linux/net/sched/sch_fq.c
<<
>>
Prefs
   1/*
   2 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
   3 *
   4 *  Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
   5 *
   6 *      This program is free software; you can redistribute it and/or
   7 *      modify it under the terms of the GNU General Public License
   8 *      as published by the Free Software Foundation; either version
   9 *      2 of the License, or (at your option) any later version.
  10 *
  11 *  Meant to be mostly used for localy generated traffic :
  12 *  Fast classification depends on skb->sk being set before reaching us.
  13 *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  14 *  All packets belonging to a socket are considered as a 'flow'.
  15 *
  16 *  Flows are dynamically allocated and stored in a hash table of RB trees
  17 *  They are also part of one Round Robin 'queues' (new or old flows)
  18 *
  19 *  Burst avoidance (aka pacing) capability :
  20 *
  21 *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  22 *  bunch of packets, and this packet scheduler adds delay between
  23 *  packets to respect rate limitation.
  24 *
  25 *  enqueue() :
  26 *   - lookup one RB tree (out of 1024 or more) to find the flow.
  27 *     If non existent flow, create it, add it to the tree.
  28 *     Add skb to the per flow list of skb (fifo).
  29 *   - Use a special fifo for high prio packets
  30 *
  31 *  dequeue() : serves flows in Round Robin
  32 *  Note : When a flow becomes empty, we do not immediately remove it from
  33 *  rb trees, for performance reasons (its expected to send additional packets,
  34 *  or SLAB cache will reuse socket for another flow)
  35 */
  36
  37#include <linux/module.h>
  38#include <linux/types.h>
  39#include <linux/kernel.h>
  40#include <linux/jiffies.h>
  41#include <linux/string.h>
  42#include <linux/in.h>
  43#include <linux/errno.h>
  44#include <linux/init.h>
  45#include <linux/skbuff.h>
  46#include <linux/slab.h>
  47#include <linux/rbtree.h>
  48#include <linux/hash.h>
  49#include <linux/prefetch.h>
  50#include <net/netlink.h>
  51#include <net/pkt_sched.h>
  52#include <net/sock.h>
  53#include <net/tcp_states.h>
  54
  55/*
  56 * Per flow structure, dynamically allocated
  57 */
  58struct fq_flow {
  59        struct sk_buff  *head;          /* list of skbs for this flow : first skb */
  60        union {
  61                struct sk_buff *tail;   /* last skb in the list */
  62                unsigned long  age;     /* jiffies when flow was emptied, for gc */
  63        };
  64        struct rb_node  fq_node;        /* anchor in fq_root[] trees */
  65        struct sock     *sk;
  66        int             qlen;           /* number of packets in flow queue */
  67        int             credit;
  68        u32             socket_hash;    /* sk_hash */
  69        struct fq_flow *next;           /* next pointer in RR lists, or &detached */
  70
  71        struct rb_node  rate_node;      /* anchor in q->delayed tree */
  72        u64             time_next_packet;
  73};
  74
  75struct fq_flow_head {
  76        struct fq_flow *first;
  77        struct fq_flow *last;
  78};
  79
  80struct fq_sched_data {
  81        struct fq_flow_head new_flows;
  82
  83        struct fq_flow_head old_flows;
  84
  85        struct rb_root  delayed;        /* for rate limited flows */
  86        u64             time_next_delayed_flow;
  87
  88        struct fq_flow  internal;       /* for non classified or high prio packets */
  89        u32             quantum;
  90        u32             initial_quantum;
  91        u32             flow_default_rate;/* rate per flow : bytes per second */
  92        u32             flow_max_rate;  /* optional max rate per flow */
  93        u32             flow_plimit;    /* max packets per flow */
  94        struct rb_root  *fq_root;
  95        u8              rate_enable;
  96        u8              fq_trees_log;
  97
  98        u32             flows;
  99        u32             inactive_flows;
 100        u32             throttled_flows;
 101
 102        u64             stat_gc_flows;
 103        u64             stat_internal_packets;
 104        u64             stat_tcp_retrans;
 105        u64             stat_throttled;
 106        u64             stat_flows_plimit;
 107        u64             stat_pkts_too_long;
 108        u64             stat_allocation_errors;
 109        struct qdisc_watchdog watchdog;
 110};
 111
 112/* special value to mark a detached flow (not on old/new list) */
