linux/kernel/sched/sched.h
<<
>>
Prefs
   1
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/mutex.h>
   6#include <linux/spinlock.h>
   7#include <linux/stop_machine.h>
   8#include <linux/tick.h>
   9
  10#include "cpupri.h"
  11#include "cpuacct.h"
  12
  13struct rq;
  14
  15extern __read_mostly int scheduler_running;
  16
  17extern unsigned long calc_load_update;
  18extern atomic_long_t calc_load_tasks;
  19
  20extern long calc_load_fold_active(struct rq *this_rq);
  21extern void update_cpu_load_active(struct rq *this_rq);
  22
  23/*
  24 * Convert user-nice values [ -20 ... 0 ... 19 ]
  25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  26 * and back.
  27 */
  28#define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
  29#define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
  30#define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
  31
  32/*
  33 * 'User priority' is the nice value converted to something we
  34 * can work with better when scaling various scheduler parameters,
  35 * it's a [ 0 ... 39 ] range.
  36 */
  37#define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
  38#define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
  39#define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
  40
  41/*
  42 * Helpers for converting nanosecond timing to jiffy resolution
  43 */
  44#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  45
  46/*
  47 * Increase resolution of nice-level calculations for 64-bit architectures.
  48 * The extra resolution improves shares distribution and load balancing of
  49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  50 * hierarchies, especially on larger systems. This is not a user-visible change
  51 * and does not change the user-interface for setting shares/weights.
  52 *
  53 * We increase resolution only if we have enough bits to allow this increased
  54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  56 * increased costs.
  57 */
  58#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  59# define SCHED_LOAD_RESOLUTION  10
  60# define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
  61# define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
  62#else
  63# define SCHED_LOAD_RESOLUTION  0
  64# define scale_load(w)          (w)
  65# define scale_load_down(w)     (w)
  66#endif
  67
  68#define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
  69#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
  70
  71#define NICE_0_LOAD             SCHED_LOAD_SCALE
  72#define NICE_0_SHIFT            SCHED_LOAD_SHIFT
  73
  74/*
  75 * These are the 'tuning knobs' of the scheduler:
  76 */
  77
  78/*
  79 * single value that denotes runtime == period, ie unlimited time.
  80 */
  81#define RUNTIME_INF     ((u64)~0ULL)
  82
  83static inline int rt_policy(int policy)
  84{
  85        if (policy == SCHED_FIFO || policy == SCHED_RR)
  86                return 1;
  87        return 0;
  88}
  89
  90static inline int task_has_rt_policy(struct task_struct *p)
  91{
  92        return rt_policy(p->policy);
  93}
  94
  95/*
  96 * This is the priority-queue data structure of the RT scheduling class:
  97 */
  98struct rt_prio_array {
  99        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 100        struct list_head queue[MAX_RT_PRIO];
 101};
 102
 103struct rt_bandwidth {
 104        /* nests inside the rq lock: */
 105        raw_spinlock_t          rt_runtime_lock;
 106        ktime_t                 rt_period;
 107        u64                     rt_runtime;
 108        struct hrtimer          rt_period_timer;
 109};
 110
 111extern struct mutex sched_domains_mutex;
 112
 113#ifdef CONFIG_CGROUP_SCHED
 114
 115#include <linux/cgroup.h>
 116
 117struct cfs_rq;
 118struct rt_rq;
 119
 120extern struct list_head task_groups;
 121
 122struct cfs_bandwidth {
 123#ifdef CONFIG_CFS_BANDWIDTH
 124        raw_spinlock_t lock;
 125        ktime_t period;
 126        u64 quota, runtime;
 127        s64 hierarchal_quota;
 128        u64 runtime_expires;
 129
 130        int idle, timer_active;
 131        struct hrtimer period_timer, slack_timer;
 132        struct list_head throttled_cfs_rq;
 133
 134        /* statistics */
 135        int nr_periods, nr_throttled;
 136        u64 throttled_time;
 137#endif
 138};
 139
 140/* task group related information */
 141struct task_group {
 142        struct cgroup_subsys_state css;
 143
 144#ifdef CONFIG_FAIR_GROUP_SCHED
 145        /* schedulable entities of this group on each cpu */
 146        struct sched_entity **se;
 147        /* runqueue "owned" by this group on each cpu */
 148        struct cfs_rq **cfs_rq;
 149        unsigned long shares;
 150
 151#ifdef  CONFIG_SMP
 152        atomic_long_t load_avg;
 153        atomic_t runnable_avg;
 154#endif
 155#endif
 156
 157#ifdef CONFIG_RT_GROUP_SCHED
 158        struct sched_rt_entity **rt_se;
 159        struct rt_rq **rt_rq;
 160
 161        struct rt_bandwidth rt_bandwidth;
 162#endif
 163
 164        struct rcu_head rcu;
 165        struct list_head list;
 166
 167        struct task_group *parent;
 168        struct list_head siblings;
 169        struct list_head children;
 170
 171#ifdef CONFIG_SCHED_AUTOGROUP
 172        struct autogroup *autogroup;
 173#endif
 174
 175        struct cfs_bandwidth cfs_bandwidth;
 176};
 177
 178#ifdef CONFIG_FAIR_GROUP_SCHED
 179#define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
 180
 181/*
 182 * A weight of 0 or 1 can cause arithmetics problems.
