linux/net/sunrpc/svc_xprt.c
<<
>>
Prefs
   1/*
   2 * linux/net/sunrpc/svc_xprt.c
   3 *
   4 * Author: Tom Tucker <tom@opengridcomputing.com>
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/errno.h>
   9#include <linux/freezer.h>
  10#include <linux/kthread.h>
  11#include <linux/slab.h>
  12#include <net/sock.h>
  13#include <linux/sunrpc/stats.h>
  14#include <linux/sunrpc/svc_xprt.h>
  15#include <linux/sunrpc/svcsock.h>
  16#include <linux/sunrpc/xprt.h>
  17#include <linux/module.h>
  18
  19#define RPCDBG_FACILITY RPCDBG_SVCXPRT
  20
  21static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  22static int svc_deferred_recv(struct svc_rqst *rqstp);
  23static struct cache_deferred_req *svc_defer(struct cache_req *req);
  24static void svc_age_temp_xprts(unsigned long closure);
  25static void svc_delete_xprt(struct svc_xprt *xprt);
  26
  27/* apparently the "standard" is that clients close
  28 * idle connections after 5 minutes, servers after
  29 * 6 minutes
  30 *   http://www.connectathon.org/talks96/nfstcp.pdf
  31 */
  32static int svc_conn_age_period = 6*60;
  33
  34/* List of registered transport classes */
  35static DEFINE_SPINLOCK(svc_xprt_class_lock);
  36static LIST_HEAD(svc_xprt_class_list);
  37
  38/* SMP locking strategy:
  39 *
  40 *      svc_pool->sp_lock protects most of the fields of that pool.
  41 *      svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  42 *      when both need to be taken (rare), svc_serv->sv_lock is first.
  43 *      BKL protects svc_serv->sv_nrthread.
  44 *      svc_sock->sk_lock protects the svc_sock->sk_deferred list
  45 *             and the ->sk_info_authunix cache.
  46 *
  47 *      The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  48 *      enqueued multiply. During normal transport processing this bit
  49 *      is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  50 *      Providers should not manipulate this bit directly.
  51 *
  52 *      Some flags can be set to certain values at any time
  53 *      providing that certain rules are followed:
  54 *
  55 *      XPT_CONN, XPT_DATA:
  56 *              - Can be set or cleared at any time.
  57 *              - After a set, svc_xprt_enqueue must be called to enqueue
  58 *                the transport for processing.
  59 *              - After a clear, the transport must be read/accepted.
  60 *                If this succeeds, it must be set again.
  61 *      XPT_CLOSE:
  62 *              - Can set at any time. It is never cleared.
  63 *      XPT_DEAD:
  64 *              - Can only be set while XPT_BUSY is held which ensures
  65 *                that no other thread will be using the transport or will
  66 *                try to set XPT_DEAD.
  67 */
  68
  69int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  70{
  71        struct svc_xprt_class *cl;
  72        int res = -EEXIST;
  73
  74        dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  75
  76        INIT_LIST_HEAD(&xcl->xcl_list);
  77        spin_lock(&svc_xprt_class_lock);
  78        /* Make sure there isn't already a class with the same name */
  79        list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  80                if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  81                        goto out;
  82        }
  83        list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  84        res = 0;
  85out:
  86        spin_unlock(&svc_xprt_class_lock);
  87        return res;
  88}
  89EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  90
  91void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  92{
  93        dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
  94        spin_lock(&svc_xprt_class_lock);
  95        list_del_init(&xcl->xcl_list);
  96        spin_unlock(&svc_xprt_class_lock);
  97}
  98EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
  99
 100/*
 101 * Format the transport list for printing
 102 */
 103int svc_print_xprts(char *buf, int maxlen)
 104{
 105        struct svc_xprt_class *xcl;
 106        char tmpstr[80];
 107        int len = 0;
 108        buf[0] = '\0';
 109
 110        spin_lock(&svc_xprt_class_lock);
 111        list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 112                int slen;
 113
 114                sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 115                slen = strlen(tmpstr);
 116                if (len + slen > maxlen)
 117                        break;
 118                len += slen;
 119                strcat(buf, tmpstr);
 120        }
 121        spin_unlock(&svc_xprt_class_lock);
 122
 123        return len;
 124}
 125
 126static void svc_xprt_free(struct kref *kref)
 127{
 128        struct svc_xprt *xprt =
 129                container_of(kref, struct svc_xprt, xpt_ref);
 130        struct module *owner = xprt->xpt_class->xcl_owner;
 131        if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 132                svcauth_unix_info_release(xprt);
 133        put_net(xprt->xpt_net);
 134        /* See comment on corresponding get in xs_setup_bc_tcp(): */
 135        if (xprt->xpt_bc_xprt)
 136                xprt_put(xprt->xpt_bc_xprt);
 137        xprt->xpt_ops->xpo_free(xprt);
 138        module_put(owner);
 139}
 140
 141void svc_xprt_put(struct svc_xprt *xprt)
 142{
 143        kref_put(&xprt->xpt_ref, svc_xprt_free);
 144}
 145EXPORT_SYMBOL_GPL(svc_xprt_put);
 146
 147/*
 148 * Called by transport drivers to initialize the transport independent
 149 * portion of the transport instance.
