linux/security/selinux/hooks.c
<<
>>
Prefs
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *            Chris Vance, <cvance@nai.com>
   8 *            Wayne Salamon, <wsalamon@nai.com>
   9 *            James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *                                         Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *                          <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *      Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *      This program is free software; you can redistribute it and/or modify
  22 *      it under the terms of the GNU General Public License version 2,
  23 *      as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>             /* for local_port_range[] */
  54#include <net/sock.h>
  55#include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>    /* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
  68#include <linux/quota.h>
  69#include <linux/un.h>           /* for Unix socket types */
  70#include <net/af_unix.h>        /* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/security.h>
  85#include <linux/msg.h>
  86#include <linux/shm.h>
  87
  88#include "avc.h"
  89#include "objsec.h"
  90#include "netif.h"
  91#include "netnode.h"
  92#include "netport.h"
  93#include "xfrm.h"
  94#include "netlabel.h"
  95#include "audit.h"
  96#include "avc_ss.h"
  97
  98#define NUM_SEL_MNT_OPTS 5
  99
 100extern struct security_operations *security_ops;
 101
 102/* SECMARK reference count */
 103static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 104
 105#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 106int selinux_enforcing;
 107
 108static int __init enforcing_setup(char *str)
 109{
 110        unsigned long enforcing;
 111        if (!strict_strtoul(str, 0, &enforcing))
 112                selinux_enforcing = enforcing ? 1 : 0;
 113        return 1;
 114}
 115__setup("enforcing=", enforcing_setup);
 116#endif
 117
 118#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 119int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 120
 121static int __init selinux_enabled_setup(char *str)
 122{
 123        unsigned long enabled;
 124        if (!strict_strtoul(str, 0, &enabled))
 125                selinux_enabled = enabled ? 1 : 0;
 126        return 1;
 127}
 128__setup("selinux=", selinux_enabled_setup);
 129#else
 130int selinux_enabled = 1;
 131#endif
 132
 133static struct kmem_cache *sel_inode_cache;
 134
 135/**
 136 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 137 *
 138 * Description:
 139 * This function checks the SECMARK reference counter to see if any SECMARK
 140 * targets are currently configured, if the reference counter is greater than
 141 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 142 * enabled, false (0) if SECMARK is disabled.
 143 *
 144 */
 145static int selinux_secmark_enabled(void)
 146{
 147        return (atomic_read(&selinux_secmark_refcount) > 0);
 148}
 149
 150/*
 151 * initialise the security for the init task
 152 */
 153static void cred_init_security(void)
 154{
 155        struct cred *cred = (struct cred *) current->real_cred;
 156        struct task_security_struct *tsec;
 157
 158        tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 159        if (!tsec)
 160                panic("SELinux:  Failed to initialize initial task.\n");
 161
 162        tsec->osid = tsec->sid = SECINITSID_KERNEL;
 163        cred->security = tsec;
 164}
 165
 166/*
 167 * get the security ID of a set of credentials
 168 */
 169static inline u32 cred_sid(const struct cred *cred)
 170{
 171        const struct task_security_struct *tsec;
 172
 173        tsec = cred->security;
 174        return tsec->sid;
 175}
 176
 177/*
 178 * get the objective security ID of a task
 179 */
 180static inline u32 task_sid(const struct task_struct *task)
 181{
 182        u32 sid;
 183
 184        rcu_read_lock();
 185        sid = cred_sid(__task_cred(task));
 186        rcu_read_unlock();
 187        return sid;
 188}
 189
 190/*
 191 * get the subjective security ID of the current task
 192 */
 193static inline u32 current_sid(void)
 194{
 195        const struct task_security_struct *tsec = current_security();
 196
 197        return tsec->sid;
 198}
 199
 200/* Allocate and free functions for each kind of security blob. */
 201
 202static int inode_alloc_security(struct inode *inode)
 203{
 204        struct inode_security_struct *isec;
 205        u32 sid = current_sid();
 206
 207        isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 208        if (!isec)
 209                return -ENOMEM;
 210
 211        mutex_init(&isec->lock);
 212        INIT_LIST_HEAD(&isec->list);
 213        isec->inode = inode;
 214        isec->sid = SECINITSID_UNLABELED;
 215        isec->sclass = SECCLASS_FILE;
 216        isec->task_sid = sid;
 217        inode->i_security = isec;
 218
 219        return 0;
 220}
 221
 222static void inode_free_security(struct inode *inode)
 223{
 224        struct inode_security_struct *isec = inode->i_security;
 225        struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 226
 227        spin_lock(&sbsec->isec_lock);
 228        if (!list_empty(&isec->list))
 229                list_del_init(&isec->list);
 230        spin_unlock(&sbsec->isec_lock);
 231
 232        inode->i_security = NULL;
 233        kmem_cache_free(sel_inode_cache, isec);
 234}
 235
 236static int file_alloc_security(struct file *file)
 237{
 238        struct file_security_struct *fsec;
 239        u32 sid = current_sid();
 240
 241        fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 242        if (!fsec)
 243                return -ENOMEM;
 244
 245        fsec->sid = sid;
 246        fsec->fown_sid = sid;
 247        file->f_security = fsec;
 248
 249        return 0;
 250}
 251
 252static void file_free_security(struct file *file)
 253{
 254        struct file_security_struct *fsec = file->f_security;
 255        file->f_security = NULL;
 256        kfree(fsec);
 257}
 258
 259static int superblock_alloc_security(struct super_block *sb)
 260{
 261        struct superblock_security_struct *sbsec;
 262
 263        sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 264        if (!sbsec)
 265                return -ENOMEM;
 266
 267        mutex_init(&sbsec->lock);
 268        INIT_LIST_HEAD(&sbsec->isec_head);
 269        spin_lock_init(&sbsec->isec_lock);
 270        sbsec->sb = sb;
 271        sbsec->sid = SECINITSID_UNLABELED;
 272        sbsec->def_sid = SECINITSID_FILE;
 273        sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 274        sb->s_security = sbsec;
 275
 276        return 0;
 277}
 278
 279static void superblock_free_security(struct super_block *sb)
 280{
 281        struct superblock_security_struct *sbsec = sb->s_security;
 282        sb->s_security = NULL;
 283        kfree(sbsec);
 284}
 285
 286/* The file system's label must be initialized prior to use. */
 287
 288static const char *labeling_behaviors[7] = {
 289        "uses xattr",
 290        "uses transition SIDs",
 291        "uses task SIDs",
 292        "uses genfs_contexts",
 293        "not configured for labeling",
 294        "uses mountpoint labeling",
 295        "uses native labeling",
 296};
 297
 298static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 299
 300static inline int inode_doinit(struct inode *inode)
 301{
 302        return inode_doinit_with_dentry(inode, NULL);
 303}
 304
 305enum {
 306        Opt_error = -1,
 307        Opt_context = 1,
 308        Opt_fscontext = 2,
 309        Opt_defcontext = 3,
 310        Opt_rootcontext = 4,
 311        Opt_labelsupport = 5,
 312};
 313
 314static const match_table_t tokens = {
 315        {Opt_context, CONTEXT_STR "%s"},
 316        {Opt_fscontext, FSCONTEXT_STR "%s"},
 317        {Opt_defcontext, DEFCONTEXT_STR "%s"},
 318        {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 319        {Opt_labelsupport, LABELSUPP_STR},
 320        {Opt_error, NULL},
 321};
 322
 323#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 324
 325static int may_context_mount_sb_relabel(u32 sid,
 326                        struct superblock_security_struct *sbsec,
 327                        const struct cred *cred)
 328{
 329        const struct task_security_struct *tsec = cred->security;
 330        int rc;
 331
 332        rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 333                          FILESYSTEM__RELABELFROM, NULL);
 334        if (rc)
 335                return rc;
 336
 337        rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 338                          FILESYSTEM__RELABELTO, NULL);
 339        return rc;
 340}
 341
 342static int may_context_mount_inode_relabel(u32 sid,
 343                        struct superblock_security_struct *sbsec,
 344                        const struct cred *cred)
 345{
 346        const struct task_security_struct *tsec = cred->security;
 347        int rc;
 348        rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 349                          FILESYSTEM__RELABELFROM, NULL);
 350        if (rc)
 351                return rc;
 352
 353        rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 354                          FILESYSTEM__ASSOCIATE, NULL);
 355        return rc;
 356}
 357
 358static int sb_finish_set_opts(struct super_block *sb)
 359{
 360        struct superblock_security_struct *sbsec = sb->s_security;
 361        struct dentry *root = sb->s_root;
 362        struct inode *root_inode = root->d_inode;
 363        int rc = 0;
 364
 365        if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 366                /* Make sure that the xattr handler exists and that no
 367                   error other than -ENODATA is returned by getxattr on
 368                   the root directory.  -ENODATA is ok, as this may be
 369                   the first boot of the SELinux kernel before we have
 370                   assigned xattr values to the filesystem. */
 371                if (!root_inode->i_op->getxattr) {
 372                        printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 373                               "xattr support\n", sb->s_id, sb->s_type->name);
 374                        rc = -EOPNOTSUPP;
 375                        goto out;
 376                }
 377                rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 378                if (rc < 0 && rc != -ENODATA) {
 379                        if (rc == -EOPNOTSUPP)
 380                                printk(KERN_WARNING "SELinux: (dev %s, type "
 381                                       "%s) has no security xattr handler\n",
 382                                       sb->s_id, sb->s_type->name);
 383                        else
 384                                printk(KERN_WARNING "SELinux: (dev %s, type "
 385                                       "%s) getxattr errno %d\n", sb->s_id,
 386                                       sb->s_type->name, -rc);
 387                        goto out;
 388                }
 389        }
 390
 391        sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
 392
 393        if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 394                printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 395                       sb->s_id, sb->s_type->name);
 396        else
 397                printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 398                       sb->s_id, sb->s_type->name,
 399                       labeling_behaviors[sbsec->behavior-1]);
 400
 401        if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
 402            sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
 403            sbsec->behavior == SECURITY_FS_USE_NONE ||
 404            sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 405                sbsec->flags &= ~SE_SBLABELSUPP;
 406
 407        /* Special handling for sysfs. Is genfs but also has setxattr handler*/
 408        if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 409                sbsec->flags |= SE_SBLABELSUPP;
 410
 411        /* Initialize the root inode. */
 412        rc = inode_doinit_with_dentry(root_inode, root);
 413
 414        /* Initialize any other inodes associated with the superblock, e.g.
 415           inodes created prior to initial policy load or inodes created
 416           during get_sb by a pseudo filesystem that directly
 417           populates itself. */
 418        spin_lock(&sbsec->isec_lock);
 419next_inode:
 420        if (!list_empty(&sbsec->isec_head)) {
 421                struct inode_security_struct *isec =
 422                                list_entry(sbsec->isec_head.next,
 423                                           struct inode_security_struct, list);
 424                struct inode *inode = isec->inode;
 425                spin_unlock(&sbsec->isec_lock);
 426                inode = igrab(inode);
 427                if (inode) {
 428                        if (!IS_PRIVATE(inode))
 429                                inode_doinit(inode);
 430                        iput(inode);
 431                }
 432                spin_lock(&sbsec->isec_lock);
 433                list_del_init(&isec->list);
 434                goto next_inode;
 435        }
 436        spin_unlock(&sbsec->isec_lock);
 437out:
 438        return rc;
 439}
 440
 441/*
 442 * This function should allow an FS to ask what it's mount security
 443 * options were so it can use those later for submounts, displaying
 444 * mount options, or whatever.
 445 */
 446static int selinux_get_mnt_opts(const struct super_block *sb,
 447                                struct security_mnt_opts *opts)
 448{
 449        int rc = 0, i;
 450        struct superblock_security_struct *sbsec = sb->s_security;
 451        char *context = NULL;
 452        u32 len;
 453        char tmp;
 454
 455        security_init_mnt_opts(opts);
 456
 457        if (!(sbsec->flags & SE_SBINITIALIZED))
 458                return -EINVAL;
 459
 460        if (!ss_initialized)
 461                return -EINVAL;
 462
 463        tmp = sbsec->flags & SE_MNTMASK;
 464        /* count the number of mount options for this sb */
 465        for (i = 0; i < 8; i++) {
 466                if (tmp & 0x01)
 467                        opts->num_mnt_opts++;
 468                tmp >>= 1;
 469        }
 470        /* Check if the Label support flag is set */
 471        if (sbsec->flags & SE_SBLABELSUPP)
 472                opts->num_mnt_opts++;
 473
 474        opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 475        if (!opts->mnt_opts) {
 476                rc = -ENOMEM;
 477                goto out_free;
 478        }
 479
 480        opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 481        if (!opts->mnt_opts_flags) {
 482                rc = -ENOMEM;
 483                goto out_free;
 484        }
 485
 486        i = 0;
 487        if (sbsec->flags & FSCONTEXT_MNT) {
 488                rc = security_sid_to_context(sbsec->sid, &context, &len);
 489                if (rc)
 490                        goto out_free;
 491                opts->mnt_opts[i] = context;
 492                opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 493        }
 494        if (sbsec->flags & CONTEXT_MNT) {
 495                rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 496                if (rc)
 497                        goto out_free;
 498                opts->mnt_opts[i] = context;
 499                opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 500        }
 501        if (sbsec->flags & DEFCONTEXT_MNT) {
 502                rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 503                if (rc)
 504                        goto out_free;
 505                opts->mnt_opts[i] = context;
 506                opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 507        }
 508        if (sbsec->flags & ROOTCONTEXT_MNT) {
 509                struct inode *root = sbsec->sb->s_root->d_inode;
 510                struct inode_security_struct *isec = root->i_security;
 511
 512                rc = security_sid_to_context(isec->sid, &context, &len);
 513                if (rc)
 514                        goto out_free;
 515                opts->mnt_opts[i] = context;
 516                opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 517        }
 518        if (sbsec->flags & SE_SBLABELSUPP) {
 519                opts->mnt_opts[i] = NULL;
 520                opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
 521        }
 522
 523        BUG_ON(i != opts->num_mnt_opts);
 524
 525        return 0;
 526
 527out_free:
 528        security_free_mnt_opts(opts);
 529        return rc;
 530}
 531
 532static int bad_option(struct superblock_security_struct *sbsec, char flag,
 533                      u32 old_sid, u32 new_sid)
 534{
 535        char mnt_flags = sbsec->flags & SE_MNTMASK;
 536
 537        /* check if the old mount command had the same options */
 538        if (sbsec->flags & SE_SBINITIALIZED)
 539                if (!(sbsec->flags & flag) ||
 540                    (old_sid != new_sid))
 541                        return 1;
 542
 543        /* check if we were passed the same options twice,
 544         * aka someone passed context=a,context=b
 545         */
 546        if (!(sbsec->flags & SE_SBINITIALIZED))
 547                if (mnt_flags & flag)
 548                        return 1;
 549        return 0;
 550}
 551
 552/*
 553 * Allow filesystems with binary mount data to explicitly set mount point
 554 * labeling information.
 555 */
 556static int selinux_set_mnt_opts(struct super_block *sb,
 557                                struct security_mnt_opts *opts,
 558                                unsigned long kern_flags,
 559                                unsigned long *set_kern_flags)
 560{
 561        const struct cred *cred = current_cred();
 562        int rc = 0, i;
 563        struct superblock_security_struct *sbsec = sb->s_security;
 564        const char *name = sb->s_type->name;
 565        struct inode *inode = sbsec->sb->s_root->d_inode;
 566        struct inode_security_struct *root_isec = inode->i_security;
 567        u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 568        u32 defcontext_sid = 0;
 569        char **mount_options = opts->mnt_opts;
 570        int *flags = opts->mnt_opts_flags;
 571        int num_opts = opts->num_mnt_opts;
 572
 573        mutex_lock(&sbsec->lock);
 574
 575        if (!ss_initialized) {
 576                if (!num_opts) {
 577                        /* Defer initialization until selinux_complete_init,
 578                           after the initial policy is loaded and the security
 579                           server is ready to handle calls. */
 580                        goto out;
 581                }
 582                rc = -EINVAL;
 583                printk(KERN_WARNING "SELinux: Unable to set superblock options "
 584                        "before the security server is initialized\n");
 585                goto out;
 586        }
 587        if (kern_flags && !set_kern_flags) {
 588                /* Specifying internal flags without providing a place to
 589                 * place the results is not allowed */
 590                rc = -EINVAL;
 591                goto out;
 592        }
 593
 594        /*
 595         * Binary mount data FS will come through this function twice.  Once
 596         * from an explicit call and once from the generic calls from the vfs.
 597         * Since the generic VFS calls will not contain any security mount data
 598         * we need to skip the double mount verification.
 599         *
 600         * This does open a hole in which we will not notice if the first
 601         * mount using this sb set explict options and a second mount using
 602         * this sb does not set any security options.  (The first options
 603         * will be used for both mounts)
 604         */
 605        if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 606            && (num_opts == 0))
 607                goto out;
 608
 609        /*
 610         * parse the mount options, check if they are valid sids.
 611         * also check if someone is trying to mount the same sb more
 612         * than once with different security options.
 613         */
 614        for (i = 0; i < num_opts; i++) {
 615                u32 sid;
 616
 617                if (flags[i] == SE_SBLABELSUPP)
 618                        continue;
 619                rc = security_context_to_sid(mount_options[i],
 620                                             strlen(mount_options[i]), &sid);
 621                if (rc) {
 622                        printk(KERN_WARNING "SELinux: security_context_to_sid"
 623                               "(%s) failed for (dev %s, type %s) errno=%d\n",
 624                               mount_options[i], sb->s_id, name, rc);
 625                        goto out;
 626                }
 627                switch (flags[i]) {
 628                case FSCONTEXT_MNT:
 629                        fscontext_sid = sid;
 630
 631                        if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 632                                        fscontext_sid))
 633                                goto out_double_mount;
 634
 635                        sbsec->flags |= FSCONTEXT_MNT;
 636                        break;
 637                case CONTEXT_MNT:
 638                        context_sid = sid;
 639
 640                        if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 641                                        context_sid))
 642                                goto out_double_mount;
 643
 644                        sbsec->flags |= CONTEXT_MNT;
 645                        break;
 646                case ROOTCONTEXT_MNT:
 647                        rootcontext_sid = sid;
 648
 649                        if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 650                                        rootcontext_sid))
 651                                goto out_double_mount;
 652
 653                        sbsec->flags |= ROOTCONTEXT_MNT;
 654
 655                        break;
 656                case DEFCONTEXT_MNT:
 657                        defcontext_sid = sid;
 658
 659                        if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 660                                        defcontext_sid))
 661                                goto out_double_mount;
 662
 663                        sbsec->flags |= DEFCONTEXT_MNT;
 664
 665                        break;
 666                default:
 667                        rc = -EINVAL;
 668                        goto out;
 669                }
 670        }
 671
 672        if (sbsec->flags & SE_SBINITIALIZED) {
 673                /* previously mounted with options, but not on this attempt? */
 674                if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 675                        goto out_double_mount;
 676                rc = 0;
 677                goto out;
 678        }
 679
 680        if (strcmp(sb->s_type->name, "proc") == 0)
 681                sbsec->flags |= SE_SBPROC;
 682
 683        if (!sbsec->behavior) {
 684                /*
 685                 * Determine the labeling behavior to use for this
 686                 * filesystem type.
 687                 */
 688                rc = security_fs_use((sbsec->flags & SE_SBPROC) ?
 689                                        "proc" : sb->s_type->name,
 690                                        &sbsec->behavior, &sbsec->sid);
 691                if (rc) {
 692                        printk(KERN_WARNING
 693                                "%s: security_fs_use(%s) returned %d\n",
 694                                        __func__, sb->s_type->name, rc);
 695                        goto out;
 696                }
 697        }
 698        /* sets the context of the superblock for the fs being mounted. */
 699        if (fscontext_sid) {
 700                rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 701                if (rc)
 702                        goto out;
 703
 704                sbsec->sid = fscontext_sid;
 705        }
 706
 707        /*
 708         * Switch to using mount point labeling behavior.
 709         * sets the label used on all file below the mountpoint, and will set
 710         * the superblock context if not already set.
