linux/net/sctp/auth.c
<<
>>
Prefs
   1/* SCTP kernel implementation
   2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
   3 *
   4 * This file is part of the SCTP kernel implementation
   5 *
   6 * This SCTP implementation is free software;
   7 * you can redistribute it and/or modify it under the terms of
   8 * the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2, or (at your option)
  10 * any later version.
  11 *
  12 * This SCTP implementation is distributed in the hope that it
  13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14 *                 ************************
  15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16 * See the GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with GNU CC; see the file COPYING.  If not, write to
  20 * the Free Software Foundation, 59 Temple Place - Suite 330,
  21 * Boston, MA 02111-1307, USA.
  22 *
  23 * Please send any bug reports or fixes you make to the
  24 * email address(es):
  25 *    lksctp developers <linux-sctp@vger.kernel.org>
  26 *
  27 * Written or modified by:
  28 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
  29 */
  30
  31#include <linux/slab.h>
  32#include <linux/types.h>
  33#include <linux/crypto.h>
  34#include <linux/scatterlist.h>
  35#include <net/sctp/sctp.h>
  36#include <net/sctp/auth.h>
  37
  38static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  39        {
  40                /* id 0 is reserved.  as all 0 */
  41                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  42        },
  43        {
  44                .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  45                .hmac_name="hmac(sha1)",
  46                .hmac_len = SCTP_SHA1_SIG_SIZE,
  47        },
  48        {
  49                /* id 2 is reserved as well */
  50                .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  51        },
  52#if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
  53        {
  54                .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  55                .hmac_name="hmac(sha256)",
  56                .hmac_len = SCTP_SHA256_SIG_SIZE,
  57        }
  58#endif
  59};
  60
  61
  62void sctp_auth_key_put(struct sctp_auth_bytes *key)
  63{
  64        if (!key)
  65                return;
  66
  67        if (atomic_dec_and_test(&key->refcnt)) {
  68                kzfree(key);
  69                SCTP_DBG_OBJCNT_DEC(keys);
  70        }
  71}
  72
  73/* Create a new key structure of a given length */
  74static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  75{
  76        struct sctp_auth_bytes *key;
  77
  78        /* Verify that we are not going to overflow INT_MAX */
  79        if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  80                return NULL;
  81
  82        /* Allocate the shared key */
  83        key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  84        if (!key)
  85                return NULL;
  86
  87        key->len = key_len;
  88        atomic_set(&key->refcnt, 1);
  89        SCTP_DBG_OBJCNT_INC(keys);
  90
  91        return key;
  92}
  93
  94/* Create a new shared key container with a give key id */
  95struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  96{
  97        struct sctp_shared_key *new;
  98
  99        /* Allocate the shared key container */
 100        new = kzalloc(sizeof(struct sctp_shared_key), gfp);
 101        if (!new)
 102                return NULL;
 103
 104        INIT_LIST_HEAD(&new->key_list);
 105        new->key_id = key_id;
 106
 107        return new;
 108}
 109
 110/* Free the shared key structure */
 111static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
 112{
 113        BUG_ON(!list_empty(&sh_key->key_list));
 114        sctp_auth_key_put(sh_key->key);
 115        sh_key->key = NULL;
 116        kfree(sh_key);
 117}
 118
 119/* Destroy the entire key list.  This is done during the
 120 * associon and endpoint free process.
 121 */
 122void sctp_auth_destroy_keys(struct list_head *keys)
 123{
 124        struct sctp_shared_key *ep_key;
 125        struct sctp_shared_key *tmp;
 126
 127        if (list_empty(keys))
 128                return;
 129
 130        key_for_each_safe(ep_key, tmp, keys) {
 131                list_del_init(&ep_key->key_list);
 132                sctp_auth_shkey_free(ep_key);
 133        }
 134}
 135
 136/* Compare two byte vectors as numbers.  Return values
 137 * are:
 138 *        0 - vectors are equal
 139 *      < 0 - vector 1 is smaller than vector2
 140 *      > 0 - vector 1 is greater than vector2
 141 *
 142 * Algorithm is:
 143 *      This is performed by selecting the numerically smaller key vector...
 144 *      If the key vectors are equal as numbers but differ in length ...