 150 */
 151void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 152                   struct svc_xprt *xprt, struct svc_serv *serv)
 153{
 154        memset(xprt, 0, sizeof(*xprt));
 155        xprt->xpt_class = xcl;
 156        xprt->xpt_ops = xcl->xcl_ops;
 157        kref_init(&xprt->xpt_ref);
 158        xprt->xpt_server = serv;
 159        INIT_LIST_HEAD(&xprt->xpt_list);
 160        INIT_LIST_HEAD(&xprt->xpt_ready);
 161        INIT_LIST_HEAD(&xprt->xpt_deferred);
 162        INIT_LIST_HEAD(&xprt->xpt_users);
 163        mutex_init(&xprt->xpt_mutex);
 164        spin_lock_init(&xprt->xpt_lock);
 165        set_bit(XPT_BUSY, &xprt->xpt_flags);
 166        rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
 167        xprt->xpt_net = get_net(net);
 168}
 169EXPORT_SYMBOL_GPL(svc_xprt_init);
 170
 171static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 172                                         struct svc_serv *serv,
 173                                         struct net *net,
 174                                         const int family,
 175                                         const unsigned short port,
 176                                         int flags)
 177{
 178        struct sockaddr_in sin = {
 179                .sin_family             = AF_INET,
 180                .sin_addr.s_addr        = htonl(INADDR_ANY),
 181                .sin_port               = htons(port),
 182        };
 183#if IS_ENABLED(CONFIG_IPV6)
 184        struct sockaddr_in6 sin6 = {
 185                .sin6_family            = AF_INET6,
 186                .sin6_addr              = IN6ADDR_ANY_INIT,
 187                .sin6_port              = htons(port),
 188        };
 189#endif
 190        struct sockaddr *sap;
 191        size_t len;
 192
 193        switch (family) {
 194        case PF_INET:
 195                sap = (struct sockaddr *)&sin;
 196                len = sizeof(sin);
 197                break;
 198#if IS_ENABLED(CONFIG_IPV6)
 199        case PF_INET6:
 200                sap = (struct sockaddr *)&sin6;
 201                len = sizeof(sin6);
 202                break;
 203#endif
 204        default:
 205                return ERR_PTR(-EAFNOSUPPORT);
 206        }
 207
 208        return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 209}
 210
 211/*
 212 * svc_xprt_received conditionally queues the transport for processing
 213 * by another thread. The caller must hold the XPT_BUSY bit and must
 214 * not thereafter touch transport data.
 215 *
 216 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 217 * insufficient) data.
 218 */
 219static void svc_xprt_received(struct svc_xprt *xprt)
 220{
 221        WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
 222        if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
 223                return;
 224        /* As soon as we clear busy, the xprt could be closed and
 225         * 'put', so we need a reference to call svc_xprt_enqueue with:
 226         */
 227        svc_xprt_get(xprt);
 228        clear_bit(XPT_BUSY, &xprt->xpt_flags);
 229        svc_xprt_enqueue(xprt);
 230        svc_xprt_put(xprt);
 231}
 232
 233void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 234{
 235        clear_bit(XPT_TEMP, &new->xpt_flags);
 236        spin_lock_bh(&serv->sv_lock);
 237        list_add(&new->xpt_list, &serv->sv_permsocks);
 238        spin_unlock_bh(&serv->sv_lock);
 239        svc_xprt_received(new);
 240}
 241
 242int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 243                    struct net *net, const int family,
 244                    const unsigned short port, int flags)
 245{
 246        struct svc_xprt_class *xcl;
 247
 248        dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 249        spin_lock(&svc_xprt_class_lock);
 250        list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 251                struct svc_xprt *newxprt;
 252                unsigned short newport;
 253
 254                if (strcmp(xprt_name, xcl->xcl_name))
 255                        continue;
 256
 257                if (!try_module_get(xcl->xcl_owner))
 258                        goto err;
 259
 260                spin_unlock(&svc_xprt_class_lock);
 261                newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 262                if (IS_ERR(newxprt)) {
 263                        module_put(xcl->xcl_owner);
 264                        return PTR_ERR(newxprt);
 265                }
 266                svc_add_new_perm_xprt(serv, newxprt);
 267                newport = svc_xprt_local_port(newxprt);
 268                return newport;
 269        }
 270 err:
 271        spin_unlock(&svc_xprt_class_lock);
 272        dprintk("svc: transport %s not found\n", xprt_name);
 273
 274        /* This errno is exposed to user space.  Provide a reasonable
 275         * perror msg for a bad transport. */
 276        return -EPROTONOSUPPORT;
 277}
 278EXPORT_SYMBOL_GPL(svc_create_xprt);
 279
 280/*
 281 * Copy the local and remote xprt addresses to the rqstp structure
 282 */
 283void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 284{
 285        memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 286        rqstp->rq_addrlen = xprt->xpt_remotelen;
 287
 288        /*
 289         * Destination address in request is needed for binding the
 290         * source address in RPC replies/callbacks later.
 291         */
 292        memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 293        rqstp->rq_daddrlen = xprt->xpt_locallen;
 294}
 295EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 296
 297/**
 298 * svc_print_addr - Format rq_addr field for printing
 299 * @rqstp: svc_rqst struct containing address to print
 300 * @buf: target buffer for formatted address
 301 * @len: length of target buffer
 302 *
 303 */
 304char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 305{
 306        return __svc_print_addr(svc_addr(rqstp), buf, len);
 307}
 308EXPORT_SYMBOL_GPL(svc_print_addr);
 309
 310/*
 311 * Queue up an idle server thread.  Must have pool->sp_lock held.
 312 * Note: this is really a stack rather than a queue, so that we only
 313 * use as many different threads as we need, and the rest don't pollute
 314 * the cache.
 315 */
 316static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
 317{
 318        list_add(&rqstp->rq_list, &pool->sp_threads);
 319}
 320
 321/*
 322 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
 323 */
 324static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
 325{
 326        list_del(&rqstp->rq_list);
 327}
 328
 329static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
 330{
 331        if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
 332                return true;
 333        if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
 334                return xprt->xpt_ops->xpo_has_wspace(xprt);
 335        return false;
 336}
 337
 338/*
 339 * Queue up a transport with data pending. If there are idle nfsd
 340 * processes, wake 'em up.