 711         */
 712        if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 713                sbsec->behavior = SECURITY_FS_USE_NATIVE;
 714                *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 715        }
 716
 717        if (context_sid) {
 718                if (!fscontext_sid) {
 719                        rc = may_context_mount_sb_relabel(context_sid, sbsec,
 720                                                          cred);
 721                        if (rc)
 722                                goto out;
 723                        sbsec->sid = context_sid;
 724                } else {
 725                        rc = may_context_mount_inode_relabel(context_sid, sbsec,
 726                                                             cred);
 727                        if (rc)
 728                                goto out;
 729                }
 730                if (!rootcontext_sid)
 731                        rootcontext_sid = context_sid;
 732
 733                sbsec->mntpoint_sid = context_sid;
 734                sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 735        }
 736
 737        if (rootcontext_sid) {
 738                rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 739                                                     cred);
 740                if (rc)
 741                        goto out;
 742
 743                root_isec->sid = rootcontext_sid;
 744                root_isec->initialized = 1;
 745        }
 746
 747        if (defcontext_sid) {
 748                if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 749                        sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 750                        rc = -EINVAL;
 751                        printk(KERN_WARNING "SELinux: defcontext option is "
 752                               "invalid for this filesystem type\n");
 753                        goto out;
 754                }
 755
 756                if (defcontext_sid != sbsec->def_sid) {
 757                        rc = may_context_mount_inode_relabel(defcontext_sid,
 758                                                             sbsec, cred);
 759                        if (rc)
 760                                goto out;
 761                }
 762
 763                sbsec->def_sid = defcontext_sid;
 764        }
 765
 766        rc = sb_finish_set_opts(sb);
 767out:
 768        mutex_unlock(&sbsec->lock);
 769        return rc;
 770out_double_mount:
 771        rc = -EINVAL;
 772        printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 773               "security settings for (dev %s, type %s)\n", sb->s_id, name);
 774        goto out;
 775}
 776
 777static int selinux_cmp_sb_context(const struct super_block *oldsb,
 778                                    const struct super_block *newsb)
 779{
 780        struct superblock_security_struct *old = oldsb->s_security;
 781        struct superblock_security_struct *new = newsb->s_security;
 782        char oldflags = old->flags & SE_MNTMASK;
 783        char newflags = new->flags & SE_MNTMASK;
 784
 785        if (oldflags != newflags)
 786                goto mismatch;
 787        if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 788                goto mismatch;
 789        if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 790                goto mismatch;
 791        if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 792                goto mismatch;
 793        if (oldflags & ROOTCONTEXT_MNT) {
 794                struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
 795                struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
 796                if (oldroot->sid != newroot->sid)
 797                        goto mismatch;
 798        }
 799        return 0;
 800mismatch:
 801        printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 802                            "different security settings for (dev %s, "
 803                            "type %s)\n", newsb->s_id, newsb->s_type->name);
 804        return -EBUSY;
 805}
 806
 807static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 808                                        struct super_block *newsb)
 809{
 810        const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 811        struct superblock_security_struct *newsbsec = newsb->s_security;
 812
 813        int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
 814        int set_context =       (oldsbsec->flags & CONTEXT_MNT);
 815        int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
 816
 817        /*
 818         * if the parent was able to be mounted it clearly had no special lsm
 819         * mount options.  thus we can safely deal with this superblock later
 820         */
 821        if (!ss_initialized)
 822                return 0;
 823
 824        /* how can we clone if the old one wasn't set up?? */
 825        BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 826
 827        /* if fs is reusing a sb, make sure that the contexts match */
 828        if (newsbsec->flags & SE_SBINITIALIZED)
 829                return selinux_cmp_sb_context(oldsb, newsb);
 830
 831        mutex_lock(&newsbsec->lock);
 832
 833        newsbsec->flags = oldsbsec->flags;
 834
 835        newsbsec->sid = oldsbsec->sid;
 836        newsbsec->def_sid = oldsbsec->def_sid;
 837        newsbsec->behavior = oldsbsec->behavior;
 838
 839        if (set_context) {
 840                u32 sid = oldsbsec->mntpoint_sid;
 841
 842                if (!set_fscontext)
 843                        newsbsec->sid = sid;
 844                if (!set_rootcontext) {
 845                        struct inode *newinode = newsb->s_root->d_inode;
 846                        struct inode_security_struct *newisec = newinode->i_security;
 847                        newisec->sid = sid;
 848                }
 849                newsbsec->mntpoint_sid = sid;
 850        }
 851        if (set_rootcontext) {
 852                const struct inode *oldinode = oldsb->s_root->d_inode;
 853                const struct inode_security_struct *oldisec = oldinode->i_security;
 854                struct inode *newinode = newsb->s_root->d_inode;
 855                struct inode_security_struct *newisec = newinode->i_security;
 856
 857                newisec->sid = oldisec->sid;
 858        }
 859
 860        sb_finish_set_opts(newsb);
 861        mutex_unlock(&newsbsec->lock);
 862        return 0;
 863}
 864
 865static int selinux_parse_opts_str(char *options,
 866                                  struct security_mnt_opts *opts)
 867{
 868        char *p;
 869        char *context = NULL, *defcontext = NULL;
 870        char *fscontext = NULL, *rootcontext = NULL;
 871        int rc, num_mnt_opts = 0;
 872
 873        opts->num_mnt_opts = 0;
 874
 875        /* Standard string-based options. */
 876        while ((p = strsep(&options, "|")) != NULL) {
 877                int token;
 878                substring_t args[MAX_OPT_ARGS];
 879
 880                if (!*p)
 881                        continue;
 882
 883                token = match_token(p, tokens, args);
 884
 885                switch (token) {
 886                case Opt_context:
 887                        if (context || defcontext) {
 888                                rc = -EINVAL;
 889                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 890                                goto out_err;
 891                        }
 892                        context = match_strdup(&args[0]);
 893                        if (!context) {
 894                                rc = -ENOMEM;
 895                                goto out_err;
 896                        }
 897                        break;
 898
 899                case Opt_fscontext:
 900                        if (fscontext) {
 901                                rc = -EINVAL;
 902                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 903                                goto out_err;
 904                        }
 905                        fscontext = match_strdup(&args[0]);
 906                        if (!fscontext) {
 907                                rc = -ENOMEM;
 908                                goto out_err;
 909                        }
 910                        break;
 911
 912                case Opt_rootcontext:
 913                        if (rootcontext) {
 914                                rc = -EINVAL;
 915                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 916                                goto out_err;
 917                        }
 918                        rootcontext = match_strdup(&args[0]);
 919                        if (!rootcontext) {
 920                                rc = -ENOMEM;
 921                                goto out_err;
 922                        }
 923                        break;
 924
 925                case Opt_defcontext:
 926                        if (context || defcontext) {
 927                                rc = -EINVAL;
 928                                printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 929                                goto out_err;
 930                        }
 931                        defcontext = match_strdup(&args[0]);
 932                        if (!defcontext) {
 933                                rc = -ENOMEM;
 934                                goto out_err;
 935                        }
 936                        break;
 937                case Opt_labelsupport:
 938                        break;
 939                default:
 940                        rc = -EINVAL;
 941                        printk(KERN_WARNING "SELinux:  unknown mount option\n");
 942                        goto out_err;
 943
 944                }
 945        }
 946
 947        rc = -ENOMEM;
 948        opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 949        if (!opts->mnt_opts)
 950                goto out_err;
 951
 952        opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 953        if (!opts->mnt_opts_flags) {
 954                kfree(opts->mnt_opts);
 955                goto out_err;
 956        }
 957
 958        if (fscontext) {
 959                opts->mnt_opts[num_mnt_opts] = fscontext;
 960                opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 961        }
 962        if (context) {
 963                opts->mnt_opts[num_mnt_opts] = context;
 964                opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
 965        }
 966        if (rootcontext) {
 967                opts->mnt_opts[num_mnt_opts] = rootcontext;
 968                opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 969        }
 970        if (defcontext) {
 971                opts->mnt_opts[num_mnt_opts] = defcontext;
 972                opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 973        }
 974
 975        opts->num_mnt_opts = num_mnt_opts;
 976        return 0;
 977
 978out_err:
 979        kfree(context);
 980        kfree(defcontext);
 981        kfree(fscontext);
 982        kfree(rootcontext);
 983        return rc;
 984}
 985/*
 986 * string mount options parsing and call set the sbsec
 987 */
 988static int superblock_doinit(struct super_block *sb, void *data)
 989{
 990        int rc = 0;
 991        char *options = data;
 992        struct security_mnt_opts opts;
 993
 994        security_init_mnt_opts(&opts);
 995
 996        if (!data)
 997                goto out;
 998
 999        BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1000
1001        rc = selinux_parse_opts_str(options, &opts);
1002        if (rc)
1003                goto out_err;
1004
1005out:
1006        rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1007
1008out_err:
1009        security_free_mnt_opts(&opts);
1010        return rc;
1011}
1012
1013static void selinux_write_opts(struct seq_file *m,
1014                               struct security_mnt_opts *opts)
1015{
1016        int i;
1017        char *prefix;
1018
1019        for (i = 0; i < opts->num_mnt_opts; i++) {
1020                char *has_comma;
1021
1022                if (opts->mnt_opts[i])
1023                        has_comma = strchr(opts->mnt_opts[i], ',');
1024                else
1025                        has_comma = NULL;
1026
1027                switch (opts->mnt_opts_flags[i]) {
1028                case CONTEXT_MNT:
1029                        prefix = CONTEXT_STR;
1030                        break;
1031                case FSCONTEXT_MNT:
1032                        prefix = FSCONTEXT_STR;
1033                        break;
1034                case ROOTCONTEXT_MNT:
1035                        prefix = ROOTCONTEXT_STR;
1036                        break;
1037                case DEFCONTEXT_MNT:
1038                        prefix = DEFCONTEXT_STR;
1039                        break;
1040                case SE_SBLABELSUPP:
1041                        seq_putc(m, ',');
1042                        seq_puts(m, LABELSUPP_STR);
1043                        continue;
1044                default:
1045                        BUG();
1046                        return;
1047                };
1048                /* we need a comma before each option */
1049                seq_putc(m, ',');
1050                seq_puts(m, prefix);
1051                if (has_comma)
1052                        seq_putc(m, '\"');
1053                seq_puts(m, opts->mnt_opts[i]);
1054                if (has_comma)
1055                        seq_putc(m, '\"');
1056        }
1057}
1058
1059static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1060{
1061        struct security_mnt_opts opts;
1062        int rc;
1063
1064        rc = selinux_get_mnt_opts(sb, &opts);
1065        if (rc) {
1066                /* before policy load we may get EINVAL, don't show anything */
1067                if (rc == -EINVAL)
1068                        rc = 0;
1069                return rc;
1070        }
1071
1072        selinux_write_opts(m, &opts);
1073
1074        security_free_mnt_opts(&opts);
1075
1076        return rc;
1077}
1078
1079static inline u16 inode_mode_to_security_class(umode_t mode)
1080{
1081        switch (mode & S_IFMT) {
1082        case S_IFSOCK:
1083                return SECCLASS_SOCK_FILE;
1084        case S_IFLNK:
1085                return SECCLASS_LNK_FILE;
1086        case S_IFREG:
1087                return SECCLASS_FILE;
1088        case S_IFBLK:
1089                return SECCLASS_BLK_FILE;
1090        case S_IFDIR:
1091                return SECCLASS_DIR;
1092        case S_IFCHR:
1093                return SECCLASS_CHR_FILE;
1094        case S_IFIFO:
1095                return SECCLASS_FIFO_FILE;
1096
1097        }
1098
1099        return SECCLASS_FILE;
1100}
1101
1102static inline int default_protocol_stream(int protocol)
1103{
1104        return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1105}
1106
1107static inline int default_protocol_dgram(int protocol)
1108{
1109        return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1110}
1111
1112static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1113{
1114        switch (family) {
1115        case PF_UNIX:
1116                switch (type) {
1117                case SOCK_STREAM:
1118                case SOCK_SEQPACKET:
1119                        return SECCLASS_UNIX_STREAM_SOCKET;
1120                case SOCK_DGRAM:
1121                        return SECCLASS_UNIX_DGRAM_SOCKET;
1122                }
1123                break;
1124        case PF_INET:
1125        case PF_INET6:
1126                switch (type) {
1127                case SOCK_STREAM:
1128                        if (default_protocol_stream(protocol))
1129                                return SECCLASS_TCP_SOCKET;
1130                        else
1131                                return SECCLASS_RAWIP_SOCKET;
1132                case SOCK_DGRAM:
1133                        if (default_protocol_dgram(protocol))
1134                                return SECCLASS_UDP_SOCKET;
1135                        else
1136                                return SECCLASS_RAWIP_SOCKET;
1137                case SOCK_DCCP:
1138                        return SECCLASS_DCCP_SOCKET;
1139                default:
1140                        return SECCLASS_RAWIP_SOCKET;
1141                }
1142                break;
1143        case PF_NETLINK:
1144                switch (protocol) {
1145                case NETLINK_ROUTE:
1146                        return SECCLASS_NETLINK_ROUTE_SOCKET;
1147                case NETLINK_FIREWALL:
1148                        return SECCLASS_NETLINK_FIREWALL_SOCKET;
1149                case NETLINK_SOCK_DIAG:
1150                        return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1151                case NETLINK_NFLOG:
1152                        return SECCLASS_NETLINK_NFLOG_SOCKET;
1153                case NETLINK_XFRM:
1154                        return SECCLASS_NETLINK_XFRM_SOCKET;
1155                case NETLINK_SELINUX:
1156                        return SECCLASS_NETLINK_SELINUX_SOCKET;
1157                case NETLINK_AUDIT:
1158                        return SECCLASS_NETLINK_AUDIT_SOCKET;
1159                case NETLINK_IP6_FW:
1160                        return SECCLASS_NETLINK_IP6FW_SOCKET;
1161                case NETLINK_DNRTMSG:
1162                        return SECCLASS_NETLINK_DNRT_SOCKET;
1163                case NETLINK_KOBJECT_UEVENT:
1164                        return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1165                default:
1166                        return SECCLASS_NETLINK_SOCKET;
1167                }
1168        case PF_PACKET:
1169                return SECCLASS_PACKET_SOCKET;
1170        case PF_KEY:
1171                return SECCLASS_KEY_SOCKET;
1172        case PF_APPLETALK:
1173                return SECCLASS_APPLETALK_SOCKET;
1174        }
1175
1176        return SECCLASS_SOCKET;
1177}
1178
1179#ifdef CONFIG_PROC_FS
1180static int selinux_proc_get_sid(struct dentry *dentry,
1181                                u16 tclass,
1182                                u32 *sid)
1183{
1184        int rc;
1185        char *buffer, *path;
1186
1187        buffer = (char *)__get_free_page(GFP_KERNEL);
1188        if (!buffer)
1189                return -ENOMEM;
1190
1191        path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1192        if (IS_ERR(path))
1193                rc = PTR_ERR(path);
1194        else {
1195                /* each process gets a /proc/PID/ entry. Strip off the
1196                 * PID part to get a valid selinux labeling.
1197                 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1198                while (path[1] >= '0' && path[1] <= '9') {
1199                        path[1] = '/';
1200                        path++;
1201                }
1202                rc = security_genfs_sid("proc", path, tclass, sid);
1203        }
1204        free_page((unsigned long)buffer);
1205        return rc;
1206}
1207#else
1208static int selinux_proc_get_sid(struct dentry *dentry,
1209                                u16 tclass,
1210                                u32 *sid)
1211{
1212        return -EINVAL;
1213}
1214#endif
1215
1216/* The inode's security attributes must be initialized before first use. */
1217static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1218{
1219        struct superblock_security_struct *sbsec = NULL;
1220        struct inode_security_struct *isec = inode->i_security;
1221        u32 sid;
1222        struct dentry *dentry;
1223#define INITCONTEXTLEN 255
1224        char *context = NULL;
1225        unsigned len = 0;
1226        int rc = 0;
1227
1228        if (isec->initialized)
1229                goto out;
1230
1231        mutex_lock(&isec->lock);
1232        if (isec->initialized)
1233                goto out_unlock;
1234
1235        sbsec = inode->i_sb->s_security;
1236        if (!(sbsec->flags & SE_SBINITIALIZED)) {
1237                /* Defer initialization until selinux_complete_init,
1238                   after the initial policy is loaded and the security
1239                   server is ready to handle calls. */
1240                spin_lock(&sbsec->isec_lock);
1241                if (list_empty(&isec->list))
1242                        list_add(&isec->list, &sbsec->isec_head);
1243                spin_unlock(&sbsec->isec_lock);
1244                goto out_unlock;
1245        }
1246
1247        switch (sbsec->behavior) {
1248        case SECURITY_FS_USE_NATIVE:
1249                break;
1250        case SECURITY_FS_USE_XATTR:
1251                if (!inode->i_op->getxattr) {
1252                        isec->sid = sbsec->def_sid;
1253                        break;
1254                }
1255
1256                /* Need a dentry, since the xattr API requires one.
1257                   Life would be simpler if we could just pass the inode. */
1258                if (opt_dentry) {
1259                        /* Called from d_instantiate or d_splice_alias. */
1260                        dentry = dget(opt_dentry);
1261                } else {
1262                        /* Called from selinux_complete_init, try to find a dentry. */
1263                        dentry = d_find_alias(inode);
1264                }
1265                if (!dentry) {
1266                        /*
1267                         * this is can be hit on boot when a file is accessed
1268                         * before the policy is loaded.  When we load policy we
1269                         * may find inodes that have no dentry on the
1270                         * sbsec->isec_head list.  No reason to complain as these
1271                         * will get fixed up the next time we go through
1272                         * inode_doinit with a dentry, before these inodes could
1273                         * be used again by userspace.
1274                         */
1275                        goto out_unlock;
1276                }
1277
1278                len = INITCONTEXTLEN;
1279                context = kmalloc(len+1, GFP_NOFS);
1280                if (!context) {
1281                        rc = -ENOMEM;
1282                        dput(dentry);
1283                        goto out_unlock;
1284                }
1285                context[len] = '\0';
1286                rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1287                                           context, len);
1288                if (rc == -ERANGE) {
1289                        kfree(context);
1290
1291                        /* Need a larger buffer.  Query for the right size. */
1292                        rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1293                                                   NULL, 0);
1294                        if (rc < 0) {
1295                                dput(dentry);
1296                                goto out_unlock;
1297                        }
1298                        len = rc;
1299                        context = kmalloc(len+1, GFP_NOFS);
1300                        if (!context) {
1301                                rc = -ENOMEM;
1302                                dput(dentry);
1303                                goto out_unlock;
1304                        }
1305                        context[len] = '\0';
1306                        rc = inode->i_op->getxattr(dentry,
1307                                                   XATTR_NAME_SELINUX,
1308                                                   context, len);
1309                }
1310                dput(dentry);
1311                if (rc < 0) {
1312                        if (rc != -ENODATA) {
1313                                printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1314                                       "%d for dev=%s ino=%ld\n", __func__,
1315                                       -rc, inode->i_sb->s_id, inode->i_ino);
1316                                kfree(context);
1317                                goto out_unlock;
1318                        }
1319                        /* Map ENODATA to the default file SID */
1320                        sid = sbsec->def_sid;
1321                        rc = 0;
1322                } else {
1323                        rc = security_context_to_sid_default(context, rc, &sid,
1324                                                             sbsec->def_sid,
1325                                                             GFP_NOFS);
1326                        if (rc) {
1327                                char *dev = inode->i_sb->s_id;
1328                                unsigned long ino = inode->i_ino;
1329
1330                                if (rc == -EINVAL) {
1331                                        if (printk_ratelimit())
1332                                                printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1333                                                        "context=%s.  This indicates you may need to relabel the inode or the "
1334                                                        "filesystem in question.\n", ino, dev, context);
1335                                } else {
1336                                        printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1337                                               "returned %d for dev=%s ino=%ld\n",
1338                                               __func__, context, -rc, dev, ino);
1339                                }
1340                                kfree(context);
1341                                /* Leave with the unlabeled SID */
1342                                rc = 0;
1343                                break;
1344                        }
1345                }
1346                kfree(context);
1347                isec->sid = sid;
1348                break;
1349        case SECURITY_FS_USE_TASK:
1350                isec->sid = isec->task_sid;
1351                break;
1352        case SECURITY_FS_USE_TRANS:
1353                /* Default to the fs SID. */
1354                isec->sid = sbsec->sid;
1355
1356                /* Try to obtain a transition SID. */
1357                isec->sclass = inode_mode_to_security_class(inode->i_mode);
1358                rc = security_transition_sid(isec->task_sid, sbsec->sid,
1359                                             isec->sclass, NULL, &sid);
1360                if (rc)
1361                        goto out_unlock;
1362                isec->sid = sid;
1363                break;
1364        case SECURITY_FS_USE_MNTPOINT:
1365                isec->sid = sbsec->mntpoint_sid;
1366                break;
1367        default:
1368                /* Default to the fs superblock SID. */
1369                isec->sid = sbsec->sid;
1370
1371                if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372                        if (opt_dentry) {
1373                                isec->sclass = inode_mode_to_security_class(inode->i_mode);
1374                                rc = selinux_proc_get_sid(opt_dentry,
1375                                                          isec->sclass,
1376                                                          &sid);
1377                                if (rc)
1378                                        goto out_unlock;
1379                                isec->sid = sid;
1380                        }
1381                }
1382                break;
1383        }
1384
1385        isec->initialized = 1;
1386
1387out_unlock:
1388        mutex_unlock(&isec->lock);
1389out:
1390        if (isec->sclass == SECCLASS_FILE)
1391                isec->sclass = inode_mode_to_security_class(inode->i_mode);
1392        return rc;
1393}
1394
1395/* Convert a Linux signal to an access vector. */
1396static inline u32 signal_to_av(int sig)
1397{
1398        u32 perm = 0;
1399
1400        switch (sig) {
1401        case SIGCHLD:
1402                /* Commonly granted from child to parent. */
1403                perm = PROCESS__SIGCHLD;
1404                break;
1405        case SIGKILL:
1406                /* Cannot be caught or ignored */
1407                perm = PROCESS__SIGKILL;
1408                break;
1409        case SIGSTOP:
1410                /* Cannot be caught or ignored */
1411                perm = PROCESS__SIGSTOP;
1412                break;
1413        default:
1414                /* All other signals. */
1415                perm = PROCESS__SIGNAL;
1416                break;
1417        }
1418
1419        return perm;
1420}
1421
1422/*
1423 * Check permission between a pair of credentials
1424 * fork check, ptrace check, etc.