 145 *      the shorter vector is considered smaller
 146 *
 147 * Examples (with small values):
 148 *      000123456789 > 123456789 (first number is longer)
 149 *      000123456789 < 234567891 (second number is larger numerically)
 150 *      123456789 > 2345678      (first number is both larger & longer)
 151 */
 152static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
 153                              struct sctp_auth_bytes *vector2)
 154{
 155        int diff;
 156        int i;
 157        const __u8 *longer;
 158
 159        diff = vector1->len - vector2->len;
 160        if (diff) {
 161                longer = (diff > 0) ? vector1->data : vector2->data;
 162
 163                /* Check to see if the longer number is
 164                 * lead-zero padded.  If it is not, it
 165                 * is automatically larger numerically.
 166                 */
 167                for (i = 0; i < abs(diff); i++ ) {
 168                        if (longer[i] != 0)
 169                                return diff;
 170                }
 171        }
 172
 173        /* lengths are the same, compare numbers */
 174        return memcmp(vector1->data, vector2->data, vector1->len);
 175}
 176
 177/*
 178 * Create a key vector as described in SCTP-AUTH, Section 6.1
 179 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 180 *    parameter sent by each endpoint are concatenated as byte vectors.
 181 *    These parameters include the parameter type, parameter length, and
 182 *    the parameter value, but padding is omitted; all padding MUST be
 183 *    removed from this concatenation before proceeding with further
 184 *    computation of keys.  Parameters which were not sent are simply
 185 *    omitted from the concatenation process.  The resulting two vectors
 186 *    are called the two key vectors.
 187 */
 188static struct sctp_auth_bytes *sctp_auth_make_key_vector(
 189                        sctp_random_param_t *random,
 190                        sctp_chunks_param_t *chunks,
 191                        sctp_hmac_algo_param_t *hmacs,
 192                        gfp_t gfp)
 193{
 194        struct sctp_auth_bytes *new;
 195        __u32   len;
 196        __u32   offset = 0;
 197        __u16   random_len, hmacs_len, chunks_len = 0;
 198
 199        random_len = ntohs(random->param_hdr.length);
 200        hmacs_len = ntohs(hmacs->param_hdr.length);
 201        if (chunks)
 202                chunks_len = ntohs(chunks->param_hdr.length);
 203
 204        len = random_len + hmacs_len + chunks_len;
 205
 206        new = sctp_auth_create_key(len, gfp);
 207        if (!new)
 208                return NULL;
 209
 210        memcpy(new->data, random, random_len);
 211        offset += random_len;
 212
 213        if (chunks) {
 214                memcpy(new->data + offset, chunks, chunks_len);
 215                offset += chunks_len;
 216        }
 217
 218        memcpy(new->data + offset, hmacs, hmacs_len);
 219
 220        return new;
 221}
 222
 223
 224/* Make a key vector based on our local parameters */
 225static struct sctp_auth_bytes *sctp_auth_make_local_vector(
 226                                    const struct sctp_association *asoc,
 227                                    gfp_t gfp)
 228{
 229        return sctp_auth_make_key_vector(
 230                                    (sctp_random_param_t*)asoc->c.auth_random,
 231                                    (sctp_chunks_param_t*)asoc->c.auth_chunks,
 232                                    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
 233                                    gfp);
 234}
 235
 236/* Make a key vector based on peer's parameters */
 237static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
 238                                    const struct sctp_association *asoc,
 239                                    gfp_t gfp)
 240{
 241        return sctp_auth_make_key_vector(asoc->peer.peer_random,
 242                                         asoc->peer.peer_chunks,
 243                                         asoc->peer.peer_hmacs,
 244                                         gfp);
 245}
 246
 247
 248/* Set the value of the association shared key base on the parameters
 249 * given.  The algorithm is:
 250 *    From the endpoint pair shared keys and the key vectors the
 251 *    association shared keys are computed.  This is performed by selecting
 252 *    the numerically smaller key vector and concatenating it to the
 253 *    endpoint pair shared key, and then concatenating the numerically
 254 *    larger key vector to that.  The result of the concatenation is the
 255 *    association shared key.