 341 *
 342 */
 343void svc_xprt_enqueue(struct svc_xprt *xprt)
 344{
 345        struct svc_pool *pool;
 346        struct svc_rqst *rqstp;
 347        int cpu;
 348
 349        if (!svc_xprt_has_something_to_do(xprt))
 350                return;
 351
 352        cpu = get_cpu();
 353        pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 354        put_cpu();
 355
 356        spin_lock_bh(&pool->sp_lock);
 357
 358        if (!list_empty(&pool->sp_threads) &&
 359            !list_empty(&pool->sp_sockets))
 360                printk(KERN_ERR
 361                       "svc_xprt_enqueue: "
 362                       "threads and transports both waiting??\n");
 363
 364        pool->sp_stats.packets++;
 365
 366        /* Mark transport as busy. It will remain in this state until
 367         * the provider calls svc_xprt_received. We update XPT_BUSY
 368         * atomically because it also guards against trying to enqueue
 369         * the transport twice.
 370         */
 371        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
 372                /* Don't enqueue transport while already enqueued */
 373                dprintk("svc: transport %p busy, not enqueued\n", xprt);
 374                goto out_unlock;
 375        }
 376
 377        if (!list_empty(&pool->sp_threads)) {
 378                rqstp = list_entry(pool->sp_threads.next,
 379                                   struct svc_rqst,
 380                                   rq_list);
 381                dprintk("svc: transport %p served by daemon %p\n",
 382                        xprt, rqstp);
 383                svc_thread_dequeue(pool, rqstp);
 384                if (rqstp->rq_xprt)
 385                        printk(KERN_ERR
 386                                "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
 387                                rqstp, rqstp->rq_xprt);
 388                rqstp->rq_xprt = xprt;
 389                svc_xprt_get(xprt);
 390                pool->sp_stats.threads_woken++;
 391                wake_up(&rqstp->rq_wait);
 392        } else {
 393                dprintk("svc: transport %p put into queue\n", xprt);
 394                list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 395                pool->sp_stats.sockets_queued++;
 396        }
 397
 398out_unlock:
 399        spin_unlock_bh(&pool->sp_lock);
 400}
 401EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 402
 403/*
 404 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
 405 */
 406static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 407{
 408        struct svc_xprt *xprt;
 409
 410        if (list_empty(&pool->sp_sockets))
 411                return NULL;
 412
 413        xprt = list_entry(pool->sp_sockets.next,
 414                          struct svc_xprt, xpt_ready);
 415        list_del_init(&xprt->xpt_ready);
 416
 417        dprintk("svc: transport %p dequeued, inuse=%d\n",
 418                xprt, atomic_read(&xprt->xpt_ref.refcount));
 419
 420        return xprt;
 421}
 422
 423/**
 424 * svc_reserve - change the space reserved for the reply to a request.
 425 * @rqstp:  The request in question
 426 * @space: new max space to reserve
 427 *
 428 * Each request reserves some space on the output queue of the transport
 429 * to make sure the reply fits.  This function reduces that reserved
 430 * space to be the amount of space used already, plus @space.
 431 *
 432 */
 433void svc_reserve(struct svc_rqst *rqstp, int space)
 434{
 435        space += rqstp->rq_res.head[0].iov_len;
 436
 437        if (space < rqstp->rq_reserved) {
 438                struct svc_xprt *xprt = rqstp->rq_xprt;
 439                atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 440                rqstp->rq_reserved = space;
 441
 442                svc_xprt_enqueue(xprt);
 443        }
 444}
 445EXPORT_SYMBOL_GPL(svc_reserve);
 446
 447static void svc_xprt_release(struct svc_rqst *rqstp)
 448{
 449        struct svc_xprt *xprt = rqstp->rq_xprt;
 450
 451        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 452
 453        kfree(rqstp->rq_deferred);
 454        rqstp->rq_deferred = NULL;
 455
 456        svc_free_res_pages(rqstp);
 457        rqstp->rq_res.page_len = 0;
 458        rqstp->rq_res.page_base = 0;
 459
 460        /* Reset response buffer and release
 461         * the reservation.
 462         * But first, check that enough space was reserved
 463         * for the reply, otherwise we have a bug!
 464         */
 465        if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 466                printk(KERN_ERR "RPC request reserved %d but used %d\n",
 467                       rqstp->rq_reserved,
 468                       rqstp->rq_res.len);
 469
 470        rqstp->rq_res.head[0].iov_len = 0;
 471        svc_reserve(rqstp, 0);
 472        rqstp->rq_xprt = NULL;
 473
 474        svc_xprt_put(xprt);
 475}
 476
 477/*
 478 * External function to wake up a server waiting for data
 479 * This really only makes sense for services like lockd
 480 * which have exactly one thread anyway.