1425 */
1426static int cred_has_perm(const struct cred *actor,
1427                         const struct cred *target,
1428                         u32 perms)
1429{
1430        u32 asid = cred_sid(actor), tsid = cred_sid(target);
1431
1432        return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1433}
1434
1435/*
1436 * Check permission between a pair of tasks, e.g. signal checks,
1437 * fork check, ptrace check, etc.
1438 * tsk1 is the actor and tsk2 is the target
1439 * - this uses the default subjective creds of tsk1
1440 */
1441static int task_has_perm(const struct task_struct *tsk1,
1442                         const struct task_struct *tsk2,
1443                         u32 perms)
1444{
1445        const struct task_security_struct *__tsec1, *__tsec2;
1446        u32 sid1, sid2;
1447
1448        rcu_read_lock();
1449        __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1450        __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1451        rcu_read_unlock();
1452        return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1453}
1454
1455/*
1456 * Check permission between current and another task, e.g. signal checks,
1457 * fork check, ptrace check, etc.
1458 * current is the actor and tsk2 is the target
1459 * - this uses current's subjective creds
1460 */
1461static int current_has_perm(const struct task_struct *tsk,
1462                            u32 perms)
1463{
1464        u32 sid, tsid;
1465
1466        sid = current_sid();
1467        tsid = task_sid(tsk);
1468        return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1469}
1470
1471#if CAP_LAST_CAP > 63
1472#error Fix SELinux to handle capabilities > 63.
1473#endif
1474
1475/* Check whether a task is allowed to use a capability. */
1476static int cred_has_capability(const struct cred *cred,
1477                               int cap, int audit)
1478{
1479        struct common_audit_data ad;
1480        struct av_decision avd;
1481        u16 sclass;
1482        u32 sid = cred_sid(cred);
1483        u32 av = CAP_TO_MASK(cap);
1484        int rc;
1485
1486        ad.type = LSM_AUDIT_DATA_CAP;
1487        ad.u.cap = cap;
1488
1489        switch (CAP_TO_INDEX(cap)) {
1490        case 0:
1491                sclass = SECCLASS_CAPABILITY;
1492                break;
1493        case 1:
1494                sclass = SECCLASS_CAPABILITY2;
1495                break;
1496        default:
1497                printk(KERN_ERR
1498                       "SELinux:  out of range capability %d\n", cap);
1499                BUG();
1500                return -EINVAL;
1501        }
1502
1503        rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1504        if (audit == SECURITY_CAP_AUDIT) {
1505                int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1506                if (rc2)
1507                        return rc2;
1508        }
1509        return rc;
1510}
1511
1512/* Check whether a task is allowed to use a system operation. */
1513static int task_has_system(struct task_struct *tsk,
1514                           u32 perms)
1515{
1516        u32 sid = task_sid(tsk);
1517
1518        return avc_has_perm(sid, SECINITSID_KERNEL,
1519                            SECCLASS_SYSTEM, perms, NULL);
1520}
1521
1522/* Check whether a task has a particular permission to an inode.
1523   The 'adp' parameter is optional and allows other audit
1524   data to be passed (e.g. the dentry). */
1525static int inode_has_perm(const struct cred *cred,
1526                          struct inode *inode,
1527                          u32 perms,
1528                          struct common_audit_data *adp)
1529{
1530        struct inode_security_struct *isec;
1531        u32 sid;
1532
1533        validate_creds(cred);
1534
1535        if (unlikely(IS_PRIVATE(inode)))
1536                return 0;
1537
1538        sid = cred_sid(cred);
1539        isec = inode->i_security;
1540
1541        return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1542}
1543
1544/* Same as inode_has_perm, but pass explicit audit data containing
1545   the dentry to help the auditing code to more easily generate the
1546   pathname if needed. */
1547static inline int dentry_has_perm(const struct cred *cred,
1548                                  struct dentry *dentry,
1549                                  u32 av)
1550{
1551        struct inode *inode = dentry->d_inode;
1552        struct common_audit_data ad;
1553
1554        ad.type = LSM_AUDIT_DATA_DENTRY;
1555        ad.u.dentry = dentry;
1556        return inode_has_perm(cred, inode, av, &ad);
1557}
1558
1559/* Same as inode_has_perm, but pass explicit audit data containing
1560   the path to help the auditing code to more easily generate the
1561   pathname if needed. */
1562static inline int path_has_perm(const struct cred *cred,
1563                                struct path *path,
1564                                u32 av)
1565{
1566        struct inode *inode = path->dentry->d_inode;
1567        struct common_audit_data ad;
1568
1569        ad.type = LSM_AUDIT_DATA_PATH;
1570        ad.u.path = *path;
1571        return inode_has_perm(cred, inode, av, &ad);
1572}
1573
1574/* Same as path_has_perm, but uses the inode from the file struct. */
1575static inline int file_path_has_perm(const struct cred *cred,
1576                                     struct file *file,
1577                                     u32 av)
1578{
1579        struct common_audit_data ad;
1580
1581        ad.type = LSM_AUDIT_DATA_PATH;
1582        ad.u.path = file->f_path;
1583        return inode_has_perm(cred, file_inode(file), av, &ad);
1584}
1585
1586/* Check whether a task can use an open file descriptor to
1587   access an inode in a given way.  Check access to the
1588   descriptor itself, and then use dentry_has_perm to
1589   check a particular permission to the file.
1590   Access to the descriptor is implicitly granted if it
1591   has the same SID as the process.  If av is zero, then
1592   access to the file is not checked, e.g. for cases
1593   where only the descriptor is affected like seek. */
1594static int file_has_perm(const struct cred *cred,
1595                         struct file *file,
1596                         u32 av)
1597{
1598        struct file_security_struct *fsec = file->f_security;
1599        struct inode *inode = file_inode(file);
1600        struct common_audit_data ad;
1601        u32 sid = cred_sid(cred);
1602        int rc;
1603
1604        ad.type = LSM_AUDIT_DATA_PATH;
1605        ad.u.path = file->f_path;
1606
1607        if (sid != fsec->sid) {
1608                rc = avc_has_perm(sid, fsec->sid,
1609                                  SECCLASS_FD,
1610                                  FD__USE,
1611                                  &ad);
1612                if (rc)
1613                        goto out;
1614        }
1615
1616        /* av is zero if only checking access to the descriptor. */
1617        rc = 0;
1618        if (av)
1619                rc = inode_has_perm(cred, inode, av, &ad);
1620
1621out:
1622        return rc;
1623}
1624
1625/* Check whether a task can create a file. */
1626static int may_create(struct inode *dir,
1627                      struct dentry *dentry,
1628                      u16 tclass)
1629{
1630        const struct task_security_struct *tsec = current_security();
1631        struct inode_security_struct *dsec;
1632        struct superblock_security_struct *sbsec;
1633        u32 sid, newsid;
1634        struct common_audit_data ad;
1635        int rc;
1636
1637        dsec = dir->i_security;
1638        sbsec = dir->i_sb->s_security;
1639
1640        sid = tsec->sid;
1641        newsid = tsec->create_sid;
1642
1643        ad.type = LSM_AUDIT_DATA_DENTRY;
1644        ad.u.dentry = dentry;
1645
1646        rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1647                          DIR__ADD_NAME | DIR__SEARCH,
1648                          &ad);
1649        if (rc)
1650                return rc;
1651
1652        if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1653                rc = security_transition_sid(sid, dsec->sid, tclass,
1654                                             &dentry->d_name, &newsid);
1655                if (rc)
1656                        return rc;
1657        }
1658
1659        rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1660        if (rc)
1661                return rc;
1662
1663        return avc_has_perm(newsid, sbsec->sid,
1664                            SECCLASS_FILESYSTEM,
1665                            FILESYSTEM__ASSOCIATE, &ad);
1666}
1667
1668/* Check whether a task can create a key. */
1669static int may_create_key(u32 ksid,
1670                          struct task_struct *ctx)
1671{
1672        u32 sid = task_sid(ctx);
1673
1674        return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1675}
1676
1677#define MAY_LINK        0
1678#define MAY_UNLINK      1
1679#define MAY_RMDIR       2
1680
1681/* Check whether a task can link, unlink, or rmdir a file/directory. */
1682static int may_link(struct inode *dir,
1683                    struct dentry *dentry,
1684                    int kind)
1685
1686{
1687        struct inode_security_struct *dsec, *isec;
1688        struct common_audit_data ad;
1689        u32 sid = current_sid();
1690        u32 av;
1691        int rc;
1692
1693        dsec = dir->i_security;
1694        isec = dentry->d_inode->i_security;
1695
1696        ad.type = LSM_AUDIT_DATA_DENTRY;
1697        ad.u.dentry = dentry;
1698
1699        av = DIR__SEARCH;
1700        av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1701        rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1702        if (rc)
1703                return rc;
1704
1705        switch (kind) {
1706        case MAY_LINK:
1707                av = FILE__LINK;
1708                break;
1709        case MAY_UNLINK:
1710                av = FILE__UNLINK;
1711                break;
1712        case MAY_RMDIR:
1713                av = DIR__RMDIR;
1714                break;
1715        default:
1716                printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1717                        __func__, kind);
1718                return 0;
1719        }
1720
1721        rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1722        return rc;
1723}
1724
1725static inline int may_rename(struct inode *old_dir,
1726                             struct dentry *old_dentry,
1727                             struct inode *new_dir,
1728                             struct dentry *new_dentry)
1729{
1730        struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1731        struct common_audit_data ad;
1732        u32 sid = current_sid();
1733        u32 av;
1734        int old_is_dir, new_is_dir;
1735        int rc;
1736
1737        old_dsec = old_dir->i_security;
1738        old_isec = old_dentry->d_inode->i_security;
1739        old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1740        new_dsec = new_dir->i_security;
1741
1742        ad.type = LSM_AUDIT_DATA_DENTRY;
1743
1744        ad.u.dentry = old_dentry;
1745        rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1746                          DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1747        if (rc)
1748                return rc;
1749        rc = avc_has_perm(sid, old_isec->sid,
1750                          old_isec->sclass, FILE__RENAME, &ad);
1751        if (rc)
1752                return rc;
1753        if (old_is_dir && new_dir != old_dir) {
1754                rc = avc_has_perm(sid, old_isec->sid,
1755                                  old_isec->sclass, DIR__REPARENT, &ad);
1756                if (rc)
1757                        return rc;
1758        }
1759
1760        ad.u.dentry = new_dentry;
1761        av = DIR__ADD_NAME | DIR__SEARCH;
1762        if (new_dentry->d_inode)
1763                av |= DIR__REMOVE_NAME;
1764        rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1765        if (rc)
1766                return rc;
1767        if (new_dentry->d_inode) {
1768                new_isec = new_dentry->d_inode->i_security;
1769                new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1770                rc = avc_has_perm(sid, new_isec->sid,
1771                                  new_isec->sclass,
1772                                  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1773                if (rc)
1774                        return rc;
1775        }
1776
1777        return 0;
1778}
1779
1780/* Check whether a task can perform a filesystem operation. */
1781static int superblock_has_perm(const struct cred *cred,
1782                               struct super_block *sb,
1783                               u32 perms,
1784                               struct common_audit_data *ad)
1785{
1786        struct superblock_security_struct *sbsec;
1787        u32 sid = cred_sid(cred);
1788
1789        sbsec = sb->s_security;
1790        return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1791}
1792
1793/* Convert a Linux mode and permission mask to an access vector. */
1794static inline u32 file_mask_to_av(int mode, int mask)
1795{
1796        u32 av = 0;
1797
1798        if (!S_ISDIR(mode)) {
1799                if (mask & MAY_EXEC)
1800                        av |= FILE__EXECUTE;
1801                if (mask & MAY_READ)
1802                        av |= FILE__READ;
1803
1804                if (mask & MAY_APPEND)
1805                        av |= FILE__APPEND;
1806                else if (mask & MAY_WRITE)
1807                        av |= FILE__WRITE;
1808
1809        } else {
1810                if (mask & MAY_EXEC)
1811                        av |= DIR__SEARCH;
1812                if (mask & MAY_WRITE)
1813                        av |= DIR__WRITE;
1814                if (mask & MAY_READ)
1815                        av |= DIR__READ;
1816        }
1817
1818        return av;
1819}
1820
1821/* Convert a Linux file to an access vector. */
1822static inline u32 file_to_av(struct file *file)
1823{
1824        u32 av = 0;
1825
1826        if (file->f_mode & FMODE_READ)
1827                av |= FILE__READ;
1828        if (file->f_mode & FMODE_WRITE) {
1829                if (file->f_flags & O_APPEND)
1830                        av |= FILE__APPEND;
1831                else
1832                        av |= FILE__WRITE;
1833        }
1834        if (!av) {
1835                /*
1836                 * Special file opened with flags 3 for ioctl-only use.
1837                 */
1838                av = FILE__IOCTL;
1839        }
1840
1841        return av;
1842}
1843
1844/*
1845 * Convert a file to an access vector and include the correct open
1846 * open permission.
1847 */
1848static inline u32 open_file_to_av(struct file *file)
1849{
1850        u32 av = file_to_av(file);
1851
1852        if (selinux_policycap_openperm)
1853                av |= FILE__OPEN;
1854
1855        return av;
1856}
1857
1858/* Hook functions begin here. */
1859
1860static int selinux_ptrace_access_check(struct task_struct *child,
1861                                     unsigned int mode)
1862{
1863        int rc;
1864
1865        rc = cap_ptrace_access_check(child, mode);
1866        if (rc)
1867                return rc;
1868
1869        if (mode & PTRACE_MODE_READ) {
1870                u32 sid = current_sid();
1871                u32 csid = task_sid(child);
1872                return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1873        }
1874
1875        return current_has_perm(child, PROCESS__PTRACE);
1876}
1877
1878static int selinux_ptrace_traceme(struct task_struct *parent)
1879{
1880        int rc;
1881
1882        rc = cap_ptrace_traceme(parent);
1883        if (rc)
1884                return rc;
1885
1886        return task_has_perm(parent, current, PROCESS__PTRACE);
1887}
1888
1889static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1890                          kernel_cap_t *inheritable, kernel_cap_t *permitted)
1891{
1892        int error;
1893
1894        error = current_has_perm(target, PROCESS__GETCAP);
1895        if (error)
1896                return error;
1897
1898        return cap_capget(target, effective, inheritable, permitted);
1899}
1900
1901static int selinux_capset(struct cred *new, const struct cred *old,
1902                          const kernel_cap_t *effective,
1903                          const kernel_cap_t *inheritable,
1904                          const kernel_cap_t *permitted)
1905{
1906        int error;
1907
1908        error = cap_capset(new, old,
1909                                      effective, inheritable, permitted);
1910        if (error)
1911                return error;
1912
1913        return cred_has_perm(old, new, PROCESS__SETCAP);
1914}
1915
1916/*
1917 * (This comment used to live with the selinux_task_setuid hook,
1918 * which was removed).
1919 *
1920 * Since setuid only affects the current process, and since the SELinux
1921 * controls are not based on the Linux identity attributes, SELinux does not
1922 * need to control this operation.  However, SELinux does control the use of
1923 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1924 */
1925
1926static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1927                           int cap, int audit)
1928{
1929        int rc;
1930
1931        rc = cap_capable(cred, ns, cap, audit);
1932        if (rc)
1933                return rc;
1934
1935        return cred_has_capability(cred, cap, audit);
1936}
1937
1938static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1939{
1940        const struct cred *cred = current_cred();
1941        int rc = 0;
1942
1943        if (!sb)
1944                return 0;
1945
1946        switch (cmds) {
1947        case Q_SYNC:
1948        case Q_QUOTAON:
1949        case Q_QUOTAOFF:
1950        case Q_SETINFO:
1951        case Q_SETQUOTA:
1952                rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1953                break;
1954        case Q_GETFMT:
1955        case Q_GETINFO:
1956        case Q_GETQUOTA:
1957                rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1958                break;
1959        default:
1960                rc = 0;  /* let the kernel handle invalid cmds */
1961                break;
1962        }
1963        return rc;
1964}
1965
1966static int selinux_quota_on(struct dentry *dentry)
1967{
1968        const struct cred *cred = current_cred();
1969
1970        return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1971}
1972
1973static int selinux_syslog(int type)
1974{
1975        int rc;
1976
1977        switch (type) {
1978        case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1979        case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1980                rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1981                break;
1982        case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1983        case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1984        /* Set level of messages printed to console */
1985        case SYSLOG_ACTION_CONSOLE_LEVEL:
1986                rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1987                break;
1988        case SYSLOG_ACTION_CLOSE:       /* Close log */
1989        case SYSLOG_ACTION_OPEN:        /* Open log */
1990        case SYSLOG_ACTION_READ:        /* Read from log */
1991        case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1992        case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
1993        default:
1994                rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1995                break;
1996        }
1997        return rc;
1998}
1999
2000/*
2001 * Check that a process has enough memory to allocate a new virtual
2002 * mapping. 0 means there is enough memory for the allocation to
2003 * succeed and -ENOMEM implies there is not.
2004 *
2005 * Do not audit the selinux permission check, as this is applied to all
2006 * processes that allocate mappings.
2007 */
2008static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2009{
2010        int rc, cap_sys_admin = 0;
2011
2012        rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2013                             SECURITY_CAP_NOAUDIT);
2014        if (rc == 0)
2015                cap_sys_admin = 1;
2016
2017        return __vm_enough_memory(mm, pages, cap_sys_admin);
2018}
2019
2020/* binprm security operations */
2021
2022static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2023{
2024        const struct task_security_struct *old_tsec;
2025        struct task_security_struct *new_tsec;
2026        struct inode_security_struct *isec;
2027        struct common_audit_data ad;
2028        struct inode *inode = file_inode(bprm->file);
2029        int rc;
2030
2031        rc = cap_bprm_set_creds(bprm);
2032        if (rc)
2033                return rc;
2034
2035        /* SELinux context only depends on initial program or script and not
2036         * the script interpreter */
2037        if (bprm->cred_prepared)
2038                return 0;
2039
2040        old_tsec = current_security();
2041        new_tsec = bprm->cred->security;
2042        isec = inode->i_security;
2043
2044        /* Default to the current task SID. */
2045        new_tsec->sid = old_tsec->sid;
2046        new_tsec->osid = old_tsec->sid;
2047
2048        /* Reset fs, key, and sock SIDs on execve. */
2049        new_tsec->create_sid = 0;
2050        new_tsec->keycreate_sid = 0;
2051        new_tsec->sockcreate_sid = 0;
2052
2053        if (old_tsec->exec_sid) {
2054                new_tsec->sid = old_tsec->exec_sid;
2055                /* Reset exec SID on execve. */
2056                new_tsec->exec_sid = 0;
2057
2058                /*
2059                 * Minimize confusion: if no_new_privs and a transition is
2060                 * explicitly requested, then fail the exec.