 183 * A weight of a cfs_rq is the sum of weights of which entities
 184 * are queued on this cfs_rq, so a weight of a entity should not be
 185 * too large, so as the shares value of a task group.
 186 * (The default weight is 1024 - so there's no practical
 187 *  limitation from this.)
 188 */
 189#define MIN_SHARES      (1UL <<  1)
 190#define MAX_SHARES      (1UL << 18)
 191#endif
 192
 193typedef int (*tg_visitor)(struct task_group *, void *);
 194
 195extern int walk_tg_tree_from(struct task_group *from,
 196                             tg_visitor down, tg_visitor up, void *data);
 197
 198/*
 199 * Iterate the full tree, calling @down when first entering a node and @up when
 200 * leaving it for the final time.
 201 *
 202 * Caller must hold rcu_lock or sufficient equivalent.
 203 */
 204static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 205{
 206        return walk_tg_tree_from(&root_task_group, down, up, data);
 207}
 208
 209extern int tg_nop(struct task_group *tg, void *data);
 210
 211extern void free_fair_sched_group(struct task_group *tg);
 212extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 213extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
 214extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 215                        struct sched_entity *se, int cpu,
 216                        struct sched_entity *parent);
 217extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 218extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 219
 220extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 221extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 222extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 223
 224extern void free_rt_sched_group(struct task_group *tg);
 225extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 226extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 227                struct sched_rt_entity *rt_se, int cpu,
 228                struct sched_rt_entity *parent);
 229
 230extern struct task_group *sched_create_group(struct task_group *parent);
 231extern void sched_online_group(struct task_group *tg,
 232                               struct task_group *parent);
 233extern void sched_destroy_group(struct task_group *tg);
 234extern void sched_offline_group(struct task_group *tg);
 235
 236extern void sched_move_task(struct task_struct *tsk);
 237
 238#ifdef CONFIG_FAIR_GROUP_SCHED
 239extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 240#endif
 241
 242#else /* CONFIG_CGROUP_SCHED */
 243
 244struct cfs_bandwidth { };
 245
 246#endif  /* CONFIG_CGROUP_SCHED */
 247
 248/* CFS-related fields in a runqueue */
 249struct cfs_rq {
 250        struct load_weight load;
 251        unsigned int nr_running, h_nr_running;
 252
 253        u64 exec_clock;
 254        u64 min_vruntime;
 255#ifndef CONFIG_64BIT
 256        u64 min_vruntime_copy;
 257#endif
 258
 259        struct rb_root tasks_timeline;
 260        struct rb_node *rb_leftmost;
 261
 262        /*
 263         * 'curr' points to currently running entity on this cfs_rq.
 264         * It is set to NULL otherwise (i.e when none are currently running).
 265         */
 266        struct sched_entity *curr, *next, *last, *skip;
 267
 268#ifdef  CONFIG_SCHED_DEBUG
 269        unsigned int nr_spread_over;
 270#endif
 271
 272#ifdef CONFIG_SMP
 273        /*
 274         * CFS Load tracking
 275         * Under CFS, load is tracked on a per-entity basis and aggregated up.
 276         * This allows for the description of both thread and group usage (in
 277         * the FAIR_GROUP_SCHED case).
 278         */
 279        unsigned long runnable_load_avg, blocked_load_avg;
 280        atomic64_t decay_counter;
 281        u64 last_decay;
 282        atomic_long_t removed_load;
 283
 284#ifdef CONFIG_FAIR_GROUP_SCHED
 285        /* Required to track per-cpu representation of a task_group */
 286        u32 tg_runnable_contrib;
 287        unsigned long tg_load_contrib;
 288
 289        /*
 290         *   h_load = weight * f(tg)
 291         *
 292         * Where f(tg) is the recursive weight fraction assigned to
 293         * this group.
 294         */
 295        unsigned long h_load;
 296        u64 last_h_load_update;
 297        struct sched_entity *h_load_next;
 298#endif /* CONFIG_FAIR_GROUP_SCHED */
 299#endif /* CONFIG_SMP */
 300
 301#ifdef CONFIG_FAIR_GROUP_SCHED
 302        struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
 303
 304        /*
 305         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 306         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 307         * (like users, containers etc.)
 308         *
 309         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 310         * list is used during load balance.