 481 */
 482void svc_wake_up(struct svc_serv *serv)
 483{
 484        struct svc_rqst *rqstp;
 485        unsigned int i;
 486        struct svc_pool *pool;
 487
 488        for (i = 0; i < serv->sv_nrpools; i++) {
 489                pool = &serv->sv_pools[i];
 490
 491                spin_lock_bh(&pool->sp_lock);
 492                if (!list_empty(&pool->sp_threads)) {
 493                        rqstp = list_entry(pool->sp_threads.next,
 494                                           struct svc_rqst,
 495                                           rq_list);
 496                        dprintk("svc: daemon %p woken up.\n", rqstp);
 497                        /*
 498                        svc_thread_dequeue(pool, rqstp);
 499                        rqstp->rq_xprt = NULL;
 500                         */
 501                        wake_up(&rqstp->rq_wait);
 502                } else
 503                        pool->sp_task_pending = 1;
 504                spin_unlock_bh(&pool->sp_lock);
 505        }
 506}
 507EXPORT_SYMBOL_GPL(svc_wake_up);
 508
 509int svc_port_is_privileged(struct sockaddr *sin)
 510{
 511        switch (sin->sa_family) {
 512        case AF_INET:
 513                return ntohs(((struct sockaddr_in *)sin)->sin_port)
 514                        < PROT_SOCK;
 515        case AF_INET6:
 516                return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 517                        < PROT_SOCK;
 518        default:
 519                return 0;
 520        }
 521}
 522
 523/*
 524 * Make sure that we don't have too many active connections. If we have,
 525 * something must be dropped. It's not clear what will happen if we allow
 526 * "too many" connections, but when dealing with network-facing software,
 527 * we have to code defensively. Here we do that by imposing hard limits.
 528 *
 529 * There's no point in trying to do random drop here for DoS
 530 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 531 * attacker can easily beat that.
 532 *
 533 * The only somewhat efficient mechanism would be if drop old
 534 * connections from the same IP first. But right now we don't even
 535 * record the client IP in svc_sock.
 536 *
 537 * single-threaded services that expect a lot of clients will probably
 538 * need to set sv_maxconn to override the default value which is based
 539 * on the number of threads
 540 */
 541static void svc_check_conn_limits(struct svc_serv *serv)
 542{
 543        unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 544                                (serv->sv_nrthreads+3) * 20;
 545
 546        if (serv->sv_tmpcnt > limit) {
 547                struct svc_xprt *xprt = NULL;
 548                spin_lock_bh(&serv->sv_lock);
 549                if (!list_empty(&serv->sv_tempsocks)) {
 550                        /* Try to help the admin */
 551                        net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 552                                               serv->sv_name, serv->sv_maxconn ?
 553                                               "max number of connections" :
 554                                               "number of threads");
 555                        /*
 556                         * Always select the oldest connection. It's not fair,
 557                         * but so is life
 558                         */
 559                        xprt = list_entry(serv->sv_tempsocks.prev,
 560                                          struct svc_xprt,
 561                                          xpt_list);
 562                        set_bit(XPT_CLOSE, &xprt->xpt_flags);
 563                        svc_xprt_get(xprt);
 564                }
 565                spin_unlock_bh(&serv->sv_lock);
 566
 567                if (xprt) {
 568                        svc_xprt_enqueue(xprt);
 569                        svc_xprt_put(xprt);
 570                }
 571        }
 572}
 573
 574int svc_alloc_arg(struct svc_rqst *rqstp)
 575{
 576        struct svc_serv *serv = rqstp->rq_server;
 577        struct xdr_buf *arg;
 578        int pages;
 579        int i;
 580
 581        /* now allocate needed pages.  If we get a failure, sleep briefly */
 582        pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
 583        WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
 584        if (pages >= RPCSVC_MAXPAGES)
 585                /* use as many pages as possible */
 586                pages = RPCSVC_MAXPAGES - 1;
 587        for (i = 0; i < pages ; i++)
 588                while (rqstp->rq_pages[i] == NULL) {
 589                        struct page *p = alloc_page(GFP_KERNEL);
 590                        if (!p) {
 591                                set_current_state(TASK_INTERRUPTIBLE);
 592                                if (signalled() || kthread_should_stop()) {
 593                                        set_current_state(TASK_RUNNING);
 594                                        return -EINTR;
 595                                }
 596                                schedule_timeout(msecs_to_jiffies(500));
 597                        }
 598                        rqstp->rq_pages[i] = p;
 599                }
 600        rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 601
 602        /* Make arg->head point to first page and arg->pages point to rest */
 603        arg = &rqstp->rq_arg;
 604        arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 605        arg->head[0].iov_len = PAGE_SIZE;
 606        arg->pages = rqstp->rq_pages + 1;
 607        arg->page_base = 0;
 608        /* save at least one page for response */
 609        arg->page_len = (pages-2)*PAGE_SIZE;
 610        arg->len = (pages-1)*PAGE_SIZE;
 611        arg->tail[0].iov_len = 0;
 612        return 0;
 613}
 614
 615struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 616{
 617        struct svc_xprt *xprt;
 618        struct svc_pool         *pool = rqstp->rq_pool;
 619        DECLARE_WAITQUEUE(wait, current);
 620        long                    time_left;
 621
 622        /* Normally we will wait up to 5 seconds for any required
 623         * cache information to be provided.
 624         */
 625        rqstp->rq_chandle.thread_wait = 5*HZ;
 626
 627        spin_lock_bh(&pool->sp_lock);
 628        xprt = svc_xprt_dequeue(pool);
 629        if (xprt) {
 630                rqstp->rq_xprt = xprt;
 631                svc_xprt_get(xprt);
 632
 633                /* As there is a shortage of threads and this request
 634                 * had to be queued, don't allow the thread to wait so
 635                 * long for cache updates.
 636                 */
 637                rqstp->rq_chandle.thread_wait = 1*HZ;
 638                pool->sp_task_pending = 0;
 639        } else {
 640                if (pool->sp_task_pending) {
 641                        pool->sp_task_pending = 0;
 642                        spin_unlock_bh(&pool->sp_lock);
 643                        return ERR_PTR(-EAGAIN);
 644                }
 645                /* No data pending. Go to sleep */
 646                svc_thread_enqueue(pool, rqstp);
 647
 648                /*
 649                 * We have to be able to interrupt this wait
 650                 * to bring down the daemons ...