2061                 */
2062                if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2063                        return -EPERM;
2064        } else {
2065                /* Check for a default transition on this program. */
2066                rc = security_transition_sid(old_tsec->sid, isec->sid,
2067                                             SECCLASS_PROCESS, NULL,
2068                                             &new_tsec->sid);
2069                if (rc)
2070                        return rc;
2071        }
2072
2073        ad.type = LSM_AUDIT_DATA_PATH;
2074        ad.u.path = bprm->file->f_path;
2075
2076        if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2077            (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2078                new_tsec->sid = old_tsec->sid;
2079
2080        if (new_tsec->sid == old_tsec->sid) {
2081                rc = avc_has_perm(old_tsec->sid, isec->sid,
2082                                  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2083                if (rc)
2084                        return rc;
2085        } else {
2086                /* Check permissions for the transition. */
2087                rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2088                                  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2089                if (rc)
2090                        return rc;
2091
2092                rc = avc_has_perm(new_tsec->sid, isec->sid,
2093                                  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2094                if (rc)
2095                        return rc;
2096
2097                /* Check for shared state */
2098                if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2099                        rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2100                                          SECCLASS_PROCESS, PROCESS__SHARE,
2101                                          NULL);
2102                        if (rc)
2103                                return -EPERM;
2104                }
2105
2106                /* Make sure that anyone attempting to ptrace over a task that
2107                 * changes its SID has the appropriate permit */
2108                if (bprm->unsafe &
2109                    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2110                        struct task_struct *tracer;
2111                        struct task_security_struct *sec;
2112                        u32 ptsid = 0;
2113
2114                        rcu_read_lock();
2115                        tracer = ptrace_parent(current);
2116                        if (likely(tracer != NULL)) {
2117                                sec = __task_cred(tracer)->security;
2118                                ptsid = sec->sid;
2119                        }
2120                        rcu_read_unlock();
2121
2122                        if (ptsid != 0) {
2123                                rc = avc_has_perm(ptsid, new_tsec->sid,
2124                                                  SECCLASS_PROCESS,
2125                                                  PROCESS__PTRACE, NULL);
2126                                if (rc)
2127                                        return -EPERM;
2128                        }
2129                }
2130
2131                /* Clear any possibly unsafe personality bits on exec: */
2132                bprm->per_clear |= PER_CLEAR_ON_SETID;
2133        }
2134
2135        return 0;
2136}
2137
2138static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2139{
2140        const struct task_security_struct *tsec = current_security();
2141        u32 sid, osid;
2142        int atsecure = 0;
2143
2144        sid = tsec->sid;
2145        osid = tsec->osid;
2146
2147        if (osid != sid) {
2148                /* Enable secure mode for SIDs transitions unless
2149                   the noatsecure permission is granted between
2150                   the two SIDs, i.e. ahp returns 0. */
2151                atsecure = avc_has_perm(osid, sid,
2152                                        SECCLASS_PROCESS,
2153                                        PROCESS__NOATSECURE, NULL);
2154        }
2155
2156        return (atsecure || cap_bprm_secureexec(bprm));
2157}
2158
2159static int match_file(const void *p, struct file *file, unsigned fd)
2160{
2161        return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2162}
2163
2164/* Derived from fs/exec.c:flush_old_files. */
2165static inline void flush_unauthorized_files(const struct cred *cred,
2166                                            struct files_struct *files)
2167{
2168        struct file *file, *devnull = NULL;
2169        struct tty_struct *tty;
2170        int drop_tty = 0;
2171        unsigned n;
2172
2173        tty = get_current_tty();
2174        if (tty) {
2175                spin_lock(&tty_files_lock);
2176                if (!list_empty(&tty->tty_files)) {
2177                        struct tty_file_private *file_priv;
2178
2179                        /* Revalidate access to controlling tty.
2180                           Use file_path_has_perm on the tty path directly
2181                           rather than using file_has_perm, as this particular
2182                           open file may belong to another process and we are
2183                           only interested in the inode-based check here. */
2184                        file_priv = list_first_entry(&tty->tty_files,
2185                                                struct tty_file_private, list);
2186                        file = file_priv->file;
2187                        if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2188                                drop_tty = 1;
2189                }
2190                spin_unlock(&tty_files_lock);
2191                tty_kref_put(tty);
2192        }
2193        /* Reset controlling tty. */
2194        if (drop_tty)
2195                no_tty();
2196
2197        /* Revalidate access to inherited open files. */
2198        n = iterate_fd(files, 0, match_file, cred);
2199        if (!n) /* none found? */
2200                return;
2201
2202        devnull = dentry_open(&selinux_null, O_RDWR, cred);
2203        if (IS_ERR(devnull))
2204                devnull = NULL;
2205        /* replace all the matching ones with this */
2206        do {
2207                replace_fd(n - 1, devnull, 0);
2208        } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2209        if (devnull)
2210                fput(devnull);
2211}
2212
2213/*
2214 * Prepare a process for imminent new credential changes due to exec
2215 */
2216static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2217{
2218        struct task_security_struct *new_tsec;
2219        struct rlimit *rlim, *initrlim;
2220        int rc, i;
2221
2222        new_tsec = bprm->cred->security;
2223        if (new_tsec->sid == new_tsec->osid)
2224                return;
2225
2226        /* Close files for which the new task SID is not authorized. */
2227        flush_unauthorized_files(bprm->cred, current->files);
2228
2229        /* Always clear parent death signal on SID transitions. */
2230        current->pdeath_signal = 0;
2231
2232        /* Check whether the new SID can inherit resource limits from the old
2233         * SID.  If not, reset all soft limits to the lower of the current
2234         * task's hard limit and the init task's soft limit.
2235         *
2236         * Note that the setting of hard limits (even to lower them) can be
2237         * controlled by the setrlimit check.  The inclusion of the init task's
2238         * soft limit into the computation is to avoid resetting soft limits
2239         * higher than the default soft limit for cases where the default is
2240         * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2241         */
2242        rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2243                          PROCESS__RLIMITINH, NULL);
2244        if (rc) {
2245                /* protect against do_prlimit() */
2246                task_lock(current);
2247                for (i = 0; i < RLIM_NLIMITS; i++) {
2248                        rlim = current->signal->rlim + i;
2249                        initrlim = init_task.signal->rlim + i;
2250                        rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2251                }
2252                task_unlock(current);
2253                update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2254        }
2255}
2256
2257/*
2258 * Clean up the process immediately after the installation of new credentials
2259 * due to exec
2260 */
2261static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2262{
2263        const struct task_security_struct *tsec = current_security();
2264        struct itimerval itimer;
2265        u32 osid, sid;
2266        int rc, i;
2267
2268        osid = tsec->osid;
2269        sid = tsec->sid;
2270
2271        if (sid == osid)
2272                return;
2273
2274        /* Check whether the new SID can inherit signal state from the old SID.
2275         * If not, clear itimers to avoid subsequent signal generation and
2276         * flush and unblock signals.
2277         *
2278         * This must occur _after_ the task SID has been updated so that any
2279         * kill done after the flush will be checked against the new SID.
2280         */
2281        rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2282        if (rc) {
2283                memset(&itimer, 0, sizeof itimer);
2284                for (i = 0; i < 3; i++)
2285                        do_setitimer(i, &itimer, NULL);
2286                spin_lock_irq(&current->sighand->siglock);
2287                if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2288                        __flush_signals(current);
2289                        flush_signal_handlers(current, 1);
2290                        sigemptyset(&current->blocked);
2291                }
2292                spin_unlock_irq(&current->sighand->siglock);
2293        }
2294
2295        /* Wake up the parent if it is waiting so that it can recheck
2296         * wait permission to the new task SID. */
2297        read_lock(&tasklist_lock);
2298        __wake_up_parent(current, current->real_parent);
2299        read_unlock(&tasklist_lock);
2300}
2301
2302/* superblock security operations */
2303
2304static int selinux_sb_alloc_security(struct super_block *sb)
2305{
2306        return superblock_alloc_security(sb);
2307}
2308
2309static void selinux_sb_free_security(struct super_block *sb)
2310{
2311        superblock_free_security(sb);
2312}
2313
2314static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2315{
2316        if (plen > olen)
2317                return 0;
2318
2319        return !memcmp(prefix, option, plen);
2320}
2321
2322static inline int selinux_option(char *option, int len)
2323{
2324        return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2325                match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2326                match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2327                match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2328                match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2329}
2330
2331static inline void take_option(char **to, char *from, int *first, int len)
2332{
2333        if (!*first) {
2334                **to = ',';
2335                *to += 1;
2336        } else
2337                *first = 0;
2338        memcpy(*to, from, len);
2339        *to += len;
2340}
2341
2342static inline void take_selinux_option(char **to, char *from, int *first,
2343                                       int len)
2344{
2345        int current_size = 0;
2346
2347        if (!*first) {
2348                **to = '|';
2349                *to += 1;
2350        } else
2351                *first = 0;
2352
2353        while (current_size < len) {
2354                if (*from != '"') {
2355                        **to = *from;
2356                        *to += 1;
2357                }
2358                from += 1;
2359                current_size += 1;
2360        }
2361}
2362
2363static int selinux_sb_copy_data(char *orig, char *copy)
2364{
2365        int fnosec, fsec, rc = 0;
2366        char *in_save, *in_curr, *in_end;
2367        char *sec_curr, *nosec_save, *nosec;
2368        int open_quote = 0;
2369
2370        in_curr = orig;
2371        sec_curr = copy;
2372
2373        nosec = (char *)get_zeroed_page(GFP_KERNEL);
2374        if (!nosec) {
2375                rc = -ENOMEM;
2376                goto out;
2377        }
2378
2379        nosec_save = nosec;
2380        fnosec = fsec = 1;
2381        in_save = in_end = orig;
2382
2383        do {
2384                if (*in_end == '"')
2385                        open_quote = !open_quote;
2386                if ((*in_end == ',' && open_quote == 0) ||
2387                                *in_end == '\0') {
2388                        int len = in_end - in_curr;
2389
2390                        if (selinux_option(in_curr, len))
2391                                take_selinux_option(&sec_curr, in_curr, &fsec, len);
2392                        else
2393                                take_option(&nosec, in_curr, &fnosec, len);
2394
2395                        in_curr = in_end + 1;
2396                }
2397        } while (*in_end++);
2398
2399        strcpy(in_save, nosec_save);
2400        free_page((unsigned long)nosec_save);
2401out:
2402        return rc;
2403}
2404
2405static int selinux_sb_remount(struct super_block *sb, void *data)
2406{
2407        int rc, i, *flags;
2408        struct security_mnt_opts opts;
2409        char *secdata, **mount_options;
2410        struct superblock_security_struct *sbsec = sb->s_security;
2411
2412        if (!(sbsec->flags & SE_SBINITIALIZED))
2413                return 0;
2414
2415        if (!data)
2416                return 0;
2417
2418        if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2419                return 0;
2420
2421        security_init_mnt_opts(&opts);
2422        secdata = alloc_secdata();
2423        if (!secdata)
2424                return -ENOMEM;
2425        rc = selinux_sb_copy_data(data, secdata);
2426        if (rc)
2427                goto out_free_secdata;
2428
2429        rc = selinux_parse_opts_str(secdata, &opts);
2430        if (rc)
2431                goto out_free_secdata;
2432
2433        mount_options = opts.mnt_opts;
2434        flags = opts.mnt_opts_flags;
2435
2436        for (i = 0; i < opts.num_mnt_opts; i++) {
2437                u32 sid;
2438                size_t len;
2439
2440                if (flags[i] == SE_SBLABELSUPP)
2441                        continue;
2442                len = strlen(mount_options[i]);
2443                rc = security_context_to_sid(mount_options[i], len, &sid);
2444                if (rc) {
2445                        printk(KERN_WARNING "SELinux: security_context_to_sid"
2446                               "(%s) failed for (dev %s, type %s) errno=%d\n",
2447                               mount_options[i], sb->s_id, sb->s_type->name, rc);
2448                        goto out_free_opts;
2449                }
2450                rc = -EINVAL;
2451                switch (flags[i]) {
2452                case FSCONTEXT_MNT:
2453                        if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2454                                goto out_bad_option;
2455                        break;
2456                case CONTEXT_MNT:
2457                        if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2458                                goto out_bad_option;
2459                        break;
2460                case ROOTCONTEXT_MNT: {
2461                        struct inode_security_struct *root_isec;
2462                        root_isec = sb->s_root->d_inode->i_security;
2463
2464                        if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2465                                goto out_bad_option;
2466                        break;
2467                }
2468                case DEFCONTEXT_MNT:
2469                        if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2470                                goto out_bad_option;
2471                        break;
2472                default:
2473                        goto out_free_opts;
2474                }
2475        }
2476
2477        rc = 0;
2478out_free_opts:
2479        security_free_mnt_opts(&opts);
2480out_free_secdata:
2481        free_secdata(secdata);
2482        return rc;
2483out_bad_option:
2484        printk(KERN_WARNING "SELinux: unable to change security options "
2485               "during remount (dev %s, type=%s)\n", sb->s_id,
2486               sb->s_type->name);
2487        goto out_free_opts;
2488}
2489
2490static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2491{
2492        const struct cred *cred = current_cred();
2493        struct common_audit_data ad;
2494        int rc;
2495
2496        rc = superblock_doinit(sb, data);
2497        if (rc)
2498                return rc;
2499
2500        /* Allow all mounts performed by the kernel */
2501        if (flags & MS_KERNMOUNT)
2502                return 0;
2503
2504        ad.type = LSM_AUDIT_DATA_DENTRY;
2505        ad.u.dentry = sb->s_root;
2506        return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2507}
2508
2509static int selinux_sb_statfs(struct dentry *dentry)
2510{
2511        const struct cred *cred = current_cred();
2512        struct common_audit_data ad;
2513
2514        ad.type = LSM_AUDIT_DATA_DENTRY;
2515        ad.u.dentry = dentry->d_sb->s_root;
2516        return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2517}
2518
2519static int selinux_mount(const char *dev_name,
2520                         struct path *path,
2521                         const char *type,
2522                         unsigned long flags,
2523                         void *data)
2524{
2525        const struct cred *cred = current_cred();
2526
2527        if (flags & MS_REMOUNT)
2528                return superblock_has_perm(cred, path->dentry->d_sb,
2529                                           FILESYSTEM__REMOUNT, NULL);
2530        else
2531                return path_has_perm(cred, path, FILE__MOUNTON);
2532}
2533
2534static int selinux_umount(struct vfsmount *mnt, int flags)
2535{
2536        const struct cred *cred = current_cred();
2537
2538        return superblock_has_perm(cred, mnt->mnt_sb,
2539                                   FILESYSTEM__UNMOUNT, NULL);
2540}
2541
2542/* inode security operations */
2543
2544static int selinux_inode_alloc_security(struct inode *inode)
2545{
2546        return inode_alloc_security(inode);
2547}
2548
2549static void selinux_inode_free_security(struct inode *inode)
2550{
2551        inode_free_security(inode);
2552}
2553
2554static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2555                                        struct qstr *name, void **ctx,
2556                                        u32 *ctxlen)
2557{
2558        const struct cred *cred = current_cred();
2559        struct task_security_struct *tsec;
2560        struct inode_security_struct *dsec;
2561        struct superblock_security_struct *sbsec;
2562        struct inode *dir = dentry->d_parent->d_inode;
2563        u32 newsid;
2564        int rc;
2565
2566        tsec = cred->security;
2567        dsec = dir->i_security;
2568        sbsec = dir->i_sb->s_security;
2569
2570        if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2571                newsid = tsec->create_sid;
2572        } else {
2573                rc = security_transition_sid(tsec->sid, dsec->sid,
2574                                             inode_mode_to_security_class(mode),
2575                                             name,
2576                                             &newsid);
2577                if (rc) {
2578                        printk(KERN_WARNING
2579                                "%s: security_transition_sid failed, rc=%d\n",
2580                               __func__, -rc);
2581                        return rc;
2582                }
2583        }
2584
2585        return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2586}
2587
2588static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2589                                       const struct qstr *qstr,
2590                                       const char **name,
2591                                       void **value, size_t *len)
2592{
2593        const struct task_security_struct *tsec = current_security();
2594        struct inode_security_struct *dsec;
2595        struct superblock_security_struct *sbsec;
2596        u32 sid, newsid, clen;
2597        int rc;
2598        char *context;
2599
2600        dsec = dir->i_security;
2601        sbsec = dir->i_sb->s_security;
2602
2603        sid = tsec->sid;
2604        newsid = tsec->create_sid;
2605
2606        if ((sbsec->flags & SE_SBINITIALIZED) &&
2607            (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2608                newsid = sbsec->mntpoint_sid;
2609        else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2610                rc = security_transition_sid(sid, dsec->sid,
2611                                             inode_mode_to_security_class(inode->i_mode),
2612                                             qstr, &newsid);
2613                if (rc) {
2614                        printk(KERN_WARNING "%s:  "
2615                               "security_transition_sid failed, rc=%d (dev=%s "
2616                               "ino=%ld)\n",
2617                               __func__,
2618                               -rc, inode->i_sb->s_id, inode->i_ino);
2619                        return rc;
2620                }
2621        }
2622
2623        /* Possibly defer initialization to selinux_complete_init. */
2624        if (sbsec->flags & SE_SBINITIALIZED) {
2625                struct inode_security_struct *isec = inode->i_security;
2626                isec->sclass = inode_mode_to_security_class(inode->i_mode);
2627                isec->sid = newsid;
2628                isec->initialized = 1;
2629        }
2630
2631        if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2632                return -EOPNOTSUPP;
2633
2634        if (name)
2635                *name = XATTR_SELINUX_SUFFIX;
2636
2637        if (value && len) {
2638                rc = security_sid_to_context_force(newsid, &context, &clen);
2639                if (rc)
2640                        return rc;
2641                *value = context;
2642                *len = clen;
2643        }
2644
2645        return 0;
2646}
2647
2648static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2649{
2650        return may_create(dir, dentry, SECCLASS_FILE);
2651}
2652
2653static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2654{
2655        return may_link(dir, old_dentry, MAY_LINK);
2656}
2657
2658static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2659{
2660        return may_link(dir, dentry, MAY_UNLINK);
2661}
2662
2663static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2664{
2665        return may_create(dir, dentry, SECCLASS_LNK_FILE);
2666}
2667
2668static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2669{
2670        return may_create(dir, dentry, SECCLASS_DIR);
2671}
2672
2673static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2674{
2675        return may_link(dir, dentry, MAY_RMDIR);
2676}
2677
2678static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2679{
2680        return may_create(dir, dentry, inode_mode_to_security_class(mode));
2681}
2682
2683static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2684                                struct inode *new_inode, struct dentry *new_dentry)
2685{
2686        return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2687}
2688
2689static int selinux_inode_readlink(struct dentry *dentry)
2690{
2691        const struct cred *cred = current_cred();
2692
2693        return dentry_has_perm(cred, dentry, FILE__READ);
2694}
2695
2696static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2697{
2698        const struct cred *cred = current_cred();
2699
2700        return dentry_has_perm(cred, dentry, FILE__READ);
2701}
2702
2703static noinline int audit_inode_permission(struct inode *inode,
2704                                           u32 perms, u32 audited, u32 denied,
2705                                           unsigned flags)
2706{
2707        struct common_audit_data ad;
2708        struct inode_security_struct *isec = inode->i_security;
2709        int rc;
2710
2711        ad.type = LSM_AUDIT_DATA_INODE;
2712        ad.u.inode = inode;
2713
2714        rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2715                            audited, denied, &ad, flags);
2716        if (rc)
2717                return rc;
2718        return 0;
2719}
2720
2721static int selinux_inode_permission(struct inode *inode, int mask)
2722{
2723        const struct cred *cred = current_cred();
2724        u32 perms;
2725        bool from_access;
2726        unsigned flags = mask & MAY_NOT_BLOCK;
2727        struct inode_security_struct *isec;
2728        u32 sid;
2729        struct av_decision avd;
2730        int rc, rc2;
2731        u32 audited, denied;
2732
2733        from_access = mask & MAY_ACCESS;
2734        mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2735
2736        /* No permission to check.  Existence test. */
2737        if (!mask)
2738                return 0;
2739
2740        validate_creds(cred);
2741
2742        if (unlikely(IS_PRIVATE(inode)))
2743                return 0;
2744
2745        perms = file_mask_to_av(inode->i_mode, mask);
2746
2747        sid = cred_sid(cred);
2748        isec = inode->i_security;
2749
2750        rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2751        audited = avc_audit_required(perms, &avd, rc,
2752                                     from_access ? FILE__AUDIT_ACCESS : 0,
2753                                     &denied);
2754        if (likely(!audited))
2755                return rc;
2756
2757        rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2758        if (rc2)
2759                return rc2;
2760        return rc;
2761}
2762
2763static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2764{
2765        const struct cred *cred = current_cred();
2766        unsigned int ia_valid = iattr->ia_valid;
2767        __u32 av = FILE__WRITE;
2768
2769        /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2770        if (ia_valid & ATTR_FORCE) {
2771                ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2772                              ATTR_FORCE);
2773                if (!ia_valid)
2774                        return 0;
2775        }
2776
2777        if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2778                        ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2779                return dentry_has_perm(cred, dentry, FILE__SETATTR);
2780
2781        if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2782                av |= FILE__OPEN;
2783
2784        return dentry_has_perm(cred, dentry, av);
2785}
2786
2787static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2788{
2789        const struct cred *cred = current_cred();
2790        struct path path;
2791
2792        path.dentry = dentry;
2793        path.mnt = mnt;
2794
2795        return path_has_perm(cred, &path, FILE__GETATTR);
2796}
2797
2798static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2799{
2800        const struct cred *cred = current_cred();
2801
2802        if (!strncmp(name, XATTR_SECURITY_PREFIX,
2803                     sizeof XATTR_SECURITY_PREFIX - 1)) {
2804                if (!strcmp(name, XATTR_NAME_CAPS)) {
2805                        if (!capable(CAP_SETFCAP))
2806                                return -EPERM;
2807                } else if (!capable(CAP_SYS_ADMIN)) {
2808                        /* A different attribute in the security namespace.