 256 */
 257static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
 258                        struct sctp_shared_key *ep_key,
 259                        struct sctp_auth_bytes *first_vector,
 260                        struct sctp_auth_bytes *last_vector,
 261                        gfp_t gfp)
 262{
 263        struct sctp_auth_bytes *secret;
 264        __u32 offset = 0;
 265        __u32 auth_len;
 266
 267        auth_len = first_vector->len + last_vector->len;
 268        if (ep_key->key)
 269                auth_len += ep_key->key->len;
 270
 271        secret = sctp_auth_create_key(auth_len, gfp);
 272        if (!secret)
 273                return NULL;
 274
 275        if (ep_key->key) {
 276                memcpy(secret->data, ep_key->key->data, ep_key->key->len);
 277                offset += ep_key->key->len;
 278        }
 279
 280        memcpy(secret->data + offset, first_vector->data, first_vector->len);
 281        offset += first_vector->len;
 282
 283        memcpy(secret->data + offset, last_vector->data, last_vector->len);
 284
 285        return secret;
 286}
 287
 288/* Create an association shared key.  Follow the algorithm
 289 * described in SCTP-AUTH, Section 6.1
 290 */
 291static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
 292                                 const struct sctp_association *asoc,
 293                                 struct sctp_shared_key *ep_key,
 294                                 gfp_t gfp)
 295{
 296        struct sctp_auth_bytes *local_key_vector;
 297        struct sctp_auth_bytes *peer_key_vector;
 298        struct sctp_auth_bytes  *first_vector,
 299                                *last_vector;
 300        struct sctp_auth_bytes  *secret = NULL;
 301        int     cmp;
 302
 303
 304        /* Now we need to build the key vectors
 305         * SCTP-AUTH , Section 6.1
 306         *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 307         *    parameter sent by each endpoint are concatenated as byte vectors.
 308         *    These parameters include the parameter type, parameter length, and
 309         *    the parameter value, but padding is omitted; all padding MUST be
 310         *    removed from this concatenation before proceeding with further
 311         *    computation of keys.  Parameters which were not sent are simply
 312         *    omitted from the concatenation process.  The resulting two vectors
 313         *    are called the two key vectors.
 314         */
 315
 316        local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
 317        peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
 318
 319        if (!peer_key_vector || !local_key_vector)
 320                goto out;
 321
 322        /* Figure out the order in which the key_vectors will be
 323         * added to the endpoint shared key.
 324         * SCTP-AUTH, Section 6.1:
 325         *   This is performed by selecting the numerically smaller key
 326         *   vector and concatenating it to the endpoint pair shared
 327         *   key, and then concatenating the numerically larger key
 328         *   vector to that.  If the key vectors are equal as numbers
 329         *   but differ in length, then the concatenation order is the
 330         *   endpoint shared key, followed by the shorter key vector,
 331         *   followed by the longer key vector.  Otherwise, the key
 332         *   vectors are identical, and may be concatenated to the
 333         *   endpoint pair key in any order.
 334         */
 335        cmp = sctp_auth_compare_vectors(local_key_vector,
 336                                        peer_key_vector);
 337        if (cmp < 0) {
 338                first_vector = local_key_vector;
 339                last_vector = peer_key_vector;
 340        } else {
 341                first_vector = peer_key_vector;
 342                last_vector = local_key_vector;
 343        }
 344
 345        secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
 346                                            gfp);
 347out:
 348        sctp_auth_key_put(local_key_vector);
 349        sctp_auth_key_put(peer_key_vector);
 350
 351        return secret;
 352}
 353
 354/*
 355 * Populate the association overlay list with the list
 356 * from the endpoint.
 357 */
 358int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
 359                                struct sctp_association *asoc,
 360                                gfp_t gfp)
 361{
 362        struct sctp_shared_key *sh_key;
 363        struct sctp_shared_key *new;
 364
 365        BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
 366
 367        key_for_each(sh_key, &ep->endpoint_shared_keys) {
 368                new = sctp_auth_shkey_create(sh_key->key_id, gfp);
 369                if (!new)
 370                        goto nomem;
 371
 372                new->key = sh_key->key;
 373                sctp_auth_key_hold(new->key);
 374                list_add(&new->key_list, &asoc->endpoint_shared_keys);
 375        }
 376
 377        return 0;
 378
 379nomem:
 380        sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
 381        return -ENOMEM;
 382}
 383
 384
 385/* Public interface to creat the association shared key.