 651                 */
 652                set_current_state(TASK_INTERRUPTIBLE);
 653
 654                /*
 655                 * checking kthread_should_stop() here allows us to avoid
 656                 * locking and signalling when stopping kthreads that call
 657                 * svc_recv. If the thread has already been woken up, then
 658                 * we can exit here without sleeping. If not, then it
 659                 * it'll be woken up quickly during the schedule_timeout
 660                 */
 661                if (kthread_should_stop()) {
 662                        set_current_state(TASK_RUNNING);
 663                        spin_unlock_bh(&pool->sp_lock);
 664                        return ERR_PTR(-EINTR);
 665                }
 666
 667                add_wait_queue(&rqstp->rq_wait, &wait);
 668                spin_unlock_bh(&pool->sp_lock);
 669
 670                time_left = schedule_timeout(timeout);
 671
 672                try_to_freeze();
 673
 674                spin_lock_bh(&pool->sp_lock);
 675                remove_wait_queue(&rqstp->rq_wait, &wait);
 676                if (!time_left)
 677                        pool->sp_stats.threads_timedout++;
 678
 679                xprt = rqstp->rq_xprt;
 680                if (!xprt) {
 681                        svc_thread_dequeue(pool, rqstp);
 682                        spin_unlock_bh(&pool->sp_lock);
 683                        dprintk("svc: server %p, no data yet\n", rqstp);
 684                        if (signalled() || kthread_should_stop())
 685                                return ERR_PTR(-EINTR);
 686                        else
 687                                return ERR_PTR(-EAGAIN);
 688                }
 689        }
 690        spin_unlock_bh(&pool->sp_lock);
 691        return xprt;
 692}
 693
 694void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 695{
 696        spin_lock_bh(&serv->sv_lock);
 697        set_bit(XPT_TEMP, &newxpt->xpt_flags);
 698        list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 699        serv->sv_tmpcnt++;
 700        if (serv->sv_temptimer.function == NULL) {
 701                /* setup timer to age temp transports */
 702                setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
 703                            (unsigned long)serv);
 704                mod_timer(&serv->sv_temptimer,
 705                          jiffies + svc_conn_age_period * HZ);
 706        }
 707        spin_unlock_bh(&serv->sv_lock);
 708        svc_xprt_received(newxpt);
 709}
 710
 711static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 712{
 713        struct svc_serv *serv = rqstp->rq_server;
 714        int len = 0;
 715
 716        if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 717                dprintk("svc_recv: found XPT_CLOSE\n");
 718                svc_delete_xprt(xprt);
 719                /* Leave XPT_BUSY set on the dead xprt: */
 720                return 0;
 721        }
 722        if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 723                struct svc_xprt *newxpt;
 724                /*
 725                 * We know this module_get will succeed because the
 726                 * listener holds a reference too
 727                 */
 728                __module_get(xprt->xpt_class->xcl_owner);
 729                svc_check_conn_limits(xprt->xpt_server);
 730                newxpt = xprt->xpt_ops->xpo_accept(xprt);
 731                if (newxpt)
 732                        svc_add_new_temp_xprt(serv, newxpt);
 733        } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
 734                /* XPT_DATA|XPT_DEFERRED case: */
 735                dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 736                        rqstp, rqstp->rq_pool->sp_id, xprt,
 737                        atomic_read(&xprt->xpt_ref.refcount));
 738                rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 739                if (rqstp->rq_deferred)
 740                        len = svc_deferred_recv(rqstp);
 741                else
 742                        len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 743                dprintk("svc: got len=%d\n", len);
 744                rqstp->rq_reserved = serv->sv_max_mesg;
 745                atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 746        }
 747        /* clear XPT_BUSY: */
 748        svc_xprt_received(xprt);
 749        return len;
 750}
 751
 752/*
 753 * Receive the next request on any transport.  This code is carefully
 754 * organised not to touch any cachelines in the shared svc_serv
 755 * structure, only cachelines in the local svc_pool.
 756 */
 757int svc_recv(struct svc_rqst *rqstp, long timeout)
 758{
 759        struct svc_xprt         *xprt = NULL;
 760        struct svc_serv         *serv = rqstp->rq_server;
 761        int                     len, err;
 762
 763        dprintk("svc: server %p waiting for data (to = %ld)\n",
 764                rqstp, timeout);
 765
 766        if (rqstp->rq_xprt)
 767                printk(KERN_ERR
 768                        "svc_recv: service %p, transport not NULL!\n",
 769                         rqstp);
 770        if (waitqueue_active(&rqstp->rq_wait))
 771                printk(KERN_ERR
 772                        "svc_recv: service %p, wait queue active!\n",
 773                         rqstp);
 774
 775        err = svc_alloc_arg(rqstp);
 776        if (err)
 777                return err;
 778
 779        try_to_freeze();
 780        cond_resched();
 781        if (signalled() || kthread_should_stop())
 782                return -EINTR;
 783
 784        xprt = svc_get_next_xprt(rqstp, timeout);
 785        if (IS_ERR(xprt))
 786                return PTR_ERR(xprt);
 787
 788        len = svc_handle_xprt(rqstp, xprt);
 789
 790        /* No data, incomplete (TCP) read, or accept() */
 791        if (len <= 0)
 792                goto out;
 793
 794        clear_bit(XPT_OLD, &xprt->xpt_flags);
 795
 796        rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
 797        rqstp->rq_chandle.defer = svc_defer;
 798
 799        if (serv->sv_stats)
 800                serv->sv_stats->netcnt++;
 801        return len;
 802out:
 803        rqstp->rq_res.len = 0;
 804        svc_xprt_release(rqstp);
 805        return -EAGAIN;
 806}
 807EXPORT_SYMBOL_GPL(svc_recv);
 808
 809/*
 810 * Drop request
 811 */
 812void svc_drop(struct svc_rqst *rqstp)
 813{
 814        dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 815        svc_xprt_release(rqstp);
 816}
 817EXPORT_SYMBOL_GPL(svc_drop);
 818
 819/*
 820 * Return reply to client.