 311         */
 312        int on_list;
 313        struct list_head leaf_cfs_rq_list;
 314        struct task_group *tg;  /* group that "owns" this runqueue */
 315
 316#ifdef CONFIG_CFS_BANDWIDTH
 317        int runtime_enabled;
 318        u64 runtime_expires;
 319        s64 runtime_remaining;
 320
 321        u64 throttled_clock, throttled_clock_task;
 322        u64 throttled_clock_task_time;
 323        int throttled, throttle_count;
 324        struct list_head throttled_list;
 325#endif /* CONFIG_CFS_BANDWIDTH */
 326#endif /* CONFIG_FAIR_GROUP_SCHED */
 327};
 328
 329static inline int rt_bandwidth_enabled(void)
 330{
 331        return sysctl_sched_rt_runtime >= 0;
 332}
 333
 334/* Real-Time classes' related field in a runqueue: */
 335struct rt_rq {
 336        struct rt_prio_array active;
 337        unsigned int rt_nr_running;
 338#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 339        struct {
 340                int curr; /* highest queued rt task prio */
 341#ifdef CONFIG_SMP
 342                int next; /* next highest */
 343#endif
 344        } highest_prio;
 345#endif
 346#ifdef CONFIG_SMP
 347        unsigned long rt_nr_migratory;
 348        unsigned long rt_nr_total;
 349        int overloaded;
 350        struct plist_head pushable_tasks;
 351#endif
 352        int rt_throttled;
 353        u64 rt_time;
 354        u64 rt_runtime;
 355        /* Nests inside the rq lock: */
 356        raw_spinlock_t rt_runtime_lock;
 357
 358#ifdef CONFIG_RT_GROUP_SCHED
 359        unsigned long rt_nr_boosted;
 360
 361        struct rq *rq;
 362        struct task_group *tg;
 363#endif
 364};
 365
 366#ifdef CONFIG_SMP
 367
 368/*
 369 * We add the notion of a root-domain which will be used to define per-domain
 370 * variables. Each exclusive cpuset essentially defines an island domain by
 371 * fully partitioning the member cpus from any other cpuset. Whenever a new
 372 * exclusive cpuset is created, we also create and attach a new root-domain
 373 * object.
 374 *
 375 */
 376struct root_domain {
 377        atomic_t refcount;
 378        atomic_t rto_count;
 379        struct rcu_head rcu;
 380        cpumask_var_t span;
 381        cpumask_var_t online;
 382
 383        /*
 384         * The "RT overload" flag: it gets set if a CPU has more than
 385         * one runnable RT task.
 386         */
 387        cpumask_var_t rto_mask;
 388        struct cpupri cpupri;
 389};
 390
 391extern struct root_domain def_root_domain;
 392
 393#endif /* CONFIG_SMP */
 394
 395/*
 396 * This is the main, per-CPU runqueue data structure.
 397 *
 398 * Locking rule: those places that want to lock multiple runqueues
 399 * (such as the load balancing or the thread migration code), lock
 400 * acquire operations must be ordered by ascending &runqueue.
 401 */
 402struct rq {
 403        /* runqueue lock: */
 404        raw_spinlock_t lock;
 405
 406        /*
 407         * nr_running and cpu_load should be in the same cacheline because
 408         * remote CPUs use both these fields when doing load calculation.
 409         */
 410        unsigned int nr_running;
 411        #define CPU_LOAD_IDX_MAX 5
 412        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 413        unsigned long last_load_update_tick;
 414#ifdef CONFIG_NO_HZ_COMMON
 415        u64 nohz_stamp;
 416        unsigned long nohz_flags;
 417#endif
 418#ifdef CONFIG_NO_HZ_FULL
 419        unsigned long last_sched_tick;
 420#endif
 421        int skip_clock_update;
 422
 423        /* capture load from *all* tasks on this cpu: */
 424        struct load_weight load;
 425        unsigned long nr_load_updates;
 426        u64 nr_switches;
 427
 428        struct cfs_rq cfs;
 429        struct rt_rq rt;
 430
 431#ifdef CONFIG_FAIR_GROUP_SCHED
 432        /* list of leaf cfs_rq on this cpu: */
 433        struct list_head leaf_cfs_rq_list;
 434#endif /* CONFIG_FAIR_GROUP_SCHED */
 435
 436#ifdef CONFIG_RT_GROUP_SCHED
 437        struct list_head leaf_rt_rq_list;
 438#endif
 439
 440        /*
 441         * This is part of a global counter where only the total sum
 442         * over all CPUs matters. A task can increase this counter on
 443         * one CPU and if it got migrated afterwards it may decrease
 444         * it on another CPU. Always updated under the runqueue lock:
 445         */
 446        unsigned long nr_uninterruptible;
 447
 448        struct task_struct *curr, *idle, *stop;
 449        unsigned long next_balance;
 450        struct mm_struct *prev_mm;
 451
 452        u64 clock;
 453        u64 clock_task;
 454
 455        atomic_t nr_iowait;
 456
 457#ifdef CONFIG_SMP
 458        struct root_domain *rd;
 459        struct sched_domain *sd;
 460
 461        unsigned long cpu_power;
 462
 463        unsigned char idle_balance;
 464        /* For active balancing */
 465        int post_schedule;
 466        int active_balance;
 467        int push_cpu;
 468        struct cpu_stop_work active_balance_work;
 469        /* cpu of this runqueue: */
 470        int cpu;
 471        int online;
 472
 473        struct list_head cfs_tasks;
 474
 475        u64 rt_avg;
 476        u64 age_stamp;
 477        u64 idle_stamp;
 478        u64 avg_idle;
 479#endif
 480
 481#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 482        u64 prev_irq_time;
 483#endif
 484#ifdef CONFIG_PARAVIRT
 485        u64 prev_steal_time;
 486#endif
