
5266                cpumask_set_cpu(i, sched_group_mask(sg));
5267        }
5268}
5269
5270/*
5271 * Return the canonical balance cpu for this group, this is the first cpu
5272 * of this group that's also in the iteration mask.
5273 */
5274int group_balance_cpu(struct sched_group *sg)
5275{
5276        return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5277}
5278
5279static int
5280build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5281{
5282        struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5283        const struct cpumask *span = sched_domain_span(sd);
5284        struct cpumask *covered = sched_domains_tmpmask;
5285        struct sd_data *sdd = sd->private;
5286        struct sched_domain *child;
5287        int i;
5288
5289        cpumask_clear(covered);
5290
5291        for_each_cpu(i, span) {
5292                struct cpumask *sg_span;
5293
5294                if (cpumask_test_cpu(i, covered))
5295                        continue;
5296
5297                child = *per_cpu_ptr(sdd->sd, i);
5298
5299                /* See the comment near build_group_mask(). */
5300                if (!cpumask_test_cpu(i, sched_domain_span(child)))
5301                        continue;
5302
5303                sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5304                                GFP_KERNEL, cpu_to_node(cpu));
5305
5306                if (!sg)
5307                        goto fail;
5308
5309                sg_span = sched_group_cpus(sg);
5310                if (child->child) {
5311                        child = child->child;
5312                        cpumask_copy(sg_span, sched_domain_span(child));
5313                } else
5314                        cpumask_set_cpu(i, sg_span);
5315
5316                cpumask_or(covered, covered, sg_span);
5317
5318                sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5319                if (atomic_inc_return(&sg->sgp->ref) == 1)
5320                        build_group_mask(sd, sg);
5321
5322                /*
5323                 * Initialize sgp->power such that even if we mess up the
5324                 * domains and no possible iteration will get us here, we won't
5325                 * die on a /0 trap.
5326                 */
5327                sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5328
5329                /*
5330                 * Make sure the first group of this domain contains the
5331                 * canonical balance cpu. Otherwise the sched_domain iteration
5332                 * breaks. See update_sg_lb_stats().
5333                 */
5334                if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5335                    group_balance_cpu(sg) == cpu)
5336                        groups = sg;
5337
5338                if (!first)
5339                        first = sg;
5340                if (last)
5341                        last->next = sg;
5342                last = sg;
5343                last->next = first;
5344        }
5345        sd->groups = groups;
5346
5347        return 0;
5348
5349fail:
5350        free_sched_groups(first, 0);
5351
5352        return -ENOMEM;
5353}
5354
5355static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5356{
5357        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5358        struct sched_domain *child = sd->child;
5359
5360        if (child)
5361                cpu = cpumask_first(sched_domain_span(child));
5362
5363        if (sg) {
5364                *sg = *per_cpu_ptr(sdd->sg, cpu);
5365                (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5366                atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5367        }
5368
5369        return cpu;
5370}
5371
5372/*
5373 * build_sched_groups will build a circular linked list of the groups
5374 * covered by the given span, and will set each group's ->cpumask correctly,
5375 * and ->cpu_power to 0.
5376 *
5377 * Assumes the sched_domain tree is fully constructed
5378 */
5379static int
5380build_sched_groups(struct sched_domain *sd, int cpu)
5381{
5382        struct sched_group *first = NULL, *last = NULL;
5383        struct sd_data *sdd = sd->private;
5384        const struct cpumask *span = sched_domain_span(sd);
5385        struct cpumask *covered;
5386        int i;
5387
5388        get_group(cpu, sdd, &sd->groups);
5389        atomic_inc(&sd->groups->ref);
5390
5391        if (cpu != cpumask_first(span))
5392                return 0;
5393
5394        lockdep_assert_held(&sched_domains_mutex);
5395        covered = sched_domains_tmpmask;
5396
5397        cpumask_clear(covered);
5398
5399        for_each_cpu(i, span) {
5400                struct sched_group *sg;
5401                int group, j;
5402
5403                if (cpumask_test_cpu(i, covered))
5404                        continue;
5405
5406                group = get_group(i, sdd, &sg);
5407                cpumask_clear(sched_group_cpus(sg));
5408                sg->sgp->power = 0;
5409                cpumask_setall(sched_group_mask(sg));
5410
5411                for_each_cpu(j, span) {
5412                        if (get_group(j, sdd, NULL) != group)
5413                                continue;
5414
5415                        cpumask_set_cpu(j, covered);
5416                        cpumask_set_cpu(j, sched_group_cpus(sg));
5417                }
5418
5419                if (!first)
5420                        first = sg;
5421                if (last)
5422                        last->next = sg;
5423                last = sg;
5424        }
5425        last->next = first;
5426
5427        return 0;
5428}
5429
5430/*
5431 * Initialize sched groups cpu_power.
5432 *
5433 * cpu_power indicates the capacity of sched group, which is used while
5434 * distributing the load between different sched groups in a sched domain.
5435 * Typically cpu_power for all the groups in a sched domain will be same unless
5436 * there are asymmetries in the topology. If there are asymmetries, group
5437 * having more cpu_power will pickup more load compared to the group having
5438 * less cpu_power.
5439 */
5440static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5441{
5442        struct sched_group *sg = sd->groups;
5443
5444        WARN_ON(!sg);
5445
5446        do {
5447                sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5448                sg = sg->next;
5449        } while (sg != sd->groups);
5450
5451        if (cpu != group_balance_cpu(sg))
5452                return;
5453
5454        update_group_power(sd, cpu);
5455        atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5456}
5457
5458int __weak arch_sd_sibling_asym_packing(void)
5459{
5460       return 0*SD_ASYM_PACKING;
5461}
5462
5463/*
5464 * Initializers for schedule domains
5465 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5466 */
5467
5468#ifdef CONFIG_SCHED_DEBUG
5469# define SD_INIT_NAME(sd, type)         sd->name = #type
5470#else
5471# define SD_INIT_NAME(sd, type)         do { } while (0)
5472#endif
5473
5474#define SD_INIT_FUNC(type)                                              \
5475static noinline struct sched_domain *                                   \
5476sd_init_##type(struct sched_domain_topology_level *tl, int cpu)         \
5477{                                                                       \
5478        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
5479        *sd = SD_##type##_INIT;                                         \
5480        SD_INIT_NAME(sd, type);                                         \
5481        sd->private = &tl->data;                                        \
5482        return sd;                                                      \
5483}
5484
5485SD_INIT_FUNC(CPU)
5486#ifdef CONFIG_SCHED_SMT
5487 SD_INIT_FUNC(SIBLING)
5488#endif
5489#ifdef CONFIG_SCHED_MC
5490 SD_INIT_FUNC(MC)
5491#endif
5492#ifdef CONFIG_SCHED_BOOK
5493 SD_INIT_FUNC(BOOK)
5494#endif
5495
5496static int default_relax_domain_level = -1;
5497int sched_domain_level_max;
5498
5499static int __init setup_relax_domain_level(char *str)
5500{
5501        if (kstrtoint(str, 0, &default_relax_domain_level))
5502                pr_warn("Unable to set relax_domain_level\n");
5503
5504        return 1;
5505}
5506__setup("relax_domain_level=", setup_relax_domain_level);
5507
5508static void set_domain_attribute(struct sched_domain *sd,
5509                                 struct sched_domain_attr *attr)
5510{
5511        int request;
5512
5513        if (!attr || attr->relax_domain_level < 0) {
5514                if (default_relax_domain_level < 0)
5515                        return;
5516                else
5517                        request = default_relax_domain_level;
5518        } else
5519                request = attr->relax_domain_level;
5520        if (request < sd->level) {
5521                /* turn off idle balance on this domain */
5522                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5523        } else {
5524                /* turn on idle balance on this domain */
5525                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5526        }
5527}
5528
5529static void __sdt_free(const struct cpumask *cpu_map);
5530static int __sdt_alloc(const struct cpumask *cpu_map);
5531
5532static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5533                                 const struct cpumask *cpu_map)
5534{
5535        switch (what) {
5536        case sa_rootdomain:
5537                if (!atomic_read(&d->rd->refcount))
5538                        free_rootdomain(&d->rd->rcu); /* fall through */
5539        case sa_sd:
5540                free_percpu(d->sd); /* fall through */
5541        case sa_sd_storage:
5542                __sdt_free(cpu_map); /* fall through */
5543        case sa_none:
5544                break;
5545        }
5546}
5547
5548static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5549                                                   const struct cpumask *cpu_map)
5550{
5551        memset(d, 0, sizeof(*d));
5552
5553        if (__sdt_alloc(cpu_map))
5554                return sa_sd_storage;
5555        d->sd = alloc_percpu(struct sched_domain *);
5556        if (!d->sd)
5557                return sa_sd_storage;
5558        d->rd = alloc_rootdomain();
5559        if (!d->rd)
5560                return sa_sd;
5561        return sa_rootdomain;
5562}
5563
5564/*
5565 * NULL the sd_data elements we've used to build the sched_domain and
5566 * sched_group structure so that the subsequent __free_domain_allocs()
5567 * will not free the data we're using.