2809                           Restrict to administrator. */
2810                        return -EPERM;
2811                }
2812        }
2813
2814        /* Not an attribute we recognize, so just check the
2815           ordinary setattr permission. */
2816        return dentry_has_perm(cred, dentry, FILE__SETATTR);
2817}
2818
2819static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2820                                  const void *value, size_t size, int flags)
2821{
2822        struct inode *inode = dentry->d_inode;
2823        struct inode_security_struct *isec = inode->i_security;
2824        struct superblock_security_struct *sbsec;
2825        struct common_audit_data ad;
2826        u32 newsid, sid = current_sid();
2827        int rc = 0;
2828
2829        if (strcmp(name, XATTR_NAME_SELINUX))
2830                return selinux_inode_setotherxattr(dentry, name);
2831
2832        sbsec = inode->i_sb->s_security;
2833        if (!(sbsec->flags & SE_SBLABELSUPP))
2834                return -EOPNOTSUPP;
2835
2836        if (!inode_owner_or_capable(inode))
2837                return -EPERM;
2838
2839        ad.type = LSM_AUDIT_DATA_DENTRY;
2840        ad.u.dentry = dentry;
2841
2842        rc = avc_has_perm(sid, isec->sid, isec->sclass,
2843                          FILE__RELABELFROM, &ad);
2844        if (rc)
2845                return rc;
2846
2847        rc = security_context_to_sid(value, size, &newsid);
2848        if (rc == -EINVAL) {
2849                if (!capable(CAP_MAC_ADMIN)) {
2850                        struct audit_buffer *ab;
2851                        size_t audit_size;
2852                        const char *str;
2853
2854                        /* We strip a nul only if it is at the end, otherwise the
2855                         * context contains a nul and we should audit that */
2856                        if (value) {
2857                                str = value;
2858                                if (str[size - 1] == '\0')
2859                                        audit_size = size - 1;
2860                                else
2861                                        audit_size = size;
2862                        } else {
2863                                str = "";
2864                                audit_size = 0;
2865                        }
2866                        ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2867                        audit_log_format(ab, "op=setxattr invalid_context=");
2868                        audit_log_n_untrustedstring(ab, value, audit_size);
2869                        audit_log_end(ab);
2870
2871                        return rc;
2872                }
2873                rc = security_context_to_sid_force(value, size, &newsid);
2874        }
2875        if (rc)
2876                return rc;
2877
2878        rc = avc_has_perm(sid, newsid, isec->sclass,
2879                          FILE__RELABELTO, &ad);
2880        if (rc)
2881                return rc;
2882
2883        rc = security_validate_transition(isec->sid, newsid, sid,
2884                                          isec->sclass);
2885        if (rc)
2886                return rc;
2887
2888        return avc_has_perm(newsid,
2889                            sbsec->sid,
2890                            SECCLASS_FILESYSTEM,
2891                            FILESYSTEM__ASSOCIATE,
2892                            &ad);
2893}
2894
2895static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2896                                        const void *value, size_t size,
2897                                        int flags)
2898{
2899        struct inode *inode = dentry->d_inode;
2900        struct inode_security_struct *isec = inode->i_security;
2901        u32 newsid;
2902        int rc;
2903
2904        if (strcmp(name, XATTR_NAME_SELINUX)) {
2905                /* Not an attribute we recognize, so nothing to do. */
2906                return;
2907        }
2908
2909        rc = security_context_to_sid_force(value, size, &newsid);
2910        if (rc) {
2911                printk(KERN_ERR "SELinux:  unable to map context to SID"
2912                       "for (%s, %lu), rc=%d\n",
2913                       inode->i_sb->s_id, inode->i_ino, -rc);
2914                return;
2915        }
2916
2917        isec->sclass = inode_mode_to_security_class(inode->i_mode);
2918        isec->sid = newsid;
2919        isec->initialized = 1;
2920
2921        return;
2922}
2923
2924static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2925{
2926        const struct cred *cred = current_cred();
2927
2928        return dentry_has_perm(cred, dentry, FILE__GETATTR);
2929}
2930
2931static int selinux_inode_listxattr(struct dentry *dentry)
2932{
2933        const struct cred *cred = current_cred();
2934
2935        return dentry_has_perm(cred, dentry, FILE__GETATTR);
2936}
2937
2938static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2939{
2940        if (strcmp(name, XATTR_NAME_SELINUX))
2941                return selinux_inode_setotherxattr(dentry, name);
2942
2943        /* No one is allowed to remove a SELinux security label.
2944           You can change the label, but all data must be labeled. */
2945        return -EACCES;
2946}
2947
2948/*
2949 * Copy the inode security context value to the user.
2950 *
2951 * Permission check is handled by selinux_inode_getxattr hook.
2952 */
2953static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2954{
2955        u32 size;
2956        int error;
2957        char *context = NULL;
2958        struct inode_security_struct *isec = inode->i_security;
2959
2960        if (strcmp(name, XATTR_SELINUX_SUFFIX))
2961                return -EOPNOTSUPP;
2962
2963        /*
2964         * If the caller has CAP_MAC_ADMIN, then get the raw context
2965         * value even if it is not defined by current policy; otherwise,
2966         * use the in-core value under current policy.
2967         * Use the non-auditing forms of the permission checks since
2968         * getxattr may be called by unprivileged processes commonly
2969         * and lack of permission just means that we fall back to the
2970         * in-core context value, not a denial.
2971         */
2972        error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2973                                SECURITY_CAP_NOAUDIT);
2974        if (!error)
2975                error = security_sid_to_context_force(isec->sid, &context,
2976                                                      &size);
2977        else
2978                error = security_sid_to_context(isec->sid, &context, &size);
2979        if (error)
2980                return error;
2981        error = size;
2982        if (alloc) {
2983                *buffer = context;
2984                goto out_nofree;
2985        }
2986        kfree(context);
2987out_nofree:
2988        return error;
2989}
2990
2991static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2992                                     const void *value, size_t size, int flags)
2993{
2994        struct inode_security_struct *isec = inode->i_security;
2995        u32 newsid;
2996        int rc;
2997
2998        if (strcmp(name, XATTR_SELINUX_SUFFIX))
2999                return -EOPNOTSUPP;
3000
3001        if (!value || !size)
3002                return -EACCES;
3003
3004        rc = security_context_to_sid((void *)value, size, &newsid);
3005        if (rc)
3006                return rc;
3007
3008        isec->sclass = inode_mode_to_security_class(inode->i_mode);
3009        isec->sid = newsid;
3010        isec->initialized = 1;
3011        return 0;
3012}
3013
3014static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3015{
3016        const int len = sizeof(XATTR_NAME_SELINUX);
3017        if (buffer && len <= buffer_size)
3018                memcpy(buffer, XATTR_NAME_SELINUX, len);
3019        return len;
3020}
3021
3022static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3023{
3024        struct inode_security_struct *isec = inode->i_security;
3025        *secid = isec->sid;
3026}
3027
3028/* file security operations */
3029
3030static int selinux_revalidate_file_permission(struct file *file, int mask)
3031{
3032        const struct cred *cred = current_cred();
3033        struct inode *inode = file_inode(file);
3034
3035        /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3036        if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3037                mask |= MAY_APPEND;
3038
3039        return file_has_perm(cred, file,
3040                             file_mask_to_av(inode->i_mode, mask));
3041}
3042
3043static int selinux_file_permission(struct file *file, int mask)
3044{
3045        struct inode *inode = file_inode(file);
3046        struct file_security_struct *fsec = file->f_security;
3047        struct inode_security_struct *isec = inode->i_security;
3048        u32 sid = current_sid();
3049
3050        if (!mask)
3051                /* No permission to check.  Existence test. */
3052                return 0;
3053
3054        if (sid == fsec->sid && fsec->isid == isec->sid &&
3055            fsec->pseqno == avc_policy_seqno())
3056                /* No change since file_open check. */
3057                return 0;
3058
3059        return selinux_revalidate_file_permission(file, mask);
3060}
3061
3062static int selinux_file_alloc_security(struct file *file)
3063{
3064        return file_alloc_security(file);
3065}
3066
3067static void selinux_file_free_security(struct file *file)
3068{
3069        file_free_security(file);
3070}
3071
3072static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3073                              unsigned long arg)
3074{
3075        const struct cred *cred = current_cred();
3076        int error = 0;
3077
3078        switch (cmd) {
3079        case FIONREAD:
3080        /* fall through */
3081        case FIBMAP:
3082        /* fall through */
3083        case FIGETBSZ:
3084        /* fall through */
3085        case FS_IOC_GETFLAGS:
3086        /* fall through */
3087        case FS_IOC_GETVERSION:
3088                error = file_has_perm(cred, file, FILE__GETATTR);
3089                break;
3090
3091        case FS_IOC_SETFLAGS:
3092        /* fall through */
3093        case FS_IOC_SETVERSION:
3094                error = file_has_perm(cred, file, FILE__SETATTR);
3095                break;
3096
3097        /* sys_ioctl() checks */
3098        case FIONBIO:
3099        /* fall through */
3100        case FIOASYNC:
3101                error = file_has_perm(cred, file, 0);
3102                break;
3103
3104        case KDSKBENT:
3105        case KDSKBSENT:
3106                error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3107                                            SECURITY_CAP_AUDIT);
3108                break;
3109
3110        /* default case assumes that the command will go
3111         * to the file's ioctl() function.
3112         */
3113        default:
3114                error = file_has_perm(cred, file, FILE__IOCTL);
3115        }
3116        return error;
3117}
3118
3119static int default_noexec;
3120
3121static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3122{
3123        const struct cred *cred = current_cred();
3124        int rc = 0;
3125
3126        if (default_noexec &&
3127            (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3128                /*
3129                 * We are making executable an anonymous mapping or a
3130                 * private file mapping that will also be writable.
3131                 * This has an additional check.
3132                 */
3133                rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3134                if (rc)
3135                        goto error;
3136        }
3137
3138        if (file) {
3139                /* read access is always possible with a mapping */
3140                u32 av = FILE__READ;
3141
3142                /* write access only matters if the mapping is shared */
3143                if (shared && (prot & PROT_WRITE))
3144                        av |= FILE__WRITE;
3145
3146                if (prot & PROT_EXEC)
3147                        av |= FILE__EXECUTE;
3148
3149                return file_has_perm(cred, file, av);
3150        }
3151
3152error:
3153        return rc;
3154}
3155
3156static int selinux_mmap_addr(unsigned long addr)
3157{
3158        int rc = 0;
3159        u32 sid = current_sid();
3160
3161        /*
3162         * notice that we are intentionally putting the SELinux check before
3163         * the secondary cap_file_mmap check.  This is such a likely attempt
3164         * at bad behaviour/exploit that we always want to get the AVC, even
3165         * if DAC would have also denied the operation.
3166         */
3167        if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3168                rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3169                                  MEMPROTECT__MMAP_ZERO, NULL);
3170                if (rc)
3171                        return rc;
3172        }
3173
3174        /* do DAC check on address space usage */
3175        return cap_mmap_addr(addr);
3176}
3177
3178static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3179                             unsigned long prot, unsigned long flags)
3180{
3181        if (selinux_checkreqprot)
3182                prot = reqprot;
3183
3184        return file_map_prot_check(file, prot,
3185                                   (flags & MAP_TYPE) == MAP_SHARED);
3186}
3187
3188static int selinux_file_mprotect(struct vm_area_struct *vma,
3189                                 unsigned long reqprot,
3190                                 unsigned long prot)
3191{
3192        const struct cred *cred = current_cred();
3193
3194        if (selinux_checkreqprot)
3195                prot = reqprot;
3196
3197        if (default_noexec &&
3198            (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3199                int rc = 0;
3200                if (vma->vm_start >= vma->vm_mm->start_brk &&
3201                    vma->vm_end <= vma->vm_mm->brk) {
3202                        rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3203                } else if (!vma->vm_file &&
3204                           vma->vm_start <= vma->vm_mm->start_stack &&
3205                           vma->vm_end >= vma->vm_mm->start_stack) {
3206                        rc = current_has_perm(current, PROCESS__EXECSTACK);
3207                } else if (vma->vm_file && vma->anon_vma) {
3208                        /*
3209                         * We are making executable a file mapping that has
3210                         * had some COW done. Since pages might have been
3211                         * written, check ability to execute the possibly
3212                         * modified content.  This typically should only
3213                         * occur for text relocations.
3214                         */
3215                        rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3216                }
3217                if (rc)
3218                        return rc;
3219        }
3220
3221        return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3222}
3223
3224static int selinux_file_lock(struct file *file, unsigned int cmd)
3225{
3226        const struct cred *cred = current_cred();
3227
3228        return file_has_perm(cred, file, FILE__LOCK);
3229}
3230
3231static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3232                              unsigned long arg)
3233{
3234        const struct cred *cred = current_cred();
3235        int err = 0;
3236
3237        switch (cmd) {
3238        case F_SETFL:
3239                if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3240                        err = file_has_perm(cred, file, FILE__WRITE);
3241                        break;
3242                }
3243                /* fall through */
3244        case F_SETOWN:
3245        case F_SETSIG:
3246        case F_GETFL:
3247        case F_GETOWN:
3248        case F_GETSIG:
3249        case F_GETOWNER_UIDS:
3250                /* Just check FD__USE permission */
3251                err = file_has_perm(cred, file, 0);
3252                break;
3253        case F_GETLK:
3254        case F_SETLK:
3255        case F_SETLKW:
3256#if BITS_PER_LONG == 32
3257        case F_GETLK64:
3258        case F_SETLK64:
3259        case F_SETLKW64:
3260#endif
3261                err = file_has_perm(cred, file, FILE__LOCK);
3262                break;
3263        }
3264
3265        return err;
3266}
3267
3268static int selinux_file_set_fowner(struct file *file)
3269{
3270        struct file_security_struct *fsec;
3271
3272        fsec = file->f_security;
3273        fsec->fown_sid = current_sid();
3274
3275        return 0;
3276}
3277
3278static int selinux_file_send_sigiotask(struct task_struct *tsk,
3279                                       struct fown_struct *fown, int signum)
3280{
3281        struct file *file;
3282        u32 sid = task_sid(tsk);
3283        u32 perm;
3284        struct file_security_struct *fsec;
3285
3286        /* struct fown_struct is never outside the context of a struct file */
3287        file = container_of(fown, struct file, f_owner);
3288
3289        fsec = file->f_security;
3290
3291        if (!signum)
3292                perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3293        else
3294                perm = signal_to_av(signum);
3295
3296        return avc_has_perm(fsec->fown_sid, sid,
3297                            SECCLASS_PROCESS, perm, NULL);
3298}
3299
3300static int selinux_file_receive(struct file *file)
3301{
3302        const struct cred *cred = current_cred();
3303
3304        return file_has_perm(cred, file, file_to_av(file));
3305}
3306
3307static int selinux_file_open(struct file *file, const struct cred *cred)
3308{
3309        struct file_security_struct *fsec;
3310        struct inode_security_struct *isec;
3311
3312        fsec = file->f_security;
3313        isec = file_inode(file)->i_security;
3314        /*
3315         * Save inode label and policy sequence number
3316         * at open-time so that selinux_file_permission
3317         * can determine whether revalidation is necessary.
3318         * Task label is already saved in the file security
3319         * struct as its SID.
3320         */
3321        fsec->isid = isec->sid;
3322        fsec->pseqno = avc_policy_seqno();
3323        /*
3324         * Since the inode label or policy seqno may have changed
3325         * between the selinux_inode_permission check and the saving
3326         * of state above, recheck that access is still permitted.
3327         * Otherwise, access might never be revalidated against the
3328         * new inode label or new policy.
3329         * This check is not redundant - do not remove.
3330         */
3331        return file_path_has_perm(cred, file, open_file_to_av(file));
3332}
3333
3334/* task security operations */
3335
3336static int selinux_task_create(unsigned long clone_flags)
3337{
3338        return current_has_perm(current, PROCESS__FORK);
3339}
3340
3341/*
3342 * allocate the SELinux part of blank credentials
3343 */
3344static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3345{
3346        struct task_security_struct *tsec;
3347
3348        tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3349        if (!tsec)
3350                return -ENOMEM;
3351
3352        cred->security = tsec;
3353        return 0;
3354}
3355
3356/*
3357 * detach and free the LSM part of a set of credentials
3358 */
3359static void selinux_cred_free(struct cred *cred)
3360{
3361        struct task_security_struct *tsec = cred->security;
3362
3363        /*
3364         * cred->security == NULL if security_cred_alloc_blank() or
3365         * security_prepare_creds() returned an error.