 821 */
 822int svc_send(struct svc_rqst *rqstp)
 823{
 824        struct svc_xprt *xprt;
 825        int             len;
 826        struct xdr_buf  *xb;
 827
 828        xprt = rqstp->rq_xprt;
 829        if (!xprt)
 830                return -EFAULT;
 831
 832        /* release the receive skb before sending the reply */
 833        rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
 834
 835        /* calculate over-all length */
 836        xb = &rqstp->rq_res;
 837        xb->len = xb->head[0].iov_len +
 838                xb->page_len +
 839                xb->tail[0].iov_len;
 840
 841        /* Grab mutex to serialize outgoing data. */
 842        mutex_lock(&xprt->xpt_mutex);
 843        if (test_bit(XPT_DEAD, &xprt->xpt_flags)
 844                        || test_bit(XPT_CLOSE, &xprt->xpt_flags))
 845                len = -ENOTCONN;
 846        else
 847                len = xprt->xpt_ops->xpo_sendto(rqstp);
 848        mutex_unlock(&xprt->xpt_mutex);
 849        rpc_wake_up(&xprt->xpt_bc_pending);
 850        svc_xprt_release(rqstp);
 851
 852        if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 853                return 0;
 854        return len;
 855}
 856
 857/*
 858 * Timer function to close old temporary transports, using
 859 * a mark-and-sweep algorithm.
 860 */
 861static void svc_age_temp_xprts(unsigned long closure)
 862{
 863        struct svc_serv *serv = (struct svc_serv *)closure;
 864        struct svc_xprt *xprt;
 865        struct list_head *le, *next;
 866
 867        dprintk("svc_age_temp_xprts\n");
 868
 869        if (!spin_trylock_bh(&serv->sv_lock)) {
 870                /* busy, try again 1 sec later */
 871                dprintk("svc_age_temp_xprts: busy\n");
 872                mod_timer(&serv->sv_temptimer, jiffies + HZ);
 873                return;
 874        }
 875
 876        list_for_each_safe(le, next, &serv->sv_tempsocks) {
 877                xprt = list_entry(le, struct svc_xprt, xpt_list);
 878
 879                /* First time through, just mark it OLD. Second time
 880                 * through, close it. */
 881                if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 882                        continue;
 883                if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
 884                    test_bit(XPT_BUSY, &xprt->xpt_flags))
 885                        continue;
 886                list_del_init(le);
 887                set_bit(XPT_CLOSE, &xprt->xpt_flags);
 888                set_bit(XPT_DETACHED, &xprt->xpt_flags);
 889                dprintk("queuing xprt %p for closing\n", xprt);
 890
 891                /* a thread will dequeue and close it soon */
 892                svc_xprt_enqueue(xprt);
 893        }
 894        spin_unlock_bh(&serv->sv_lock);
 895
 896        mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 897}
 898
 899static void call_xpt_users(struct svc_xprt *xprt)
 900{
 901        struct svc_xpt_user *u;
 902
 903        spin_lock(&xprt->xpt_lock);
 904        while (!list_empty(&xprt->xpt_users)) {
 905                u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
 906                list_del(&u->list);
 907                u->callback(u);
 908        }
 909        spin_unlock(&xprt->xpt_lock);
 910}
 911
 912/*
 913 * Remove a dead transport
 914 */
 915static void svc_delete_xprt(struct svc_xprt *xprt)
 916{
 917        struct svc_serv *serv = xprt->xpt_server;
 918        struct svc_deferred_req *dr;
 919
 920        /* Only do this once */
 921        if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
 922                BUG();
 923
 924        dprintk("svc: svc_delete_xprt(%p)\n", xprt);
 925        xprt->xpt_ops->xpo_detach(xprt);
 926
 927        spin_lock_bh(&serv->sv_lock);
 928        if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
 929                list_del_init(&xprt->xpt_list);
 930        WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
 931        if (test_bit(XPT_TEMP, &xprt->xpt_flags))
 932                serv->sv_tmpcnt--;
 933        spin_unlock_bh(&serv->sv_lock);
 934
 935        while ((dr = svc_deferred_dequeue(xprt)) != NULL)
 936                kfree(dr);
 937
 938        call_xpt_users(xprt);
 939        svc_xprt_put(xprt);
 940}
 941
 942void svc_close_xprt(struct svc_xprt *xprt)
 943{
 944        set_bit(XPT_CLOSE, &xprt->xpt_flags);
 945        if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
 946                /* someone else will have to effect the close */
 947                return;
 948        /*
 949         * We expect svc_close_xprt() to work even when no threads are
 950         * running (e.g., while configuring the server before starting
 951         * any threads), so if the transport isn't busy, we delete
 952         * it ourself:
 953         */
 954        svc_delete_xprt(xprt);
 955}
 956EXPORT_SYMBOL_GPL(svc_close_xprt);
 957
 958static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
 959{
 960        struct svc_xprt *xprt;
 961        int ret = 0;
 962
 963        spin_lock(&serv->sv_lock);
 964        list_for_each_entry(xprt, xprt_list, xpt_list) {
 965                if (xprt->xpt_net != net)
 966                        continue;
 967                ret++;
 968                set_bit(XPT_CLOSE, &xprt->xpt_flags);
 969                svc_xprt_enqueue(xprt);
 970        }
 971        spin_unlock(&serv->sv_lock);
 972        return ret;
 973}
 974
 975static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
 976{
 977        struct svc_pool *pool;
 978        struct svc_xprt *xprt;
 979        struct svc_xprt *tmp;
 980        int i;
 981
 982        for (i = 0; i < serv->sv_nrpools; i++) {
 983                pool = &serv->sv_pools[i];
 984
 985                spin_lock_bh(&pool->sp_lock);
 986                list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
 987                        if (xprt->xpt_net != net)
 988                                continue;
 989                        list_del_init(&xprt->xpt_ready);
 990                        spin_unlock_bh(&pool->sp_lock);
 991                        return xprt;
 992                }
 993                spin_unlock_bh(&pool->sp_lock);
 994        }
 995        return NULL;
 996}
 997
 998static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
 999{
1000        struct svc_xprt *xprt;
1001
1002        while ((xprt = svc_dequeue_net(serv, net))) {
1003                set_bit(XPT_CLOSE, &xprt->xpt_flags);
1004                svc_delete_xprt(xprt);
1005        }
1006}
1007
1008/*
1009 * Server threads may still be running (especially in the case where the
1010 * service is still running in other network namespaces).