5568 */
5569static void claim_allocations(int cpu, struct sched_domain *sd)
5570{
5571        struct sd_data *sdd = sd->private;
5572
5573        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5574        *per_cpu_ptr(sdd->sd, cpu) = NULL;
5575
5576        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5577                *per_cpu_ptr(sdd->sg, cpu) = NULL;
5578
5579        if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5580                *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5581}
5582
5583#ifdef CONFIG_SCHED_SMT
5584static const struct cpumask *cpu_smt_mask(int cpu)
5585{
5586        return topology_thread_cpumask(cpu);
5587}
5588#endif
5589
5590/*
5591 * Topology list, bottom-up.
5592 */
5593static struct sched_domain_topology_level default_topology[] = {
5594#ifdef CONFIG_SCHED_SMT
5595        { sd_init_SIBLING, cpu_smt_mask, },
5596#endif
5597#ifdef CONFIG_SCHED_MC
5598        { sd_init_MC, cpu_coregroup_mask, },
5599#endif
5600#ifdef CONFIG_SCHED_BOOK
5601        { sd_init_BOOK, cpu_book_mask, },
5602#endif
5603        { sd_init_CPU, cpu_cpu_mask, },
5604        { NULL, },
5605};
5606
5607static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5608
5609#define for_each_sd_topology(tl)                        \
5610        for (tl = sched_domain_topology; tl->init; tl++)
5611
5612#ifdef CONFIG_NUMA
5613
5614static int sched_domains_numa_levels;
5615static int *sched_domains_numa_distance;
5616static struct cpumask ***sched_domains_numa_masks;
5617static int sched_domains_curr_level;
5618
5619static inline int sd_local_flags(int level)
5620{
5621        if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5622                return 0;
5623
5624        return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5625}
5626
5627static struct sched_domain *
5628sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5629{
5630        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5631        int level = tl->numa_level;
5632        int sd_weight = cpumask_weight(
5633                        sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5634
5635        *sd = (struct sched_domain){
5636                .min_interval           = sd_weight,
5637                .max_interval           = 2*sd_weight,
5638                .busy_factor            = 32,
5639                .imbalance_pct          = 125,
5640                .cache_nice_tries       = 2,
5641                .busy_idx               = 3,
5642                .idle_idx               = 2,
5643                .newidle_idx            = 0,
5644                .wake_idx               = 0,
5645                .forkexec_idx           = 0,
5646
5647                .flags                  = 1*SD_LOAD_BALANCE
5648                                        | 1*SD_BALANCE_NEWIDLE
5649                                        | 0*SD_BALANCE_EXEC
5650                                        | 0*SD_BALANCE_FORK
5651                                        | 0*SD_BALANCE_WAKE
5652                                        | 0*SD_WAKE_AFFINE
5653                                        | 0*SD_SHARE_CPUPOWER
5654                                        | 0*SD_SHARE_PKG_RESOURCES
5655                                        | 1*SD_SERIALIZE
5656                                        | 0*SD_PREFER_SIBLING
5657                                        | sd_local_flags(level)
5658                                        ,
5659                .last_balance           = jiffies,
5660                .balance_interval       = sd_weight,
5661        };
5662        SD_INIT_NAME(sd, NUMA);
5663        sd->private = &tl->data;
5664
5665        /*
5666         * Ugly hack to pass state to sd_numa_mask()...
5667         */
5668        sched_domains_curr_level = tl->numa_level;
5669
5670        return sd;
5671}
5672
5673static const struct cpumask *sd_numa_mask(int cpu)
5674{
5675        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5676}
5677
5678static void sched_numa_warn(const char *str)
5679{
5680        static int done = false;
5681        int i,j;
5682
5683        if (done)
5684                return;
5685
5686        done = true;
5687
5688        printk(KERN_WARNING "ERROR: %s\n\n", str);
5689
5690        for (i = 0; i < nr_node_ids; i++) {
5691                printk(KERN_WARNING "  ");
5692                for (j = 0; j < nr_node_ids; j++)
5693                        printk(KERN_CONT "%02d ", node_distance(i,j));
5694                printk(KERN_CONT "\n");
5695        }
5696        printk(KERN_WARNING "\n");
5697}
5698
5699static bool find_numa_distance(int distance)
5700{
5701        int i;
5702
5703        if (distance == node_distance(0, 0))
5704                return true;
5705
5706        for (i = 0; i < sched_domains_numa_levels; i++) {
5707                if (sched_domains_numa_distance[i] == distance)
5708                        return true;
5709        }
5710
5711        return false;
5712}
5713
5714static void sched_init_numa(void)
5715{
5716        int next_distance, curr_distance = node_distance(0, 0);
5717        struct sched_domain_topology_level *tl;
5718        int level = 0;
5719        int i, j, k;
5720
5721        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5722        if (!sched_domains_numa_distance)
5723                return;
5724
5725        /*
5726         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5727         * unique distances in the node_distance() table.
5728         *
5729         * Assumes node_distance(0,j) includes all distances in
5730         * node_distance(i,j) in order to avoid cubic time.
5731         */
5732        next_distance = curr_distance;
5733        for (i = 0; i < nr_node_ids; i++) {
5734                for (j = 0; j < nr_node_ids; j++) {
5735                        for (k = 0; k < nr_node_ids; k++) {
5736                                int distance = node_distance(i, k);
5737
5738                                if (distance > curr_distance &&
5739                                    (distance < next_distance ||
5740                                     next_distance == curr_distance))
5741                                        next_distance = distance;
5742
5743                                /*
5744                                 * While not a strong assumption it would be nice to know
5745                                 * about cases where if node A is connected to B, B is not
5746                                 * equally connected to A.
5747                                 */
5748                                if (sched_debug() && node_distance(k, i) != distance)
5749                                        sched_numa_warn("Node-distance not symmetric");
5750
5751                                if (sched_debug() && i && !find_numa_distance(distance))
5752                                        sched_numa_warn("Node-0 not representative");
5753                        }
5754                        if (next_distance != curr_distance) {
5755                                sched_domains_numa_distance[level++] = next_distance;
5756                                sched_domains_numa_levels = level;
5757                                curr_distance = next_distance;
5758                        } else break;
5759                }
5760
5761                /*
5762                 * In case of sched_debug() we verify the above assumption.
5763                 */
5764                if (!sched_debug())
5765                        break;
5766        }
5767        /*
5768         * 'level' contains the number of unique distances, excluding the
5769         * identity distance node_distance(i,i).
5770         *
5771         * The sched_domains_numa_distance[] array includes the actual distance
5772         * numbers.
5773         */
5774
5775        /*
5776         * Here, we should temporarily reset sched_domains_numa_levels to 0.
5777         * If it fails to allocate memory for array sched_domains_numa_masks[][],
5778         * the array will contain less then 'level' members. This could be
5779         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5780         * in other functions.
5781         *
5782         * We reset it to 'level' at the end of this function.
5783         */
5784        sched_domains_numa_levels = 0;
5785
5786        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5787        if (!sched_domains_numa_masks)
5788                return;
5789
5790        /*
5791         * Now for each level, construct a mask per node which contains all
5792         * cpus of nodes that are that many hops away from us.
5793         */
5794        for (i = 0; i < level; i++) {
5795                sched_domains_numa_masks[i] =
5796                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5797                if (!sched_domains_numa_masks[i])
5798                        return;
5799
5800                for (j = 0; j < nr_node_ids; j++) {
5801                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5802                        if (!mask)
5803                                return;
5804
5805                        sched_domains_numa_masks[i][j] = mask;
5806
5807                        for (k = 0; k < nr_node_ids; k++) {
5808                                if (node_distance(j, k) > sched_domains_numa_distance[i])
5809                                        continue;
5810
5811                                cpumask_or(mask, mask, cpumask_of_node(k));
5812                        }
5813                }
5814        }
5815
5816        tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5817                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5818        if (!tl)
5819                return;
5820
5821        /*
5822         * Copy the default topology bits..
5823         */
5824        for (i = 0; default_topology[i].init; i++)
5825                tl[i] = default_topology[i];
5826
5827        /*
5828         * .. and append 'j' levels of NUMA goodness.
