linux/net/ipv4/udp.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              The User Datagram Protocol (UDP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11 *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12 *              Hirokazu Takahashi, <taka@valinux.co.jp>
  13 *
  14 * Fixes:
  15 *              Alan Cox        :       verify_area() calls
  16 *              Alan Cox        :       stopped close while in use off icmp
  17 *                                      messages. Not a fix but a botch that
  18 *                                      for udp at least is 'valid'.
  19 *              Alan Cox        :       Fixed icmp handling properly
  20 *              Alan Cox        :       Correct error for oversized datagrams
  21 *              Alan Cox        :       Tidied select() semantics.
  22 *              Alan Cox        :       udp_err() fixed properly, also now
  23 *                                      select and read wake correctly on errors
  24 *              Alan Cox        :       udp_send verify_area moved to avoid mem leak
  25 *              Alan Cox        :       UDP can count its memory
  26 *              Alan Cox        :       send to an unknown connection causes
  27 *                                      an ECONNREFUSED off the icmp, but
  28 *                                      does NOT close.
  29 *              Alan Cox        :       Switched to new sk_buff handlers. No more backlog!
  30 *              Alan Cox        :       Using generic datagram code. Even smaller and the PEEK
  31 *                                      bug no longer crashes it.
  32 *              Fred Van Kempen :       Net2e support for sk->broadcast.
  33 *              Alan Cox        :       Uses skb_free_datagram
  34 *              Alan Cox        :       Added get/set sockopt support.
  35 *              Alan Cox        :       Broadcasting without option set returns EACCES.
  36 *              Alan Cox        :       No wakeup calls. Instead we now use the callbacks.
  37 *              Alan Cox        :       Use ip_tos and ip_ttl
  38 *              Alan Cox        :       SNMP Mibs
  39 *              Alan Cox        :       MSG_DONTROUTE, and 0.0.0.0 support.
  40 *              Matt Dillon     :       UDP length checks.
  41 *              Alan Cox        :       Smarter af_inet used properly.
  42 *              Alan Cox        :       Use new kernel side addressing.
  43 *              Alan Cox        :       Incorrect return on truncated datagram receive.
  44 *      Arnt Gulbrandsen        :       New udp_send and stuff
  45 *              Alan Cox        :       Cache last socket
  46 *              Alan Cox        :       Route cache
  47 *              Jon Peatfield   :       Minor efficiency fix to sendto().
  48 *              Mike Shaver     :       RFC1122 checks.
  49 *              Alan Cox        :       Nonblocking error fix.
  50 *      Willy Konynenberg       :       Transparent proxying support.
  51 *              Mike McLagan    :       Routing by source
  52 *              David S. Miller :       New socket lookup architecture.
  53 *                                      Last socket cache retained as it
  54 *                                      does have a high hit rate.
  55 *              Olaf Kirch      :       Don't linearise iovec on sendmsg.
  56 *              Andi Kleen      :       Some cleanups, cache destination entry
  57 *                                      for connect.
  58 *      Vitaly E. Lavrov        :       Transparent proxy revived after year coma.
  59 *              Melvin Smith    :       Check msg_name not msg_namelen in sendto(),
  60 *                                      return ENOTCONN for unconnected sockets (POSIX)
  61 *              Janos Farkas    :       don't deliver multi/broadcasts to a different
  62 *                                      bound-to-device socket
  63 *      Hirokazu Takahashi      :       HW checksumming for outgoing UDP
  64 *                                      datagrams.
  65 *      Hirokazu Takahashi      :       sendfile() on UDP works now.
  66 *              Arnaldo C. Melo :       convert /proc/net/udp to seq_file
  67 *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
  68 *      Alexey Kuznetsov:               allow both IPv4 and IPv6 sockets to bind
  69 *                                      a single port at the same time.
  70 *      Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71 *      James Chapman           :       Add L2TP encapsulation type.
  72 *
  73 *
  74 *              This program is free software; you can redistribute it and/or
  75 *              modify it under the terms of the GNU General Public License
  76 *              as published by the Free Software Foundation; either version
  77 *              2 of the License, or (at your option) any later version.
  78 */
  79
  80#define pr_fmt(fmt) "UDP: " fmt
  81
  82#include <asm/uaccess.h>
  83#include <asm/ioctls.h>
  84#include <linux/bootmem.h>
  85#include <linux/highmem.h>
  86#include <linux/swap.h>
  87#include <linux/types.h>
  88#include <linux/fcntl.h>
  89#include <linux/module.h>
  90#include <linux/socket.h>
  91#include <linux/sockios.h>
  92#include <linux/igmp.h>
  93#include <linux/in.h>
  94#include <linux/errno.h>
  95#include <linux/timer.h>
  96#include <linux/mm.h>
  97#include <linux/inet.h>
  98#include <linux/netdevice.h>
  99#include <linux/slab.h>
 100#include <net/tcp_states.h>
 101#include <linux/skbuff.h>
 102#include <linux/proc_fs.h>
 103#include <linux/seq_file.h>
 104#include <net/net_namespace.h>
 105#include <net/icmp.h>
 106#include <net/route.h>
 107#include <net/checksum.h>
 108#include <net/xfrm.h>
 109#include <trace/events/udp.h>
 110#include <linux/static_key.h>
 111#include <trace/events/skb.h>
 112#include <net/busy_poll.h>
 113#include "udp_impl.h"
 114
 115struct udp_table udp_table __read_mostly;
 116EXPORT_SYMBOL(udp_table);
 117
 118long sysctl_udp_mem[3] __read_mostly;
 119EXPORT_SYMBOL(sysctl_udp_mem);
 120
 121int sysctl_udp_rmem_min __read_mostly;
 122EXPORT_SYMBOL(sysctl_udp_rmem_min);
 123
 124int sysctl_udp_wmem_min __read_mostly;
 125EXPORT_SYMBOL(sysctl_udp_wmem_min);
 126
 127atomic_long_t udp_memory_allocated;
 128EXPORT_SYMBOL(udp_memory_allocated);
 129
 130#define MAX_UDP_PORTS 65536
 131#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 132
 133static int udp_lib_lport_inuse(struct net *net, __u16 num,
 134                               const struct udp_hslot *hslot,
 135                               unsigned long *bitmap,
 136                               struct sock *sk,
 137                               int (*saddr_comp)(const struct sock *sk1,
 138                                                 const struct sock *sk2),
 139                               unsigned int log)
 140{
 141        struct sock *sk2;
 142        struct hlist_nulls_node *node;
 143        kuid_t uid = sock_i_uid(sk);
 144
 145        sk_nulls_for_each(sk2, node, &hslot->head)
 146                if (net_eq(sock_net(sk2), net) &&
 147                    sk2 != sk &&
 148                    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 149                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 150                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 151                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 152                    (!sk2->sk_reuseport || !sk->sk_reuseport ||
 153                      !uid_eq(uid, sock_i_uid(sk2))) &&
 154                    (*saddr_comp)(sk, sk2)) {
 155                        if (bitmap)
 156                                __set_bit(udp_sk(sk2)->udp_port_hash >> log,
 157                                          bitmap);
 158                        else
 159                                return 1;
 160                }
 161        return 0;
 162}
 163
 164/*
 165 * Note: we still hold spinlock of primary hash chain, so no other writer
 166 * can insert/delete a socket with local_port == num
 167 */
 168static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 169                               struct udp_hslot *hslot2,
 170                               struct sock *sk,
 171                               int (*saddr_comp)(const struct sock *sk1,
 172                                                 const struct sock *sk2))
 173{
 174        struct sock *sk2;
 175        struct hlist_nulls_node *node;
 176        kuid_t uid = sock_i_uid(sk);
 177        int res = 0;
 178
 179        spin_lock(&hslot2->lock);
 180        udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
 181                if (net_eq(sock_net(sk2), net) &&
 182                    sk2 != sk &&
 183                    (udp_sk(sk2)->udp_port_hash == num) &&
 184                    (!sk2->sk_reuse || !sk->sk_reuse) &&
 185                    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 186                     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 187                    (!sk2->sk_reuseport || !sk->sk_reuseport ||
 188                      !uid_eq(uid, sock_i_uid(sk2))) &&
 189                    (*saddr_comp)(sk, sk2)) {
 190                        res = 1;
 191                        break;
 192                }
 193        spin_unlock(&hslot2->lock);
 194        return res;
 195}
 196
 197/**
 198 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 199 *
 200 *  @sk:          socket struct in question
 201 *  @snum:        port number to look up
 202 *  @saddr_comp:  AF-dependent comparison of bound local IP addresses
 203 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 204 *                   with NULL address
 205 */
 206int udp_lib_get_port(struct sock *sk, unsigned short snum,
 207                       int (*saddr_comp)(const struct sock *sk1,
 208                                         const struct sock *sk2),
 209                     unsigned int hash2_nulladdr)
 210{
 211        struct udp_hslot *hslot, *hslot2;
 212        struct udp_table *udptable = sk->sk_prot->h.udp_table;
 213        int    error = 1;
 214        struct net *net = sock_net(sk);
 215
 216        if (!snum) {
 217                int low, high, remaining;
 218                unsigned int rand;
 219                unsigned short first, last;
 220                DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 221
 222                inet_get_local_port_range(&low, &high);
 223                remaining = (high - low) + 1;
 224
 225                rand = net_random();
 226                first = (((u64)rand * remaining) >> 32) + low;
 227                /*
 228                 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 229                 */
 230                rand = (rand | 1) * (udptable->mask + 1);
 231                last = first + udptable->mask + 1;
 232                do {
 233                        hslot = udp_hashslot(udptable, net, first);
 234                        bitmap_zero(bitmap, PORTS_PER_CHAIN);
 235                        spin_lock_bh(&hslot->lock);
 236                        udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 237                                            saddr_comp, udptable->log);
 238
 239                        snum = first;
 240                        /*
 241                         * Iterate on all possible values of snum for this hash.