 386 * See code above for the algorithm.
 387 */
 388int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
 389{
 390        struct net *net = sock_net(asoc->base.sk);
 391        struct sctp_auth_bytes  *secret;
 392        struct sctp_shared_key *ep_key;
 393
 394        /* If we don't support AUTH, or peer is not capable
 395         * we don't need to do anything.
 396         */
 397        if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
 398                return 0;
 399
 400        /* If the key_id is non-zero and we couldn't find an
 401         * endpoint pair shared key, we can't compute the
 402         * secret.
 403         * For key_id 0, endpoint pair shared key is a NULL key.
 404         */
 405        ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
 406        BUG_ON(!ep_key);
 407
 408        secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 409        if (!secret)
 410                return -ENOMEM;
 411
 412        sctp_auth_key_put(asoc->asoc_shared_key);
 413        asoc->asoc_shared_key = secret;
 414
 415        return 0;
 416}
 417
 418
 419/* Find the endpoint pair shared key based on the key_id */
 420struct sctp_shared_key *sctp_auth_get_shkey(
 421                                const struct sctp_association *asoc,
 422                                __u16 key_id)
 423{
 424        struct sctp_shared_key *key;
 425
 426        /* First search associations set of endpoint pair shared keys */
 427        key_for_each(key, &asoc->endpoint_shared_keys) {
 428                if (key->key_id == key_id)
 429                        return key;
 430        }
 431
 432        return NULL;
 433}
 434
 435/*
 436 * Initialize all the possible digest transforms that we can use.  Right now
 437 * now, the supported digests are SHA1 and SHA256.  We do this here once
 438 * because of the restrictiong that transforms may only be allocated in
 439 * user context.  This forces us to pre-allocated all possible transforms
 440 * at the endpoint init time.
 441 */
 442int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
 443{
 444        struct net *net = sock_net(ep->base.sk);
 445        struct crypto_hash *tfm = NULL;
 446        __u16   id;
 447
 448        /* if the transforms are already allocted, we are done */
 449        if (!net->sctp.auth_enable) {
 450                ep->auth_hmacs = NULL;
 451                return 0;
 452        }
 453
 454        if (ep->auth_hmacs)
 455                return 0;
 456
 457        /* Allocated the array of pointers to transorms */
 458        ep->auth_hmacs = kzalloc(
 459                            sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
 460                            gfp);
 461        if (!ep->auth_hmacs)
 462                return -ENOMEM;
 463
 464        for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
 465
 466                /* See is we support the id.  Supported IDs have name and
 467                 * length fields set, so that we can allocated and use
 468                 * them.  We can safely just check for name, for without the
 469                 * name, we can't allocate the TFM.
 470                 */
 471                if (!sctp_hmac_list[id].hmac_name)
 472                        continue;
 473
 474                /* If this TFM has been allocated, we are all set */
 475                if (ep->auth_hmacs[id])
 476                        continue;
 477
 478                /* Allocate the ID */
 479                tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
 480                                        CRYPTO_ALG_ASYNC);
 481                if (IS_ERR(tfm))
 482                        goto out_err;
 483
 484                ep->auth_hmacs[id] = tfm;
 485        }
 486
 487        return 0;
 488
 489out_err:
 490        /* Clean up any successful allocations */
 491        sctp_auth_destroy_hmacs(ep->auth_hmacs);
 492        return -ENOMEM;
 493}
 494
 495/* Destroy the hmac tfm array */
 496void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
 497{
 498        int i;
 499
 500        if (!auth_hmacs)
 501                return;
 502
 503        for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
 504        {
 505                if (auth_hmacs[i])
 506                        crypto_free_hash(auth_hmacs[i]);
 507        }
 508        kfree(auth_hmacs);
 509}
 510
 511
 512struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
 513{
 514        return &sctp_hmac_list[hmac_id];
 515}
 516
 517/* Get an hmac description information that we can use to build
 518 * the AUTH chunk
 519 */
 520struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
 521{
 522        struct sctp_hmac_algo_param *hmacs;
 523        __u16 n_elt;
 524        __u16 id = 0;
 525        int i;
 526
 527        /* If we have a default entry, use it */
 528        if (asoc->default_hmac_id)
 529                return &sctp_hmac_list[asoc->default_hmac_id];
 530
 531        /* Since we do not have a default entry, find the first entry
 532         * we support and return that.  Do not cache that id.