5829         */
5830        for (j = 0; j < level; i++, j++) {
5831                tl[i] = (struct sched_domain_topology_level){
5832                        .init = sd_numa_init,
5833                        .mask = sd_numa_mask,
5834                        .flags = SDTL_OVERLAP,
5835                        .numa_level = j,
5836                };
5837        }
5838
5839        sched_domain_topology = tl;
5840
5841        sched_domains_numa_levels = level;
5842}
5843
5844static void sched_domains_numa_masks_set(int cpu)
5845{
5846        int i, j;
5847        int node = cpu_to_node(cpu);
5848
5849        for (i = 0; i < sched_domains_numa_levels; i++) {
5850                for (j = 0; j < nr_node_ids; j++) {
5851                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
5852                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5853                }
5854        }
5855}
5856
5857static void sched_domains_numa_masks_clear(int cpu)
5858{
5859        int i, j;
5860        for (i = 0; i < sched_domains_numa_levels; i++) {
5861                for (j = 0; j < nr_node_ids; j++)
5862                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5863        }
5864}
5865
5866/*
5867 * Update sched_domains_numa_masks[level][node] array when new cpus
5868 * are onlined.
5869 */
5870static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5871                                           unsigned long action,
5872                                           void *hcpu)
5873{
5874        int cpu = (long)hcpu;
5875
5876        switch (action & ~CPU_TASKS_FROZEN) {
5877        case CPU_ONLINE:
5878                sched_domains_numa_masks_set(cpu);
5879                break;
5880
5881        case CPU_DEAD:
5882                sched_domains_numa_masks_clear(cpu);
5883                break;
5884
5885        default:
5886                return NOTIFY_DONE;
5887        }
5888
5889        return NOTIFY_OK;
5890}
5891#else
5892static inline void sched_init_numa(void)
5893{
5894}
5895
5896static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5897                                           unsigned long action,
5898                                           void *hcpu)
5899{
5900        return 0;
5901}
5902#endif /* CONFIG_NUMA */
5903
5904static int __sdt_alloc(const struct cpumask *cpu_map)
5905{
5906        struct sched_domain_topology_level *tl;
5907        int j;
5908
5909        for_each_sd_topology(tl) {
5910                struct sd_data *sdd = &tl->data;
5911
5912                sdd->sd = alloc_percpu(struct sched_domain *);
5913                if (!sdd->sd)
5914                        return -ENOMEM;
5915
5916                sdd->sg = alloc_percpu(struct sched_group *);
5917                if (!sdd->sg)
5918                        return -ENOMEM;
5919
5920                sdd->sgp = alloc_percpu(struct sched_group_power *);
5921                if (!sdd->sgp)
5922                        return -ENOMEM;
5923
5924                for_each_cpu(j, cpu_map) {
5925                        struct sched_domain *sd;
5926                        struct sched_group *sg;
5927                        struct sched_group_power *sgp;
5928
5929                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5930                                        GFP_KERNEL, cpu_to_node(j));
5931                        if (!sd)
5932                                return -ENOMEM;
5933
5934                        *per_cpu_ptr(sdd->sd, j) = sd;
5935
5936                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5937                                        GFP_KERNEL, cpu_to_node(j));
5938                        if (!sg)
5939                                return -ENOMEM;
5940
5941                        sg->next = sg;
5942
5943                        *per_cpu_ptr(sdd->sg, j) = sg;
5944
5945                        sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5946                                        GFP_KERNEL, cpu_to_node(j));
5947                        if (!sgp)
5948                                return -ENOMEM;
5949
5950                        *per_cpu_ptr(sdd->sgp, j) = sgp;
5951                }
5952        }
5953
5954        return 0;
5955}
5956
5957static void __sdt_free(const struct cpumask *cpu_map)
5958{
5959        struct sched_domain_topology_level *tl;
5960        int j;
5961
5962        for_each_sd_topology(tl) {
5963                struct sd_data *sdd = &tl->data;
5964
5965                for_each_cpu(j, cpu_map) {
5966                        struct sched_domain *sd;
5967
5968                        if (sdd->sd) {
5969                                sd = *per_cpu_ptr(sdd->sd, j);
5970                                if (sd && (sd->flags & SD_OVERLAP))
5971                                        free_sched_groups(sd->groups, 0);
5972                                kfree(*per_cpu_ptr(sdd->sd, j));
5973                        }
5974
5975                        if (sdd->sg)
5976                                kfree(*per_cpu_ptr(sdd->sg, j));
5977                        if (sdd->sgp)
5978                                kfree(*per_cpu_ptr(sdd->sgp, j));
5979                }
5980                free_percpu(sdd->sd);
5981                sdd->sd = NULL;
5982                free_percpu(sdd->sg);
5983                sdd->sg = NULL;
5984                free_percpu(sdd->sgp);
5985                sdd->sgp = NULL;
5986        }
5987}
5988
5989struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5990                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5991                struct sched_domain *child, int cpu)
5992{
5993        struct sched_domain *sd = tl->init(tl, cpu);
5994        if (!sd)
5995                return child;
5996
5997        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5998        if (child) {
5999                sd->level = child->level + 1;
6000                sched_domain_level_max = max(sched_domain_level_max, sd->level);
6001                child->parent = sd;
6002                sd->child = child;
6003        }
6004        set_domain_attribute(sd, attr);
6005
6006        return sd;
6007}
6008
6009/*
6010 * Build sched domains for a given set of cpus and attach the sched domains
6011 * to the individual cpus
6012 */
6013static int build_sched_domains(const struct cpumask *cpu_map,
6014                               struct sched_domain_attr *attr)
6015{
6016        enum s_alloc alloc_state;
6017        struct sched_domain *sd;
6018        struct s_data d;
6019        int i, ret = -ENOMEM;
6020
6021        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6022        if (alloc_state != sa_rootdomain)
6023                goto error;
6024
6025        /* Set up domains for cpus specified by the cpu_map. */
6026        for_each_cpu(i, cpu_map) {
6027                struct sched_domain_topology_level *tl;
6028
6029                sd = NULL;
6030                for_each_sd_topology(tl) {
6031                        sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6032                        if (tl == sched_domain_topology)
6033                                *per_cpu_ptr(d.sd, i) = sd;
6034                        if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6035                                sd->flags |= SD_OVERLAP;
6036                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6037                                break;
6038                }
6039        }
6040
6041        /* Build the groups for the domains */
6042        for_each_cpu(i, cpu_map) {
6043                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6044                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
6045                        if (sd->flags & SD_OVERLAP) {
6046                                if (build_overlap_sched_groups(sd, i))
6047                                        goto error;
6048                        } else {
6049                                if (build_sched_groups(sd, i))
6050                                        goto error;
6051                        }
6052                }
6053        }
6054
6055        /* Calculate CPU power for physical packages and nodes */
6056        for (i = nr_cpumask_bits-1; i >= 0; i--) {
6057                if (!cpumask_test_cpu(i, cpu_map))
6058                        continue;
6059
6060                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6061                        claim_allocations(i, sd);
6062                        init_sched_groups_power(i, sd);
6063                }
6064        }
6065
6066        /* Attach the domains */
6067        rcu_read_lock();
6068        for_each_cpu(i, cpu_map) {
6069                sd = *per_cpu_ptr(d.sd, i);
6070                cpu_attach_domain(sd, d.rd, i);
6071        }
6072        rcu_read_unlock();
6073
6074        ret = 0;
6075error:
6076        __free_domain_allocs(&d, alloc_state, cpu_map);
6077        return ret;
6078}
6079
6080static cpumask_var_t *doms_cur; /* current sched domains */
6081static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6082static struct sched_domain_attr *dattr_cur;
6083                                /* attribues of custom domains in 'doms_cur' */
6084
6085/*
6086 * Special case: If a kmalloc of a doms_cur partition (array of
6087 * cpumask) fails, then fallback to a single sched domain,
6088 * as determined by the single cpumask fallback_doms.
6089 */
6090static cpumask_var_t fallback_doms;
6091
6092/*
6093 * arch_update_cpu_topology lets virtualized architectures update the
6094 * cpu core maps. It is supposed to return 1 if the topology changed
6095 * or 0 if it stayed the same.
6096 */
6097int __attribute__((weak)) arch_update_cpu_topology(void)
6098{
6099        return 0;
6100}
6101
6102cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6103{
6104        int i;
6105        cpumask_var_t *doms;
6106
6107        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6108        if (!doms)
6109                return NULL;
6110        for (i = 0; i < ndoms; i++) {
6111                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6112                        free_sched_domains(doms, i);
6113                        return NULL;
6114                }
6115        }
6116        return doms;
6117}
6118
6119void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6120{
6121        unsigned int i;
6122        for (i = 0; i < ndoms; i++)
6123                free_cpumask_var(doms[i]);
6124        kfree(doms);
6125}
6126
6127/*
6128 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6129 * For now this just excludes isolated cpus, but could be used to
6130 * exclude other special cases in the future.