 242                         * Using steps of an odd multiple of UDP_HTABLE_SIZE
 243                         * give us randomization and full range coverage.
 244                         */
 245                        do {
 246                                if (low <= snum && snum <= high &&
 247                                    !test_bit(snum >> udptable->log, bitmap) &&
 248                                    !inet_is_reserved_local_port(snum))
 249                                        goto found;
 250                                snum += rand;
 251                        } while (snum != first);
 252                        spin_unlock_bh(&hslot->lock);
 253                } while (++first != last);
 254                goto fail;
 255        } else {
 256                hslot = udp_hashslot(udptable, net, snum);
 257                spin_lock_bh(&hslot->lock);
 258                if (hslot->count > 10) {
 259                        int exist;
 260                        unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 261
 262                        slot2          &= udptable->mask;
 263                        hash2_nulladdr &= udptable->mask;
 264
 265                        hslot2 = udp_hashslot2(udptable, slot2);
 266                        if (hslot->count < hslot2->count)
 267                                goto scan_primary_hash;
 268
 269                        exist = udp_lib_lport_inuse2(net, snum, hslot2,
 270                                                     sk, saddr_comp);
 271                        if (!exist && (hash2_nulladdr != slot2)) {
 272                                hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 273                                exist = udp_lib_lport_inuse2(net, snum, hslot2,
 274                                                             sk, saddr_comp);
 275                        }
 276                        if (exist)
 277                                goto fail_unlock;
 278                        else
 279                                goto found;
 280                }
 281scan_primary_hash:
 282                if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
 283                                        saddr_comp, 0))
 284                        goto fail_unlock;
 285        }
 286found:
 287        inet_sk(sk)->inet_num = snum;
 288        udp_sk(sk)->udp_port_hash = snum;
 289        udp_sk(sk)->udp_portaddr_hash ^= snum;
 290        if (sk_unhashed(sk)) {
 291                sk_nulls_add_node_rcu(sk, &hslot->head);
 292                hslot->count++;
 293                sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 294
 295                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 296                spin_lock(&hslot2->lock);
 297                hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 298                                         &hslot2->head);
 299                hslot2->count++;
 300                spin_unlock(&hslot2->lock);
 301        }
 302        error = 0;
 303fail_unlock:
 304        spin_unlock_bh(&hslot->lock);
 305fail:
 306        return error;
 307}
 308EXPORT_SYMBOL(udp_lib_get_port);
 309
 310static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
 311{
 312        struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
 313
 314        return  (!ipv6_only_sock(sk2)  &&
 315                 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
 316                   inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
 317}
 318
 319static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
 320                                       unsigned int port)
 321{
 322        return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
 323}
 324
 325int udp_v4_get_port(struct sock *sk, unsigned short snum)
 326{
 327        unsigned int hash2_nulladdr =
 328                udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 329        unsigned int hash2_partial =
 330                udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 331
 332        /* precompute partial secondary hash */
 333        udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 334        return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
 335}
 336
 337static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
 338                         unsigned short hnum,
 339                         __be16 sport, __be32 daddr, __be16 dport, int dif)
 340{
 341        int score = -1;
 342
 343        if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
 344                        !ipv6_only_sock(sk)) {
 345                struct inet_sock *inet = inet_sk(sk);
 346
 347                score = (sk->sk_family == PF_INET ? 2 : 1);
 348                if (inet->inet_rcv_saddr) {
 349                        if (inet->inet_rcv_saddr != daddr)
 350                                return -1;
 351                        score += 4;
 352                }
 353                if (inet->inet_daddr) {
 354                        if (inet->inet_daddr != saddr)
 355                                return -1;
 356                        score += 4;
 357                }
 358                if (inet->inet_dport) {
 359                        if (inet->inet_dport != sport)
 360                                return -1;
 361                        score += 4;
 362                }
 363                if (sk->sk_bound_dev_if) {
 364                        if (sk->sk_bound_dev_if != dif)
 365                                return -1;
 366                        score += 4;
 367                }
 368        }
 369        return score;
 370}
 371
 372/*
 373 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
 374 */
 375static inline int compute_score2(struct sock *sk, struct net *net,
 376                                 __be32 saddr, __be16 sport,
 377                                 __be32 daddr, unsigned int hnum, int dif)
 378{
 379        int score = -1;
 380
 381        if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
 382                struct inet_sock *inet = inet_sk(sk);
 383
 384                if (inet->inet_rcv_saddr != daddr)
 385                        return -1;
 386                if (inet->inet_num != hnum)
 387                        return -1;
 388
 389                score = (sk->sk_family == PF_INET ? 2 : 1);
 390                if (inet->inet_daddr) {
 391                        if (inet->inet_daddr != saddr)
 392                                return -1;
 393                        score += 4;
 394                }
 395                if (inet->inet_dport) {
 396                        if (inet->inet_dport != sport)
 397                                return -1;
 398                        score += 4;
 399                }
 400                if (sk->sk_bound_dev_if) {
 401                        if (sk->sk_bound_dev_if != dif)
 402                                return -1;
 403                        score += 4;
 404                }
 405        }
 406        return score;
 407}
 408
 409
 410/* called with read_rcu_lock() */
 411static struct sock *udp4_lib_lookup2(struct net *net,
 412                __be32 saddr, __be16 sport,
 413                __be32 daddr, unsigned int hnum, int dif,
 414                struct udp_hslot *hslot2, unsigned int slot2)
 415{
 416        struct sock *sk, *result;
 417        struct hlist_nulls_node *node;
 418        int score, badness, matches = 0, reuseport = 0;
 419        u32 hash = 0;
 420
 421begin:
 422        result = NULL;
 423        badness = 0;
 424        udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
 425                score = compute_score2(sk, net, saddr, sport,
 426                                      daddr, hnum, dif);
 427                if (score > badness) {
 428                        result = sk;
 429                        badness = score;
 430                        reuseport = sk->sk_reuseport;
 431                        if (reuseport) {
 432                                hash = inet_ehashfn(net, daddr, hnum,
 433                                                    saddr, sport);
 434                                matches = 1;
 435                        }
 436                } else if (score == badness && reuseport) {
 437                        matches++;
 438                        if (((u64)hash * matches) >> 32 == 0)
 439                                result = sk;
 440                        hash = next_pseudo_random32(hash);
 441                }
 442        }
 443        /*
 444         * if the nulls value we got at the end of this lookup is
 445         * not the expected one, we must restart lookup.
 446         * We probably met an item that was moved to another chain.
 447         */
 448        if (get_nulls_value(node) != slot2)
 449                goto begin;
 450        if (result) {
 451                if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 452                        result = NULL;
 453                else if (unlikely(compute_score2(result, net, saddr, sport,
 454                                  daddr, hnum, dif) < badness)) {
 455                        sock_put(result);
 456                        goto begin;
 457                }
 458        }
 459        return result;
 460}
 461
 462/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 463 * harder than this. -DaveM
 464 */
 465struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 466                __be16 sport, __be32 daddr, __be16 dport,
 467                int dif, struct udp_table *udptable)
 468{
 469        struct sock *sk, *result;
 470        struct hlist_nulls_node *node;
 471        unsigned short hnum = ntohs(dport);
 472        unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
 473        struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
 474        int score, badness, matches = 0, reuseport = 0;
 475        u32 hash = 0;
 476
 477        rcu_read_lock();
 478        if (hslot->count > 10) {
 479                hash2 = udp4_portaddr_hash(net, daddr, hnum);
 480                slot2 = hash2 & udptable->mask;
 481                hslot2 = &udptable->hash2[slot2];
 482                if (hslot->count < hslot2->count)
 483                        goto begin;
 484
 485                result = udp4_lib_lookup2(net, saddr, sport,
 486                                          daddr, hnum, dif,
 487                                          hslot2, slot2);
 488                if (!result) {
 489                        hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 490                        slot2 = hash2 & udptable->mask;
 491                        hslot2 = &udptable->hash2[slot2];
 492                        if (hslot->count < hslot2->count)
 493                                goto begin;
 494
 495                        result = udp4_lib_lookup2(net, saddr, sport,
 496                                                  htonl(INADDR_ANY), hnum, dif,
 497                                                  hslot2, slot2);
 498                }
 499                rcu_read_unlock();
 500                return result;
 501        }
 502begin:
 503        result = NULL;
 504        badness = 0;
 505        sk_nulls_for_each_rcu(sk, node, &hslot->head) {
 506                score = compute_score(sk, net, saddr, hnum, sport,
 507                                      daddr, dport, dif);
 508                if (score > badness) {
 509                        result = sk;
 510                        badness = score;
 511                        reuseport = sk->sk_reuseport;
 512                        if (reuseport) {
 513                                hash = inet_ehashfn(net, daddr, hnum,
 514                                                    saddr, sport);
 515                                matches = 1;
 516                        }
 517                } else if (score == badness && reuseport) {
 518                        matches++;
 519                        if (((u64)hash * matches) >> 32 == 0)
 520                                result = sk;
 521                        hash = next_pseudo_random32(hash);
 522                }
 523        }
 524        /*
 525         * if the nulls value we got at the end of this lookup is
 526         * not the expected one, we must restart lookup.
 527         * We probably met an item that was moved to another chain.