 487#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 488        u64 prev_steal_time_rq;
 489#endif
 490
 491        /* calc_load related fields */
 492        unsigned long calc_load_update;
 493        long calc_load_active;
 494
 495#ifdef CONFIG_SCHED_HRTICK
 496#ifdef CONFIG_SMP
 497        int hrtick_csd_pending;
 498        struct call_single_data hrtick_csd;
 499#endif
 500        struct hrtimer hrtick_timer;
 501#endif
 502
 503#ifdef CONFIG_SCHEDSTATS
 504        /* latency stats */
 505        struct sched_info rq_sched_info;
 506        unsigned long long rq_cpu_time;
 507        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 508
 509        /* sys_sched_yield() stats */
 510        unsigned int yld_count;
 511
 512        /* schedule() stats */
 513        unsigned int sched_count;
 514        unsigned int sched_goidle;
 515
 516        /* try_to_wake_up() stats */
 517        unsigned int ttwu_count;
 518        unsigned int ttwu_local;
 519#endif
 520
 521#ifdef CONFIG_SMP
 522        struct llist_head wake_list;
 523#endif
 524
 525        struct sched_avg avg;
 526};
 527
 528static inline int cpu_of(struct rq *rq)
 529{
 530#ifdef CONFIG_SMP
 531        return rq->cpu;
 532#else
 533        return 0;
 534#endif
 535}
 536
 537DECLARE_PER_CPU(struct rq, runqueues);
 538
 539#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
 540#define this_rq()               (&__get_cpu_var(runqueues))
 541#define task_rq(p)              cpu_rq(task_cpu(p))
 542#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
 543#define raw_rq()                (&__raw_get_cpu_var(runqueues))
 544
 545static inline u64 rq_clock(struct rq *rq)
 546{
 547        return rq->clock;
 548}
 549
 550static inline u64 rq_clock_task(struct rq *rq)
 551{
 552        return rq->clock_task;
 553}
 554
 555#ifdef CONFIG_SMP
 556
 557#define rcu_dereference_check_sched_domain(p) \
 558        rcu_dereference_check((p), \
 559                              lockdep_is_held(&sched_domains_mutex))
 560
 561/*
 562 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 563 * See detach_destroy_domains: synchronize_sched for details.
 564 *
 565 * The domain tree of any CPU may only be accessed from within
 566 * preempt-disabled sections.
 567 */
 568#define for_each_domain(cpu, __sd) \
 569        for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 570                        __sd; __sd = __sd->parent)
 571
 572#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 573
 574/**
 575 * highest_flag_domain - Return highest sched_domain containing flag.
 576 * @cpu:        The cpu whose highest level of sched domain is to
 577 *              be returned.
 578 * @flag:       The flag to check for the highest sched_domain
 579 *              for the given cpu.
 580 *
 581 * Returns the highest sched_domain of a cpu which contains the given flag.
 582 */
 583static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 584{
 585        struct sched_domain *sd, *hsd = NULL;
 586
 587        for_each_domain(cpu, sd) {
 588                if (!(sd->flags & flag))
 589                        break;
 590                hsd = sd;
 591        }
 592
 593        return hsd;
 594}
 595
 596DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 597DECLARE_PER_CPU(int, sd_llc_size);
 598DECLARE_PER_CPU(int, sd_llc_id);
 599
 600struct sched_group_power {
 601        atomic_t ref;
 602        /*
 603         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 604         * single CPU.
 605         */
 606        unsigned int power, power_orig;
 607        unsigned long next_update;
 608        /*
 609         * Number of busy cpus in this group.
 610         */
 611        atomic_t nr_busy_cpus;
 612
 613        unsigned long cpumask[0]; /* iteration mask */
 614};
 615
 616struct sched_group {
 617        struct sched_group *next;       /* Must be a circular list */
 618        atomic_t ref;
 619
 620        unsigned int group_weight;
 621        struct sched_group_power *sgp;
 622
 623        /*
 624         * The CPUs this group covers.
 625         *
 626         * NOTE: this field is variable length. (Allocated dynamically
 627         * by attaching extra space to the end of the structure,
 628         * depending on how many CPUs the kernel has booted up with)
 629         */
 630        unsigned long cpumask[0];
 631};
 632
 633static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 634{
 635        return to_cpumask(sg->cpumask);
 636}
 637
 638/*
 639 * cpumask masking which cpus in the group are allowed to iterate up the domain
 640 * tree.
 641 */
 642static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 643{
 644        return to_cpumask(sg->sgp->cpumask);
 645}
 646
 647/**
 648 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 649 * @group: The group whose first cpu is to be returned.
 650 */
 651static inline unsigned int group_first_cpu(struct sched_group *group)
 652{
 653        return cpumask_first(sched_group_cpus(group));
 654}
 655
 656extern int group_balance_cpu(struct sched_group *sg);
 657
 658#endif /* CONFIG_SMP */
 659
 660#include "stats.h"
 661#include "auto_group.h"
 662
 663#ifdef CONFIG_CGROUP_SCHED
 664
 665/*
 666 * Return the group to which this tasks belongs.
 667 *
 668 * We cannot use task_css() and friends because the cgroup subsystem
 669 * changes that value before the cgroup_subsys::attach() method is called,
 670 * therefore we cannot pin it and might observe the wrong value.