 533         */
 534        hmacs = asoc->peer.peer_hmacs;
 535        if (!hmacs)
 536                return NULL;
 537
 538        n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 539        for (i = 0; i < n_elt; i++) {
 540                id = ntohs(hmacs->hmac_ids[i]);
 541
 542                /* Check the id is in the supported range */
 543                if (id > SCTP_AUTH_HMAC_ID_MAX) {
 544                        id = 0;
 545                        continue;
 546                }
 547
 548                /* See is we support the id.  Supported IDs have name and
 549                 * length fields set, so that we can allocated and use
 550                 * them.  We can safely just check for name, for without the
 551                 * name, we can't allocate the TFM.
 552                 */
 553                if (!sctp_hmac_list[id].hmac_name) {
 554                        id = 0;
 555                        continue;
 556                }
 557
 558                break;
 559        }
 560
 561        if (id == 0)
 562                return NULL;
 563
 564        return &sctp_hmac_list[id];
 565}
 566
 567static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
 568{
 569        int  found = 0;
 570        int  i;
 571
 572        for (i = 0; i < n_elts; i++) {
 573                if (hmac_id == hmacs[i]) {
 574                        found = 1;
 575                        break;
 576                }
 577        }
 578
 579        return found;
 580}
 581
 582/* See if the HMAC_ID is one that we claim as supported */
 583int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
 584                                    __be16 hmac_id)
 585{
 586        struct sctp_hmac_algo_param *hmacs;
 587        __u16 n_elt;
 588
 589        if (!asoc)
 590                return 0;
 591
 592        hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
 593        n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
 594
 595        return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
 596}
 597
 598
 599/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 600 * Section 6.1:
 601 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 602 *   algorithm it supports.
 603 */
 604void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
 605                                     struct sctp_hmac_algo_param *hmacs)
 606{
 607        struct sctp_endpoint *ep;
 608        __u16   id;
 609        int     i;
 610        int     n_params;
 611
 612        /* if the default id is already set, use it */
 613        if (asoc->default_hmac_id)
 614                return;
 615
 616        n_params = (ntohs(hmacs->param_hdr.length)
 617                                - sizeof(sctp_paramhdr_t)) >> 1;
 618        ep = asoc->ep;
 619        for (i = 0; i < n_params; i++) {
 620                id = ntohs(hmacs->hmac_ids[i]);
 621
 622                /* Check the id is in the supported range */
 623                if (id > SCTP_AUTH_HMAC_ID_MAX)
 624                        continue;
 625
 626                /* If this TFM has been allocated, use this id */
 627                if (ep->auth_hmacs[id]) {
 628                        asoc->default_hmac_id = id;
 629                        break;
 630                }
 631        }
 632}
 633
 634
 635/* Check to see if the given chunk is supposed to be authenticated */
 636static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
 637{
 638        unsigned short len;
 639        int found = 0;
 640        int i;
 641
 642        if (!param || param->param_hdr.length == 0)
 643                return 0;
 644
 645        len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
 646
 647        /* SCTP-AUTH, Section 3.2
 648         *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
 649         *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
 650         *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
 651         *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
 652         */
 653        for (i = 0; !found && i < len; i++) {
 654                switch (param->chunks[i]) {
 655                    case SCTP_CID_INIT:
 656                    case SCTP_CID_INIT_ACK:
 657                    case SCTP_CID_SHUTDOWN_COMPLETE:
 658                    case SCTP_CID_AUTH:
 659                        break;
 660
 661                    default:
 662                        if (param->chunks[i] == chunk)
 663                            found = 1;
 664                        break;
 665                }
 666        }
 667
 668        return found;
 669}
 670
 671/* Check if peer requested that this chunk is authenticated */
 672int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
 673{
 674        struct net  *net;
 675        if (!asoc)
 676                return 0;
 677
 678        net = sock_net(asoc->base.sk);
 679        if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
 680                return 0;
 681
 682        return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
 683}
 684
 685/* Check if we requested that peer authenticate this chunk. */
 686int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
 687{
 688        struct net *net;
 689        if (!asoc)
 690                return 0;
 691
 692        net = sock_net(asoc->base.sk);
 693        if (!net->sctp.auth_enable)
 694                return 0;
 695
 696        return __sctp_auth_cid(chunk,
 697                              (struct sctp_chunks_param *)asoc->c.auth_chunks);
 698}
 699
 700/* SCTP-AUTH: Section 6.2:
 701 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 702 *    the hash function H as described by the MAC Identifier and the shared
 703 *    association key K based on the endpoint pair shared key described by
 704 *    the shared key identifier.  The 'data' used for the computation of
 705 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 706 *    zero (as shown in Figure 6) followed by all chunks that are placed
 707 *    after the AUTH chunk in the SCTP packet.