 528         */
 529        if (get_nulls_value(node) != slot)
 530                goto begin;
 531
 532        if (result) {
 533                if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
 534                        result = NULL;
 535                else if (unlikely(compute_score(result, net, saddr, hnum, sport,
 536                                  daddr, dport, dif) < badness)) {
 537                        sock_put(result);
 538                        goto begin;
 539                }
 540        }
 541        rcu_read_unlock();
 542        return result;
 543}
 544EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 545
 546static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 547                                                 __be16 sport, __be16 dport,
 548                                                 struct udp_table *udptable)
 549{
 550        struct sock *sk;
 551        const struct iphdr *iph = ip_hdr(skb);
 552
 553        if (unlikely(sk = skb_steal_sock(skb)))
 554                return sk;
 555        else
 556                return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
 557                                         iph->daddr, dport, inet_iif(skb),
 558                                         udptable);
 559}
 560
 561struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 562                             __be32 daddr, __be16 dport, int dif)
 563{
 564        return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
 565}
 566EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 567
 568static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
 569                                             __be16 loc_port, __be32 loc_addr,
 570                                             __be16 rmt_port, __be32 rmt_addr,
 571                                             int dif)
 572{
 573        struct hlist_nulls_node *node;
 574        struct sock *s = sk;
 575        unsigned short hnum = ntohs(loc_port);
 576
 577        sk_nulls_for_each_from(s, node) {
 578                struct inet_sock *inet = inet_sk(s);
 579
 580                if (!net_eq(sock_net(s), net) ||
 581                    udp_sk(s)->udp_port_hash != hnum ||
 582                    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 583                    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 584                    (inet->inet_rcv_saddr &&
 585                     inet->inet_rcv_saddr != loc_addr) ||
 586                    ipv6_only_sock(s) ||
 587                    (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
 588                        continue;
 589                if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
 590                        continue;
 591                goto found;
 592        }
 593        s = NULL;
 594found:
 595        return s;
 596}
 597
 598/*
 599 * This routine is called by the ICMP module when it gets some
 600 * sort of error condition.  If err < 0 then the socket should
 601 * be closed and the error returned to the user.  If err > 0
 602 * it's just the icmp type << 8 | icmp code.
 603 * Header points to the ip header of the error packet. We move
 604 * on past this. Then (as it used to claim before adjustment)
 605 * header points to the first 8 bytes of the udp header.  We need
 606 * to find the appropriate port.
 607 */
 608
 609void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 610{
 611        struct inet_sock *inet;
 612        const struct iphdr *iph = (const struct iphdr *)skb->data;
 613        struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 614        const int type = icmp_hdr(skb)->type;
 615        const int code = icmp_hdr(skb)->code;
 616        struct sock *sk;
 617        int harderr;
 618        int err;
 619        struct net *net = dev_net(skb->dev);
 620
 621        sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 622                        iph->saddr, uh->source, skb->dev->ifindex, udptable);
 623        if (sk == NULL) {
 624                ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 625                return; /* No socket for error */
 626        }
 627
 628        err = 0;
 629        harderr = 0;
 630        inet = inet_sk(sk);
 631
 632        switch (type) {
 633        default:
 634        case ICMP_TIME_EXCEEDED:
 635                err = EHOSTUNREACH;
 636                break;
 637        case ICMP_SOURCE_QUENCH:
 638                goto out;
 639        case ICMP_PARAMETERPROB:
 640                err = EPROTO;
 641                harderr = 1;
 642                break;
 643        case ICMP_DEST_UNREACH:
 644                if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 645                        ipv4_sk_update_pmtu(skb, sk, info);
 646                        if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 647                                err = EMSGSIZE;
 648                                harderr = 1;
 649                                break;
 650                        }
 651                        goto out;
 652                }
 653                err = EHOSTUNREACH;
 654                if (code <= NR_ICMP_UNREACH) {
 655                        harderr = icmp_err_convert[code].fatal;
 656                        err = icmp_err_convert[code].errno;
 657                }
 658                break;
 659        case ICMP_REDIRECT:
 660                ipv4_sk_redirect(skb, sk);
 661                goto out;
 662        }
 663
 664        /*
 665         *      RFC1122: OK.  Passes ICMP errors back to application, as per
 666         *      4.1.3.3.
 667         */
 668        if (!inet->recverr) {
 669                if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 670                        goto out;
 671        } else
 672                ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 673
 674        sk->sk_err = err;
 675        sk->sk_error_report(sk);
 676out:
 677        sock_put(sk);
 678}
 679
 680void udp_err(struct sk_buff *skb, u32 info)
 681{
 682        __udp4_lib_err(skb, info, &udp_table);
 683}
 684
 685/*
 686 * Throw away all pending data and cancel the corking. Socket is locked.
 687 */
 688void udp_flush_pending_frames(struct sock *sk)
 689{
 690        struct udp_sock *up = udp_sk(sk);
 691
 692        if (up->pending) {
 693                up->len = 0;
 694                up->pending = 0;
 695                ip_flush_pending_frames(sk);
 696        }
 697}
 698EXPORT_SYMBOL(udp_flush_pending_frames);
 699
 700/**
 701 *      udp4_hwcsum  -  handle outgoing HW checksumming
 702 *      @skb:   sk_buff containing the filled-in UDP header
 703 *              (checksum field must be zeroed out)
 704 *      @src:   source IP address
 705 *      @dst:   destination IP address
 706 */
 707void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 708{
 709        struct udphdr *uh = udp_hdr(skb);
 710        struct sk_buff *frags = skb_shinfo(skb)->frag_list;
 711        int offset = skb_transport_offset(skb);
 712        int len = skb->len - offset;
 713        int hlen = len;
 714        __wsum csum = 0;
 715
 716        if (!frags) {
 717                /*
 718                 * Only one fragment on the socket.
 719                 */
 720                skb->csum_start = skb_transport_header(skb) - skb->head;
 721                skb->csum_offset = offsetof(struct udphdr, check);
 722                uh->check = ~csum_tcpudp_magic(src, dst, len,
 723                                               IPPROTO_UDP, 0);
 724        } else {
 725                /*
 726                 * HW-checksum won't work as there are two or more
 727                 * fragments on the socket so that all csums of sk_buffs
 728                 * should be together
 729                 */
 730                do {
 731                        csum = csum_add(csum, frags->csum);
 732                        hlen -= frags->len;
 733                } while ((frags = frags->next));
 734
 735                csum = skb_checksum(skb, offset, hlen, csum);
 736                skb->ip_summed = CHECKSUM_NONE;
 737
 738                uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 739                if (uh->check == 0)
 740                        uh->check = CSUM_MANGLED_0;
 741        }
 742}
 743EXPORT_SYMBOL_GPL(udp4_hwcsum);
 744
 745static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
 746{
 747        struct sock *sk = skb->sk;
 748        struct inet_sock *inet = inet_sk(sk);
 749        struct udphdr *uh;
 750        int err = 0;
 751        int is_udplite = IS_UDPLITE(sk);
 752        int offset = skb_transport_offset(skb);
 753        int len = skb->len - offset;
 754        __wsum csum = 0;
 755
 756        /*
 757         * Create a UDP header
 758         */
 759        uh = udp_hdr(skb);
 760        uh->source = inet->inet_sport;
 761        uh->dest = fl4->fl4_dport;
 762        uh->len = htons(len);
 763        uh->check = 0;
 764
 765        if (is_udplite)                                  /*     UDP-Lite      */
 766                csum = udplite_csum(skb);
 767
 768        else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */
 769
 770                skb->ip_summed = CHECKSUM_NONE;
 771                goto send;
 772
 773        } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 774
 775                udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 776                goto send;
 777
 778        } else
 779                csum = udp_csum(skb);
 780
 781        /* add protocol-dependent pseudo-header */
 782        uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 783                                      sk->sk_protocol, csum);
 784        if (uh->check == 0)
 785                uh->check = CSUM_MANGLED_0;
 786
 787send:
 788        err = ip_send_skb(sock_net(sk), skb);
 789        if (err) {
 790                if (err == -ENOBUFS && !inet->recverr) {
 791                        UDP_INC_STATS_USER(sock_net(sk),
 792                                           UDP_MIB_SNDBUFERRORS, is_udplite);
 793                        err = 0;
 794                }
 795        } else
 796                UDP_INC_STATS_USER(sock_net(sk),
 797                                   UDP_MIB_OUTDATAGRAMS, is_udplite);
 798        return err;
 799}
 800
 801/*
 802 * Push out all pending data as one UDP datagram. Socket is locked.
 803 */
 804int udp_push_pending_frames(struct sock *sk)
 805{
 806        struct udp_sock  *up = udp_sk(sk);
 807        struct inet_sock *inet = inet_sk(sk);
 808        struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 809        struct sk_buff *skb;
 810        int err = 0;
 811
 812        skb = ip_finish_skb(sk, fl4);
 813        if (!skb)
 814                goto out;
 815
 816        err = udp_send_skb(skb, fl4);
 817
 818out:
 819        up->len = 0;
 820        up->pending = 0;
 821        return err;
 822}
 823EXPORT_SYMBOL(udp_push_pending_frames);
 824
 825int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
 826                size_t len)
 827{
 828        struct inet_sock *inet = inet_sk(sk);
 829        struct udp_sock *up = udp_sk(sk);
 830        struct flowi4 fl4_stack;
 831        struct flowi4 *fl4;
 832        int ulen = len;
 833        struct ipcm_cookie ipc;
 834        struct rtable *rt = NULL;
 835        int free = 0;
 836        int connected = 0;
 837        __be32 daddr, faddr, saddr;
 838        __be16 dport;
 839        u8  tos;
 840        int err, is_udplite = IS_UDPLITE(sk);
 841        int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 842        int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 843        struct sk_buff *skb;
 844        struct ip_options_data opt_copy;
 845
 846        if (len > 0xFFFF)
 847                return -EMSGSIZE;
 848
 849        /*
 850         *      Check the flags.