1011 *
1012 * So we shut down sockets the same way we would on a running server, by
1013 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1014 * the close.  In the case there are no such other threads,
1015 * threads running, svc_clean_up_xprts() does a simple version of a
1016 * server's main event loop, and in the case where there are other
1017 * threads, we may need to wait a little while and then check again to
1018 * see if they're done.
1019 */
1020void svc_close_net(struct svc_serv *serv, struct net *net)
1021{
1022        int delay = 0;
1023
1024        while (svc_close_list(serv, &serv->sv_permsocks, net) +
1025               svc_close_list(serv, &serv->sv_tempsocks, net)) {
1026
1027                svc_clean_up_xprts(serv, net);
1028                msleep(delay++);
1029        }
1030}
1031
1032/*
1033 * Handle defer and revisit of requests
1034 */
1035
1036static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1037{
1038        struct svc_deferred_req *dr =
1039                container_of(dreq, struct svc_deferred_req, handle);
1040        struct svc_xprt *xprt = dr->xprt;
1041
1042        spin_lock(&xprt->xpt_lock);
1043        set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1044        if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1045                spin_unlock(&xprt->xpt_lock);
1046                dprintk("revisit canceled\n");
1047                svc_xprt_put(xprt);
1048                kfree(dr);
1049                return;
1050        }
1051        dprintk("revisit queued\n");
1052        dr->xprt = NULL;
1053        list_add(&dr->handle.recent, &xprt->xpt_deferred);
1054        spin_unlock(&xprt->xpt_lock);
1055        svc_xprt_enqueue(xprt);
1056        svc_xprt_put(xprt);
1057}
1058
1059/*
1060 * Save the request off for later processing. The request buffer looks
1061 * like this:
1062 *
1063 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1064 *
1065 * This code can only handle requests that consist of an xprt-header
1066 * and rpc-header.
1067 */
1068static struct cache_deferred_req *svc_defer(struct cache_req *req)
1069{
1070        struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1071        struct svc_deferred_req *dr;
1072
1073        if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1074                return NULL; /* if more than a page, give up FIXME */
1075        if (rqstp->rq_deferred) {
1076                dr = rqstp->rq_deferred;
1077                rqstp->rq_deferred = NULL;
1078        } else {
1079                size_t skip;
1080                size_t size;
1081                /* FIXME maybe discard if size too large */
1082                size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1083                dr = kmalloc(size, GFP_KERNEL);
1084                if (dr == NULL)
1085                        return NULL;
1086
1087                dr->handle.owner = rqstp->rq_server;
1088                dr->prot = rqstp->rq_prot;
1089                memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1090                dr->addrlen = rqstp->rq_addrlen;
1091                dr->daddr = rqstp->rq_daddr;
1092                dr->argslen = rqstp->rq_arg.len >> 2;
1093                dr->xprt_hlen = rqstp->rq_xprt_hlen;
1094
1095                /* back up head to the start of the buffer and copy */
1096                skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1097                memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1098                       dr->argslen << 2);
1099        }
1100        svc_xprt_get(rqstp->rq_xprt);
1101        dr->xprt = rqstp->rq_xprt;
1102        rqstp->rq_dropme = true;
1103
1104        dr->handle.revisit = svc_revisit;
1105        return &dr->handle;
1106}
1107
1108/*
1109 * recv data from a deferred request into an active one
1110 */
1111static int svc_deferred_recv(struct svc_rqst *rqstp)
1112{
1113        struct svc_deferred_req *dr = rqstp->rq_deferred;
1114
1115        /* setup iov_base past transport header */
1116        rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1117        /* The iov_len does not include the transport header bytes */
1118        rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1119        rqstp->rq_arg.page_len = 0;
1120        /* The rq_arg.len includes the transport header bytes */
1121        rqstp->rq_arg.len     = dr->argslen<<2;
1122        rqstp->rq_prot        = dr->prot;
1123        memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1124        rqstp->rq_addrlen     = dr->addrlen;
1125        /* Save off transport header len in case we get deferred again */
1126        rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1127        rqstp->rq_daddr       = dr->daddr;
1128        rqstp->rq_respages    = rqstp->rq_pages;
1129        return (dr->argslen<<2) - dr->xprt_hlen;
1130}
1131
1132
1133static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1134{
1135        struct svc_deferred_req *dr = NULL;
1136
1137        if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1138                return NULL;
1139        spin_lock(&xprt->xpt_lock);
1140        if (!list_empty(&xprt->xpt_deferred)) {
1141                dr = list_entry(xprt->xpt_deferred.next,
1142                                struct svc_deferred_req,
1143                                handle.recent);
1144                list_del_init(&dr->handle.recent);
1145        } else
1146                clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1147        spin_unlock(&xprt->xpt_lock);
1148        return dr;
1149}
1150
1151/**
1152 * svc_find_xprt - find an RPC transport instance
1153 * @serv: pointer to svc_serv to search
1154 * @xcl_name: C string containing transport's class name
1155 * @net: owner net pointer
1156 * @af: Address family of transport's local address
1157 * @port: transport's IP port number
1158 *
1159 * Return the transport instance pointer for the endpoint accepting
1160 * connections/peer traffic from the specified transport class,
1161 * address family and port.