6131 */
6132static int init_sched_domains(const struct cpumask *cpu_map)
6133{
6134        int err;
6135
6136        arch_update_cpu_topology();
6137        ndoms_cur = 1;
6138        doms_cur = alloc_sched_domains(ndoms_cur);
6139        if (!doms_cur)
6140                doms_cur = &fallback_doms;
6141        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6142        err = build_sched_domains(doms_cur[0], NULL);
6143        register_sched_domain_sysctl();
6144
6145        return err;
6146}
6147
6148/*
6149 * Detach sched domains from a group of cpus specified in cpu_map
6150 * These cpus will now be attached to the NULL domain
6151 */
6152static void detach_destroy_domains(const struct cpumask *cpu_map)
6153{
6154        int i;
6155
6156        rcu_read_lock();
6157        for_each_cpu(i, cpu_map)
6158                cpu_attach_domain(NULL, &def_root_domain, i);
6159        rcu_read_unlock();
6160}
6161
6162/* handle null as "default" */
6163static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6164                        struct sched_domain_attr *new, int idx_new)
6165{
6166        struct sched_domain_attr tmp;
6167
6168        /* fast path */
6169        if (!new && !cur)
6170                return 1;
6171
6172        tmp = SD_ATTR_INIT;
6173        return !memcmp(cur ? (cur + idx_cur) : &tmp,
6174                        new ? (new + idx_new) : &tmp,
6175                        sizeof(struct sched_domain_attr));
6176}
6177
6178/*
6179 * Partition sched domains as specified by the 'ndoms_new'
6180 * cpumasks in the array doms_new[] of cpumasks. This compares
6181 * doms_new[] to the current sched domain partitioning, doms_cur[].
6182 * It destroys each deleted domain and builds each new domain.
6183 *
6184 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6185 * The masks don't intersect (don't overlap.) We should setup one
6186 * sched domain for each mask. CPUs not in any of the cpumasks will
6187 * not be load balanced. If the same cpumask appears both in the
6188 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6189 * it as it is.
6190 *
6191 * The passed in 'doms_new' should be allocated using
6192 * alloc_sched_domains.  This routine takes ownership of it and will
6193 * free_sched_domains it when done with it. If the caller failed the
6194 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6195 * and partition_sched_domains() will fallback to the single partition
6196 * 'fallback_doms', it also forces the domains to be rebuilt.
6197 *
6198 * If doms_new == NULL it will be replaced with cpu_online_mask.
6199 * ndoms_new == 0 is a special case for destroying existing domains,
6200 * and it will not create the default domain.
6201 *
6202 * Call with hotplug lock held
6203 */
6204void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6205                             struct sched_domain_attr *dattr_new)
6206{
6207        int i, j, n;
6208        int new_topology;
6209
6210        mutex_lock(&sched_domains_mutex);
6211
6212        /* always unregister in case we don't destroy any domains */
6213        unregister_sched_domain_sysctl();
6214
6215        /* Let architecture update cpu core mappings. */
6216        new_topology = arch_update_cpu_topology();
6217
6218        n = doms_new ? ndoms_new : 0;
6219
6220        /* Destroy deleted domains */
6221        for (i = 0; i < ndoms_cur; i++) {
6222                for (j = 0; j < n && !new_topology; j++) {
6223                        if (cpumask_equal(doms_cur[i], doms_new[j])
6224                            && dattrs_equal(dattr_cur, i, dattr_new, j))
6225                                goto match1;
6226                }
6227                /* no match - a current sched domain not in new doms_new[] */
6228                detach_destroy_domains(doms_cur[i]);
6229match1:
6230                ;
6231        }
6232
6233        n = ndoms_cur;
6234        if (doms_new == NULL) {
6235                n = 0;
6236                doms_new = &fallback_doms;
6237                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6238                WARN_ON_ONCE(dattr_new);
6239        }
6240
6241        /* Build new domains */
6242        for (i = 0; i < ndoms_new; i++) {
6243                for (j = 0; j < n && !new_topology; j++) {
6244                        if (cpumask_equal(doms_new[i], doms_cur[j])
6245                            && dattrs_equal(dattr_new, i, dattr_cur, j))
6246                                goto match2;
6247                }
6248                /* no match - add a new doms_new */
6249                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6250match2:
6251                ;
6252        }
6253
6254        /* Remember the new sched domains */
6255        if (doms_cur != &fallback_doms)
6256                free_sched_domains(doms_cur, ndoms_cur);
6257        kfree(dattr_cur);       /* kfree(NULL) is safe */
6258        doms_cur = doms_new;
6259        dattr_cur = dattr_new;
6260        ndoms_cur = ndoms_new;
6261
6262        register_sched_domain_sysctl();
6263
6264        mutex_unlock(&sched_domains_mutex);
6265}
6266
6267static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
6268
6269/*
6270 * Update cpusets according to cpu_active mask.  If cpusets are
6271 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6272 * around partition_sched_domains().
6273 *
6274 * If we come here as part of a suspend/resume, don't touch cpusets because we
6275 * want to restore it back to its original state upon resume anyway.
6276 */
6277static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6278                             void *hcpu)
6279{
6280        switch (action) {
6281        case CPU_ONLINE_FROZEN:
6282        case CPU_DOWN_FAILED_FROZEN:
6283
6284                /*
6285                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6286                 * resume sequence. As long as this is not the last online
6287                 * operation in the resume sequence, just build a single sched
6288                 * domain, ignoring cpusets.
6289                 */
6290                num_cpus_frozen--;
6291                if (likely(num_cpus_frozen)) {
6292                        partition_sched_domains(1, NULL, NULL);
6293                        break;
6294                }
6295
6296                /*
6297                 * This is the last CPU online operation. So fall through and
6298                 * restore the original sched domains by considering the
6299                 * cpuset configurations.
6300                 */
6301
6302        case CPU_ONLINE:
6303        case CPU_DOWN_FAILED:
6304                cpuset_update_active_cpus(true);
6305                break;
6306        default:
6307                return NOTIFY_DONE;
6308        }
6309        return NOTIFY_OK;
6310}
6311
6312static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6313                               void *hcpu)
6314{
6315        switch (action) {
6316        case CPU_DOWN_PREPARE:
6317                cpuset_update_active_cpus(false);
6318                break;
6319        case CPU_DOWN_PREPARE_FROZEN:
6320                num_cpus_frozen++;
6321                partition_sched_domains(1, NULL, NULL);
6322                break;
6323        default:
6324                return NOTIFY_DONE;
6325        }
6326        return NOTIFY_OK;
6327}
6328
6329void __init sched_init_smp(void)
6330{
6331        cpumask_var_t non_isolated_cpus;
6332
6333        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6334        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6335
6336        sched_init_numa();
6337
6338        get_online_cpus();
6339        mutex_lock(&sched_domains_mutex);
6340        init_sched_domains(cpu_active_mask);
6341        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6342        if (cpumask_empty(non_isolated_cpus))
6343                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6344        mutex_unlock(&sched_domains_mutex);
6345        put_online_cpus();
6346
6347        hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6348        hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6349        hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6350
6351        init_hrtick();
6352
6353        /* Move init over to a non-isolated CPU */
6354        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6355                BUG();
6356        sched_init_granularity();
6357        free_cpumask_var(non_isolated_cpus);
6358
6359        init_sched_rt_class();
6360}
6361#else
6362void __init sched_init_smp(void)
6363{
6364        sched_init_granularity();
6365}
6366#endif /* CONFIG_SMP */
6367
6368const_debug unsigned int sysctl_timer_migration = 1;
6369
6370int in_sched_functions(unsigned long addr)
6371{
6372        return in_lock_functions(addr) ||
6373                (addr >= (unsigned long)__sched_text_start
6374                && addr < (unsigned long)__sched_text_end);
6375}
6376
6377#ifdef CONFIG_CGROUP_SCHED
6378/*
6379 * Default task group.
6380 * Every task in system belongs to this group at bootup.