 851         */
 852
 853        if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 854                return -EOPNOTSUPP;
 855
 856        ipc.opt = NULL;
 857        ipc.tx_flags = 0;
 858
 859        getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
 860
 861        fl4 = &inet->cork.fl.u.ip4;
 862        if (up->pending) {
 863                /*
 864                 * There are pending frames.
 865                 * The socket lock must be held while it's corked.
 866                 */
 867                lock_sock(sk);
 868                if (likely(up->pending)) {
 869                        if (unlikely(up->pending != AF_INET)) {
 870                                release_sock(sk);
 871                                return -EINVAL;
 872                        }
 873                        goto do_append_data;
 874                }
 875                release_sock(sk);
 876        }
 877        ulen += sizeof(struct udphdr);
 878
 879        /*
 880         *      Get and verify the address.
 881         */
 882        if (msg->msg_name) {
 883                struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
 884                if (msg->msg_namelen < sizeof(*usin))
 885                        return -EINVAL;
 886                if (usin->sin_family != AF_INET) {
 887                        if (usin->sin_family != AF_UNSPEC)
 888                                return -EAFNOSUPPORT;
 889                }
 890
 891                daddr = usin->sin_addr.s_addr;
 892                dport = usin->sin_port;
 893                if (dport == 0)
 894                        return -EINVAL;
 895        } else {
 896                if (sk->sk_state != TCP_ESTABLISHED)
 897                        return -EDESTADDRREQ;
 898                daddr = inet->inet_daddr;
 899                dport = inet->inet_dport;
 900                /* Open fast path for connected socket.
 901                   Route will not be used, if at least one option is set.
 902                 */
 903                connected = 1;
 904        }
 905        ipc.addr = inet->inet_saddr;
 906
 907        ipc.oif = sk->sk_bound_dev_if;
 908
 909        sock_tx_timestamp(sk, &ipc.tx_flags);
 910
 911        if (msg->msg_controllen) {
 912                err = ip_cmsg_send(sock_net(sk), msg, &ipc);
 913                if (err)
 914                        return err;
 915                if (ipc.opt)
 916                        free = 1;
 917                connected = 0;
 918        }
 919        if (!ipc.opt) {
 920                struct ip_options_rcu *inet_opt;
 921
 922                rcu_read_lock();
 923                inet_opt = rcu_dereference(inet->inet_opt);
 924                if (inet_opt) {
 925                        memcpy(&opt_copy, inet_opt,
 926                               sizeof(*inet_opt) + inet_opt->opt.optlen);
 927                        ipc.opt = &opt_copy.opt;
 928                }
 929                rcu_read_unlock();
 930        }
 931
 932        saddr = ipc.addr;
 933        ipc.addr = faddr = daddr;
 934
 935        if (ipc.opt && ipc.opt->opt.srr) {
 936                if (!daddr)
 937                        return -EINVAL;
 938                faddr = ipc.opt->opt.faddr;
 939                connected = 0;
 940        }
 941        tos = RT_TOS(inet->tos);
 942        if (sock_flag(sk, SOCK_LOCALROUTE) ||
 943            (msg->msg_flags & MSG_DONTROUTE) ||
 944            (ipc.opt && ipc.opt->opt.is_strictroute)) {
 945                tos |= RTO_ONLINK;
 946                connected = 0;
 947        }
 948
 949        if (ipv4_is_multicast(daddr)) {
 950                if (!ipc.oif)
 951                        ipc.oif = inet->mc_index;
 952                if (!saddr)
 953                        saddr = inet->mc_addr;
 954                connected = 0;
 955        } else if (!ipc.oif)
 956                ipc.oif = inet->uc_index;
 957
 958        if (connected)
 959                rt = (struct rtable *)sk_dst_check(sk, 0);
 960
 961        if (rt == NULL) {
 962                struct net *net = sock_net(sk);
 963
 964                fl4 = &fl4_stack;
 965                flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
 966                                   RT_SCOPE_UNIVERSE, sk->sk_protocol,
 967                                   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
 968                                   faddr, saddr, dport, inet->inet_sport);
 969
 970                security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
 971                rt = ip_route_output_flow(net, fl4, sk);
 972                if (IS_ERR(rt)) {
 973                        err = PTR_ERR(rt);
 974                        rt = NULL;
 975                        if (err == -ENETUNREACH)
 976                                IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
 977                        goto out;
 978                }
 979
 980                err = -EACCES;
 981                if ((rt->rt_flags & RTCF_BROADCAST) &&
 982                    !sock_flag(sk, SOCK_BROADCAST))
 983                        goto out;
 984                if (connected)
 985                        sk_dst_set(sk, dst_clone(&rt->dst));
 986        }
 987
 988        if (msg->msg_flags&MSG_CONFIRM)
 989                goto do_confirm;
 990back_from_confirm:
 991
 992        saddr = fl4->saddr;
 993        if (!ipc.addr)
 994                daddr = ipc.addr = fl4->daddr;
 995
 996        /* Lockless fast path for the non-corking case. */
 997        if (!corkreq) {
 998                skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
 999                                  sizeof(struct udphdr), &ipc, &rt,
1000                                  msg->msg_flags);
1001                err = PTR_ERR(skb);
1002                if (!IS_ERR_OR_NULL(skb))
1003                        err = udp_send_skb(skb, fl4);
1004                goto out;
1005        }
1006
1007        lock_sock(sk);
1008        if (unlikely(up->pending)) {
1009                /* The socket is already corked while preparing it. */
1010                /* ... which is an evident application bug. --ANK */
1011                release_sock(sk);
1012
1013                LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1014                err = -EINVAL;
1015                goto out;
1016        }
1017        /*
1018         *      Now cork the socket to pend data.
1019         */
1020        fl4 = &inet->cork.fl.u.ip4;
1021        fl4->daddr = daddr;
1022        fl4->saddr = saddr;
1023        fl4->fl4_dport = dport;
1024        fl4->fl4_sport = inet->inet_sport;
1025        up->pending = AF_INET;
1026
1027do_append_data:
1028        up->len += ulen;
1029        err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1030                             sizeof(struct udphdr), &ipc, &rt,
1031                             corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1032        if (err)
1033                udp_flush_pending_frames(sk);
1034        else if (!corkreq)
1035                err = udp_push_pending_frames(sk);
1036        else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1037                up->pending = 0;
1038        release_sock(sk);
1039
1040out:
1041        ip_rt_put(rt);
1042        if (free)
1043                kfree(ipc.opt);
1044        if (!err)
1045                return len;
1046        /*
1047         * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1048         * ENOBUFS might not be good (it's not tunable per se), but otherwise
1049         * we don't have a good statistic (IpOutDiscards but it can be too many
1050         * things).  We could add another new stat but at least for now that
1051         * seems like overkill.
1052         */
1053        if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1054                UDP_INC_STATS_USER(sock_net(sk),
1055                                UDP_MIB_SNDBUFERRORS, is_udplite);
1056        }
1057        return err;
1058
1059do_confirm:
1060        dst_confirm(&rt->dst);
1061        if (!(msg->msg_flags&MSG_PROBE) || len)
1062                goto back_from_confirm;
1063        err = 0;
1064        goto out;
1065}
1066EXPORT_SYMBOL(udp_sendmsg);
1067
1068int udp_sendpage(struct sock *sk, struct page *page, int offset,
1069                 size_t size, int flags)
1070{
1071        struct inet_sock *inet = inet_sk(sk);
1072        struct udp_sock *up = udp_sk(sk);
1073        int ret;
1074
1075        if (!up->pending) {
1076                struct msghdr msg = {   .msg_flags = flags|MSG_MORE };
1077
1078                /* Call udp_sendmsg to specify destination address which
1079                 * sendpage interface can't pass.
1080                 * This will succeed only when the socket is connected.
1081                 */
1082                ret = udp_sendmsg(NULL, sk, &msg, 0);
1083                if (ret < 0)
1084                        return ret;
1085        }
1086
1087        lock_sock(sk);
1088
1089        if (unlikely(!up->pending)) {
1090                release_sock(sk);
1091
1092                LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1093                return -EINVAL;
1094        }
1095
1096        ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1097                             page, offset, size, flags);
1098        if (ret == -EOPNOTSUPP) {
1099                release_sock(sk);
1100                return sock_no_sendpage(sk->sk_socket, page, offset,
1101                                        size, flags);
1102        }
1103        if (ret < 0) {
1104                udp_flush_pending_frames(sk);
1105                goto out;
1106        }
1107
1108        up->len += size;
1109        if (!(up->corkflag || (flags&MSG_MORE)))
1110                ret = udp_push_pending_frames(sk);
1111        if (!ret)
1112                ret = size;
1113out:
1114        release_sock(sk);
1115        return ret;
1116}
1117
1118
1119/**
1120 *      first_packet_length     - return length of first packet in receive queue
1121 *      @sk: socket
1122 *
1123 *      Drops all bad checksum frames, until a valid one is found.
1124 *      Returns the length of found skb, or 0 if none is found.