3366         */
3367        BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3368        cred->security = (void *) 0x7UL;
3369        kfree(tsec);
3370}
3371
3372/*
3373 * prepare a new set of credentials for modification
3374 */
3375static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3376                                gfp_t gfp)
3377{
3378        const struct task_security_struct *old_tsec;
3379        struct task_security_struct *tsec;
3380
3381        old_tsec = old->security;
3382
3383        tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3384        if (!tsec)
3385                return -ENOMEM;
3386
3387        new->security = tsec;
3388        return 0;
3389}
3390
3391/*
3392 * transfer the SELinux data to a blank set of creds
3393 */
3394static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3395{
3396        const struct task_security_struct *old_tsec = old->security;
3397        struct task_security_struct *tsec = new->security;
3398
3399        *tsec = *old_tsec;
3400}
3401
3402/*
3403 * set the security data for a kernel service
3404 * - all the creation contexts are set to unlabelled
3405 */
3406static int selinux_kernel_act_as(struct cred *new, u32 secid)
3407{
3408        struct task_security_struct *tsec = new->security;
3409        u32 sid = current_sid();
3410        int ret;
3411
3412        ret = avc_has_perm(sid, secid,
3413                           SECCLASS_KERNEL_SERVICE,
3414                           KERNEL_SERVICE__USE_AS_OVERRIDE,
3415                           NULL);
3416        if (ret == 0) {
3417                tsec->sid = secid;
3418                tsec->create_sid = 0;
3419                tsec->keycreate_sid = 0;
3420                tsec->sockcreate_sid = 0;
3421        }
3422        return ret;
3423}
3424
3425/*
3426 * set the file creation context in a security record to the same as the
3427 * objective context of the specified inode
3428 */
3429static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3430{
3431        struct inode_security_struct *isec = inode->i_security;
3432        struct task_security_struct *tsec = new->security;
3433        u32 sid = current_sid();
3434        int ret;
3435
3436        ret = avc_has_perm(sid, isec->sid,
3437                           SECCLASS_KERNEL_SERVICE,
3438                           KERNEL_SERVICE__CREATE_FILES_AS,
3439                           NULL);
3440
3441        if (ret == 0)
3442                tsec->create_sid = isec->sid;
3443        return ret;
3444}
3445
3446static int selinux_kernel_module_request(char *kmod_name)
3447{
3448        u32 sid;
3449        struct common_audit_data ad;
3450
3451        sid = task_sid(current);
3452
3453        ad.type = LSM_AUDIT_DATA_KMOD;
3454        ad.u.kmod_name = kmod_name;
3455
3456        return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3457                            SYSTEM__MODULE_REQUEST, &ad);
3458}
3459
3460static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3461{
3462        return current_has_perm(p, PROCESS__SETPGID);
3463}
3464
3465static int selinux_task_getpgid(struct task_struct *p)
3466{
3467        return current_has_perm(p, PROCESS__GETPGID);
3468}
3469
3470static int selinux_task_getsid(struct task_struct *p)
3471{
3472        return current_has_perm(p, PROCESS__GETSESSION);
3473}
3474
3475static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3476{
3477        *secid = task_sid(p);
3478}
3479
3480static int selinux_task_setnice(struct task_struct *p, int nice)
3481{
3482        int rc;
3483
3484        rc = cap_task_setnice(p, nice);
3485        if (rc)
3486                return rc;
3487
3488        return current_has_perm(p, PROCESS__SETSCHED);
3489}
3490
3491static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3492{
3493        int rc;
3494
3495        rc = cap_task_setioprio(p, ioprio);
3496        if (rc)
3497                return rc;
3498
3499        return current_has_perm(p, PROCESS__SETSCHED);
3500}
3501
3502static int selinux_task_getioprio(struct task_struct *p)
3503{
3504        return current_has_perm(p, PROCESS__GETSCHED);
3505}
3506
3507static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3508                struct rlimit *new_rlim)
3509{
3510        struct rlimit *old_rlim = p->signal->rlim + resource;
3511
3512        /* Control the ability to change the hard limit (whether
3513           lowering or raising it), so that the hard limit can
3514           later be used as a safe reset point for the soft limit
3515           upon context transitions.  See selinux_bprm_committing_creds. */
3516        if (old_rlim->rlim_max != new_rlim->rlim_max)
3517                return current_has_perm(p, PROCESS__SETRLIMIT);
3518
3519        return 0;
3520}
3521
3522static int selinux_task_setscheduler(struct task_struct *p)
3523{
3524        int rc;
3525
3526        rc = cap_task_setscheduler(p);
3527        if (rc)
3528                return rc;
3529
3530        return current_has_perm(p, PROCESS__SETSCHED);
3531}
3532
3533static int selinux_task_getscheduler(struct task_struct *p)
3534{
3535        return current_has_perm(p, PROCESS__GETSCHED);
3536}
3537
3538static int selinux_task_movememory(struct task_struct *p)
3539{
3540        return current_has_perm(p, PROCESS__SETSCHED);
3541}
3542
3543static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3544                                int sig, u32 secid)
3545{
3546        u32 perm;
3547        int rc;
3548
3549        if (!sig)
3550                perm = PROCESS__SIGNULL; /* null signal; existence test */
3551        else
3552                perm = signal_to_av(sig);
3553        if (secid)
3554                rc = avc_has_perm(secid, task_sid(p),
3555                                  SECCLASS_PROCESS, perm, NULL);
3556        else
3557                rc = current_has_perm(p, perm);
3558        return rc;
3559}
3560
3561static int selinux_task_wait(struct task_struct *p)
3562{
3563        return task_has_perm(p, current, PROCESS__SIGCHLD);
3564}
3565
3566static void selinux_task_to_inode(struct task_struct *p,
3567                                  struct inode *inode)
3568{
3569        struct inode_security_struct *isec = inode->i_security;
3570        u32 sid = task_sid(p);
3571
3572        isec->sid = sid;
3573        isec->initialized = 1;
3574}
3575
3576/* Returns error only if unable to parse addresses */
3577static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3578                        struct common_audit_data *ad, u8 *proto)
3579{
3580        int offset, ihlen, ret = -EINVAL;
3581        struct iphdr _iph, *ih;
3582
3583        offset = skb_network_offset(skb);
3584        ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3585        if (ih == NULL)
3586                goto out;
3587
3588        ihlen = ih->ihl * 4;
3589        if (ihlen < sizeof(_iph))
3590                goto out;
3591
3592        ad->u.net->v4info.saddr = ih->saddr;
3593        ad->u.net->v4info.daddr = ih->daddr;
3594        ret = 0;
3595
3596        if (proto)
3597                *proto = ih->protocol;
3598
3599        switch (ih->protocol) {
3600        case IPPROTO_TCP: {
3601                struct tcphdr _tcph, *th;
3602
3603                if (ntohs(ih->frag_off) & IP_OFFSET)
3604                        break;
3605
3606                offset += ihlen;
3607                th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3608                if (th == NULL)
3609                        break;
3610
3611                ad->u.net->sport = th->source;
3612                ad->u.net->dport = th->dest;
3613                break;
3614        }
3615
3616        case IPPROTO_UDP: {
3617                struct udphdr _udph, *uh;
3618
3619                if (ntohs(ih->frag_off) & IP_OFFSET)
3620                        break;
3621
3622                offset += ihlen;
3623                uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3624                if (uh == NULL)
3625                        break;
3626
3627                ad->u.net->sport = uh->source;
3628                ad->u.net->dport = uh->dest;
3629                break;
3630        }
3631
3632        case IPPROTO_DCCP: {
3633                struct dccp_hdr _dccph, *dh;
3634
3635                if (ntohs(ih->frag_off) & IP_OFFSET)
3636                        break;
3637
3638                offset += ihlen;
3639                dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3640                if (dh == NULL)
3641                        break;
3642
3643                ad->u.net->sport = dh->dccph_sport;
3644                ad->u.net->dport = dh->dccph_dport;
3645                break;
3646        }
3647
3648        default:
3649                break;
3650        }
3651out:
3652        return ret;
3653}
3654
3655#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3656
3657/* Returns error only if unable to parse addresses */
3658static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3659                        struct common_audit_data *ad, u8 *proto)
3660{
3661        u8 nexthdr;
3662        int ret = -EINVAL, offset;
3663        struct ipv6hdr _ipv6h, *ip6;
3664        __be16 frag_off;
3665
3666        offset = skb_network_offset(skb);
3667        ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3668        if (ip6 == NULL)
3669                goto out;
3670
3671        ad->u.net->v6info.saddr = ip6->saddr;
3672        ad->u.net->v6info.daddr = ip6->daddr;
3673        ret = 0;
3674
3675        nexthdr = ip6->nexthdr;
3676        offset += sizeof(_ipv6h);
3677        offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3678        if (offset < 0)
3679                goto out;
3680
3681        if (proto)
3682                *proto = nexthdr;
3683
3684        switch (nexthdr) {
3685        case IPPROTO_TCP: {
3686                struct tcphdr _tcph, *th;
3687
3688                th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3689                if (th == NULL)
3690                        break;
3691
3692                ad->u.net->sport = th->source;
3693                ad->u.net->dport = th->dest;
3694                break;
3695        }
3696
3697        case IPPROTO_UDP: {
3698                struct udphdr _udph, *uh;
3699
3700                uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3701                if (uh == NULL)
3702                        break;
3703
3704                ad->u.net->sport = uh->source;
3705                ad->u.net->dport = uh->dest;
3706                break;
3707        }
3708
3709        case IPPROTO_DCCP: {
3710                struct dccp_hdr _dccph, *dh;
3711
3712                dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3713                if (dh == NULL)
3714                        break;
3715
3716                ad->u.net->sport = dh->dccph_sport;
3717                ad->u.net->dport = dh->dccph_dport;
3718                break;
3719        }
3720
3721        /* includes fragments */
3722        default:
3723                break;
3724        }
3725out:
3726        return ret;
3727}
3728
3729#endif /* IPV6 */
3730
3731static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3732                             char **_addrp, int src, u8 *proto)
3733{
3734        char *addrp;
3735        int ret;
3736
3737        switch (ad->u.net->family) {
3738        case PF_INET:
3739                ret = selinux_parse_skb_ipv4(skb, ad, proto);
3740                if (ret)
3741                        goto parse_error;
3742                addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3743                                       &ad->u.net->v4info.daddr);
3744                goto okay;
3745
3746#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3747        case PF_INET6:
3748                ret = selinux_parse_skb_ipv6(skb, ad, proto);
3749                if (ret)
3750                        goto parse_error;
3751                addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3752                                       &ad->u.net->v6info.daddr);
3753                goto okay;
3754#endif  /* IPV6 */
3755        default:
3756                addrp = NULL;
3757                goto okay;
3758        }
3759
3760parse_error:
3761        printk(KERN_WARNING
3762               "SELinux: failure in selinux_parse_skb(),"
3763               " unable to parse packet\n");
3764        return ret;
3765
3766okay:
3767        if (_addrp)
3768                *_addrp = addrp;
3769        return 0;
3770}
3771
3772/**
3773 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3774 * @skb: the packet
3775 * @family: protocol family
3776 * @sid: the packet's peer label SID
3777 *
3778 * Description:
3779 * Check the various different forms of network peer labeling and determine
3780 * the peer label/SID for the packet; most of the magic actually occurs in
3781 * the security server function security_net_peersid_cmp().  The function
3782 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3783 * or -EACCES if @sid is invalid due to inconsistencies with the different
3784 * peer labels.
3785 *
3786 */
3787static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3788{
3789        int err;
3790        u32 xfrm_sid;
3791        u32 nlbl_sid;
3792        u32 nlbl_type;
3793
3794        selinux_skb_xfrm_sid(skb, &xfrm_sid);
3795        selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3796
3797        err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3798        if (unlikely(err)) {
3799                printk(KERN_WARNING
3800                       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3801                       " unable to determine packet's peer label\n");
3802                return -EACCES;
3803        }
3804
3805        return 0;
3806}
3807
3808/* socket security operations */
3809
3810static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3811                                 u16 secclass, u32 *socksid)
3812{
3813        if (tsec->sockcreate_sid > SECSID_NULL) {
3814                *socksid = tsec->sockcreate_sid;
3815                return 0;
3816        }
3817
3818        return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3819                                       socksid);
3820}
3821
3822static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3823{
3824        struct sk_security_struct *sksec = sk->sk_security;
3825        struct common_audit_data ad;
3826        struct lsm_network_audit net = {0,};
3827        u32 tsid = task_sid(task);
3828
3829        if (sksec->sid == SECINITSID_KERNEL)
3830                return 0;
3831
3832        ad.type = LSM_AUDIT_DATA_NET;
3833        ad.u.net = &net;
3834        ad.u.net->sk = sk;
3835
3836        return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3837}
3838
3839static int selinux_socket_create(int family, int type,
3840                                 int protocol, int kern)
3841{
3842        const struct task_security_struct *tsec = current_security();
3843        u32 newsid;
3844        u16 secclass;
3845        int rc;
3846
3847        if (kern)
3848                return 0;
3849
3850        secclass = socket_type_to_security_class(family, type, protocol);
3851        rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3852        if (rc)
3853                return rc;
3854
3855        return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3856}
3857
3858static int selinux_socket_post_create(struct socket *sock, int family,
3859                                      int type, int protocol, int kern)
3860{
3861        const struct task_security_struct *tsec = current_security();
3862        struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3863        struct sk_security_struct *sksec;
3864        int err = 0;
3865
3866        isec->sclass = socket_type_to_security_class(family, type, protocol);
3867
3868        if (kern)
3869                isec->sid = SECINITSID_KERNEL;
3870        else {
3871                err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3872                if (err)
3873                        return err;
3874        }
3875
3876        isec->initialized = 1;
3877
3878        if (sock->sk) {
3879                sksec = sock->sk->sk_security;
3880                sksec->sid = isec->sid;
3881                sksec->sclass = isec->sclass;
3882                err = selinux_netlbl_socket_post_create(sock->sk, family);
3883        }
3884
3885        return err;
3886}
3887
3888/* Range of port numbers used to automatically bind.
3889   Need to determine whether we should perform a name_bind
3890   permission check between the socket and the port number. */
3891
3892static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3893{
3894        struct sock *sk = sock->sk;
3895        u16 family;
3896        int err;
3897
3898        err = sock_has_perm(current, sk, SOCKET__BIND);
3899        if (err)
3900                goto out;
3901
3902        /*
3903         * If PF_INET or PF_INET6, check name_bind permission for the port.
3904         * Multiple address binding for SCTP is not supported yet: we just
3905         * check the first address now.
3906         */
3907        family = sk->sk_family;
3908        if (family == PF_INET || family == PF_INET6) {
3909                char *addrp;
3910                struct sk_security_struct *sksec = sk->sk_security;
3911                struct common_audit_data ad;
3912                struct lsm_network_audit net = {0,};
3913                struct sockaddr_in *addr4 = NULL;
3914                struct sockaddr_in6 *addr6 = NULL;
3915                unsigned short snum;
3916                u32 sid, node_perm;
3917
3918                if (family == PF_INET) {
3919                        addr4 = (struct sockaddr_in *)address;
3920                        snum = ntohs(addr4->sin_port);
3921                        addrp = (char *)&addr4->sin_addr.s_addr;
3922                } else {
3923                        addr6 = (struct sockaddr_in6 *)address;
3924                        snum = ntohs(addr6->sin6_port);
3925                        addrp = (char *)&addr6->sin6_addr.s6_addr;
3926                }
3927
3928                if (snum) {
3929                        int low, high;
3930
3931                        inet_get_local_port_range(&low, &high);
3932
3933                        if (snum < max(PROT_SOCK, low) || snum > high) {
3934                                err = sel_netport_sid(sk->sk_protocol,
3935                                                      snum, &sid);
3936                                if (err)
3937                                        goto out;
3938                                ad.type = LSM_AUDIT_DATA_NET;
3939                                ad.u.net = &net;
3940                                ad.u.net->sport = htons(snum);
3941                                ad.u.net->family = family;
3942                                err = avc_has_perm(sksec->sid, sid,
3943                                                   sksec->sclass,
3944                                                   SOCKET__NAME_BIND, &ad);
3945                                if (err)
3946                                        goto out;
3947                        }
3948                }
3949
3950                switch (sksec->sclass) {
3951                case SECCLASS_TCP_SOCKET:
3952                        node_perm = TCP_SOCKET__NODE_BIND;
3953                        break;
3954
3955                case SECCLASS_UDP_SOCKET:
3956                        node_perm = UDP_SOCKET__NODE_BIND;
3957                        break;
3958
3959                case SECCLASS_DCCP_SOCKET:
3960                        node_perm = DCCP_SOCKET__NODE_BIND;
3961                        break;
3962
3963                default:
3964                        node_perm = RAWIP_SOCKET__NODE_BIND;
3965                        break;
3966                }
3967
3968                err = sel_netnode_sid(addrp, family, &sid);
3969                if (err)
3970                        goto out;
3971
3972                ad.type = LSM_AUDIT_DATA_NET;
3973                ad.u.net = &net;
3974                ad.u.net->sport = htons(snum);
3975                ad.u.net->family = family;
3976
3977                if (family == PF_INET)
3978                        ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3979                else
3980                        ad.u.net->v6info.saddr = addr6->sin6_addr;
3981
3982                err = avc_has_perm(sksec->sid, sid,
3983                                   sksec->sclass, node_perm, &ad);
3984                if (err)
3985                        goto out;
3986        }
3987out:
3988        return err;
3989}
3990
3991static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3992{
3993        struct sock *sk = sock->sk;
3994        struct sk_security_struct *sksec = sk->sk_security;
3995        int err;
3996
3997        err = sock_has_perm(current, sk, SOCKET__CONNECT);
3998        if (err)
3999                return err;
4000
4001        /*
4002         * If a TCP or DCCP socket, check name_connect permission for the port.