 671 *
 672 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 673 * core changes this before calling sched_move_task().
 674 *
 675 * Instead we use a 'copy' which is updated from sched_move_task() while
 676 * holding both task_struct::pi_lock and rq::lock.
 677 */
 678static inline struct task_group *task_group(struct task_struct *p)
 679{
 680        return p->sched_task_group;
 681}
 682
 683/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 684static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 685{
 686#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 687        struct task_group *tg = task_group(p);
 688#endif
 689
 690#ifdef CONFIG_FAIR_GROUP_SCHED
 691        p->se.cfs_rq = tg->cfs_rq[cpu];
 692        p->se.parent = tg->se[cpu];
 693#endif
 694
 695#ifdef CONFIG_RT_GROUP_SCHED
 696        p->rt.rt_rq  = tg->rt_rq[cpu];
 697        p->rt.parent = tg->rt_se[cpu];
 698#endif
 699}
 700
 701#else /* CONFIG_CGROUP_SCHED */
 702
 703static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 704static inline struct task_group *task_group(struct task_struct *p)
 705{
 706        return NULL;
 707}
 708
 709#endif /* CONFIG_CGROUP_SCHED */
 710
 711static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 712{
 713        set_task_rq(p, cpu);
 714#ifdef CONFIG_SMP
 715        /*
 716         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 717         * successfuly executed on another CPU. We must ensure that updates of
 718         * per-task data have been completed by this moment.
 719         */
 720        smp_wmb();
 721        task_thread_info(p)->cpu = cpu;
 722#endif
 723}
 724
 725/*
 726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 727 */
 728#ifdef CONFIG_SCHED_DEBUG
 729# include <linux/static_key.h>
 730# define const_debug __read_mostly
 731#else
 732# define const_debug const
 733#endif
 734
 735extern const_debug unsigned int sysctl_sched_features;
 736
 737#define SCHED_FEAT(name, enabled)       \
 738        __SCHED_FEAT_##name ,
 739
 740enum {
 741#include "features.h"
 742        __SCHED_FEAT_NR,
 743};
 744
 745#undef SCHED_FEAT
 746
 747#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 748static __always_inline bool static_branch__true(struct static_key *key)
 749{
 750        return static_key_true(key); /* Not out of line branch. */
 751}
 752
 753static __always_inline bool static_branch__false(struct static_key *key)
 754{
 755        return static_key_false(key); /* Out of line branch. */
 756}
 757
 758#define SCHED_FEAT(name, enabled)                                       \
 759static __always_inline bool static_branch_##name(struct static_key *key) \
 760{                                                                       \
 761        return static_branch__##enabled(key);                           \
 762}
 763
 764#include "features.h"
 765
 766#undef SCHED_FEAT
 767
 768extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 769#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 770#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 771#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 772#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 773
 774#ifdef CONFIG_NUMA_BALANCING
 775#define sched_feat_numa(x) sched_feat(x)
 776#ifdef CONFIG_SCHED_DEBUG
 777#define numabalancing_enabled sched_feat_numa(NUMA)
 778#else
 779extern bool numabalancing_enabled;
 780#endif /* CONFIG_SCHED_DEBUG */
 781#else
 782#define sched_feat_numa(x) (0)
 783#define numabalancing_enabled (0)
 784#endif /* CONFIG_NUMA_BALANCING */
 785
 786static inline u64 global_rt_period(void)
 787{
 788        return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 789}
 790
 791static inline u64 global_rt_runtime(void)
 792{
 793        if (sysctl_sched_rt_runtime < 0)
 794                return RUNTIME_INF;
 795
 796        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 797}
 798
 799
 800
 801static inline int task_current(struct rq *rq, struct task_struct *p)
 802{
 803        return rq->curr == p;
 804}
 805
 806static inline int task_running(struct rq *rq, struct task_struct *p)
 807{
 808#ifdef CONFIG_SMP
 809        return p->on_cpu;
 810#else
 811        return task_current(rq, p);
 812#endif
 813}
 814
 815
 816#ifndef prepare_arch_switch
 817# define prepare_arch_switch(next)      do { } while (0)
 818#endif
 819#ifndef finish_arch_switch
 820# define finish_arch_switch(prev)       do { } while (0)
 821#endif
 822#ifndef finish_arch_post_lock_switch
 823# define finish_arch_post_lock_switch() do { } while (0)
 824#endif
 825
 826#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 827static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 828{
 829#ifdef CONFIG_SMP
 830        /*
 831         * We can optimise this out completely for !SMP, because the
 832         * SMP rebalancing from interrupt is the only thing that cares
 833         * here.
 834         */
 835        next->on_cpu = 1;
 836#endif
 837}
 838
 839static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 840{
 841#ifdef CONFIG_SMP
 842        /*
 843         * After ->on_cpu is cleared, the task can be moved to a different CPU.
 844         * We must ensure this doesn't happen until the switch is completely
 845         * finished.