6381 */
6382struct task_group root_task_group;
6383LIST_HEAD(task_groups);
6384#endif
6385
6386DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6387
6388void __init sched_init(void)
6389{
6390        int i, j;
6391        unsigned long alloc_size = 0, ptr;
6392
6393#ifdef CONFIG_FAIR_GROUP_SCHED
6394        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6395#endif
6396#ifdef CONFIG_RT_GROUP_SCHED
6397        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6398#endif
6399#ifdef CONFIG_CPUMASK_OFFSTACK
6400        alloc_size += num_possible_cpus() * cpumask_size();
6401#endif
6402        if (alloc_size) {
6403                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6404
6405#ifdef CONFIG_FAIR_GROUP_SCHED
6406                root_task_group.se = (struct sched_entity **)ptr;
6407                ptr += nr_cpu_ids * sizeof(void **);
6408
6409                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6410                ptr += nr_cpu_ids * sizeof(void **);
6411
6412#endif /* CONFIG_FAIR_GROUP_SCHED */
6413#ifdef CONFIG_RT_GROUP_SCHED
6414                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6415                ptr += nr_cpu_ids * sizeof(void **);
6416
6417                root_task_group.rt_rq = (struct rt_rq **)ptr;
6418                ptr += nr_cpu_ids * sizeof(void **);
6419
6420#endif /* CONFIG_RT_GROUP_SCHED */
6421#ifdef CONFIG_CPUMASK_OFFSTACK
6422                for_each_possible_cpu(i) {
6423                        per_cpu(load_balance_mask, i) = (void *)ptr;
6424                        ptr += cpumask_size();
6425                }
6426#endif /* CONFIG_CPUMASK_OFFSTACK */
6427        }
6428
6429#ifdef CONFIG_SMP
6430        init_defrootdomain();
6431#endif
6432
6433        init_rt_bandwidth(&def_rt_bandwidth,
6434                        global_rt_period(), global_rt_runtime());
6435
6436#ifdef CONFIG_RT_GROUP_SCHED
6437        init_rt_bandwidth(&root_task_group.rt_bandwidth,
6438                        global_rt_period(), global_rt_runtime());
6439#endif /* CONFIG_RT_GROUP_SCHED */
6440
6441#ifdef CONFIG_CGROUP_SCHED
6442        list_add(&root_task_group.list, &task_groups);
6443        INIT_LIST_HEAD(&root_task_group.children);
6444        INIT_LIST_HEAD(&root_task_group.siblings);
6445        autogroup_init(&init_task);
6446
6447#endif /* CONFIG_CGROUP_SCHED */
6448
6449        for_each_possible_cpu(i) {
6450                struct rq *rq;
6451
6452                rq = cpu_rq(i);
6453                raw_spin_lock_init(&rq->lock);
6454                rq->nr_running = 0;
6455                rq->calc_load_active = 0;
6456                rq->calc_load_update = jiffies + LOAD_FREQ;
6457                init_cfs_rq(&rq->cfs);
6458                init_rt_rq(&rq->rt, rq);
6459#ifdef CONFIG_FAIR_GROUP_SCHED
6460                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6461                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6462                /*
6463                 * How much cpu bandwidth does root_task_group get?
6464                 *
6465                 * In case of task-groups formed thr' the cgroup filesystem, it
6466                 * gets 100% of the cpu resources in the system. This overall
6467                 * system cpu resource is divided among the tasks of
6468                 * root_task_group and its child task-groups in a fair manner,
6469                 * based on each entity's (task or task-group's) weight
6470                 * (se->load.weight).
6471                 *
6472                 * In other words, if root_task_group has 10 tasks of weight
6473                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6474                 * then A0's share of the cpu resource is:
6475                 *
6476                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6477                 *
6478                 * We achieve this by letting root_task_group's tasks sit
6479                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6480                 */
6481                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6482                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6483#endif /* CONFIG_FAIR_GROUP_SCHED */
6484
6485                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6486#ifdef CONFIG_RT_GROUP_SCHED
6487                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6488                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6489#endif
6490
6491                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6492                        rq->cpu_load[j] = 0;
6493
6494                rq->last_load_update_tick = jiffies;
6495
6496#ifdef CONFIG_SMP
6497                rq->sd = NULL;
6498                rq->rd = NULL;
6499                rq->cpu_power = SCHED_POWER_SCALE;
6500                rq->post_schedule = 0;
6501                rq->active_balance = 0;
6502                rq->next_balance = jiffies;
6503                rq->push_cpu = 0;
6504                rq->cpu = i;
6505                rq->online = 0;
6506                rq->idle_stamp = 0;
6507                rq->avg_idle = 2*sysctl_sched_migration_cost;
6508
6509                INIT_LIST_HEAD(&rq->cfs_tasks);
6510
6511                rq_attach_root(rq, &def_root_domain);
6512#ifdef CONFIG_NO_HZ_COMMON
6513                rq->nohz_flags = 0;
6514#endif
6515#ifdef CONFIG_NO_HZ_FULL
6516                rq->last_sched_tick = 0;
6517#endif
6518#endif
6519                init_rq_hrtick(rq);
6520                atomic_set(&rq->nr_iowait, 0);
6521        }
6522
6523        set_load_weight(&init_task);
6524
6525#ifdef CONFIG_PREEMPT_NOTIFIERS
6526        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6527#endif
6528
6529#ifdef CONFIG_RT_MUTEXES
6530        plist_head_init(&init_task.pi_waiters);
6531#endif
6532
6533        /*
6534         * The boot idle thread does lazy MMU switching as well:
6535         */
6536        atomic_inc(&init_mm.mm_count);
6537        enter_lazy_tlb(&init_mm, current);
6538
6539        /*
6540         * Make us the idle thread. Technically, schedule() should not be
6541         * called from this thread, however somewhere below it might be,
6542         * but because we are the idle thread, we just pick up running again
6543         * when this runqueue becomes "idle".
6544         */
6545        init_idle(current, smp_processor_id());
6546
6547        calc_load_update = jiffies + LOAD_FREQ;
6548
6549        /*
6550         * During early bootup we pretend to be a normal task:
6551         */
6552        current->sched_class = &fair_sched_class;
6553
6554#ifdef CONFIG_SMP
6555        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6556        /* May be allocated at isolcpus cmdline parse time */
6557        if (cpu_isolated_map == NULL)
6558                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6559        idle_thread_set_boot_cpu();
6560#endif
6561        init_sched_fair_class();
6562
6563        scheduler_running = 1;
6564}
6565
6566#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6567static inline int preempt_count_equals(int preempt_offset)
6568{
6569        int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6570
6571        return (nested == preempt_offset);
6572}
6573
6574void __might_sleep(const char *file, int line, int preempt_offset)
6575{
6576        static unsigned long prev_jiffy;        /* ratelimiting */
6577
6578        rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6579        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6580            system_state != SYSTEM_RUNNING || oops_in_progress)
6581                return;
6582        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6583                return;
6584        prev_jiffy = jiffies;
6585
6586        printk(KERN_ERR
6587                "BUG: sleeping function called from invalid context at %s:%d\n",
6588                        file, line);
6589        printk(KERN_ERR
6590                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6591                        in_atomic(), irqs_disabled(),
6592                        current->pid, current->comm);
6593
6594        debug_show_held_locks(current);
6595        if (irqs_disabled())
6596                print_irqtrace_events(current);
6597        dump_stack();
6598}
6599EXPORT_SYMBOL(__might_sleep);
6600#endif
6601
6602#ifdef CONFIG_MAGIC_SYSRQ
6603static void normalize_task(struct rq *rq, struct task_struct *p)
6604{
6605        const struct sched_class *prev_class = p->sched_class;
6606        int old_prio = p->prio;
6607        int on_rq;
6608
6609        on_rq = p->on_rq;
6610        if (on_rq)
6611                dequeue_task(rq, p, 0);
6612        __setscheduler(rq, p, SCHED_NORMAL, 0);
6613        if (on_rq) {
6614                enqueue_task(rq, p, 0);
6615                resched_task(rq->curr);
6616        }
6617
6618        check_class_changed(rq, p, prev_class, old_prio);
6619}
6620
6621void normalize_rt_tasks(void)
6622{
6623        struct task_struct *g, *p;
6624        unsigned long flags;
6625        struct rq *rq;
6626
6627        read_lock_irqsave(&tasklist_lock, flags);
6628        do_each_thread(g, p) {
6629                /*
6630                 * Only normalize user tasks:
6631                 */
6632                if (!p->mm)
6633                        continue;
6634
6635                p->se.exec_start                = 0;
6636#ifdef CONFIG_SCHEDSTATS
6637                p->se.statistics.wait_start     = 0;
6638                p->se.statistics.sleep_start    = 0;
6639                p->se.statistics.block_start    = 0;
6640#endif
6641
6642                if (!rt_task(p)) {
6643                        /*
6644                         * Renice negative nice level userspace
6645                         * tasks back to 0:
6646                         */
6647                        if (TASK_NICE(p) < 0 && p->mm)
6648                                set_user_nice(p, 0);
6649                        continue;
6650                }
6651
6652                raw_spin_lock(&p->pi_lock);
6653                rq = __task_rq_lock(p);
6654
6655                normalize_task(rq, p);
6656
6657                __task_rq_unlock(rq);
6658                raw_spin_unlock(&p->pi_lock);
6659        } while_each_thread(g, p);
6660
6661        read_unlock_irqrestore(&tasklist_lock, flags);
6662}
6663
6664#endif /* CONFIG_MAGIC_SYSRQ */
6665
6666#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6667/*
6668 * These functions are only useful for the IA64 MCA handling, or kdb.