4003         */
4004        if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4005            sksec->sclass == SECCLASS_DCCP_SOCKET) {
4006                struct common_audit_data ad;
4007                struct lsm_network_audit net = {0,};
4008                struct sockaddr_in *addr4 = NULL;
4009                struct sockaddr_in6 *addr6 = NULL;
4010                unsigned short snum;
4011                u32 sid, perm;
4012
4013                if (sk->sk_family == PF_INET) {
4014                        addr4 = (struct sockaddr_in *)address;
4015                        if (addrlen < sizeof(struct sockaddr_in))
4016                                return -EINVAL;
4017                        snum = ntohs(addr4->sin_port);
4018                } else {
4019                        addr6 = (struct sockaddr_in6 *)address;
4020                        if (addrlen < SIN6_LEN_RFC2133)
4021                                return -EINVAL;
4022                        snum = ntohs(addr6->sin6_port);
4023                }
4024
4025                err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4026                if (err)
4027                        goto out;
4028
4029                perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4030                       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4031
4032                ad.type = LSM_AUDIT_DATA_NET;
4033                ad.u.net = &net;
4034                ad.u.net->dport = htons(snum);
4035                ad.u.net->family = sk->sk_family;
4036                err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4037                if (err)
4038                        goto out;
4039        }
4040
4041        err = selinux_netlbl_socket_connect(sk, address);
4042
4043out:
4044        return err;
4045}
4046
4047static int selinux_socket_listen(struct socket *sock, int backlog)
4048{
4049        return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4050}
4051
4052static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4053{
4054        int err;
4055        struct inode_security_struct *isec;
4056        struct inode_security_struct *newisec;
4057
4058        err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4059        if (err)
4060                return err;
4061
4062        newisec = SOCK_INODE(newsock)->i_security;
4063
4064        isec = SOCK_INODE(sock)->i_security;
4065        newisec->sclass = isec->sclass;
4066        newisec->sid = isec->sid;
4067        newisec->initialized = 1;
4068
4069        return 0;
4070}
4071
4072static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4073                                  int size)
4074{
4075        return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4076}
4077
4078static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4079                                  int size, int flags)
4080{
4081        return sock_has_perm(current, sock->sk, SOCKET__READ);
4082}
4083
4084static int selinux_socket_getsockname(struct socket *sock)
4085{
4086        return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4087}
4088
4089static int selinux_socket_getpeername(struct socket *sock)
4090{
4091        return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4092}
4093
4094static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4095{
4096        int err;
4097
4098        err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4099        if (err)
4100                return err;
4101
4102        return selinux_netlbl_socket_setsockopt(sock, level, optname);
4103}
4104
4105static int selinux_socket_getsockopt(struct socket *sock, int level,
4106                                     int optname)
4107{
4108        return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4109}
4110
4111static int selinux_socket_shutdown(struct socket *sock, int how)
4112{
4113        return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4114}
4115
4116static int selinux_socket_unix_stream_connect(struct sock *sock,
4117                                              struct sock *other,
4118                                              struct sock *newsk)
4119{
4120        struct sk_security_struct *sksec_sock = sock->sk_security;
4121        struct sk_security_struct *sksec_other = other->sk_security;
4122        struct sk_security_struct *sksec_new = newsk->sk_security;
4123        struct common_audit_data ad;
4124        struct lsm_network_audit net = {0,};
4125        int err;
4126
4127        ad.type = LSM_AUDIT_DATA_NET;
4128        ad.u.net = &net;
4129        ad.u.net->sk = other;
4130
4131        err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4132                           sksec_other->sclass,
4133                           UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4134        if (err)
4135                return err;
4136
4137        /* server child socket */
4138        sksec_new->peer_sid = sksec_sock->sid;
4139        err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4140                                    &sksec_new->sid);
4141        if (err)
4142                return err;
4143
4144        /* connecting socket */
4145        sksec_sock->peer_sid = sksec_new->sid;
4146
4147        return 0;
4148}
4149
4150static int selinux_socket_unix_may_send(struct socket *sock,
4151                                        struct socket *other)
4152{
4153        struct sk_security_struct *ssec = sock->sk->sk_security;
4154        struct sk_security_struct *osec = other->sk->sk_security;
4155        struct common_audit_data ad;
4156        struct lsm_network_audit net = {0,};
4157
4158        ad.type = LSM_AUDIT_DATA_NET;
4159        ad.u.net = &net;
4160        ad.u.net->sk = other->sk;
4161
4162        return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4163                            &ad);
4164}
4165
4166static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4167                                    u32 peer_sid,
4168                                    struct common_audit_data *ad)
4169{
4170        int err;
4171        u32 if_sid;
4172        u32 node_sid;
4173
4174        err = sel_netif_sid(ifindex, &if_sid);
4175        if (err)
4176                return err;
4177        err = avc_has_perm(peer_sid, if_sid,
4178                           SECCLASS_NETIF, NETIF__INGRESS, ad);
4179        if (err)
4180                return err;
4181
4182        err = sel_netnode_sid(addrp, family, &node_sid);
4183        if (err)
4184                return err;
4185        return avc_has_perm(peer_sid, node_sid,
4186                            SECCLASS_NODE, NODE__RECVFROM, ad);
4187}
4188
4189static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4190                                       u16 family)
4191{
4192        int err = 0;
4193        struct sk_security_struct *sksec = sk->sk_security;
4194        u32 sk_sid = sksec->sid;
4195        struct common_audit_data ad;
4196        struct lsm_network_audit net = {0,};
4197        char *addrp;
4198
4199        ad.type = LSM_AUDIT_DATA_NET;
4200        ad.u.net = &net;
4201        ad.u.net->netif = skb->skb_iif;
4202        ad.u.net->family = family;
4203        err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4204        if (err)
4205                return err;
4206
4207        if (selinux_secmark_enabled()) {
4208                err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4209                                   PACKET__RECV, &ad);
4210                if (err)
4211                        return err;
4212        }
4213
4214        err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4215        if (err)
4216                return err;
4217        err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4218
4219        return err;
4220}
4221
4222static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4223{
4224        int err;
4225        struct sk_security_struct *sksec = sk->sk_security;
4226        u16 family = sk->sk_family;
4227        u32 sk_sid = sksec->sid;
4228        struct common_audit_data ad;
4229        struct lsm_network_audit net = {0,};
4230        char *addrp;
4231        u8 secmark_active;
4232        u8 peerlbl_active;
4233
4234        if (family != PF_INET && family != PF_INET6)
4235                return 0;
4236
4237        /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4238        if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4239                family = PF_INET;
4240
4241        /* If any sort of compatibility mode is enabled then handoff processing
4242         * to the selinux_sock_rcv_skb_compat() function to deal with the
4243         * special handling.  We do this in an attempt to keep this function
4244         * as fast and as clean as possible. */
4245        if (!selinux_policycap_netpeer)
4246                return selinux_sock_rcv_skb_compat(sk, skb, family);
4247
4248        secmark_active = selinux_secmark_enabled();
4249        peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4250        if (!secmark_active && !peerlbl_active)
4251                return 0;
4252
4253        ad.type = LSM_AUDIT_DATA_NET;
4254        ad.u.net = &net;
4255        ad.u.net->netif = skb->skb_iif;
4256        ad.u.net->family = family;
4257        err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4258        if (err)
4259                return err;
4260
4261        if (peerlbl_active) {
4262                u32 peer_sid;
4263
4264                err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4265                if (err)
4266                        return err;
4267                err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4268                                               peer_sid, &ad);
4269                if (err) {
4270                        selinux_netlbl_err(skb, err, 0);
4271                        return err;
4272                }
4273                err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4274                                   PEER__RECV, &ad);
4275                if (err)
4276                        selinux_netlbl_err(skb, err, 0);
4277        }
4278
4279        if (secmark_active) {
4280                err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4281                                   PACKET__RECV, &ad);
4282                if (err)
4283                        return err;
4284        }
4285
4286        return err;
4287}
4288
4289static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4290                                            int __user *optlen, unsigned len)
4291{
4292        int err = 0;
4293        char *scontext;
4294        u32 scontext_len;
4295        struct sk_security_struct *sksec = sock->sk->sk_security;
4296        u32 peer_sid = SECSID_NULL;
4297
4298        if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4299            sksec->sclass == SECCLASS_TCP_SOCKET)
4300                peer_sid = sksec->peer_sid;
4301        if (peer_sid == SECSID_NULL)
4302                return -ENOPROTOOPT;
4303
4304        err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4305        if (err)
4306                return err;
4307
4308        if (scontext_len > len) {
4309                err = -ERANGE;
4310                goto out_len;
4311        }
4312
4313        if (copy_to_user(optval, scontext, scontext_len))
4314                err = -EFAULT;
4315
4316out_len:
4317        if (put_user(scontext_len, optlen))
4318                err = -EFAULT;
4319        kfree(scontext);
4320        return err;
4321}
4322
4323static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4324{
4325        u32 peer_secid = SECSID_NULL;
4326        u16 family;
4327
4328        if (skb && skb->protocol == htons(ETH_P_IP))
4329                family = PF_INET;
4330        else if (skb && skb->protocol == htons(ETH_P_IPV6))
4331                family = PF_INET6;
4332        else if (sock)
4333                family = sock->sk->sk_family;
4334        else
4335                goto out;
4336
4337        if (sock && family == PF_UNIX)
4338                selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4339        else if (skb)
4340                selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4341
4342out:
4343        *secid = peer_secid;
4344        if (peer_secid == SECSID_NULL)
4345                return -EINVAL;
4346        return 0;
4347}
4348
4349static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4350{
4351        struct sk_security_struct *sksec;
4352
4353        sksec = kzalloc(sizeof(*sksec), priority);
4354        if (!sksec)
4355                return -ENOMEM;
4356
4357        sksec->peer_sid = SECINITSID_UNLABELED;
4358        sksec->sid = SECINITSID_UNLABELED;
4359        selinux_netlbl_sk_security_reset(sksec);
4360        sk->sk_security = sksec;
4361
4362        return 0;
4363}
4364
4365static void selinux_sk_free_security(struct sock *sk)
4366{
4367        struct sk_security_struct *sksec = sk->sk_security;
4368
4369        sk->sk_security = NULL;
4370        selinux_netlbl_sk_security_free(sksec);
4371        kfree(sksec);
4372}
4373
4374static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4375{
4376        struct sk_security_struct *sksec = sk->sk_security;
4377        struct sk_security_struct *newsksec = newsk->sk_security;
4378
4379        newsksec->sid = sksec->sid;
4380        newsksec->peer_sid = sksec->peer_sid;
4381        newsksec->sclass = sksec->sclass;
4382
4383        selinux_netlbl_sk_security_reset(newsksec);
4384}
4385
4386static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4387{
4388        if (!sk)
4389                *secid = SECINITSID_ANY_SOCKET;
4390        else {
4391                struct sk_security_struct *sksec = sk->sk_security;
4392
4393                *secid = sksec->sid;
4394        }
4395}
4396
4397static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4398{
4399        struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4400        struct sk_security_struct *sksec = sk->sk_security;
4401
4402        if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4403            sk->sk_family == PF_UNIX)
4404                isec->sid = sksec->sid;
4405        sksec->sclass = isec->sclass;
4406}
4407
4408static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4409                                     struct request_sock *req)
4410{
4411        struct sk_security_struct *sksec = sk->sk_security;
4412        int err;
4413        u16 family = sk->sk_family;
4414        u32 newsid;
4415        u32 peersid;
4416
4417        /* handle mapped IPv4 packets arriving via IPv6 sockets */
4418        if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4419                family = PF_INET;
4420
4421        err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4422        if (err)
4423                return err;
4424        if (peersid == SECSID_NULL) {
4425                req->secid = sksec->sid;
4426                req->peer_secid = SECSID_NULL;
4427        } else {
4428                err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4429                if (err)
4430                        return err;
4431                req->secid = newsid;
4432                req->peer_secid = peersid;
4433        }
4434
4435        return selinux_netlbl_inet_conn_request(req, family);
4436}
4437
4438static void selinux_inet_csk_clone(struct sock *newsk,
4439                                   const struct request_sock *req)
4440{
4441        struct sk_security_struct *newsksec = newsk->sk_security;
4442
4443        newsksec->sid = req->secid;
4444        newsksec->peer_sid = req->peer_secid;
4445        /* NOTE: Ideally, we should also get the isec->sid for the
4446           new socket in sync, but we don't have the isec available yet.
4447           So we will wait until sock_graft to do it, by which
4448           time it will have been created and available. */
4449
4450        /* We don't need to take any sort of lock here as we are the only
4451         * thread with access to newsksec */
4452        selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4453}
4454
4455static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4456{
4457        u16 family = sk->sk_family;
4458        struct sk_security_struct *sksec = sk->sk_security;
4459
4460        /* handle mapped IPv4 packets arriving via IPv6 sockets */
4461        if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4462                family = PF_INET;
4463
4464        selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4465}
4466
4467static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4468{
4469        skb_set_owner_w(skb, sk);
4470}
4471
4472static int selinux_secmark_relabel_packet(u32 sid)
4473{
4474        const struct task_security_struct *__tsec;
4475        u32 tsid;
4476
4477        __tsec = current_security();
4478        tsid = __tsec->sid;
4479
4480        return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4481}
4482
4483static void selinux_secmark_refcount_inc(void)
4484{
4485        atomic_inc(&selinux_secmark_refcount);
4486}
4487
4488static void selinux_secmark_refcount_dec(void)
4489{
4490        atomic_dec(&selinux_secmark_refcount);
4491}
4492
4493static void selinux_req_classify_flow(const struct request_sock *req,
4494                                      struct flowi *fl)
4495{
4496        fl->flowi_secid = req->secid;
4497}
4498
4499static int selinux_tun_dev_alloc_security(void **security)
4500{
4501        struct tun_security_struct *tunsec;
4502
4503        tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4504        if (!tunsec)
4505                return -ENOMEM;
4506        tunsec->sid = current_sid();
4507
4508        *security = tunsec;
4509        return 0;
4510}
4511
4512static void selinux_tun_dev_free_security(void *security)
4513{
4514        kfree(security);
4515}
4516
4517static int selinux_tun_dev_create(void)
4518{
4519        u32 sid = current_sid();
4520
4521        /* we aren't taking into account the "sockcreate" SID since the socket
4522         * that is being created here is not a socket in the traditional sense,
4523         * instead it is a private sock, accessible only to the kernel, and
4524         * representing a wide range of network traffic spanning multiple
4525         * connections unlike traditional sockets - check the TUN driver to
4526         * get a better understanding of why this socket is special */
4527
4528        return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4529                            NULL);
4530}
4531
4532static int selinux_tun_dev_attach_queue(void *security)
4533{
4534        struct tun_security_struct *tunsec = security;
4535
4536        return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4537                            TUN_SOCKET__ATTACH_QUEUE, NULL);
4538}
4539
4540static int selinux_tun_dev_attach(struct sock *sk, void *security)
4541{
4542        struct tun_security_struct *tunsec = security;
4543        struct sk_security_struct *sksec = sk->sk_security;
4544
4545        /* we don't currently perform any NetLabel based labeling here and it
4546         * isn't clear that we would want to do so anyway; while we could apply
4547         * labeling without the support of the TUN user the resulting labeled
4548         * traffic from the other end of the connection would almost certainly
4549         * cause confusion to the TUN user that had no idea network labeling
4550         * protocols were being used */
4551
4552        sksec->sid = tunsec->sid;
4553        sksec->sclass = SECCLASS_TUN_SOCKET;
4554
4555        return 0;
4556}
4557
4558static int selinux_tun_dev_open(void *security)
4559{
4560        struct tun_security_struct *tunsec = security;
4561        u32 sid = current_sid();
4562        int err;
4563
4564        err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4565                           TUN_SOCKET__RELABELFROM, NULL);
4566        if (err)
4567                return err;
4568        err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4569                           TUN_SOCKET__RELABELTO, NULL);
4570        if (err)
4571                return err;
4572        tunsec->sid = sid;
4573
4574        return 0;
4575}
4576
4577static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4578{
4579        int err = 0;
4580        u32 perm;
4581        struct nlmsghdr *nlh;
4582        struct sk_security_struct *sksec = sk->sk_security;
4583
4584        if (skb->len < NLMSG_HDRLEN) {
4585                err = -EINVAL;
4586                goto out;
4587        }
4588        nlh = nlmsg_hdr(skb);
4589
4590        err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4591        if (err) {
4592                if (err == -EINVAL) {
4593                        audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4594                                  "SELinux:  unrecognized netlink message"
4595                                  " type=%hu for sclass=%hu\n",
4596                                  nlh->nlmsg_type, sksec->sclass);
4597                        if (!selinux_enforcing || security_get_allow_unknown())
4598                                err = 0;
4599                }
4600
4601                /* Ignore */
4602                if (err == -ENOENT)
4603                        err = 0;
4604                goto out;
4605        }
4606
4607        err = sock_has_perm(current, sk, perm);
4608out:
4609        return err;
4610}
4611
4612#ifdef CONFIG_NETFILTER
4613
4614static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4615                                       u16 family)
4616{
4617        int err;
4618        char *addrp;
4619        u32 peer_sid;
4620        struct common_audit_data ad;
4621        struct lsm_network_audit net = {0,};
4622        u8 secmark_active;
4623        u8 netlbl_active;
4624        u8 peerlbl_active;
4625
4626        if (!selinux_policycap_netpeer)
4627                return NF_ACCEPT;
4628
4629        secmark_active = selinux_secmark_enabled();
4630        netlbl_active = netlbl_enabled();
4631        peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4632        if (!secmark_active && !peerlbl_active)
4633                return NF_ACCEPT;
4634
4635        if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4636                return NF_DROP;
4637
4638        ad.type = LSM_AUDIT_DATA_NET;
4639        ad.u.net = &net;
4640        ad.u.net->netif = ifindex;
4641        ad.u.net->family = family;
4642        if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4643                return NF_DROP;
4644
4645        if (peerlbl_active) {
4646                err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4647                                               peer_sid, &ad);
4648                if (err) {
4649                        selinux_netlbl_err(skb, err, 1);
4650                        return NF_DROP;
4651                }
4652        }
4653
4654        if (secmark_active)
4655                if (avc_has_perm(peer_sid, skb->secmark,
4656                                 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4657                        return NF_DROP;
4658
4659        if (netlbl_active)
4660                /* we do this in the FORWARD path and not the POST_ROUTING
4661                 * path because we want to make sure we apply the necessary
4662                 * labeling before IPsec is applied so we can leverage AH
4663                 * protection */
4664                if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4665                        return NF_DROP;
4666
4667        return NF_ACCEPT;
4668}
4669
4670static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4671                                         struct sk_buff *skb,
4672                                         const struct net_device *in,
4673                                         const struct net_device *out,
4674                                         int (*okfn)(struct sk_buff *))
4675{
4676        return selinux_ip_forward(skb, in->ifindex, PF_INET);
4677}
4678
4679#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4680static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4681                                         struct sk_buff *skb,
4682                                         const struct net_device *in,
4683                                         const struct net_device *out,
4684                                         int (*okfn)(struct sk_buff *))
4685{
4686        return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4687}
4688#endif  /* IPV6 */
4689
4690static unsigned int selinux_ip_output(struct sk_buff *skb,
4691                                      u16 family)
4692{
4693        u32 sid;
4694
4695        if (!netlbl_enabled())
4696                return NF_ACCEPT;
4697
4698        /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4699         * because we want to make sure we apply the necessary labeling
4700         * before IPsec is applied so we can leverage AH protection */
4701        if (skb->sk) {
4702                struct sk_security_struct *sksec = skb->sk->sk_security;
4703                sid = sksec->sid;
4704        } else
4705                sid = SECINITSID_KERNEL;
4706        if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4707                return NF_DROP;
4708
4709        return NF_ACCEPT;
4710}
4711
4712static unsigned int selinux_ipv4_output(unsigned int hooknum,
4713                                        struct sk_buff *skb,
4714                                        const struct net_device *in,
4715                                        const struct net_device *out,
4716                                        int (*okfn)(struct sk_buff *))
4717{
4718        return selinux_ip_output(skb, PF_INET);
4719}
4720
4721static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4722                                                int ifindex,
4723                                                u16 family)
4724{
4725        struct sock *sk = skb->sk;
4726        struct sk_security_struct *sksec;
4727        struct common_audit_data ad;
4728        struct lsm_network_audit net = {0,};
4729        char *addrp;
4730        u8 proto;
4731
4732        if (sk == NULL)
4733                return NF_ACCEPT;
4734        sksec = sk->sk_security;
4735
4736        ad.type = LSM_AUDIT_DATA_NET;
4737        ad.u.net = &net;
4738        ad.u.net->netif = ifindex;
4739        ad.u.net->family = family;
4740        if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4741                return NF_DROP;
4742
4743        if (selinux_secmark_enabled())
4744                if (avc_has_perm(sksec->sid, skb->secmark,
4745                                 SECCLASS_PACKET, PACKET__SEND, &ad))
4746                        return NF_DROP_ERR(-ECONNREFUSED);
4747
4748        if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4749                return NF_DROP_ERR(-ECONNREFUSED);
4750
4751        return NF_ACCEPT;
4752}
4753
4754static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4755                                         u16 family)
4756{
4757        u32 secmark_perm;
4758        u32 peer_sid;
4759        struct sock *sk;
4760        struct common_audit_data ad;
4761        struct lsm_network_audit net = {0,};
4762        char *addrp;
4763        u8 secmark_active;
4764        u8 peerlbl_active;
4765
4766        /* If any sort of compatibility mode is enabled then handoff processing
4767         * to the selinux_ip_postroute_compat() function to deal with the
4768         * special handling.  We do this in an attempt to keep this function
4769         * as fast and as clean as possible. */
4770        if (!selinux_policycap_netpeer)
4771                return selinux_ip_postroute_compat(skb, ifindex, family);
4772#ifdef CONFIG_XFRM
4773        /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4774         * packet transformation so allow the packet to pass without any checks
4775         * since we'll have another chance to perform access control checks
4776         * when the packet is on it's final way out.