 113static struct fq_flow detached, throttled;
 114
 115static void fq_flow_set_detached(struct fq_flow *f)
 116{
 117        f->next = &detached;
 118}
 119
 120static bool fq_flow_is_detached(const struct fq_flow *f)
 121{
 122        return f->next == &detached;
 123}
 124
 125static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
 126{
 127        struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
 128
 129        while (*p) {
 130                struct fq_flow *aux;
 131
 132                parent = *p;
 133                aux = container_of(parent, struct fq_flow, rate_node);
 134                if (f->time_next_packet >= aux->time_next_packet)
 135                        p = &parent->rb_right;
 136                else
 137                        p = &parent->rb_left;
 138        }
 139        rb_link_node(&f->rate_node, parent, p);
 140        rb_insert_color(&f->rate_node, &q->delayed);
 141        q->throttled_flows++;
 142        q->stat_throttled++;
 143
 144        f->next = &throttled;
 145        if (q->time_next_delayed_flow > f->time_next_packet)
 146                q->time_next_delayed_flow = f->time_next_packet;
 147}
 148
 149
 150static struct kmem_cache *fq_flow_cachep __read_mostly;
 151
 152static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
 153{
 154        if (head->first)
 155                head->last->next = flow;
 156        else
 157                head->first = flow;
 158        head->last = flow;
 159        flow->next = NULL;
 160}
 161
 162/* limit number of collected flows per round */
 163#define FQ_GC_MAX 8
 164#define FQ_GC_AGE (3*HZ)
 165
 166static bool fq_gc_candidate(const struct fq_flow *f)
 167{
 168        return fq_flow_is_detached(f) &&
 169               time_after(jiffies, f->age + FQ_GC_AGE);
 170}
 171
 172static void fq_gc(struct fq_sched_data *q,
 173                  struct rb_root *root,
 174                  struct sock *sk)
 175{
 176        struct fq_flow *f, *tofree[FQ_GC_MAX];
 177        struct rb_node **p, *parent;
 178        int fcnt = 0;
 179
 180        p = &root->rb_node;
 181        parent = NULL;
 182        while (*p) {
 183                parent = *p;
 184
 185                f = container_of(parent, struct fq_flow, fq_node);
 186                if (f->sk == sk)
 187                        break;
 188
 189                if (fq_gc_candidate(f)) {
 190                        tofree[fcnt++] = f;
 191                        if (fcnt == FQ_GC_MAX)
 192                                break;
 193                }
 194
 195                if (f->sk > sk)
 196                        p = &parent->rb_right;
 197                else
 198                        p = &parent->rb_left;
 199        }
 200
 201        q->flows -= fcnt;
 202        q->inactive_flows -= fcnt;
 203        q->stat_gc_flows += fcnt;
 204        while (fcnt) {
 205                struct fq_flow *f = tofree[--fcnt];
 206
 207                rb_erase(&f->fq_node, root);
 208                kmem_cache_free(fq_flow_cachep, f);
 209        }
 210}
 211
 212static const u8 prio2band[TC_PRIO_MAX + 1] = {
 213        1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
 214};
 215
 216static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
 217{
 218        struct rb_node **p, *parent;
 219        struct sock *sk = skb->sk;
 220        struct rb_root *root;
 221        struct fq_flow *f;
 222        int band;
 223
 224        /* warning: no starvation prevention... */
 225        band = prio2band[skb->priority & TC_PRIO_MAX];
 226        if (unlikely(band == 0))
 227                return &q->internal;
 228
 229        if (unlikely(!sk)) {
 230                /* By forcing low order bit to 1, we make sure to not
 231                 * collide with a local flow (socket pointers are word aligned)
 232                 */
 233                sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
 234        }
 235
 236        root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
 237
 238        if (q->flows >= (2U << q->fq_trees_log) &&
 239            q->inactive_flows > q->flows/2)
 240                fq_gc(q, root, sk);
 241
 242        p = &root->rb_node;
 243        parent = NULL;
 244        while (*p) {
 245                parent = *p;
 246
 247                f = container_of(parent, struct fq_flow, fq_node);
 248                if (f->sk == sk) {
 249                        /* socket might have been reallocated, so check
 250                         * if its sk_hash is the same.