1125 */
1126static unsigned int first_packet_length(struct sock *sk)
1127{
1128        struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1129        struct sk_buff *skb;
1130        unsigned int res;
1131
1132        __skb_queue_head_init(&list_kill);
1133
1134        spin_lock_bh(&rcvq->lock);
1135        while ((skb = skb_peek(rcvq)) != NULL &&
1136                udp_lib_checksum_complete(skb)) {
1137                UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1138                                 IS_UDPLITE(sk));
1139                UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1140                                 IS_UDPLITE(sk));
1141                atomic_inc(&sk->sk_drops);
1142                __skb_unlink(skb, rcvq);
1143                __skb_queue_tail(&list_kill, skb);
1144        }
1145        res = skb ? skb->len : 0;
1146        spin_unlock_bh(&rcvq->lock);
1147
1148        if (!skb_queue_empty(&list_kill)) {
1149                bool slow = lock_sock_fast(sk);
1150
1151                __skb_queue_purge(&list_kill);
1152                sk_mem_reclaim_partial(sk);
1153                unlock_sock_fast(sk, slow);
1154        }
1155        return res;
1156}
1157
1158/*
1159 *      IOCTL requests applicable to the UDP protocol
1160 */
1161
1162int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1163{
1164        switch (cmd) {
1165        case SIOCOUTQ:
1166        {
1167                int amount = sk_wmem_alloc_get(sk);
1168
1169                return put_user(amount, (int __user *)arg);
1170        }
1171
1172        case SIOCINQ:
1173        {
1174                unsigned int amount = first_packet_length(sk);
1175
1176                if (amount)
1177                        /*
1178                         * We will only return the amount
1179                         * of this packet since that is all
1180                         * that will be read.
1181                         */
1182                        amount -= sizeof(struct udphdr);
1183
1184                return put_user(amount, (int __user *)arg);
1185        }
1186
1187        default:
1188                return -ENOIOCTLCMD;
1189        }
1190
1191        return 0;
1192}
1193EXPORT_SYMBOL(udp_ioctl);
1194
1195/*
1196 *      This should be easy, if there is something there we
1197 *      return it, otherwise we block.
1198 */
1199
1200int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1201                size_t len, int noblock, int flags, int *addr_len)
1202{
1203        struct inet_sock *inet = inet_sk(sk);
1204        struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1205        struct sk_buff *skb;
1206        unsigned int ulen, copied;
1207        int peeked, off = 0;
1208        int err;
1209        int is_udplite = IS_UDPLITE(sk);
1210        bool slow;
1211
1212        /*
1213         *      Check any passed addresses
1214         */
1215        if (addr_len)
1216                *addr_len = sizeof(*sin);
1217
1218        if (flags & MSG_ERRQUEUE)
1219                return ip_recv_error(sk, msg, len);
1220
1221try_again:
1222        skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1223                                  &peeked, &off, &err);
1224        if (!skb)
1225                goto out;
1226
1227        ulen = skb->len - sizeof(struct udphdr);
1228        copied = len;
1229        if (copied > ulen)
1230                copied = ulen;
1231        else if (copied < ulen)
1232                msg->msg_flags |= MSG_TRUNC;
1233
1234        /*
1235         * If checksum is needed at all, try to do it while copying the
1236         * data.  If the data is truncated, or if we only want a partial
1237         * coverage checksum (UDP-Lite), do it before the copy.
1238         */
1239
1240        if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1241                if (udp_lib_checksum_complete(skb))
1242                        goto csum_copy_err;
1243        }
1244
1245        if (skb_csum_unnecessary(skb))
1246                err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1247                                              msg->msg_iov, copied);
1248        else {
1249                err = skb_copy_and_csum_datagram_iovec(skb,
1250                                                       sizeof(struct udphdr),
1251                                                       msg->msg_iov);
1252
1253                if (err == -EINVAL)
1254                        goto csum_copy_err;
1255        }
1256
1257        if (unlikely(err)) {
1258                trace_kfree_skb(skb, udp_recvmsg);
1259                if (!peeked) {
1260                        atomic_inc(&sk->sk_drops);
1261                        UDP_INC_STATS_USER(sock_net(sk),
1262                                           UDP_MIB_INERRORS, is_udplite);
1263                }
1264                goto out_free;
1265        }
1266
1267        if (!peeked)
1268                UDP_INC_STATS_USER(sock_net(sk),
1269                                UDP_MIB_INDATAGRAMS, is_udplite);
1270
1271        sock_recv_ts_and_drops(msg, sk, skb);
1272
1273        /* Copy the address. */
1274        if (sin) {
1275                sin->sin_family = AF_INET;
1276                sin->sin_port = udp_hdr(skb)->source;
1277                sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1278                memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1279        }
1280        if (inet->cmsg_flags)
1281                ip_cmsg_recv(msg, skb);
1282
1283        err = copied;
1284        if (flags & MSG_TRUNC)
1285                err = ulen;
1286
1287out_free:
1288        skb_free_datagram_locked(sk, skb);
1289out:
1290        return err;
1291
1292csum_copy_err:
1293        slow = lock_sock_fast(sk);
1294        if (!skb_kill_datagram(sk, skb, flags)) {
1295                UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1296                UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1297        }
1298        unlock_sock_fast(sk, slow);
1299
1300        if (noblock)
1301                return -EAGAIN;
1302
1303        /* starting over for a new packet */
1304        msg->msg_flags &= ~MSG_TRUNC;
1305        goto try_again;
1306}
1307
1308
1309int udp_disconnect(struct sock *sk, int flags)
1310{
1311        struct inet_sock *inet = inet_sk(sk);
1312        /*
1313         *      1003.1g - break association.
1314         */
1315
1316        sk->sk_state = TCP_CLOSE;
1317        inet->inet_daddr = 0;
1318        inet->inet_dport = 0;
1319        sock_rps_reset_rxhash(sk);
1320        sk->sk_bound_dev_if = 0;
1321        if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1322                inet_reset_saddr(sk);
1323
1324        if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1325                sk->sk_prot->unhash(sk);
1326                inet->inet_sport = 0;
1327        }
1328        sk_dst_reset(sk);
1329        return 0;
1330}
1331EXPORT_SYMBOL(udp_disconnect);
1332
1333void udp_lib_unhash(struct sock *sk)
1334{
1335        if (sk_hashed(sk)) {
1336                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1337                struct udp_hslot *hslot, *hslot2;
1338
1339                hslot  = udp_hashslot(udptable, sock_net(sk),
1340                                      udp_sk(sk)->udp_port_hash);
1341                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1342
1343                spin_lock_bh(&hslot->lock);
1344                if (sk_nulls_del_node_init_rcu(sk)) {
1345                        hslot->count--;
1346                        inet_sk(sk)->inet_num = 0;
1347                        sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1348
1349                        spin_lock(&hslot2->lock);
1350                        hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1351                        hslot2->count--;
1352                        spin_unlock(&hslot2->lock);
1353                }
1354                spin_unlock_bh(&hslot->lock);
1355        }
1356}
1357EXPORT_SYMBOL(udp_lib_unhash);
1358
1359/*
1360 * inet_rcv_saddr was changed, we must rehash secondary hash
1361 */
1362void udp_lib_rehash(struct sock *sk, u16 newhash)
1363{
1364        if (sk_hashed(sk)) {
1365                struct udp_table *udptable = sk->sk_prot->h.udp_table;
1366                struct udp_hslot *hslot, *hslot2, *nhslot2;
1367
1368                hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1369                nhslot2 = udp_hashslot2(udptable, newhash);
1370                udp_sk(sk)->udp_portaddr_hash = newhash;
1371                if (hslot2 != nhslot2) {
1372                        hslot = udp_hashslot(udptable, sock_net(sk),
1373                                             udp_sk(sk)->udp_port_hash);
1374                        /* we must lock primary chain too */
1375                        spin_lock_bh(&hslot->lock);
1376
1377                        spin_lock(&hslot2->lock);
1378                        hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1379                        hslot2->count--;
1380                        spin_unlock(&hslot2->lock);
1381
1382                        spin_lock(&nhslot2->lock);
1383                        hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1384                                                 &nhslot2->head);
1385                        nhslot2->count++;
1386                        spin_unlock(&nhslot2->lock);
1387
1388                        spin_unlock_bh(&hslot->lock);
1389                }
1390        }
1391}
1392EXPORT_SYMBOL(udp_lib_rehash);
1393
1394static void udp_v4_rehash(struct sock *sk)
1395{
1396        u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1397                                          inet_sk(sk)->inet_rcv_saddr,
1398                                          inet_sk(sk)->inet_num);
1399        udp_lib_rehash(sk, new_hash);
1400}
1401
1402static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1403{
1404        int rc;
1405
1406        if (inet_sk(sk)->inet_daddr)
1407                sock_rps_save_rxhash(sk, skb);
1408
1409        rc = sock_queue_rcv_skb(sk, skb);
1410        if (rc < 0) {
1411                int is_udplite = IS_UDPLITE(sk);
1412
1413                /* Note that an ENOMEM error is charged twice */
1414                if (rc == -ENOMEM)
1415                        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1416                                         is_udplite);
1417                UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1418                kfree_skb(skb);
1419                trace_udp_fail_queue_rcv_skb(rc, sk);
1420                return -1;
1421        }
1422
1423        return 0;
1424
1425}
1426
1427static struct static_key udp_encap_needed __read_mostly;
1428void udp_encap_enable(void)
1429{
1430        if (!static_key_enabled(&udp_encap_needed))
1431                static_key_slow_inc(&udp_encap_needed);
1432}
1433EXPORT_SYMBOL(udp_encap_enable);
1434
1435/* returns:
1436 *  -1: error
1437 *   0: success
1438 *  >0: "udp encap" protocol resubmission
1439 *
1440 * Note that in the success and error cases, the skb is assumed to
1441 * have either been requeued or freed.
1442 */
1443int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1444{
1445        struct udp_sock *up = udp_sk(sk);
1446        int rc;
1447        int is_udplite = IS_UDPLITE(sk);
1448
1449        /*
1450         *      Charge it to the socket, dropping if the queue is full.