 846         */
 847        smp_wmb();
 848        prev->on_cpu = 0;
 849#endif
 850#ifdef CONFIG_DEBUG_SPINLOCK
 851        /* this is a valid case when another task releases the spinlock */
 852        rq->lock.owner = current;
 853#endif
 854        /*
 855         * If we are tracking spinlock dependencies then we have to
 856         * fix up the runqueue lock - which gets 'carried over' from
 857         * prev into current:
 858         */
 859        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 860
 861        raw_spin_unlock_irq(&rq->lock);
 862}
 863
 864#else /* __ARCH_WANT_UNLOCKED_CTXSW */
 865static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 866{
 867#ifdef CONFIG_SMP
 868        /*
 869         * We can optimise this out completely for !SMP, because the
 870         * SMP rebalancing from interrupt is the only thing that cares
 871         * here.
 872         */
 873        next->on_cpu = 1;
 874#endif
 875        raw_spin_unlock(&rq->lock);
 876}
 877
 878static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 879{
 880#ifdef CONFIG_SMP
 881        /*
 882         * After ->on_cpu is cleared, the task can be moved to a different CPU.
 883         * We must ensure this doesn't happen until the switch is completely
 884         * finished.
 885         */
 886        smp_wmb();
 887        prev->on_cpu = 0;
 888#endif
 889        local_irq_enable();
 890}
 891#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 892
 893/*
 894 * wake flags
 895 */
 896#define WF_SYNC         0x01            /* waker goes to sleep after wakeup */
 897#define WF_FORK         0x02            /* child wakeup after fork */
 898#define WF_MIGRATED     0x4             /* internal use, task got migrated */
 899
 900/*
 901 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 902 * of tasks with abnormal "nice" values across CPUs the contribution that
 903 * each task makes to its run queue's load is weighted according to its
 904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 905 * scaled version of the new time slice allocation that they receive on time
 906 * slice expiry etc.
 907 */
 908
 909#define WEIGHT_IDLEPRIO                3
 910#define WMULT_IDLEPRIO         1431655765
 911
 912/*
 913 * Nice levels are multiplicative, with a gentle 10% change for every
 914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 916 * that remained on nice 0.
 917 *
 918 * The "10% effect" is relative and cumulative: from _any_ nice level,
 919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 921 * If a task goes up by ~10% and another task goes down by ~10% then
 922 * the relative distance between them is ~25%.)
 923 */
 924static const int prio_to_weight[40] = {
 925 /* -20 */     88761,     71755,     56483,     46273,     36291,
 926 /* -15 */     29154,     23254,     18705,     14949,     11916,
 927 /* -10 */      9548,      7620,      6100,      4904,      3906,
 928 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 929 /*   0 */      1024,       820,       655,       526,       423,
 930 /*   5 */       335,       272,       215,       172,       137,
 931 /*  10 */       110,        87,        70,        56,        45,
 932 /*  15 */        36,        29,        23,        18,        15,
 933};
 934
 935/*
 936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 937 *
 938 * In cases where the weight does not change often, we can use the
 939 * precalculated inverse to speed up arithmetics by turning divisions
 940 * into multiplications:
 941 */
 942static const u32 prio_to_wmult[40] = {
 943 /* -20 */     48388,     59856,     76040,     92818,    118348,
 944 /* -15 */    147320,    184698,    229616,    287308,    360437,
 945 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 946 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 947 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 948 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 949 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 950 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 951};
 952
 953#define ENQUEUE_WAKEUP          1
 954#define ENQUEUE_HEAD            2
 955#ifdef CONFIG_SMP
 956#define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
 957#else
 958#define ENQUEUE_WAKING          0
 959#endif
 960
 961#define DEQUEUE_SLEEP           1
 962
 963struct sched_class {
 964        const struct sched_class *next;
 965
 966        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 967        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
 968        void (*yield_task) (struct rq *rq);
 969        bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
 970
 971        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
 972
 973        struct task_struct * (*pick_next_task) (struct rq *rq);
 974        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 975
 976#ifdef CONFIG_SMP
 977        int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
 978        void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
 979
 980        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
 981        void (*post_schedule) (struct rq *this_rq);
 982        void (*task_waking) (struct task_struct *task);
 983        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
 984
 985        void (*set_cpus_allowed)(struct task_struct *p,
 986                                 const struct cpumask *newmask);
 987
 988        void (*rq_online)(struct rq *rq);
 989        void (*rq_offline)(struct rq *rq);
 990#endif
 991
 992        void (*set_curr_task) (struct rq *rq);
 993        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
 994        void (*task_fork) (struct task_struct *p);
 995