 251                         * It not, we need to refill credit with
 252                         * initial quantum
 253                         */
 254                        if (unlikely(skb->sk &&
 255                                     f->socket_hash != sk->sk_hash)) {
 256                                f->credit = q->initial_quantum;
 257                                f->socket_hash = sk->sk_hash;
 258                        }
 259                        return f;
 260                }
 261                if (f->sk > sk)
 262                        p = &parent->rb_right;
 263                else
 264                        p = &parent->rb_left;
 265        }
 266
 267        f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
 268        if (unlikely(!f)) {
 269                q->stat_allocation_errors++;
 270                return &q->internal;
 271        }
 272        fq_flow_set_detached(f);
 273        f->sk = sk;
 274        if (skb->sk)
 275                f->socket_hash = sk->sk_hash;
 276        f->credit = q->initial_quantum;
 277
 278        rb_link_node(&f->fq_node, parent, p);
 279        rb_insert_color(&f->fq_node, root);
 280
 281        q->flows++;
 282        q->inactive_flows++;
 283        return f;
 284}
 285
 286
 287/* remove one skb from head of flow queue */
 288static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
 289{
 290        struct sk_buff *skb = flow->head;
 291
 292        if (skb) {
 293                flow->head = skb->next;
 294                skb->next = NULL;
 295                flow->qlen--;
 296                sch->qstats.backlog -= qdisc_pkt_len(skb);
 297                sch->q.qlen--;
 298        }
 299        return skb;
 300}
 301
 302/* We might add in the future detection of retransmits
 303 * For the time being, just return false
 304 */
 305static bool skb_is_retransmit(struct sk_buff *skb)
 306{
 307        return false;
 308}
 309
 310/* add skb to flow queue
 311 * flow queue is a linked list, kind of FIFO, except for TCP retransmits
 312 * We special case tcp retransmits to be transmitted before other packets.
 313 * We rely on fact that TCP retransmits are unlikely, so we do not waste
 314 * a separate queue or a pointer.
 315 * head->  [retrans pkt 1]
 316 *         [retrans pkt 2]
 317 *         [ normal pkt 1]
 318 *         [ normal pkt 2]
 319 *         [ normal pkt 3]
 320 * tail->  [ normal pkt 4]
 321 */
 322static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
 323{
 324        struct sk_buff *prev, *head = flow->head;
 325
 326        skb->next = NULL;
 327        if (!head) {
 328                flow->head = skb;
 329                flow->tail = skb;
 330                return;
 331        }
 332        if (likely(!skb_is_retransmit(skb))) {
 333                flow->tail->next = skb;
 334                flow->tail = skb;
 335                return;
 336        }
 337
 338        /* This skb is a tcp retransmit,
 339         * find the last retrans packet in the queue
 340         */
 341        prev = NULL;
 342        while (skb_is_retransmit(head)) {
 343                prev = head;
 344                head = head->next;
 345                if (!head)
 346                        break;
 347        }
 348        if (!prev) { /* no rtx packet in queue, become the new head */
 349                skb->next = flow->head;
 350                flow->head = skb;
 351        } else {
 352                if (prev == flow->tail)
 353                        flow->tail = skb;
 354                else
 355                        skb->next = prev->next;
 356                prev->next = skb;
 357        }
 358}
 359
 360static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 361{
 362        struct fq_sched_data *q = qdisc_priv(sch);
 363        struct fq_flow *f;
 364
 365        if (unlikely(sch->q.qlen >= sch->limit))
 366                return qdisc_drop(skb, sch);
 367
 368        f = fq_classify(skb, q);
 369        if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
 370                q->stat_flows_plimit++;
 371                return qdisc_drop(skb, sch);
 372        }
 373
 374        f->qlen++;
 375        flow_queue_add(f, skb);
 376        if (skb_is_retransmit(skb))
 377                q->stat_tcp_retrans++;
 378        sch->qstats.backlog += qdisc_pkt_len(skb);
 379        if (fq_flow_is_detached(f)) {
 380                fq_flow_add_tail(&q->new_flows, f);
 381                if (q->quantum > f->credit)
 382                        f->credit = q->quantum;
 383                q->inactive_flows--;
 384                qdisc_unthrottled(sch);
 385        }
 386        if (unlikely(f == &q->internal)) {
 387                q->stat_internal_packets++;
 388                qdisc_unthrottled(sch);
 389        }
 390        sch->q.qlen++;
 391
 392        return NET_XMIT_SUCCESS;
 393}
 394
 395static void fq_check_throttled(struct fq_sched_data *q, u64 now)
 396{
 397        struct rb_node *p;
 398
 399        if (q->time_next_delayed_flow > now)
 400                return;
 401
 402        q->time_next_delayed_flow = ~0ULL;