1451         */
1452        if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1453                goto drop;
1454        nf_reset(skb);
1455
1456        if (static_key_false(&udp_encap_needed) && up->encap_type) {
1457                int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1458
1459                /*
1460                 * This is an encapsulation socket so pass the skb to
1461                 * the socket's udp_encap_rcv() hook. Otherwise, just
1462                 * fall through and pass this up the UDP socket.
1463                 * up->encap_rcv() returns the following value:
1464                 * =0 if skb was successfully passed to the encap
1465                 *    handler or was discarded by it.
1466                 * >0 if skb should be passed on to UDP.
1467                 * <0 if skb should be resubmitted as proto -N
1468                 */
1469
1470                /* if we're overly short, let UDP handle it */
1471                encap_rcv = ACCESS_ONCE(up->encap_rcv);
1472                if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1473                        int ret;
1474
1475                        ret = encap_rcv(sk, skb);
1476                        if (ret <= 0) {
1477                                UDP_INC_STATS_BH(sock_net(sk),
1478                                                 UDP_MIB_INDATAGRAMS,
1479                                                 is_udplite);
1480                                return -ret;
1481                        }
1482                }
1483
1484                /* FALLTHROUGH -- it's a UDP Packet */
1485        }
1486
1487        /*
1488         *      UDP-Lite specific tests, ignored on UDP sockets
1489         */
1490        if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
1491
1492                /*
1493                 * MIB statistics other than incrementing the error count are
1494                 * disabled for the following two types of errors: these depend
1495                 * on the application settings, not on the functioning of the
1496                 * protocol stack as such.
1497                 *
1498                 * RFC 3828 here recommends (sec 3.3): "There should also be a
1499                 * way ... to ... at least let the receiving application block
1500                 * delivery of packets with coverage values less than a value
1501                 * provided by the application."
1502                 */
1503                if (up->pcrlen == 0) {          /* full coverage was set  */
1504                        LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1505                                       UDP_SKB_CB(skb)->cscov, skb->len);
1506                        goto drop;
1507                }
1508                /* The next case involves violating the min. coverage requested
1509                 * by the receiver. This is subtle: if receiver wants x and x is
1510                 * greater than the buffersize/MTU then receiver will complain
1511                 * that it wants x while sender emits packets of smaller size y.
1512                 * Therefore the above ...()->partial_cov statement is essential.
1513                 */
1514                if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1515                        LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1516                                       UDP_SKB_CB(skb)->cscov, up->pcrlen);
1517                        goto drop;
1518                }
1519        }
1520
1521        if (rcu_access_pointer(sk->sk_filter) &&
1522            udp_lib_checksum_complete(skb))
1523                goto csum_error;
1524
1525
1526        if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1527                goto drop;
1528
1529        rc = 0;
1530
1531        ipv4_pktinfo_prepare(skb);
1532        bh_lock_sock(sk);
1533        if (!sock_owned_by_user(sk))
1534                rc = __udp_queue_rcv_skb(sk, skb);
1535        else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1536                bh_unlock_sock(sk);
1537                goto drop;
1538        }
1539        bh_unlock_sock(sk);
1540
1541        return rc;
1542
1543csum_error:
1544        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1545drop:
1546        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1547        atomic_inc(&sk->sk_drops);
1548        kfree_skb(skb);
1549        return -1;
1550}
1551
1552
1553static void flush_stack(struct sock **stack, unsigned int count,
1554                        struct sk_buff *skb, unsigned int final)
1555{
1556        unsigned int i;
1557        struct sk_buff *skb1 = NULL;
1558        struct sock *sk;
1559
1560        for (i = 0; i < count; i++) {
1561                sk = stack[i];
1562                if (likely(skb1 == NULL))
1563                        skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1564
1565                if (!skb1) {
1566                        atomic_inc(&sk->sk_drops);
1567                        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1568                                         IS_UDPLITE(sk));
1569                        UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1570                                         IS_UDPLITE(sk));
1571                }
1572
1573                if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1574                        skb1 = NULL;
1575        }
1576        if (unlikely(skb1))
1577                kfree_skb(skb1);
1578}
1579
1580/*
1581 *      Multicasts and broadcasts go to each listener.
1582 *
1583 *      Note: called only from the BH handler context.
1584 */
1585static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1586                                    struct udphdr  *uh,
1587                                    __be32 saddr, __be32 daddr,
1588                                    struct udp_table *udptable)
1589{
1590        struct sock *sk, *stack[256 / sizeof(struct sock *)];
1591        struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1592        int dif;
1593        unsigned int i, count = 0;
1594
1595        spin_lock(&hslot->lock);
1596        sk = sk_nulls_head(&hslot->head);
1597        dif = skb->dev->ifindex;
1598        sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1599        while (sk) {
1600                stack[count++] = sk;
1601                sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1602                                       daddr, uh->source, saddr, dif);
1603                if (unlikely(count == ARRAY_SIZE(stack))) {
1604                        if (!sk)
1605                                break;
1606                        flush_stack(stack, count, skb, ~0);
1607                        count = 0;
1608                }
1609        }
1610        /*
1611         * before releasing chain lock, we must take a reference on sockets
1612         */
1613        for (i = 0; i < count; i++)
1614                sock_hold(stack[i]);
1615
1616        spin_unlock(&hslot->lock);
1617
1618        /*
1619         * do the slow work with no lock held
1620         */
1621        if (count) {
1622                flush_stack(stack, count, skb, count - 1);
1623
1624                for (i = 0; i < count; i++)
1625                        sock_put(stack[i]);
1626        } else {
1627                kfree_skb(skb);
1628        }
1629        return 0;
1630}
1631
1632/* Initialize UDP checksum. If exited with zero value (success),
1633 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1634 * Otherwise, csum completion requires chacksumming packet body,
1635 * including udp header and folding it to skb->csum.
1636 */
1637static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1638                                 int proto)
1639{
1640        const struct iphdr *iph;
1641        int err;
1642
1643        UDP_SKB_CB(skb)->partial_cov = 0;
1644        UDP_SKB_CB(skb)->cscov = skb->len;
1645
1646        if (proto == IPPROTO_UDPLITE) {
1647                err = udplite_checksum_init(skb, uh);
1648                if (err)
1649                        return err;
1650        }
1651
1652        iph = ip_hdr(skb);
1653        if (uh->check == 0) {
1654                skb->ip_summed = CHECKSUM_UNNECESSARY;
1655        } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1656                if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1657                                      proto, skb->csum))
1658                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1659        }
1660        if (!skb_csum_unnecessary(skb))
1661                skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1662                                               skb->len, proto, 0);
1663        /* Probably, we should checksum udp header (it should be in cache
1664         * in any case) and data in tiny packets (< rx copybreak).
1665         */
1666
1667        return 0;
1668}
1669
1670/*
1671 *      All we need to do is get the socket, and then do a checksum.
1672 */
1673
1674int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1675                   int proto)
1676{
1677        struct sock *sk;
1678        struct udphdr *uh;
1679        unsigned short ulen;
1680        struct rtable *rt = skb_rtable(skb);
1681        __be32 saddr, daddr;
1682        struct net *net = dev_net(skb->dev);
1683
1684        /*
1685         *  Validate the packet.
1686         */
1687        if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1688                goto drop;              /* No space for header. */
1689
1690        uh   = udp_hdr(skb);
1691        ulen = ntohs(uh->len);
1692        saddr = ip_hdr(skb)->saddr;
1693        daddr = ip_hdr(skb)->daddr;
1694
1695        if (ulen > skb->len)
1696                goto short_packet;
1697
1698        if (proto == IPPROTO_UDP) {
1699                /* UDP validates ulen. */
1700                if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1701                        goto short_packet;
1702                uh = udp_hdr(skb);
1703        }
1704
1705        if (udp4_csum_init(skb, uh, proto))
1706                goto csum_error;
1707
1708        if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1709                return __udp4_lib_mcast_deliver(net, skb, uh,
1710                                saddr, daddr, udptable);
1711
1712        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1713
1714        if (sk != NULL) {
1715                int ret;
1716
1717                sk_mark_napi_id(sk, skb);
1718                ret = udp_queue_rcv_skb(sk, skb);
1719                sock_put(sk);
1720
1721                /* a return value > 0 means to resubmit the input, but
1722                 * it wants the return to be -protocol, or 0
1723                 */
1724                if (ret > 0)
1725                        return -ret;
1726                return 0;
1727        }
1728
1729        if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1730                goto drop;
1731        nf_reset(skb);
1732
1733        /* No socket. Drop packet silently, if checksum is wrong */
1734        if (udp_lib_checksum_complete(skb))
1735                goto csum_error;
1736
1737        UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1738        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1739
1740        /*
1741         * Hmm.  We got an UDP packet to a port to which we
1742         * don't wanna listen.  Ignore it.