 708 */
 709void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
 710                              struct sk_buff *skb,
 711                              struct sctp_auth_chunk *auth,
 712                              gfp_t gfp)
 713{
 714        struct scatterlist sg;
 715        struct hash_desc desc;
 716        struct sctp_auth_bytes *asoc_key;
 717        __u16 key_id, hmac_id;
 718        __u8 *digest;
 719        unsigned char *end;
 720        int free_key = 0;
 721
 722        /* Extract the info we need:
 723         * - hmac id
 724         * - key id
 725         */
 726        key_id = ntohs(auth->auth_hdr.shkey_id);
 727        hmac_id = ntohs(auth->auth_hdr.hmac_id);
 728
 729        if (key_id == asoc->active_key_id)
 730                asoc_key = asoc->asoc_shared_key;
 731        else {
 732                struct sctp_shared_key *ep_key;
 733
 734                ep_key = sctp_auth_get_shkey(asoc, key_id);
 735                if (!ep_key)
 736                        return;
 737
 738                asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
 739                if (!asoc_key)
 740                        return;
 741
 742                free_key = 1;
 743        }
 744
 745        /* set up scatter list */
 746        end = skb_tail_pointer(skb);
 747        sg_init_one(&sg, auth, end - (unsigned char *)auth);
 748
 749        desc.tfm = asoc->ep->auth_hmacs[hmac_id];
 750        desc.flags = 0;
 751
 752        digest = auth->auth_hdr.hmac;
 753        if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
 754                goto free;
 755
 756        crypto_hash_digest(&desc, &sg, sg.length, digest);
 757
 758free:
 759        if (free_key)
 760                sctp_auth_key_put(asoc_key);
 761}
 762
 763/* API Helpers */
 764
 765/* Add a chunk to the endpoint authenticated chunk list */
 766int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
 767{
 768        struct sctp_chunks_param *p = ep->auth_chunk_list;
 769        __u16 nchunks;
 770        __u16 param_len;
 771
 772        /* If this chunk is already specified, we are done */
 773        if (__sctp_auth_cid(chunk_id, p))
 774                return 0;
 775
 776        /* Check if we can add this chunk to the array */
 777        param_len = ntohs(p->param_hdr.length);
 778        nchunks = param_len - sizeof(sctp_paramhdr_t);
 779        if (nchunks == SCTP_NUM_CHUNK_TYPES)
 780                return -EINVAL;
 781
 782        p->chunks[nchunks] = chunk_id;
 783        p->param_hdr.length = htons(param_len + 1);
 784        return 0;
 785}
 786
 787/* Add hmac identifires to the endpoint list of supported hmac ids */
 788int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
 789                           struct sctp_hmacalgo *hmacs)
 790{
 791        int has_sha1 = 0;
 792        __u16 id;
 793        int i;
 794
 795        /* Scan the list looking for unsupported id.  Also make sure that
 796         * SHA1 is specified.
 797         */
 798        for (i = 0; i < hmacs->shmac_num_idents; i++) {
 799                id = hmacs->shmac_idents[i];
 800
 801                if (id > SCTP_AUTH_HMAC_ID_MAX)
 802                        return -EOPNOTSUPP;
 803
 804                if (SCTP_AUTH_HMAC_ID_SHA1 == id)
 805                        has_sha1 = 1;
 806
 807                if (!sctp_hmac_list[id].hmac_name)
 808                        return -EOPNOTSUPP;
 809        }
 810
 811        if (!has_sha1)
 812                return -EINVAL;
 813
 814        memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
 815                hmacs->shmac_num_idents * sizeof(__u16));
 816        ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
 817                                hmacs->shmac_num_idents * sizeof(__u16));
 818        return 0;
 819}
 820
 821/* Set a new shared key on either endpoint or association.  If the
 822 * the key with a same ID already exists, replace the key (remove the
 823 * old key and add a new one).