 403        while ((p = rb_first(&q->delayed)) != NULL) {
 404                struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
 405
 406                if (f->time_next_packet > now) {
 407                        q->time_next_delayed_flow = f->time_next_packet;
 408                        break;
 409                }
 410                rb_erase(p, &q->delayed);
 411                q->throttled_flows--;
 412                fq_flow_add_tail(&q->old_flows, f);
 413        }
 414}
 415
 416static struct sk_buff *fq_dequeue(struct Qdisc *sch)
 417{
 418        struct fq_sched_data *q = qdisc_priv(sch);
 419        u64 now = ktime_to_ns(ktime_get());
 420        struct fq_flow_head *head;
 421        struct sk_buff *skb;
 422        struct fq_flow *f;
 423        u32 rate;
 424
 425        skb = fq_dequeue_head(sch, &q->internal);
 426        if (skb)
 427                goto out;
 428        fq_check_throttled(q, now);
 429begin:
 430        head = &q->new_flows;
 431        if (!head->first) {
 432                head = &q->old_flows;
 433                if (!head->first) {
 434                        if (q->time_next_delayed_flow != ~0ULL)
 435                                qdisc_watchdog_schedule_ns(&q->watchdog,
 436                                                           q->time_next_delayed_flow);
 437                        return NULL;
 438                }
 439        }
 440        f = head->first;
 441
 442        if (f->credit <= 0) {
 443                f->credit += q->quantum;
 444                head->first = f->next;
 445                fq_flow_add_tail(&q->old_flows, f);
 446                goto begin;
 447        }
 448
 449        if (unlikely(f->head && now < f->time_next_packet)) {
 450                head->first = f->next;
 451                fq_flow_set_throttled(q, f);
 452                goto begin;
 453        }
 454
 455        skb = fq_dequeue_head(sch, f);
 456        if (!skb) {
 457                head->first = f->next;
 458                /* force a pass through old_flows to prevent starvation */
 459                if ((head == &q->new_flows) && q->old_flows.first) {
 460                        fq_flow_add_tail(&q->old_flows, f);
 461                } else {
 462                        fq_flow_set_detached(f);
 463                        f->age = jiffies;
 464                        q->inactive_flows++;
 465                }
 466                goto begin;
 467        }
 468        prefetch(&skb->end);
 469        f->time_next_packet = now;
 470        f->credit -= qdisc_pkt_len(skb);
 471
 472        if (f->credit > 0 || !q->rate_enable)
 473                goto out;
 474
 475        rate = q->flow_max_rate;
 476        if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
 477                rate = min(skb->sk->sk_pacing_rate, rate);
 478
 479        if (rate != ~0U) {
 480                u32 plen = max(qdisc_pkt_len(skb), q->quantum);
 481                u64 len = (u64)plen * NSEC_PER_SEC;
 482
 483                if (likely(rate))
 484                        do_div(len, rate);
 485                /* Since socket rate can change later,
 486                 * clamp the delay to 125 ms.
 487                 * TODO: maybe segment the too big skb, as in commit
 488                 * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
 489                 */
 490                if (unlikely(len > 125 * NSEC_PER_MSEC)) {
 491                        len = 125 * NSEC_PER_MSEC;
 492                        q->stat_pkts_too_long++;
 493                }
 494
 495                f->time_next_packet = now + len;
 496        }
 497out:
 498        qdisc_bstats_update(sch, skb);
 499        qdisc_unthrottled(sch);
 500        return skb;
 501}
 502
 503static void fq_reset(struct Qdisc *sch)
 504{
 505        struct fq_sched_data *q = qdisc_priv(sch);
 506        struct rb_root *root;
 507        struct sk_buff *skb;
 508        struct rb_node *p;
 509        struct fq_flow *f;
 510        unsigned int idx;
 511
 512        while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
 513                kfree_skb(skb);
 514
 515        if (!q->fq_root)
 516                return;
 517
 518        for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
 519                root = &q->fq_root[idx];
 520                while ((p = rb_first(root)) != NULL) {
 521                        f = container_of(p, struct fq_flow, fq_node);
 522                        rb_erase(p, root);
 523
 524                        while ((skb = fq_dequeue_head(sch, f)) != NULL)
 525                                kfree_skb(skb);
 526
 527                        kmem_cache_free(fq_flow_cachep, f);
 528                }
 529        }
 530        q->new_flows.first      = NULL;
 531        q->old_flows.first      = NULL;
 532        q->delayed              = RB_ROOT;
 533        q->flows                = 0;
 534        q->inactive_flows       = 0;
 535        q->throttled_flows      = 0;
 536}
 537
 538static void fq_rehash(struct fq_sched_data *q,
 539                      struct rb_root *old_array, u32 old_log,