1162 *
1163 * Specifying 0 for the address family or port is effectively a
1164 * wild-card, and will result in matching the first transport in the
1165 * service's list that has a matching class name.
1166 */
1167struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1168                               struct net *net, const sa_family_t af,
1169                               const unsigned short port)
1170{
1171        struct svc_xprt *xprt;
1172        struct svc_xprt *found = NULL;
1173
1174        /* Sanity check the args */
1175        if (serv == NULL || xcl_name == NULL)
1176                return found;
1177
1178        spin_lock_bh(&serv->sv_lock);
1179        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1180                if (xprt->xpt_net != net)
1181                        continue;
1182                if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1183                        continue;
1184                if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1185                        continue;
1186                if (port != 0 && port != svc_xprt_local_port(xprt))
1187                        continue;
1188                found = xprt;
1189                svc_xprt_get(xprt);
1190                break;
1191        }
1192        spin_unlock_bh(&serv->sv_lock);
1193        return found;
1194}
1195EXPORT_SYMBOL_GPL(svc_find_xprt);
1196
1197static int svc_one_xprt_name(const struct svc_xprt *xprt,
1198                             char *pos, int remaining)
1199{
1200        int len;
1201
1202        len = snprintf(pos, remaining, "%s %u\n",
1203                        xprt->xpt_class->xcl_name,
1204                        svc_xprt_local_port(xprt));
1205        if (len >= remaining)
1206                return -ENAMETOOLONG;
1207        return len;
1208}
1209
1210/**
1211 * svc_xprt_names - format a buffer with a list of transport names
1212 * @serv: pointer to an RPC service
1213 * @buf: pointer to a buffer to be filled in
1214 * @buflen: length of buffer to be filled in
1215 *
1216 * Fills in @buf with a string containing a list of transport names,
1217 * each name terminated with '\n'.
1218 *
1219 * Returns positive length of the filled-in string on success; otherwise
1220 * a negative errno value is returned if an error occurs.
1221 */
1222int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1223{
1224        struct svc_xprt *xprt;
1225        int len, totlen;
1226        char *pos;
1227
1228        /* Sanity check args */
1229        if (!serv)
1230                return 0;
1231
1232        spin_lock_bh(&serv->sv_lock);
1233
1234        pos = buf;
1235        totlen = 0;
1236        list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1237                len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1238                if (len < 0) {
1239                        *buf = '\0';
1240                        totlen = len;
1241                }
1242                if (len <= 0)
1243                        break;
1244
1245                pos += len;
1246                totlen += len;
1247        }
1248
1249        spin_unlock_bh(&serv->sv_lock);
1250        return totlen;
1251}
1252EXPORT_SYMBOL_GPL(svc_xprt_names);
1253
1254
1255/*----------------------------------------------------------------------------*/
1256
1257static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1258{
1259        unsigned int pidx = (unsigned int)*pos;
1260        struct svc_serv *serv = m->private;
1261
1262        dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1263
1264        if (!pidx)
1265                return SEQ_START_TOKEN;
1266        return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1267}
1268
1269static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1270{
1271        struct svc_pool *pool = p;
1272        struct svc_serv *serv = m->private;
1273
1274        dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1275
1276        if (p == SEQ_START_TOKEN) {
1277                pool = &serv->sv_pools[0];
1278        } else {
1279                unsigned int pidx = (pool - &serv->sv_pools[0]);
1280                if (pidx < serv->sv_nrpools-1)
1281                        pool = &serv->sv_pools[pidx+1];
1282                else
1283                        pool = NULL;
1284        }
1285        ++*pos;
1286        return pool;
1287}
1288
1289static void svc_pool_stats_stop(struct seq_file *m, void *p)
1290{
1291}
1292
1293static int svc_pool_stats_show(struct seq_file *m, void *p)
1294{
1295        struct svc_pool *pool = p;
1296
1297        if (p == SEQ_START_TOKEN) {
1298                seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1299                return 0;
1300        }
1301
1302        seq_printf(m, "%u %lu %lu %lu %lu\n",
1303                pool->sp_id,
1304                pool->sp_stats.packets,
1305                pool->sp_stats.sockets_queued,
1306                pool->sp_stats.threads_woken,
1307                pool->sp_stats.threads_timedout);
1308
1309        return 0;
1310}
1311
1312static const struct seq_operations svc_pool_stats_seq_ops = {
1313        .start  = svc_pool_stats_start,
1314        .next   = svc_pool_stats_next,
1315        .stop   = svc_pool_stats_stop,
1316        .show   = svc_pool_stats_show,
1317};
1318
1319int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1320{
1321        int err;
1322
1323        err = seq_open(file, &svc_pool_stats_seq_ops);
1324        if (!err)
1325                ((struct seq_file *) file->private_data)->private = serv;
1326        return err;
1327}
1328EXPORT_SYMBOL(svc_pool_stats_open);
1329
1330/*----------------------------------------------------------------------------*/
1331