 824 */
 825int sctp_auth_set_key(struct sctp_endpoint *ep,
 826                      struct sctp_association *asoc,
 827                      struct sctp_authkey *auth_key)
 828{
 829        struct sctp_shared_key *cur_key = NULL;
 830        struct sctp_auth_bytes *key;
 831        struct list_head *sh_keys;
 832        int replace = 0;
 833
 834        /* Try to find the given key id to see if
 835         * we are doing a replace, or adding a new key
 836         */
 837        if (asoc)
 838                sh_keys = &asoc->endpoint_shared_keys;
 839        else
 840                sh_keys = &ep->endpoint_shared_keys;
 841
 842        key_for_each(cur_key, sh_keys) {
 843                if (cur_key->key_id == auth_key->sca_keynumber) {
 844                        replace = 1;
 845                        break;
 846                }
 847        }
 848
 849        /* If we are not replacing a key id, we need to allocate
 850         * a shared key.
 851         */
 852        if (!replace) {
 853                cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
 854                                                 GFP_KERNEL);
 855                if (!cur_key)
 856                        return -ENOMEM;
 857        }
 858
 859        /* Create a new key data based on the info passed in */
 860        key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
 861        if (!key)
 862                goto nomem;
 863
 864        memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
 865
 866        /* If we are replacing, remove the old keys data from the
 867         * key id.  If we are adding new key id, add it to the
 868         * list.
 869         */
 870        if (replace)
 871                sctp_auth_key_put(cur_key->key);
 872        else
 873                list_add(&cur_key->key_list, sh_keys);
 874
 875        cur_key->key = key;
 876        sctp_auth_key_hold(key);
 877
 878        return 0;
 879nomem:
 880        if (!replace)
 881                sctp_auth_shkey_free(cur_key);
 882
 883        return -ENOMEM;
 884}
 885
 886int sctp_auth_set_active_key(struct sctp_endpoint *ep,
 887                             struct sctp_association *asoc,
 888                             __u16  key_id)
 889{
 890        struct sctp_shared_key *key;
 891        struct list_head *sh_keys;
 892        int found = 0;
 893
 894        /* The key identifier MUST correst to an existing key */
 895        if (asoc)
 896                sh_keys = &asoc->endpoint_shared_keys;
 897        else
 898                sh_keys = &ep->endpoint_shared_keys;
 899
 900        key_for_each(key, sh_keys) {
 901                if (key->key_id == key_id) {
 902                        found = 1;
 903                        break;
 904                }
 905        }
 906
 907        if (!found)
 908                return -EINVAL;
 909
 910        if (asoc) {
 911                asoc->active_key_id = key_id;
 912                sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
 913        } else
 914                ep->active_key_id = key_id;
 915
 916        return 0;
 917}
 918
 919int sctp_auth_del_key_id(struct sctp_endpoint *ep,
 920                         struct sctp_association *asoc,
 921                         __u16  key_id)
 922{
 923        struct sctp_shared_key *key;
 924        struct list_head *sh_keys;
 925        int found = 0;
 926
 927        /* The key identifier MUST NOT be the current active key
 928         * The key identifier MUST correst to an existing key
 929         */
 930        if (asoc) {
 931                if (asoc->active_key_id == key_id)
 932                        return -EINVAL;
 933
 934                sh_keys = &asoc->endpoint_shared_keys;
 935        } else {
 936                if (ep->active_key_id == key_id)
 937                        return -EINVAL;
 938
 939                sh_keys = &ep->endpoint_shared_keys;
 940        }
 941
 942        key_for_each(key, sh_keys) {
 943                if (key->key_id == key_id) {
 944                        found = 1;
 945                        break;
 946                }
 947        }
 948
 949        if (!found)
 950                return -EINVAL;
 951
 952        /* Delete the shared key */
 953        list_del_init(&key->key_list);
 954        sctp_auth_shkey_free(key);
 955
 956        return 0;
 957}
 958