 540                      struct rb_root *new_array, u32 new_log)
 541{
 542        struct rb_node *op, **np, *parent;
 543        struct rb_root *oroot, *nroot;
 544        struct fq_flow *of, *nf;
 545        int fcnt = 0;
 546        u32 idx;
 547
 548        for (idx = 0; idx < (1U << old_log); idx++) {
 549                oroot = &old_array[idx];
 550                while ((op = rb_first(oroot)) != NULL) {
 551                        rb_erase(op, oroot);
 552                        of = container_of(op, struct fq_flow, fq_node);
 553                        if (fq_gc_candidate(of)) {
 554                                fcnt++;
 555                                kmem_cache_free(fq_flow_cachep, of);
 556                                continue;
 557                        }
 558                        nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
 559
 560                        np = &nroot->rb_node;
 561                        parent = NULL;
 562                        while (*np) {
 563                                parent = *np;
 564
 565                                nf = container_of(parent, struct fq_flow, fq_node);
 566                                BUG_ON(nf->sk == of->sk);
 567
 568                                if (nf->sk > of->sk)
 569                                        np = &parent->rb_right;
 570                                else
 571                                        np = &parent->rb_left;
 572                        }
 573
 574                        rb_link_node(&of->fq_node, parent, np);
 575                        rb_insert_color(&of->fq_node, nroot);
 576                }
 577        }
 578        q->flows -= fcnt;
 579        q->inactive_flows -= fcnt;
 580        q->stat_gc_flows += fcnt;
 581}
 582
 583static int fq_resize(struct fq_sched_data *q, u32 log)
 584{
 585        struct rb_root *array;
 586        u32 idx;
 587
 588        if (q->fq_root && log == q->fq_trees_log)
 589                return 0;
 590
 591        array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
 592        if (!array)
 593                return -ENOMEM;
 594
 595        for (idx = 0; idx < (1U << log); idx++)
 596                array[idx] = RB_ROOT;
 597
 598        if (q->fq_root) {
 599                fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
 600                kfree(q->fq_root);
 601        }
 602        q->fq_root = array;
 603        q->fq_trees_log = log;
 604
 605        return 0;
 606}
 607
 608static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
 609        [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
 610        [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
 611        [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
 612        [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
 613        [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
 614        [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
 615        [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
 616        [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
 617};
 618
 619static int fq_change(struct Qdisc *sch, struct nlattr *opt)
 620{
 621        struct fq_sched_data *q = qdisc_priv(sch);
 622        struct nlattr *tb[TCA_FQ_MAX + 1];
 623        int err, drop_count = 0;
 624        u32 fq_log;
 625
 626        if (!opt)
 627                return -EINVAL;
 628
 629        err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
 630        if (err < 0)
 631                return err;
 632
 633        sch_tree_lock(sch);
 634
 635        fq_log = q->fq_trees_log;
 636
 637        if (tb[TCA_FQ_BUCKETS_LOG]) {
 638                u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
 639
 640                if (nval >= 1 && nval <= ilog2(256*1024))
 641                        fq_log = nval;
 642                else
 643                        err = -EINVAL;
 644        }
 645        if (tb[TCA_FQ_PLIMIT])
 646                sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
 647
 648        if (tb[TCA_FQ_FLOW_PLIMIT])
 649                q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
 650
 651        if (tb[TCA_FQ_QUANTUM])
 652                q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
 653
 654        if (tb[TCA_FQ_INITIAL_QUANTUM])
 655                q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
 656
 657        if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
 658                q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
 659
 660        if (tb[TCA_FQ_FLOW_MAX_RATE])
 661                q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
 662
 663        if (tb[TCA_FQ_RATE_ENABLE]) {
 664                u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
 665
 666                if (enable <= 1)
 667                        q->rate_enable = enable;
 668                else
 669                        err = -EINVAL;
 670        }
 671
 672        if (!err)
 673                err = fq_resize(q, fq_log);
 674
 675        while (sch->q.qlen > sch->limit) {