6669 *
6670 * They can only be called when the whole system has been
6671 * stopped - every CPU needs to be quiescent, and no scheduling
6672 * activity can take place. Using them for anything else would
6673 * be a serious bug, and as a result, they aren't even visible
6674 * under any other configuration.
6675 */
6676
6677/**
6678 * curr_task - return the current task for a given cpu.
6679 * @cpu: the processor in question.
6680 *
6681 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6682 *
6683 * Return: The current task for @cpu.
6684 */
6685struct task_struct *curr_task(int cpu)
6686{
6687        return cpu_curr(cpu);
6688}
6689
6690#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6691
6692#ifdef CONFIG_IA64
6693/**
6694 * set_curr_task - set the current task for a given cpu.
6695 * @cpu: the processor in question.
6696 * @p: the task pointer to set.
6697 *
6698 * Description: This function must only be used when non-maskable interrupts
6699 * are serviced on a separate stack. It allows the architecture to switch the
6700 * notion of the current task on a cpu in a non-blocking manner. This function
6701 * must be called with all CPU's synchronized, and interrupts disabled, the
6702 * and caller must save the original value of the current task (see
6703 * curr_task() above) and restore that value before reenabling interrupts and
6704 * re-starting the system.
6705 *
6706 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6707 */
6708void set_curr_task(int cpu, struct task_struct *p)
6709{
6710        cpu_curr(cpu) = p;
6711}
6712
6713#endif
6714
6715#ifdef CONFIG_CGROUP_SCHED
6716/* task_group_lock serializes the addition/removal of task groups */
6717static DEFINE_SPINLOCK(task_group_lock);
6718
6719static void free_sched_group(struct task_group *tg)
6720{
6721        free_fair_sched_group(tg);
6722        free_rt_sched_group(tg);
6723        autogroup_free(tg);
6724        kfree(tg);
6725}
6726
6727/* allocate runqueue etc for a new task group */
6728struct task_group *sched_create_group(struct task_group *parent)
6729{
6730        struct task_group *tg;
6731
6732        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6733        if (!tg)
6734                return ERR_PTR(-ENOMEM);
6735
6736        if (!alloc_fair_sched_group(tg, parent))
6737                goto err;
6738
6739        if (!alloc_rt_sched_group(tg, parent))
6740                goto err;
6741
6742        return tg;
6743
6744err:
6745        free_sched_group(tg);
6746        return ERR_PTR(-ENOMEM);
6747}
6748
6749void sched_online_group(struct task_group *tg, struct task_group *parent)
6750{
6751        unsigned long flags;
6752
6753        spin_lock_irqsave(&task_group_lock, flags);
6754        list_add_rcu(&tg->list, &task_groups);
6755
6756        WARN_ON(!parent); /* root should already exist */
6757
6758        tg->parent = parent;
6759        INIT_LIST_HEAD(&tg->children);
6760        list_add_rcu(&tg->siblings, &parent->children);
6761        spin_unlock_irqrestore(&task_group_lock, flags);
6762}
6763
6764/* rcu callback to free various structures associated with a task group */
6765static void free_sched_group_rcu(struct rcu_head *rhp)
6766{
6767        /* now it should be safe to free those cfs_rqs */
6768        free_sched_group(container_of(rhp, struct task_group, rcu));
6769}
6770
6771/* Destroy runqueue etc associated with a task group */
6772void sched_destroy_group(struct task_group *tg)
6773{
6774        /* wait for possible concurrent references to cfs_rqs complete */
6775        call_rcu(&tg->rcu, free_sched_group_rcu);
6776}
6777
6778void sched_offline_group(struct task_group *tg)
6779{
6780        unsigned long flags;
6781        int i;
6782
6783        /* end participation in shares distribution */
6784        for_each_possible_cpu(i)
6785                unregister_fair_sched_group(tg, i);
6786
6787        spin_lock_irqsave(&task_group_lock, flags);
6788        list_del_rcu(&tg->list);
6789        list_del_rcu(&tg->siblings);
6790        spin_unlock_irqrestore(&task_group_lock, flags);
6791}
6792
6793/* change task's runqueue when it moves between groups.
6794 *      The caller of this function should have put the task in its new group
6795 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6796 *      reflect its new group.
6797 */
6798void sched_move_task(struct task_struct *tsk)
6799{
6800        struct task_group *tg;
6801        int on_rq, running;
6802        unsigned long flags;
6803        struct rq *rq;
6804
6805        rq = task_rq_lock(tsk, &flags);
6806
6807        running = task_current(rq, tsk);
6808        on_rq = tsk->on_rq;
6809
6810        if (on_rq)
6811                dequeue_task(rq, tsk, 0);
6812        if (unlikely(running))
6813                tsk->sched_class->put_prev_task(rq, tsk);
6814
6815        tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6816                                lockdep_is_held(&tsk->sighand->siglock)),
6817                          struct task_group, css);
6818        tg = autogroup_task_group(tsk, tg);
6819        tsk->sched_task_group = tg;
6820
6821#ifdef CONFIG_FAIR_GROUP_SCHED
6822        if (tsk->sched_class->task_move_group)
6823                tsk->sched_class->task_move_group(tsk, on_rq);
6824        else
6825#endif
6826                set_task_rq(tsk, task_cpu(tsk));
6827
6828        if (unlikely(running))
6829                tsk->sched_class->set_curr_task(rq);
6830        if (on_rq)
6831                enqueue_task(rq, tsk, 0);
6832
6833        task_rq_unlock(rq, tsk, &flags);
6834}
6835#endif /* CONFIG_CGROUP_SCHED */
6836
6837#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6838static unsigned long to_ratio(u64 period, u64 runtime)
6839{
6840        if (runtime == RUNTIME_INF)
6841                return 1ULL << 20;
6842
6843        return div64_u64(runtime << 20, period);
6844}
6845#endif
6846
6847#ifdef CONFIG_RT_GROUP_SCHED
6848/*
6849 * Ensure that the real time constraints are schedulable.
6850 */
6851static DEFINE_MUTEX(rt_constraints_mutex);
6852
6853/* Must be called with tasklist_lock held */
6854static inline int tg_has_rt_tasks(struct task_group *tg)
6855{
6856        struct task_struct *g, *p;
6857
6858        do_each_thread(g, p) {
6859                if (rt_task(p) && task_rq(p)->rt.tg == tg)
6860                        return 1;
6861        } while_each_thread(g, p);
6862
6863        return 0;
6864}
6865
6866struct rt_schedulable_data {
6867        struct task_group *tg;
6868        u64 rt_period;
6869        u64 rt_runtime;
6870};
6871
6872static int tg_rt_schedulable(struct task_group *tg, void *data)
6873{
6874        struct rt_schedulable_data *d = data;
6875        struct task_group *child;
6876        unsigned long total, sum = 0;
6877        u64 period, runtime;
6878
6879        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6880        runtime = tg->rt_bandwidth.rt_runtime;
6881
6882        if (tg == d->tg) {
6883                period = d->rt_period;
6884                runtime = d->rt_runtime;
6885        }
6886
6887        /*
6888         * Cannot have more runtime than the period.
6889         */
6890        if (runtime > period && runtime != RUNTIME_INF)
6891                return -EINVAL;
6892
6893        /*
6894         * Ensure we don't starve existing RT tasks.
6895         */
6896        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6897                return -EBUSY;
6898
6899        total = to_ratio(period, runtime);
6900
6901        /*
6902         * Nobody can have more than the global setting allows.
6903         */
6904        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6905                return -EINVAL;
6906
6907        /*
6908         * The sum of our children's runtime should not exceed our own.