 996        void (*switched_from) (struct rq *this_rq, struct task_struct *task);
 997        void (*switched_to) (struct rq *this_rq, struct task_struct *task);
 998        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
 999                             int oldprio);
1000
1001        unsigned int (*get_rr_interval) (struct rq *rq,
1002                                         struct task_struct *task);
1003
1004#ifdef CONFIG_FAIR_GROUP_SCHED
1005        void (*task_move_group) (struct task_struct *p, int on_rq);
1006#endif
1007};
1008
1009#define sched_class_highest (&stop_sched_class)
1010#define for_each_class(class) \
1011   for (class = sched_class_highest; class; class = class->next)
1012
1013extern const struct sched_class stop_sched_class;
1014extern const struct sched_class rt_sched_class;
1015extern const struct sched_class fair_sched_class;
1016extern const struct sched_class idle_sched_class;
1017
1018
1019#ifdef CONFIG_SMP
1020
1021extern void update_group_power(struct sched_domain *sd, int cpu);
1022
1023extern void trigger_load_balance(struct rq *rq, int cpu);
1024extern void idle_balance(int this_cpu, struct rq *this_rq);
1025
1026extern void idle_enter_fair(struct rq *this_rq);
1027extern void idle_exit_fair(struct rq *this_rq);
1028
1029#else   /* CONFIG_SMP */
1030
1031static inline void idle_balance(int cpu, struct rq *rq)
1032{
1033}
1034
1035#endif
1036
1037extern void sysrq_sched_debug_show(void);
1038extern void sched_init_granularity(void);
1039extern void update_max_interval(void);
1040extern void init_sched_rt_class(void);
1041extern void init_sched_fair_class(void);
1042
1043extern void resched_task(struct task_struct *p);
1044extern void resched_cpu(int cpu);
1045
1046extern struct rt_bandwidth def_rt_bandwidth;
1047extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1048
1049extern void update_idle_cpu_load(struct rq *this_rq);
1050
1051extern void init_task_runnable_average(struct task_struct *p);
1052
1053#ifdef CONFIG_PARAVIRT
1054static inline u64 steal_ticks(u64 steal)
1055{
1056        if (unlikely(steal > NSEC_PER_SEC))
1057                return div_u64(steal, TICK_NSEC);
1058
1059        return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1060}
1061#endif
1062
1063static inline void inc_nr_running(struct rq *rq)
1064{
1065        rq->nr_running++;
1066
1067#ifdef CONFIG_NO_HZ_FULL
1068        if (rq->nr_running == 2) {
1069                if (tick_nohz_full_cpu(rq->cpu)) {
1070                        /* Order rq->nr_running write against the IPI */
1071                        smp_wmb();
1072                        smp_send_reschedule(rq->cpu);
1073                }
1074       }
1075#endif
1076}
1077
1078static inline void dec_nr_running(struct rq *rq)
1079{
1080        rq->nr_running--;
1081}
1082
1083static inline void rq_last_tick_reset(struct rq *rq)
1084{
1085#ifdef CONFIG_NO_HZ_FULL
1086        rq->last_sched_tick = jiffies;
1087#endif
1088}
1089
1090extern void update_rq_clock(struct rq *rq);
1091
1092extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1093extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1094
1095extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1096
1097extern const_debug unsigned int sysctl_sched_time_avg;
1098extern const_debug unsigned int sysctl_sched_nr_migrate;
1099extern const_debug unsigned int sysctl_sched_migration_cost;
1100
1101static inline u64 sched_avg_period(void)
1102{
1103        return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1104}
1105
1106#ifdef CONFIG_SCHED_HRTICK
1107
1108/*
1109 * Use hrtick when:
1110 *  - enabled by features
1111 *  - hrtimer is actually high res
1112 */
1113static inline int hrtick_enabled(struct rq *rq)
1114{
1115        if (!sched_feat(HRTICK))
1116                return 0;
1117        if (!cpu_active(cpu_of(rq)))
1118                return 0;
1119        return hrtimer_is_hres_active(&rq->hrtick_timer);
1120}
1121
1122void hrtick_start(struct rq *rq, u64 delay);
1123
1124#else
1125
1126static inline int hrtick_enabled(struct rq *rq)
1127{
1128        return 0;
1129}
1130
1131#endif /* CONFIG_SCHED_HRTICK */
1132
1133#ifdef CONFIG_SMP
1134extern void sched_avg_update(struct rq *rq);
1135static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1136{
1137        rq->rt_avg += rt_delta;
1138        sched_avg_update(rq);
1139}
1140#else
1141static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1142static inline void sched_avg_update(struct rq *rq) { }
1143#endif
1144
1145extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1146
1147#ifdef CONFIG_SMP
1148#ifdef CONFIG_PREEMPT
1149
1150static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1151
1152/*
1153 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1154 * way at the expense of forcing extra atomic operations in all
1155 * invocations.  This assures that the double_lock is acquired using the
1156 * same underlying policy as the spinlock_t on this architecture, which
1157 * reduces latency compared to the unfair variant below.  However, it
1158 * also adds more overhead and therefore may reduce throughput.
1159 */
1160static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1161        __releases(this_rq->lock)
1162        __acquires(busiest->lock)
1163        __acquires(this_rq->lock)
1164{
1165        raw_spin_unlock(&this_rq->lock);
1166        double_rq_lock(this_rq, busiest);
1167
1168        return 1;
1169}
1170
1171#else
1172/*
1173 * Unfair double_lock_balance: Optimizes throughput at the expense of
1174 * latency by eliminating extra atomic operations when the locks are
1175 * already in proper order on entry.  This favors lower cpu-ids and will
1176 * grant the double lock to lower cpus over higher ids under contention,
1177 * regardless of entry order into the function.