1743         */
1744        kfree_skb(skb);
1745        return 0;
1746
1747short_packet:
1748        LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1749                       proto == IPPROTO_UDPLITE ? "Lite" : "",
1750                       &saddr, ntohs(uh->source),
1751                       ulen, skb->len,
1752                       &daddr, ntohs(uh->dest));
1753        goto drop;
1754
1755csum_error:
1756        /*
1757         * RFC1122: OK.  Discards the bad packet silently (as far as
1758         * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1759         */
1760        LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1761                       proto == IPPROTO_UDPLITE ? "Lite" : "",
1762                       &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1763                       ulen);
1764        UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1765drop:
1766        UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1767        kfree_skb(skb);
1768        return 0;
1769}
1770
1771int udp_rcv(struct sk_buff *skb)
1772{
1773        return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1774}
1775
1776void udp_destroy_sock(struct sock *sk)
1777{
1778        struct udp_sock *up = udp_sk(sk);
1779        bool slow = lock_sock_fast(sk);
1780        udp_flush_pending_frames(sk);
1781        unlock_sock_fast(sk, slow);
1782        if (static_key_false(&udp_encap_needed) && up->encap_type) {
1783                void (*encap_destroy)(struct sock *sk);
1784                encap_destroy = ACCESS_ONCE(up->encap_destroy);
1785                if (encap_destroy)
1786                        encap_destroy(sk);
1787        }
1788}
1789
1790/*
1791 *      Socket option code for UDP
1792 */
1793int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1794                       char __user *optval, unsigned int optlen,
1795                       int (*push_pending_frames)(struct sock *))
1796{
1797        struct udp_sock *up = udp_sk(sk);
1798        int val;
1799        int err = 0;
1800        int is_udplite = IS_UDPLITE(sk);
1801
1802        if (optlen < sizeof(int))
1803                return -EINVAL;
1804
1805        if (get_user(val, (int __user *)optval))
1806                return -EFAULT;
1807
1808        switch (optname) {
1809        case UDP_CORK:
1810                if (val != 0) {
1811                        up->corkflag = 1;
1812                } else {
1813                        up->corkflag = 0;
1814                        lock_sock(sk);
1815                        (*push_pending_frames)(sk);
1816                        release_sock(sk);
1817                }
1818                break;
1819
1820        case UDP_ENCAP:
1821                switch (val) {
1822                case 0:
1823                case UDP_ENCAP_ESPINUDP:
1824                case UDP_ENCAP_ESPINUDP_NON_IKE:
1825                        up->encap_rcv = xfrm4_udp_encap_rcv;
1826                        /* FALLTHROUGH */
1827                case UDP_ENCAP_L2TPINUDP:
1828                        up->encap_type = val;
1829                        udp_encap_enable();
1830                        break;
1831                default:
1832                        err = -ENOPROTOOPT;
1833                        break;
1834                }
1835                break;
1836
1837        /*
1838         *      UDP-Lite's partial checksum coverage (RFC 3828).
1839         */
1840        /* The sender sets actual checksum coverage length via this option.
1841         * The case coverage > packet length is handled by send module. */
1842        case UDPLITE_SEND_CSCOV:
1843                if (!is_udplite)         /* Disable the option on UDP sockets */
1844                        return -ENOPROTOOPT;
1845                if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1846                        val = 8;
1847                else if (val > USHRT_MAX)
1848                        val = USHRT_MAX;
1849                up->pcslen = val;
1850                up->pcflag |= UDPLITE_SEND_CC;
1851                break;
1852
1853        /* The receiver specifies a minimum checksum coverage value. To make
1854         * sense, this should be set to at least 8 (as done below). If zero is
1855         * used, this again means full checksum coverage.                     */
1856        case UDPLITE_RECV_CSCOV:
1857                if (!is_udplite)         /* Disable the option on UDP sockets */
1858                        return -ENOPROTOOPT;
1859                if (val != 0 && val < 8) /* Avoid silly minimal values.       */
1860                        val = 8;
1861                else if (val > USHRT_MAX)
1862                        val = USHRT_MAX;
1863                up->pcrlen = val;
1864                up->pcflag |= UDPLITE_RECV_CC;
1865                break;
1866
1867        default:
1868                err = -ENOPROTOOPT;
1869                break;
1870        }
1871
1872        return err;
1873}
1874EXPORT_SYMBOL(udp_lib_setsockopt);
1875
1876int udp_setsockopt(struct sock *sk, int level, int optname,
1877                   char __user *optval, unsigned int optlen)
1878{
1879        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1880                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1881                                          udp_push_pending_frames);
1882        return ip_setsockopt(sk, level, optname, optval, optlen);
1883}
1884
1885#ifdef CONFIG_COMPAT
1886int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1887                          char __user *optval, unsigned int optlen)
1888{
1889        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1890                return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1891                                          udp_push_pending_frames);
1892        return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1893}
1894#endif
1895
1896int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1897                       char __user *optval, int __user *optlen)
1898{
1899        struct udp_sock *up = udp_sk(sk);
1900        int val, len;
1901
1902        if (get_user(len, optlen))
1903                return -EFAULT;
1904
1905        len = min_t(unsigned int, len, sizeof(int));
1906
1907        if (len < 0)
1908                return -EINVAL;
1909
1910        switch (optname) {
1911        case UDP_CORK:
1912                val = up->corkflag;
1913                break;
1914
1915        case UDP_ENCAP:
1916                val = up->encap_type;
1917                break;
1918
1919        /* The following two cannot be changed on UDP sockets, the return is
1920         * always 0 (which corresponds to the full checksum coverage of UDP). */
1921        case UDPLITE_SEND_CSCOV:
1922                val = up->pcslen;
1923                break;
1924
1925        case UDPLITE_RECV_CSCOV:
1926                val = up->pcrlen;
1927                break;
1928
1929        default:
1930                return -ENOPROTOOPT;
1931        }
1932
1933        if (put_user(len, optlen))
1934                return -EFAULT;
1935        if (copy_to_user(optval, &val, len))
1936                return -EFAULT;
1937        return 0;
1938}
1939EXPORT_SYMBOL(udp_lib_getsockopt);
1940
1941int udp_getsockopt(struct sock *sk, int level, int optname,
1942                   char __user *optval, int __user *optlen)
1943{
1944        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1945                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1946        return ip_getsockopt(sk, level, optname, optval, optlen);
1947}
1948
1949#ifdef CONFIG_COMPAT
1950int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1951                                 char __user *optval, int __user *optlen)
1952{
1953        if (level == SOL_UDP  ||  level == SOL_UDPLITE)
1954                return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1955        return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1956}
1957#endif
1958/**
1959 *      udp_poll - wait for a UDP event.
1960 *      @file - file struct
1961 *      @sock - socket
1962 *      @wait - poll table
1963 *
1964 *      This is same as datagram poll, except for the special case of
1965 *      blocking sockets. If application is using a blocking fd
1966 *      and a packet with checksum error is in the queue;
1967 *      then it could get return from select indicating data available
1968 *      but then block when reading it. Add special case code
1969 *      to work around these arguably broken applications.
1970 */
1971unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1972{
1973        unsigned int mask = datagram_poll(file, sock, wait);
1974        struct sock *sk = sock->sk;
1975
1976        sock_rps_record_flow(sk);
1977
1978        /* Check for false positives due to checksum errors */
1979        if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1980            !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1981                mask &= ~(POLLIN | POLLRDNORM);
1982
1983        return mask;
1984
1985}
1986EXPORT_SYMBOL(udp_poll);
1987
1988struct proto udp_prot = {
1989        .name              = "UDP",
1990        .owner             = THIS_MODULE,
1991        .close             = udp_lib_close,
1992        .connect           = ip4_datagram_connect,
1993        .disconnect        = udp_disconnect,
1994        .ioctl             = udp_ioctl,
1995        .destroy           = udp_destroy_sock,
1996        .setsockopt        = udp_setsockopt,
1997        .getsockopt        = udp_getsockopt,
1998        .sendmsg           = udp_sendmsg,
1999        .recvmsg           = udp_recvmsg,
2000        .sendpage          = udp_sendpage,
2001        .backlog_rcv       = __udp_queue_rcv_skb,
2002        .release_cb        = ip4_datagram_release_cb,
2003        .hash              = udp_lib_hash,
2004        .unhash            = udp_lib_unhash,
2005        .rehash            = udp_v4_rehash,
2006        .get_port          = udp_v4_get_port,
2007        .memory_allocated  = &udp_memory_allocated,
2008        .sysctl_mem        = sysctl_udp_mem,
2009        .sysctl_wmem       = &sysctl_udp_wmem_min,
2010        .sysctl_rmem       = &sysctl_udp_rmem_min,
2011        .obj_size          = sizeof(struct udp_sock),
2012        .slab_flags        = SLAB_DESTROY_BY_RCU,
2013        .h.udp_table       = &udp_table,
2014#ifdef CONFIG_COMPAT
2015        .compat_setsockopt = compat_udp_setsockopt,
2016        .compat_getsockopt = compat_udp_getsockopt,
2017#endif
2018        .clear_sk          = sk_prot_clear_portaddr_nulls,
2019};
2020EXPORT_SYMBOL(udp_prot);
2021
2022/* ------------------------------------------------------------------------ */
2023#ifdef CONFIG_PROC_FS
2024
2025static struct sock *udp_get_first(struct seq_file *seq, int start)
2026{
2027        struct sock *sk;
2028        struct udp_iter_state *state = seq->private;
2029        struct net *net = seq_file_net(seq);
2030
2031        for (state->bucket = start; state->bucket <= state->udp_table->mask;
2032             ++state->bucket) {
2033                struct hlist_nulls_node *node;
2034                struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2035
2036                if (hlist_nulls_empty(&hslot->head))
2037                        continue;
2038
2039                spin_lock_bh(&hslot->lock);
2040                sk_nulls_for_each(sk, node, &hslot->head) {
2041                        if (!net_eq(sock_net(sk), net))
2042                                continue;
2043                        if (sk->sk_family == state->family)
2044                                goto found;
2045                }
2046                spin_unlock_bh(&hslot->lock);
2047        }
2048        sk = NULL;
2049found:
2050        return sk;
2051}
2052
2053static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2054{
2055        struct udp_iter_state *state = seq->private;
2056        struct net *net = seq_file_net(seq);
2057
2058        do {
2059                sk = sk_nulls_next(sk);
2060        } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2061
2062        if (!sk) {
2063                if (state->bucket <= state->udp_table->mask)
2064                        spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2065                return udp_get_first(seq, state->bucket + 1);
2066        }
2067        return sk;
2068}
2069
2070static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2071{
2072        struct sock *sk = udp_get_first(seq, 0);
2073
2074        if (sk)
2075                while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2076                        --pos;
2077        return pos ? NULL : sk;
2078}
2079
2080static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2081{
2082        struct udp_iter_state *state = seq->private;
2083        state->bucket = MAX_UDP_PORTS;
2084
2085        return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2086}
2087
2088static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2089{
2090        struct sock *sk;
2091
2092        if (v == SEQ_START_TOKEN)
2093                sk = udp_get_idx(seq, 0);
2094        else
2095                sk = udp_get_next(seq, v);
2096
2097        ++*pos;
2098        return sk;
2099}
2100
2101static void udp_seq_stop(struct seq_file *seq, void *v)
2102{
2103        struct udp_iter_state *state = seq->private;
2104
2105        if (state->bucket <= state->udp_table->mask)
2106                spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2107}
2108
2109int udp_seq_open(struct inode *inode, struct file *file)
2110{
2111        struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2112        struct udp_iter_state *s;
2113        int err;
2114
2115        err = seq_open_net(inode, file, &afinfo->seq_ops,
2116                           sizeof(struct udp_iter_state));
2117        if (err < 0)
2118                return err;
2119
2120        s = ((struct seq_file *)file->private_data)->private;
2121        s->family               = afinfo->family;
2122        s->udp_table            = afinfo->udp_table;
2123        return err;
2124}
2125EXPORT_SYMBOL(udp_seq_open);
2126
2127/* ------------------------------------------------------------------------ */
2128int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2129{
2130        struct proc_dir_entry *p;
2131        int rc = 0;
2132
2133        afinfo->seq_ops.start           = udp_seq_start;
2134        afinfo->seq_ops.next            = udp_seq_next;
2135        afinfo->seq_ops.stop            = udp_seq_stop;
2136
2137        p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2138                             afinfo->seq_fops, afinfo);
2139        if (!p)
2140                rc = -ENOMEM;
2141        return rc;
2142}
2143EXPORT_SYMBOL(udp_proc_register);
2144
2145void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2146{
2147        remove_proc_entry(afinfo->name, net->proc_net);
2148}
2149EXPORT_SYMBOL(udp_proc_unregister);
2150
2151/* ------------------------------------------------------------------------ */
2152static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2153                int bucket, int *len)
2154{
2155        struct inet_sock *inet = inet_sk(sp);
2156        __be32 dest = inet->inet_daddr;
2157        __be32 src  = inet->inet_rcv_saddr;
2158        __u16 destp       = ntohs(inet->inet_dport);
2159        __u16 srcp        = ntohs(inet->inet_sport);
2160
2161        seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2162                " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d%n",
2163                bucket, src, srcp, dest, destp, sp->sk_state,
2164                sk_wmem_alloc_get(sp),
2165                sk_rmem_alloc_get(sp),
2166                0, 0L, 0,
2167                from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2168                0, sock_i_ino(sp),
2169                atomic_read(&sp->sk_refcnt), sp,
2170                atomic_read(&sp->sk_drops), len);
2171}
2172
2173int udp4_seq_show(struct seq_file *seq, void *v)
2174{
2175        if (v == SEQ_START_TOKEN)
2176                seq_printf(seq, "%-127s\n",
2177                           "  sl  local_address rem_address   st tx_queue "
2178                           "rx_queue tr tm->when retrnsmt   uid  timeout "
2179                           "inode ref pointer drops");
2180        else {
2181                struct udp_iter_state *state = seq->private;
2182                int len;
2183
2184                udp4_format_sock(v, seq, state->bucket, &len);
2185                seq_printf(seq, "%*s\n", 127 - len, "");
2186        }
2187        return 0;
2188}
2189
2190static const struct file_operations udp_afinfo_seq_fops = {
2191        .owner    = THIS_MODULE,
2192        .open     = udp_seq_open,
2193        .read     = seq_read,
2194        .llseek   = seq_lseek,
2195        .release  = seq_release_net
2196};
2197
2198/* ------------------------------------------------------------------------ */
2199static struct udp_seq_afinfo udp4_seq_afinfo = {
2200        .name           = "udp",
2201        .family         = AF_INET,
2202        .udp_table      = &udp_table,
2203        .seq_fops       = &udp_afinfo_seq_fops,
2204        .seq_ops        = {
2205                .show           = udp4_seq_show,
2206        },
2207};
2208
2209static int __net_init udp4_proc_init_net(struct net *net)
2210{
2211        return udp_proc_register(net, &udp4_seq_afinfo);
2212}
2213
2214static void __net_exit udp4_proc_exit_net(struct net *net)
2215{
2216        udp_proc_unregister(net, &udp4_seq_afinfo);
2217}
2218
2219static struct pernet_operations udp4_net_ops = {
2220        .init = udp4_proc_init_net,
2221        .exit = udp4_proc_exit_net,
2222};
2223
2224int __init udp4_proc_init(void)
2225{
2226        return register_pernet_subsys(&udp4_net_ops);
2227}
2228
2229void udp4_proc_exit(void)
2230{
2231        unregister_pernet_subsys(&udp4_net_ops);
2232}
2233#endif /* CONFIG_PROC_FS */
2234
2235static __initdata unsigned long uhash_entries;
2236static int __init set_uhash_entries(char *str)
2237{
2238        ssize_t ret;
2239
2240        if (!str)
2241                return 0;
2242
2243        ret = kstrtoul(str, 0, &uhash_entries);
2244        if (ret)
2245                return 0;
2246
2247        if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2248                uhash_entries = UDP_HTABLE_SIZE_MIN;
2249        return 1;
2250}
2251__setup("uhash_entries=", set_uhash_entries);
2252
2253void __init udp_table_init(struct udp_table *table, const char *name)
2254{
2255        unsigned int i;
2256
2257        table->hash = alloc_large_system_hash(name,
2258                                              2 * sizeof(struct udp_hslot),
2259                                              uhash_entries,
2260                                              21, /* one slot per 2 MB */
2261                                              0,
2262                                              &table->log,
2263                                              &table->mask,
2264                                              UDP_HTABLE_SIZE_MIN,
2265                                              64 * 1024);
2266
2267        table->hash2 = table->hash + (table->mask + 1);
2268        for (i = 0; i <= table->mask; i++) {
2269                INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2270                table->hash[i].count = 0;
2271                spin_lock_init(&table->hash[i].lock);
2272        }
2273        for (i = 0; i <= table->mask; i++) {
2274                INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2275                table->hash2[i].count = 0;
2276                spin_lock_init(&table->hash2[i].lock);
2277        }
2278}
2279
2280void __init udp_init(void)
2281{
2282        unsigned long limit;
2283
2284        udp_table_init(&udp_table, "UDP");
2285        limit = nr_free_buffer_pages() / 8;
2286        limit = max(limit, 128UL);
2287        sysctl_udp_mem[0] = limit / 4 * 3;
2288        sysctl_udp_mem[1] = limit;
2289        sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2290
2291        sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2292        sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2293}
2294
2295struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2296                                       netdev_features_t features)
2297{
2298        struct sk_buff *segs = ERR_PTR(-EINVAL);
2299        int mac_len = skb->mac_len;
2300        int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2301        __be16 protocol = skb->protocol;
2302        netdev_features_t enc_features;
2303        int outer_hlen;
2304
2305        if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2306                goto out;
2307
2308        skb->encapsulation = 0;
2309        __skb_pull(skb, tnl_hlen);
2310        skb_reset_mac_header(skb);
2311        skb_set_network_header(skb, skb_inner_network_offset(skb));
2312        skb->mac_len = skb_inner_network_offset(skb);
2313        skb->protocol = htons(ETH_P_TEB);
2314
2315        /* segment inner packet. */
2316        enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2317        segs = skb_mac_gso_segment(skb, enc_features);
2318        if (!segs || IS_ERR(segs))
2319                goto out;
2320
2321        outer_hlen = skb_tnl_header_len(skb);
2322        skb = segs;
2323        do {
2324                struct udphdr *uh;
2325                int udp_offset = outer_hlen - tnl_hlen;
2326
2327                skb_reset_inner_headers(skb);
2328                skb->encapsulation = 1;
2329
2330                skb->mac_len = mac_len;
2331
2332                skb_push(skb, outer_hlen);
2333                skb_reset_mac_header(skb);
2334                skb_set_network_header(skb, mac_len);
2335                skb_set_transport_header(skb, udp_offset);
2336                uh = udp_hdr(skb);
2337                uh->len = htons(skb->len - udp_offset);
2338
2339                /* csum segment if tunnel sets skb with csum. */
2340                if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2341                        struct iphdr *iph = ip_hdr(skb);
2342
2343                        uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2344                                                       skb->len - udp_offset,
2345                                                       IPPROTO_UDP, 0);
2346                        uh->check = csum_fold(skb_checksum(skb, udp_offset,
2347                                                           skb->len - udp_offset, 0));
2348                        if (uh->check == 0)
2349                                uh->check = CSUM_MANGLED_0;
2350
2351                } else if (protocol == htons(ETH_P_IPV6)) {
2352                        struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2353                        u32 len = skb->len - udp_offset;
2354
2355                        uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2356                                                     len, IPPROTO_UDP, 0);
2357                        uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2358                        if (uh->check == 0)
2359                                uh->check = CSUM_MANGLED_0;
2360                        skb->ip_summed = CHECKSUM_NONE;
2361                }
2362
2363                skb->protocol = protocol;
2364        } while ((skb = skb->next));
2365out:
2366        return segs;
2367}
2368