6909         */
6910        list_for_each_entry_rcu(child, &tg->children, siblings) {
6911                period = ktime_to_ns(child->rt_bandwidth.rt_period);
6912                runtime = child->rt_bandwidth.rt_runtime;
6913
6914                if (child == d->tg) {
6915                        period = d->rt_period;
6916                        runtime = d->rt_runtime;
6917                }
6918
6919                sum += to_ratio(period, runtime);
6920        }
6921
6922        if (sum > total)
6923                return -EINVAL;
6924
6925        return 0;
6926}
6927
6928static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6929{
6930        int ret;
6931
6932        struct rt_schedulable_data data = {
6933                .tg = tg,
6934                .rt_period = period,
6935                .rt_runtime = runtime,
6936        };
6937
6938        rcu_read_lock();
6939        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6940        rcu_read_unlock();
6941
6942        return ret;
6943}
6944
6945static int tg_set_rt_bandwidth(struct task_group *tg,
6946                u64 rt_period, u64 rt_runtime)
6947{
6948        int i, err = 0;
6949
6950        mutex_lock(&rt_constraints_mutex);
6951        read_lock(&tasklist_lock);
6952        err = __rt_schedulable(tg, rt_period, rt_runtime);
6953        if (err)
6954                goto unlock;
6955
6956        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6957        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6958        tg->rt_bandwidth.rt_runtime = rt_runtime;
6959
6960        for_each_possible_cpu(i) {
6961                struct rt_rq *rt_rq = tg->rt_rq[i];
6962
6963                raw_spin_lock(&rt_rq->rt_runtime_lock);
6964                rt_rq->rt_runtime = rt_runtime;
6965                raw_spin_unlock(&rt_rq->rt_runtime_lock);
6966        }
6967        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6968unlock:
6969        read_unlock(&tasklist_lock);
6970        mutex_unlock(&rt_constraints_mutex);
6971
6972        return err;
6973}
6974
6975static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6976{
6977        u64 rt_runtime, rt_period;
6978
6979        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6980        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6981        if (rt_runtime_us < 0)
6982                rt_runtime = RUNTIME_INF;
6983
6984        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6985}
6986
6987static long sched_group_rt_runtime(struct task_group *tg)
6988{
6989        u64 rt_runtime_us;
6990
6991        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6992                return -1;
6993
6994        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6995        do_div(rt_runtime_us, NSEC_PER_USEC);
6996        return rt_runtime_us;
6997}
6998
6999static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7000{
7001        u64 rt_runtime, rt_period;
7002
7003        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7004        rt_runtime = tg->rt_bandwidth.rt_runtime;
7005
7006        if (rt_period == 0)
7007                return -EINVAL;
7008
7009        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7010}
7011
7012static long sched_group_rt_period(struct task_group *tg)
7013{
7014        u64 rt_period_us;
7015
7016        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7017        do_div(rt_period_us, NSEC_PER_USEC);
7018        return rt_period_us;
7019}
7020
7021static int sched_rt_global_constraints(void)
7022{
7023        u64 runtime, period;
7024        int ret = 0;
7025
7026        if (sysctl_sched_rt_period <= 0)
7027                return -EINVAL;
7028
7029        runtime = global_rt_runtime();
7030        period = global_rt_period();
7031
7032        /*
7033         * Sanity check on the sysctl variables.
7034         */
7035        if (runtime > period && runtime != RUNTIME_INF)
7036                return -EINVAL;
7037
7038        mutex_lock(&rt_constraints_mutex);
7039        read_lock(&tasklist_lock);
7040        ret = __rt_schedulable(NULL, 0, 0);
7041        read_unlock(&tasklist_lock);
7042        mutex_unlock(&rt_constraints_mutex);
7043
7044        return ret;
7045}
7046
7047static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7048{
7049        /* Don't accept realtime tasks when there is no way for them to run */
7050        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7051                return 0;
7052
7053        return 1;
7054}
7055
7056#else /* !CONFIG_RT_GROUP_SCHED */
7057static int sched_rt_global_constraints(void)
7058{
7059        unsigned long flags;
7060        int i;
7061
7062        if (sysctl_sched_rt_period <= 0)
7063                return -EINVAL;
7064
7065        /*
7066         * There's always some RT tasks in the root group
7067         * -- migration, kstopmachine etc..
7068         */
7069        if (sysctl_sched_rt_runtime == 0)
7070                return -EBUSY;
7071
7072        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7073        for_each_possible_cpu(i) {
7074                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7075
7076                raw_spin_lock(&rt_rq->rt_runtime_lock);
7077                rt_rq->rt_runtime = global_rt_runtime();
7078                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7079        }
7080        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7081
7082        return 0;
7083}
7084#endif /* CONFIG_RT_GROUP_SCHED */
7085
7086int sched_rr_handler(struct ctl_table *table, int write,
7087                void __user *buffer, size_t *lenp,
7088                loff_t *ppos)
7089{
7090        int ret;
7091        static DEFINE_MUTEX(mutex);
7092
7093        mutex_lock(&mutex);
7094        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7095        /* make sure that internally we keep jiffies */
7096        /* also, writing zero resets timeslice to default */
7097        if (!ret && write) {
7098                sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7099                        RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7100        }
7101        mutex_unlock(&mutex);
7102        return ret;
7103}
7104
7105int sched_rt_handler(struct ctl_table *table, int write,
7106                void __user *buffer, size_t *lenp,
7107                loff_t *ppos)
7108{
7109        int ret;
7110        int old_period, old_runtime;
7111        static DEFINE_MUTEX(mutex);
7112
7113        mutex_lock(&mutex);
7114        old_period = sysctl_sched_rt_period;
7115        old_runtime = sysctl_sched_rt_runtime;
7116
7117        ret = proc_dointvec(table, write, buffer, lenp, ppos);
7118
7119        if (!ret && write) {
7120                ret = sched_rt_global_constraints();
7121                if (ret) {
7122                        sysctl_sched_rt_period = old_period;
7123                        sysctl_sched_rt_runtime = old_runtime;
7124                } else {
7125                        def_rt_bandwidth.rt_runtime = global_rt_runtime();
7126                        def_rt_bandwidth.rt_period =
7127                                ns_to_ktime(global_rt_period());
7128                }
7129        }
7130        mutex_unlock(&mutex);
7131
7132        return ret;
7133}
7134
7135#ifdef CONFIG_CGROUP_SCHED
7136
7137static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7138{
7139        return css ? container_of(css, struct task_group, css) : NULL;
7140}
7141
7142static struct cgroup_subsys_state *
7143cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7144{
7145        struct task_group *parent = css_tg(parent_css);
7146        struct task_group *tg;
7147
7148        if (!parent) {
7149                /* This is early initialization for the top cgroup */
7150                return &root_task_group.css;
7151        }
7152
7153        tg = sched_create_group(parent);
7154        if (IS_ERR(tg))
7155                return ERR_PTR(-ENOMEM);
7156
7157        return &tg->css;
7158}
7159
7160static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7161{
7162        struct task_group *tg = css_tg(css);
7163        struct task_group *parent = css_tg(css_parent(css));
7164
7165        if (parent)
7166                sched_online_group(tg, parent);
7167        return 0;
7168}
7169
7170static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7171{
7172        struct task_group *tg = css_tg(css);
7173
7174        sched_destroy_group(tg);
7175}
7176
7177static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7178{
7179        struct task_group *tg = css_tg(css);
7180
7181        sched_offline_group(tg);
7182}
7183
7184static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7185                                 struct cgroup_taskset *tset)
7186{
7187        struct task_struct *task;
7188
7189        cgroup_taskset_for_each(task, css, tset) {
7190#ifdef CONFIG_RT_GROUP_SCHED
7191                if (!sched_rt_can_attach(css_tg(css), task))
7192                        return -EINVAL;
7193#else
7194                /* We don't support RT-tasks being in separate groups */
7195                if (task->sched_class != &fair_sched_class)
7196                        return -EINVAL;
7197#endif
7198        }
7199        return 0;
7200}
7201
7202static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7203                              struct cgroup_taskset *tset)
7204{
7205        struct task_struct *task;
7206
7207        cgroup_taskset_for_each(task, css, tset)
7208                sched_move_task(task);
7209}
7210
7211static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7212                            struct cgroup_subsys_state *old_css,
7213                            struct task_struct *task)
7214{
7215        /*
7216         * cgroup_exit() is called in the copy_process() failure path.
7217         * Ignore this case since the task hasn't ran yet, this avoids
7218         * trying to poke a half freed task state from generic code.
7219         */
7220        if (!(task->flags & PF_EXITING))
7221                return;
7222
7223        sched_move_task(task);
7224}
7225
7226#ifdef CONFIG_FAIR_GROUP_SCHED
7227static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7228                                struct cftype *cftype, u64 shareval)
7229{
7230        return sched_group_set_shares(css_tg(css), scale_load(shareval));
7231}
7232
7233static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7234                               struct cftype *cft)
7235{
7236        struct task_group *tg = css_tg(css);
7237
7238        return (u64) scale_load_down(tg->shares);
7239}
7240
7241#ifdef CONFIG_CFS_BANDWIDTH
7242static DEFINE_MUTEX(cfs_constraints_mutex);
7243
7244const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7245const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7246
7247static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7248
7249static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7250{
7251        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7252        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7253
7254        if (tg == &root_task_group)
7255                return -EINVAL;
7256
7257        /*
7258         * Ensure we have at some amount of bandwidth every period.  This is
7259         * to prevent reaching a state of large arrears when throttled via
7260         * entity_tick() resulting in prolonged exit starvation.
7261         */
7262        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7263                return -EINVAL;
7264
7265        /*
7266         * Likewise, bound things on the otherside by preventing insane quota
7267         * periods.  This also allows us to normalize in computing quota
7268         * feasibility.