1178 */
1179static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1180        __releases(this_rq->lock)
1181        __acquires(busiest->lock)
1182        __acquires(this_rq->lock)
1183{
1184        int ret = 0;
1185
1186        if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1187                if (busiest < this_rq) {
1188                        raw_spin_unlock(&this_rq->lock);
1189                        raw_spin_lock(&busiest->lock);
1190                        raw_spin_lock_nested(&this_rq->lock,
1191                                              SINGLE_DEPTH_NESTING);
1192                        ret = 1;
1193                } else
1194                        raw_spin_lock_nested(&busiest->lock,
1195                                              SINGLE_DEPTH_NESTING);
1196        }
1197        return ret;
1198}
1199
1200#endif /* CONFIG_PREEMPT */
1201
1202/*
1203 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1204 */
1205static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1206{
1207        if (unlikely(!irqs_disabled())) {
1208                /* printk() doesn't work good under rq->lock */
1209                raw_spin_unlock(&this_rq->lock);
1210                BUG_ON(1);
1211        }
1212
1213        return _double_lock_balance(this_rq, busiest);
1214}
1215
1216static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1217        __releases(busiest->lock)
1218{
1219        raw_spin_unlock(&busiest->lock);
1220        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1221}
1222
1223/*
1224 * double_rq_lock - safely lock two runqueues
1225 *
1226 * Note this does not disable interrupts like task_rq_lock,
1227 * you need to do so manually before calling.
1228 */
1229static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1230        __acquires(rq1->lock)
1231        __acquires(rq2->lock)
1232{
1233        BUG_ON(!irqs_disabled());
1234        if (rq1 == rq2) {
1235                raw_spin_lock(&rq1->lock);
1236                __acquire(rq2->lock);   /* Fake it out ;) */
1237        } else {
1238                if (rq1 < rq2) {
1239                        raw_spin_lock(&rq1->lock);
1240                        raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1241                } else {
1242                        raw_spin_lock(&rq2->lock);
1243                        raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1244                }
1245        }
1246}
1247
1248/*
1249 * double_rq_unlock - safely unlock two runqueues
1250 *
1251 * Note this does not restore interrupts like task_rq_unlock,
1252 * you need to do so manually after calling.
1253 */
1254static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1255        __releases(rq1->lock)
1256        __releases(rq2->lock)
1257{
1258        raw_spin_unlock(&rq1->lock);
1259        if (rq1 != rq2)
1260                raw_spin_unlock(&rq2->lock);
1261        else
1262                __release(rq2->lock);
1263}
1264
1265#else /* CONFIG_SMP */
1266
1267/*
1268 * double_rq_lock - safely lock two runqueues
1269 *
1270 * Note this does not disable interrupts like task_rq_lock,
1271 * you need to do so manually before calling.
1272 */
1273static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1274        __acquires(rq1->lock)
1275        __acquires(rq2->lock)
1276{
1277        BUG_ON(!irqs_disabled());
1278        BUG_ON(rq1 != rq2);
1279        raw_spin_lock(&rq1->lock);
1280        __acquire(rq2->lock);   /* Fake it out ;) */
1281}
1282
1283/*
1284 * double_rq_unlock - safely unlock two runqueues
1285 *
1286 * Note this does not restore interrupts like task_rq_unlock,
1287 * you need to do so manually after calling.
1288 */
1289static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1290        __releases(rq1->lock)
1291        __releases(rq2->lock)
1292{
1293        BUG_ON(rq1 != rq2);
1294        raw_spin_unlock(&rq1->lock);
1295        __release(rq2->lock);
1296}
1297
1298#endif
1299
1300extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1301extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1302extern void print_cfs_stats(struct seq_file *m, int cpu);
1303extern void print_rt_stats(struct seq_file *m, int cpu);
1304
1305extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1306extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1307
1308extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1309
1310#ifdef CONFIG_NO_HZ_COMMON
1311enum rq_nohz_flag_bits {
1312        NOHZ_TICK_STOPPED,
1313        NOHZ_BALANCE_KICK,
1314};
1315
1316#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1317#endif
1318
1319#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1320
1321DECLARE_PER_CPU(u64, cpu_hardirq_time);
1322DECLARE_PER_CPU(u64, cpu_softirq_time);
1323
1324#ifndef CONFIG_64BIT
1325DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1326
1327static inline void irq_time_write_begin(void)
1328{
1329        __this_cpu_inc(irq_time_seq.sequence);
1330        smp_wmb();
1331}
1332
1333static inline void irq_time_write_end(void)
1334{
1335        smp_wmb();
1336        __this_cpu_inc(irq_time_seq.sequence);
1337}
1338
1339static inline u64 irq_time_read(int cpu)
1340{
1341        u64 irq_time;
1342        unsigned seq;
1343
1344        do {
1345                seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1346                irq_time = per_cpu(cpu_softirq_time, cpu) +
1347                           per_cpu(cpu_hardirq_time, cpu);
1348        } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1349
1350        return irq_time;
1351}
1352#else /* CONFIG_64BIT */
1353static inline void irq_time_write_begin(void)
1354{
1355}
1356
1357static inline void irq_time_write_end(void)
1358{
1359}
1360
1361static inline u64 irq_time_read(int cpu)
1362{
1363        return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1364}
1365#endif /* CONFIG_64BIT */
1366#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1367