 676                struct sk_buff *skb = fq_dequeue(sch);
 677
 678                if (!skb)
 679                        break;
 680                kfree_skb(skb);
 681                drop_count++;
 682        }
 683        qdisc_tree_decrease_qlen(sch, drop_count);
 684
 685        sch_tree_unlock(sch);
 686        return err;
 687}
 688
 689static void fq_destroy(struct Qdisc *sch)
 690{
 691        struct fq_sched_data *q = qdisc_priv(sch);
 692
 693        fq_reset(sch);
 694        kfree(q->fq_root);
 695        qdisc_watchdog_cancel(&q->watchdog);
 696}
 697
 698static int fq_init(struct Qdisc *sch, struct nlattr *opt)
 699{
 700        struct fq_sched_data *q = qdisc_priv(sch);
 701        int err;
 702
 703        sch->limit              = 10000;
 704        q->flow_plimit          = 100;
 705        q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
 706        q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
 707        q->flow_default_rate    = 0;
 708        q->flow_max_rate        = ~0U;
 709        q->rate_enable          = 1;
 710        q->new_flows.first      = NULL;
 711        q->old_flows.first      = NULL;
 712        q->delayed              = RB_ROOT;
 713        q->fq_root              = NULL;
 714        q->fq_trees_log         = ilog2(1024);
 715        qdisc_watchdog_init(&q->watchdog, sch);
 716
 717        if (opt)
 718                err = fq_change(sch, opt);
 719        else
 720                err = fq_resize(q, q->fq_trees_log);
 721
 722        return err;
 723}
 724
 725static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
 726{
 727        struct fq_sched_data *q = qdisc_priv(sch);
 728        struct nlattr *opts;
 729
 730        opts = nla_nest_start(skb, TCA_OPTIONS);
 731        if (opts == NULL)
 732                goto nla_put_failure;
 733
 734        /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore,
 735         * do not bother giving its value
 736         */
 737        if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
 738            nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
 739            nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
 740            nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
 741            nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
 742            nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
 743            nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
 744                goto nla_put_failure;
 745
 746        nla_nest_end(skb, opts);
 747        return skb->len;
 748
 749nla_put_failure:
 750        return -1;
 751}
 752
 753static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 754{
 755        struct fq_sched_data *q = qdisc_priv(sch);
 756        u64 now = ktime_to_ns(ktime_get());
 757        struct tc_fq_qd_stats st = {
 758                .gc_flows               = q->stat_gc_flows,
 759                .highprio_packets       = q->stat_internal_packets,
 760                .tcp_retrans            = q->stat_tcp_retrans,
 761                .throttled              = q->stat_throttled,
 762                .flows_plimit           = q->stat_flows_plimit,
 763                .pkts_too_long          = q->stat_pkts_too_long,
 764                .allocation_errors      = q->stat_allocation_errors,
 765                .flows                  = q->flows,
 766                .inactive_flows         = q->inactive_flows,
 767                .throttled_flows        = q->throttled_flows,
 768                .time_next_delayed_flow = q->time_next_delayed_flow - now,
 769        };
 770
 771        return gnet_stats_copy_app(d, &st, sizeof(st));
 772}
 773
 774static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
 775        .id             =       "fq",
 776        .priv_size      =       sizeof(struct fq_sched_data),
 777
 778        .enqueue        =       fq_enqueue,
 779        .dequeue        =       fq_dequeue,
 780        .peek           =       qdisc_peek_dequeued,
 781        .init           =       fq_init,
 782        .reset          =       fq_reset,
 783        .destroy        =       fq_destroy,
 784        .change         =       fq_change,
 785        .dump           =       fq_dump,
 786        .dump_stats     =       fq_dump_stats,
 787        .owner          =       THIS_MODULE,
 788};
 789
 790static int __init fq_module_init(void)
 791{
 792        int ret;
 793
 794        fq_flow_cachep = kmem_cache_create("fq_flow_cache",
 795                                           sizeof(struct fq_flow),
 796                                           0, 0, NULL);
 797        if (!fq_flow_cachep)
 798                return -ENOMEM;
 799
 800        ret = register_qdisc(&fq_qdisc_ops);
 801        if (ret)
 802                kmem_cache_destroy(fq_flow_cachep);
 803        return ret;
 804}
 805
 806static void __exit fq_module_exit(void)
 807{
 808        unregister_qdisc(&fq_qdisc_ops);
 809        kmem_cache_destroy(fq_flow_cachep);
 810}
 811
 812module_init(fq_module_init)
 813module_exit(fq_module_exit)
 814MODULE_AUTHOR("Eric Dumazet");
 815MODULE_LICENSE("GPL");
 816