7269         */
7270        if (period > max_cfs_quota_period)
7271                return -EINVAL;
7272
7273        mutex_lock(&cfs_constraints_mutex);
7274        ret = __cfs_schedulable(tg, period, quota);
7275        if (ret)
7276                goto out_unlock;
7277
7278        runtime_enabled = quota != RUNTIME_INF;
7279        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7280        account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7281        raw_spin_lock_irq(&cfs_b->lock);
7282        cfs_b->period = ns_to_ktime(period);
7283        cfs_b->quota = quota;
7284
7285        __refill_cfs_bandwidth_runtime(cfs_b);
7286        /* restart the period timer (if active) to handle new period expiry */
7287        if (runtime_enabled && cfs_b->timer_active) {
7288                /* force a reprogram */
7289                cfs_b->timer_active = 0;
7290                __start_cfs_bandwidth(cfs_b);
7291        }
7292        raw_spin_unlock_irq(&cfs_b->lock);
7293
7294        for_each_possible_cpu(i) {
7295                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7296                struct rq *rq = cfs_rq->rq;
7297
7298                raw_spin_lock_irq(&rq->lock);
7299                cfs_rq->runtime_enabled = runtime_enabled;
7300                cfs_rq->runtime_remaining = 0;
7301
7302                if (cfs_rq->throttled)
7303                        unthrottle_cfs_rq(cfs_rq);
7304                raw_spin_unlock_irq(&rq->lock);
7305        }
7306out_unlock:
7307        mutex_unlock(&cfs_constraints_mutex);
7308
7309        return ret;
7310}
7311
7312int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7313{
7314        u64 quota, period;
7315
7316        period = ktime_to_ns(tg->cfs_bandwidth.period);
7317        if (cfs_quota_us < 0)
7318                quota = RUNTIME_INF;
7319        else
7320                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7321
7322        return tg_set_cfs_bandwidth(tg, period, quota);
7323}
7324
7325long tg_get_cfs_quota(struct task_group *tg)
7326{
7327        u64 quota_us;
7328
7329        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7330                return -1;
7331
7332        quota_us = tg->cfs_bandwidth.quota;
7333        do_div(quota_us, NSEC_PER_USEC);
7334
7335        return quota_us;
7336}
7337
7338int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7339{
7340        u64 quota, period;
7341
7342        period = (u64)cfs_period_us * NSEC_PER_USEC;
7343        quota = tg->cfs_bandwidth.quota;
7344
7345        return tg_set_cfs_bandwidth(tg, period, quota);
7346}
7347
7348long tg_get_cfs_period(struct task_group *tg)
7349{
7350        u64 cfs_period_us;
7351
7352        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7353        do_div(cfs_period_us, NSEC_PER_USEC);
7354
7355        return cfs_period_us;
7356}
7357
7358static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7359                                  struct cftype *cft)
7360{
7361        return tg_get_cfs_quota(css_tg(css));
7362}
7363
7364static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7365                                   struct cftype *cftype, s64 cfs_quota_us)
7366{
7367        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7368}
7369
7370static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7371                                   struct cftype *cft)
7372{
7373        return tg_get_cfs_period(css_tg(css));
7374}
7375
7376static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7377                                    struct cftype *cftype, u64 cfs_period_us)
7378{
7379        return tg_set_cfs_period(css_tg(css), cfs_period_us);
7380}
7381
7382struct cfs_schedulable_data {
7383        struct task_group *tg;
7384        u64 period, quota;
7385};
7386
7387/*
7388 * normalize group quota/period to be quota/max_period
7389 * note: units are usecs
7390 */
7391static u64 normalize_cfs_quota(struct task_group *tg,
7392                               struct cfs_schedulable_data *d)
7393{
7394        u64 quota, period;
7395
7396        if (tg == d->tg) {
7397                period = d->period;
7398                quota = d->quota;
7399        } else {
7400                period = tg_get_cfs_period(tg);
7401                quota = tg_get_cfs_quota(tg);
7402        }
7403
7404        /* note: these should typically be equivalent */
7405        if (quota == RUNTIME_INF || quota == -1)
7406                return RUNTIME_INF;
7407
7408        return to_ratio(period, quota);
7409}
7410
7411static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7412{
7413        struct cfs_schedulable_data *d = data;
7414        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7415        s64 quota = 0, parent_quota = -1;
7416
7417        if (!tg->parent) {
7418                quota = RUNTIME_INF;
7419        } else {
7420                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7421
7422                quota = normalize_cfs_quota(tg, d);
7423                parent_quota = parent_b->hierarchal_quota;
7424
7425                /*
7426                 * ensure max(child_quota) <= parent_quota, inherit when no
7427                 * limit is set
7428                 */
7429                if (quota == RUNTIME_INF)
7430                        quota = parent_quota;
7431                else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7432                        return -EINVAL;
7433        }
7434        cfs_b->hierarchal_quota = quota;
7435
7436        return 0;
7437}
7438
7439static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7440{
7441        int ret;
7442        struct cfs_schedulable_data data = {
7443                .tg = tg,
7444                .period = period,
7445                .quota = quota,
7446        };
7447
7448        if (quota != RUNTIME_INF) {
7449                do_div(data.period, NSEC_PER_USEC);
7450                do_div(data.quota, NSEC_PER_USEC);
7451        }
7452
7453        rcu_read_lock();
7454        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7455        rcu_read_unlock();
7456
7457        return ret;
7458}
7459
7460static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7461                struct cgroup_map_cb *cb)
7462{
7463        struct task_group *tg = css_tg(css);
7464        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7465
7466        cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7467        cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7468        cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7469
7470        return 0;
7471}
7472#endif /* CONFIG_CFS_BANDWIDTH */
7473#endif /* CONFIG_FAIR_GROUP_SCHED */
7474
7475#ifdef CONFIG_RT_GROUP_SCHED
7476static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7477                                struct cftype *cft, s64 val)
7478{
7479        return sched_group_set_rt_runtime(css_tg(css), val);
7480}
7481
7482static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7483                               struct cftype *cft)
7484{
7485        return sched_group_rt_runtime(css_tg(css));
7486}
7487
7488static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7489                                    struct cftype *cftype, u64 rt_period_us)
7490{
7491        return sched_group_set_rt_period(css_tg(css), rt_period_us);
7492}
7493
7494static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7495                                   struct cftype *cft)
7496{
7497        return sched_group_rt_period(css_tg(css));
7498}
7499#endif /* CONFIG_RT_GROUP_SCHED */
7500
7501static struct cftype cpu_files[] = {
7502#ifdef CONFIG_FAIR_GROUP_SCHED
7503        {
7504                .name = "shares",
7505                .read_u64 = cpu_shares_read_u64,
7506                .write_u64 = cpu_shares_write_u64,
7507        },
7508#endif
7509#ifdef CONFIG_CFS_BANDWIDTH
7510        {
7511                .name = "cfs_quota_us",
7512                .read_s64 = cpu_cfs_quota_read_s64,
7513                .write_s64 = cpu_cfs_quota_write_s64,
7514        },
7515        {
7516                .name = "cfs_period_us",
7517                .read_u64 = cpu_cfs_period_read_u64,
7518                .write_u64 = cpu_cfs_period_write_u64,
7519        },
7520        {
7521                .name = "stat",
7522                .read_map = cpu_stats_show,
7523        },
7524#endif
7525#ifdef CONFIG_RT_GROUP_SCHED
7526        {
7527                .name = "rt_runtime_us",
7528                .read_s64 = cpu_rt_runtime_read,
7529                .write_s64 = cpu_rt_runtime_write,
7530        },
7531        {
7532                .name = "rt_period_us",
7533                .read_u64 = cpu_rt_period_read_uint,
7534                .write_u64 = cpu_rt_period_write_uint,
7535        },
7536#endif
7537        { }     /* terminate */
7538};
7539
7540struct cgroup_subsys cpu_cgroup_subsys = {
7541        .name           = "cpu",
7542        .css_alloc      = cpu_cgroup_css_alloc,
7543        .css_free       = cpu_cgroup_css_free,
7544        .css_online     = cpu_cgroup_css_online,
7545        .css_offline    = cpu_cgroup_css_offline,
7546        .can_attach     = cpu_cgroup_can_attach,
7547        .attach         = cpu_cgroup_attach,
7548        .exit           = cpu_cgroup_exit,
7549        .subsys_id      = cpu_cgroup_subsys_id,
7550        .base_cftypes   = cpu_files,
7551        .early_init     = 1,
7552};
7553
7554#endif  /* CONFIG_CGROUP_SCHED */
7555
7556void dump_cpu_task(int cpu)
7557{
7558        pr_info("Task dump for CPU %d:\n", cpu);
7559        sched_show_task(cpu_curr(cpu));
7560}
7561