4777         * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4778         *       is NULL, in this case go ahead and apply access control. */
4779        if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4780                return NF_ACCEPT;
4781#endif
4782        secmark_active = selinux_secmark_enabled();
4783        peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4784        if (!secmark_active && !peerlbl_active)
4785                return NF_ACCEPT;
4786
4787        /* if the packet is being forwarded then get the peer label from the
4788         * packet itself; otherwise check to see if it is from a local
4789         * application or the kernel, if from an application get the peer label
4790         * from the sending socket, otherwise use the kernel's sid */
4791        sk = skb->sk;
4792        if (sk == NULL) {
4793                if (skb->skb_iif) {
4794                        secmark_perm = PACKET__FORWARD_OUT;
4795                        if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4796                                return NF_DROP;
4797                } else {
4798                        secmark_perm = PACKET__SEND;
4799                        peer_sid = SECINITSID_KERNEL;
4800                }
4801        } else {
4802                struct sk_security_struct *sksec = sk->sk_security;
4803                peer_sid = sksec->sid;
4804                secmark_perm = PACKET__SEND;
4805        }
4806
4807        ad.type = LSM_AUDIT_DATA_NET;
4808        ad.u.net = &net;
4809        ad.u.net->netif = ifindex;
4810        ad.u.net->family = family;
4811        if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4812                return NF_DROP;
4813
4814        if (secmark_active)
4815                if (avc_has_perm(peer_sid, skb->secmark,
4816                                 SECCLASS_PACKET, secmark_perm, &ad))
4817                        return NF_DROP_ERR(-ECONNREFUSED);
4818
4819        if (peerlbl_active) {
4820                u32 if_sid;
4821                u32 node_sid;
4822
4823                if (sel_netif_sid(ifindex, &if_sid))
4824                        return NF_DROP;
4825                if (avc_has_perm(peer_sid, if_sid,
4826                                 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4827                        return NF_DROP_ERR(-ECONNREFUSED);
4828
4829                if (sel_netnode_sid(addrp, family, &node_sid))
4830                        return NF_DROP;
4831                if (avc_has_perm(peer_sid, node_sid,
4832                                 SECCLASS_NODE, NODE__SENDTO, &ad))
4833                        return NF_DROP_ERR(-ECONNREFUSED);
4834        }
4835
4836        return NF_ACCEPT;
4837}
4838
4839static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4840                                           struct sk_buff *skb,
4841                                           const struct net_device *in,
4842                                           const struct net_device *out,
4843                                           int (*okfn)(struct sk_buff *))
4844{
4845        return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4846}
4847
4848#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4849static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4850                                           struct sk_buff *skb,
4851                                           const struct net_device *in,
4852                                           const struct net_device *out,
4853                                           int (*okfn)(struct sk_buff *))
4854{
4855        return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4856}
4857#endif  /* IPV6 */
4858
4859#endif  /* CONFIG_NETFILTER */
4860
4861static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4862{
4863        int err;
4864
4865        err = cap_netlink_send(sk, skb);
4866        if (err)
4867                return err;
4868
4869        return selinux_nlmsg_perm(sk, skb);
4870}
4871
4872static int ipc_alloc_security(struct task_struct *task,
4873                              struct kern_ipc_perm *perm,
4874                              u16 sclass)
4875{
4876        struct ipc_security_struct *isec;
4877        u32 sid;
4878
4879        isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4880        if (!isec)
4881                return -ENOMEM;
4882
4883        sid = task_sid(task);
4884        isec->sclass = sclass;
4885        isec->sid = sid;
4886        perm->security = isec;
4887
4888        return 0;
4889}
4890
4891static void ipc_free_security(struct kern_ipc_perm *perm)
4892{
4893        struct ipc_security_struct *isec = perm->security;
4894        perm->security = NULL;
4895        kfree(isec);
4896}
4897
4898static int msg_msg_alloc_security(struct msg_msg *msg)
4899{
4900        struct msg_security_struct *msec;
4901
4902        msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4903        if (!msec)
4904                return -ENOMEM;
4905
4906        msec->sid = SECINITSID_UNLABELED;
4907        msg->security = msec;
4908
4909        return 0;
4910}
4911
4912static void msg_msg_free_security(struct msg_msg *msg)
4913{
4914        struct msg_security_struct *msec = msg->security;
4915
4916        msg->security = NULL;
4917        kfree(msec);
4918}
4919
4920static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4921                        u32 perms)
4922{
4923        struct ipc_security_struct *isec;
4924        struct common_audit_data ad;
4925        u32 sid = current_sid();
4926
4927        isec = ipc_perms->security;
4928
4929        ad.type = LSM_AUDIT_DATA_IPC;
4930        ad.u.ipc_id = ipc_perms->key;
4931
4932        return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4933}
4934
4935static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4936{
4937        return msg_msg_alloc_security(msg);
4938}
4939
4940static void selinux_msg_msg_free_security(struct msg_msg *msg)
4941{
4942        msg_msg_free_security(msg);
4943}
4944
4945/* message queue security operations */
4946static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4947{
4948        struct ipc_security_struct *isec;
4949        struct common_audit_data ad;
4950        u32 sid = current_sid();
4951        int rc;
4952
4953        rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4954        if (rc)
4955                return rc;
4956
4957        isec = msq->q_perm.security;
4958
4959        ad.type = LSM_AUDIT_DATA_IPC;
4960        ad.u.ipc_id = msq->q_perm.key;
4961
4962        rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4963                          MSGQ__CREATE, &ad);
4964        if (rc) {
4965                ipc_free_security(&msq->q_perm);
4966                return rc;
4967        }
4968        return 0;
4969}
4970
4971static void selinux_msg_queue_free_security(struct msg_queue *msq)
4972{
4973        ipc_free_security(&msq->q_perm);
4974}
4975
4976static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4977{
4978        struct ipc_security_struct *isec;
4979        struct common_audit_data ad;
4980        u32 sid = current_sid();
4981
4982        isec = msq->q_perm.security;
4983
4984        ad.type = LSM_AUDIT_DATA_IPC;
4985        ad.u.ipc_id = msq->q_perm.key;
4986
4987        return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4988                            MSGQ__ASSOCIATE, &ad);
4989}
4990
4991static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4992{
4993        int err;
4994        int perms;
4995
4996        switch (cmd) {
4997        case IPC_INFO:
4998        case MSG_INFO:
4999                /* No specific object, just general system-wide information. */
5000                return task_has_system(current, SYSTEM__IPC_INFO);
5001        case IPC_STAT:
5002        case MSG_STAT:
5003                perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5004                break;
5005        case IPC_SET:
5006                perms = MSGQ__SETATTR;
5007                break;
5008        case IPC_RMID:
5009                perms = MSGQ__DESTROY;
5010                break;
5011        default:
5012                return 0;
5013        }
5014
5015        err = ipc_has_perm(&msq->q_perm, perms);
5016        return err;
5017}
5018
5019static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5020{
5021        struct ipc_security_struct *isec;
5022        struct msg_security_struct *msec;
5023        struct common_audit_data ad;
5024        u32 sid = current_sid();
5025        int rc;
5026
5027        isec = msq->q_perm.security;
5028        msec = msg->security;
5029
5030        /*
5031         * First time through, need to assign label to the message
5032         */
5033        if (msec->sid == SECINITSID_UNLABELED) {
5034                /*
5035                 * Compute new sid based on current process and
5036                 * message queue this message will be stored in
5037                 */
5038                rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5039                                             NULL, &msec->sid);
5040                if (rc)
5041                        return rc;
5042        }
5043
5044        ad.type = LSM_AUDIT_DATA_IPC;
5045        ad.u.ipc_id = msq->q_perm.key;
5046
5047        /* Can this process write to the queue? */
5048        rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5049                          MSGQ__WRITE, &ad);
5050        if (!rc)
5051                /* Can this process send the message */
5052                rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5053                                  MSG__SEND, &ad);
5054        if (!rc)
5055                /* Can the message be put in the queue? */
5056                rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5057                                  MSGQ__ENQUEUE, &ad);
5058
5059        return rc;
5060}
5061
5062static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5063                                    struct task_struct *target,
5064                                    long type, int mode)
5065{
5066        struct ipc_security_struct *isec;
5067        struct msg_security_struct *msec;
5068        struct common_audit_data ad;
5069        u32 sid = task_sid(target);
5070        int rc;
5071
5072        isec = msq->q_perm.security;
5073        msec = msg->security;
5074
5075        ad.type = LSM_AUDIT_DATA_IPC;
5076        ad.u.ipc_id = msq->q_perm.key;
5077
5078        rc = avc_has_perm(sid, isec->sid,
5079                          SECCLASS_MSGQ, MSGQ__READ, &ad);
5080        if (!rc)
5081                rc = avc_has_perm(sid, msec->sid,
5082                                  SECCLASS_MSG, MSG__RECEIVE, &ad);
5083        return rc;
5084}
5085
5086/* Shared Memory security operations */
5087static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5088{
5089        struct ipc_security_struct *isec;
5090        struct common_audit_data ad;
5091        u32 sid = current_sid();
5092        int rc;
5093
5094        rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5095        if (rc)
5096                return rc;
5097
5098        isec = shp->shm_perm.security;
5099
5100        ad.type = LSM_AUDIT_DATA_IPC;
5101        ad.u.ipc_id = shp->shm_perm.key;
5102
5103        rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5104                          SHM__CREATE, &ad);
5105        if (rc) {
5106                ipc_free_security(&shp->shm_perm);
5107                return rc;
5108        }
5109        return 0;
5110}
5111
5112static void selinux_shm_free_security(struct shmid_kernel *shp)
5113{
5114        ipc_free_security(&shp->shm_perm);
5115}
5116
5117static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5118{
5119        struct ipc_security_struct *isec;
5120        struct common_audit_data ad;
5121        u32 sid = current_sid();
5122
5123        isec = shp->shm_perm.security;
5124
5125        ad.type = LSM_AUDIT_DATA_IPC;
5126        ad.u.ipc_id = shp->shm_perm.key;
5127
5128        return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5129                            SHM__ASSOCIATE, &ad);
5130}
5131
5132/* Note, at this point, shp is locked down */
5133static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5134{
5135        int perms;
5136        int err;
5137
5138        switch (cmd) {
5139        case IPC_INFO:
5140        case SHM_INFO:
5141                /* No specific object, just general system-wide information. */
5142                return task_has_system(current, SYSTEM__IPC_INFO);
5143        case IPC_STAT:
5144        case SHM_STAT:
5145                perms = SHM__GETATTR | SHM__ASSOCIATE;
5146                break;
5147        case IPC_SET:
5148                perms = SHM__SETATTR;
5149                break;
5150        case SHM_LOCK:
5151        case SHM_UNLOCK:
5152                perms = SHM__LOCK;
5153                break;
5154        case IPC_RMID:
5155                perms = SHM__DESTROY;
5156                break;
5157        default:
5158                return 0;
5159        }
5160
5161        err = ipc_has_perm(&shp->shm_perm, perms);
5162        return err;
5163}
5164
5165static int selinux_shm_shmat(struct shmid_kernel *shp,
5166                             char __user *shmaddr, int shmflg)
5167{
5168        u32 perms;
5169
5170        if (shmflg & SHM_RDONLY)
5171                perms = SHM__READ;
5172        else
5173                perms = SHM__READ | SHM__WRITE;
5174
5175        return ipc_has_perm(&shp->shm_perm, perms);
5176}
5177
5178/* Semaphore security operations */
5179static int selinux_sem_alloc_security(struct sem_array *sma)
5180{
5181        struct ipc_security_struct *isec;
5182        struct common_audit_data ad;
5183        u32 sid = current_sid();
5184        int rc;
5185
5186        rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5187        if (rc)
5188                return rc;
5189
5190        isec = sma->sem_perm.security;
5191
5192        ad.type = LSM_AUDIT_DATA_IPC;
5193        ad.u.ipc_id = sma->sem_perm.key;
5194
5195        rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5196                          SEM__CREATE, &ad);
5197        if (rc) {
5198                ipc_free_security(&sma->sem_perm);
5199                return rc;
5200        }
5201        return 0;
5202}
5203
5204static void selinux_sem_free_security(struct sem_array *sma)
5205{
5206        ipc_free_security(&sma->sem_perm);
5207}
5208
5209static int selinux_sem_associate(struct sem_array *sma, int semflg)
5210{
5211        struct ipc_security_struct *isec;
5212        struct common_audit_data ad;
5213        u32 sid = current_sid();
5214
5215        isec = sma->sem_perm.security;
5216
5217        ad.type = LSM_AUDIT_DATA_IPC;
5218        ad.u.ipc_id = sma->sem_perm.key;
5219
5220        return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5221                            SEM__ASSOCIATE, &ad);
5222}
5223
5224/* Note, at this point, sma is locked down */
5225static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5226{
5227        int err;
5228        u32 perms;
5229
5230        switch (cmd) {
5231        case IPC_INFO:
5232        case SEM_INFO:
5233                /* No specific object, just general system-wide information. */
5234                return task_has_system(current, SYSTEM__IPC_INFO);
5235        case GETPID:
5236        case GETNCNT:
5237        case GETZCNT:
5238                perms = SEM__GETATTR;
5239                break;
5240        case GETVAL:
5241        case GETALL:
5242                perms = SEM__READ;
5243                break;
5244        case SETVAL:
5245        case SETALL:
5246                perms = SEM__WRITE;
5247                break;
5248        case IPC_RMID:
5249                perms = SEM__DESTROY;
5250                break;
5251        case IPC_SET:
5252                perms = SEM__SETATTR;
5253                break;
5254        case IPC_STAT:
5255        case SEM_STAT:
5256                perms = SEM__GETATTR | SEM__ASSOCIATE;
5257                break;
5258        default:
5259                return 0;
5260        }
5261
5262        err = ipc_has_perm(&sma->sem_perm, perms);
5263        return err;
5264}
5265
5266static int selinux_sem_semop(struct sem_array *sma,
5267                             struct sembuf *sops, unsigned nsops, int alter)
5268{
5269        u32 perms;
5270
5271        if (alter)
5272                perms = SEM__READ | SEM__WRITE;
5273        else
5274                perms = SEM__READ;
5275
5276        return ipc_has_perm(&sma->sem_perm, perms);
5277}
5278
5279static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5280{
5281        u32 av = 0;
5282
5283        av = 0;
5284        if (flag & S_IRUGO)
5285                av |= IPC__UNIX_READ;
5286        if (flag & S_IWUGO)
5287                av |= IPC__UNIX_WRITE;
5288
5289        if (av == 0)
5290                return 0;
5291
5292        return ipc_has_perm(ipcp, av);
5293}
5294
5295static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5296{
5297        struct ipc_security_struct *isec = ipcp->security;
5298        *secid = isec->sid;
5299}
5300
5301static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5302{
5303        if (inode)
5304                inode_doinit_with_dentry(inode, dentry);
5305}
5306
5307static int selinux_getprocattr(struct task_struct *p,
5308                               char *name, char **value)
5309{
5310        const struct task_security_struct *__tsec;
5311        u32 sid;
5312        int error;
5313        unsigned len;
5314
5315        if (current != p) {
5316                error = current_has_perm(p, PROCESS__GETATTR);
5317                if (error)
5318                        return error;
5319        }
5320
5321        rcu_read_lock();
5322        __tsec = __task_cred(p)->security;
5323
5324        if (!strcmp(name, "current"))
5325                sid = __tsec->sid;
5326        else if (!strcmp(name, "prev"))
5327                sid = __tsec->osid;
5328        else if (!strcmp(name, "exec"))
5329                sid = __tsec->exec_sid;
5330        else if (!strcmp(name, "fscreate"))
5331                sid = __tsec->create_sid;
5332        else if (!strcmp(name, "keycreate"))
5333                sid = __tsec->keycreate_sid;
5334        else if (!strcmp(name, "sockcreate"))
5335                sid = __tsec->sockcreate_sid;
5336        else
5337                goto invalid;
5338        rcu_read_unlock();
5339
5340        if (!sid)
5341                return 0;
5342
5343        error = security_sid_to_context(sid, value, &len);
5344        if (error)
5345                return error;
5346        return len;
5347
5348invalid:
5349        rcu_read_unlock();
5350        return -EINVAL;
5351}
5352
5353static int selinux_setprocattr(struct task_struct *p,
5354                               char *name, void *value, size_t size)
5355{
5356        struct task_security_struct *tsec;
5357        struct task_struct *tracer;
5358        struct cred *new;
5359        u32 sid = 0, ptsid;
5360        int error;
5361        char *str = value;
5362
5363        if (current != p) {
5364                /* SELinux only allows a process to change its own
5365                   security attributes. */
5366                return -EACCES;
5367        }
5368
5369        /*
5370         * Basic control over ability to set these attributes at all.
5371         * current == p, but we'll pass them separately in case the
5372         * above restriction is ever removed.
5373         */
5374        if (!strcmp(name, "exec"))
5375                error = current_has_perm(p, PROCESS__SETEXEC);
5376        else if (!strcmp(name, "fscreate"))
5377                error = current_has_perm(p, PROCESS__SETFSCREATE);
5378        else if (!strcmp(name, "keycreate"))
5379                error = current_has_perm(p, PROCESS__SETKEYCREATE);
5380        else if (!strcmp(name, "sockcreate"))
5381                error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5382        else if (!strcmp(name, "current"))
5383                error = current_has_perm(p, PROCESS__SETCURRENT);
5384        else
5385                error = -EINVAL;
5386        if (error)
5387                return error;
5388
5389        /* Obtain a SID for the context, if one was specified. */
5390        if (size && str[1] && str[1] != '\n') {
5391                if (str[size-1] == '\n') {
5392                        str[size-1] = 0;
5393                        size--;
5394                }
5395                error = security_context_to_sid(value, size, &sid);
5396                if (error == -EINVAL && !strcmp(name, "fscreate")) {
5397                        if (!capable(CAP_MAC_ADMIN)) {
5398                                struct audit_buffer *ab;
5399                                size_t audit_size;
5400
5401                                /* We strip a nul only if it is at the end, otherwise the
5402                                 * context contains a nul and we should audit that */
5403                                if (str[size - 1] == '\0')
5404                                        audit_size = size - 1;
5405                                else
5406                                        audit_size = size;
5407                                ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5408                                audit_log_format(ab, "op=fscreate invalid_context=");
5409                                audit_log_n_untrustedstring(ab, value, audit_size);
5410                                audit_log_end(ab);
5411
5412                                return error;
5413                        }
5414                        error = security_context_to_sid_force(value, size,
5415                                                              &sid);
5416                }
5417                if (error)
5418                        return error;
5419        }
5420
5421        new = prepare_creds();
5422        if (!new)
5423                return -ENOMEM;
5424
5425        /* Permission checking based on the specified context is
5426           performed during the actual operation (execve,
5427           open/mkdir/...), when we know the full context of the
5428           operation.  See selinux_bprm_set_creds for the execve
5429           checks and may_create for the file creation checks. The
5430           operation will then fail if the context is not permitted. */
5431        tsec = new->security;
5432        if (!strcmp(name, "exec")) {
5433                tsec->exec_sid = sid;
5434        } else if (!strcmp(name, "fscreate")) {
5435                tsec->create_sid = sid;
5436        } else if (!strcmp(name, "keycreate")) {
5437                error = may_create_key(sid, p);
5438                if (error)
5439                        goto abort_change;
5440                tsec->keycreate_sid = sid;
5441        } else if (!strcmp(name, "sockcreate")) {
5442                tsec->sockcreate_sid = sid;
5443        } else if (!strcmp(name, "current")) {
5444                error = -EINVAL;
5445                if (sid == 0)
5446                        goto abort_change;
5447
5448                /* Only allow single threaded processes to change context */
5449                error = -EPERM;
5450                if (!current_is_single_threaded()) {
5451                        error = security_bounded_transition(tsec->sid, sid);
5452                        if (error)
5453                                goto abort_change;
5454                }
5455
5456                /* Check permissions for the transition. */
5457                error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5458                                     PROCESS__DYNTRANSITION, NULL);
5459                if (error)
5460                        goto abort_change;
5461
5462                /* Check for ptracing, and update the task SID if ok.
5463                   Otherwise, leave SID unchanged and fail. */
5464                ptsid = 0;
5465                task_lock(p);
5466                tracer = ptrace_parent(p);
5467                if (tracer)
5468                        ptsid = task_sid(tracer);
5469                task_unlock(p);
5470
5471                if (tracer) {
5472                        error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5473                                             PROCESS__PTRACE, NULL);
5474                        if (error)
5475                                goto abort_change;
5476                }
5477
5478                tsec->sid = sid;
5479        } else {
5480                error = -EINVAL;
5481                goto abort_change;
5482        }
5483
5484        commit_creds(new);
5485        return size;
5486
5487abort_change:
5488        abort_creds(new);
5489        return error;
5490}
5491
5492static int selinux_ismaclabel(const char *name)
5493{
5494        return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5495}
5496
5497static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5498{
5499        return security_sid_to_context(secid, secdata, seclen);
5500}
5501
5502static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5503{
5504        return security_context_to_sid(secdata, seclen, secid);
5505}
5506
5507static void selinux_release_secctx(char *secdata, u32 seclen)
5508{
5509        kfree(secdata);
5510}
5511
5512/*
5513 *      called with inode->i_mutex locked
5514 */
5515static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5516{
5517        return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5518}
5519
5520/*
5521 *      called with inode->i_mutex locked
5522 */
5523static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5524{
5525        return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5526}
5527
5528static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5529{
5530        int len = 0;
5531        len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5532                                                ctx, true);
5533        if (len < 0)
5534                return len;
5535        *ctxlen = len;
5536        return 0;
5537}
5538#ifdef CONFIG_KEYS
5539
5540static int selinux_key_alloc(struct key *k, const struct cred *cred,
5541                             unsigned long flags)
5542{
5543        const struct task_security_struct *tsec;
5544        struct key_security_struct *ksec;
5545
5546        ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5547        if (!ksec)
5548                return -ENOMEM;
5549
5550        tsec = cred->security;
5551        if (tsec->keycreate_sid)
5552                ksec->sid = tsec->keycreate_sid;
5553        else
5554                ksec->sid = tsec->sid;
5555
5556        k->security = ksec;
5557        return 0;
5558}
5559
5560static void selinux_key_free(struct key *k)
5561{
5562        struct key_security_struct *ksec = k->security;
5563
5564        k->security = NULL;
5565        kfree(ksec);
5566}
5567
5568static int selinux_key_permission(key_ref_t key_ref,
5569                                  const struct cred *cred,
5570                                  key_perm_t perm)
5571{
5572        struct key *key;
5573        struct key_security_struct *ksec;
5574        u32 sid;
5575
5576        /* if no specific permissions are requested, we skip the
5577           permission check. No serious, additional covert channels
5578           appear to be created. */
5579        if (perm == 0)
5580                return 0;
5581
5582        sid = cred_sid(cred);
5583
5584        key = key_ref_to_ptr(key_ref);
5585        ksec = key->security;
5586
5587        return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5588}
5589
5590static int selinux_key_getsecurity(struct key *key, char **_buffer)
5591{
5592        struct key_security_struct *ksec = key->security;
5593        char *context = NULL;
5594        unsigned len;
5595        int rc;
5596
5597        rc = security_sid_to_context(ksec->sid, &context, &len);
5598        if (!rc)
5599                rc = len;
5600        *_buffer = context;
5601        return rc;
5602}
5603
5604#endif
5605
5606static struct security_operations selinux_ops = {
5607        .name =                         "selinux",
5608
5609        .ptrace_access_check =          selinux_ptrace_access_check,
5610        .ptrace_traceme =               selinux_ptrace_traceme,
5611        .capget =                       selinux_capget,
5612        .capset =                       selinux_capset,
5613        .capable =                      selinux_capable,
5614        .quotactl =                     selinux_quotactl,
5615        .quota_on =                     selinux_quota_on,
5616        .syslog =                       selinux_syslog,
5617        .vm_enough_memory =             selinux_vm_enough_memory,
5618
5619        .netlink_send =                 selinux_netlink_send,
5620
5621        .bprm_set_creds =               selinux_bprm_set_creds,
5622        .bprm_committing_creds =        selinux_bprm_committing_creds,
5623        .bprm_committed_creds =         selinux_bprm_committed_creds,
5624        .bprm_secureexec =              selinux_bprm_secureexec,
5625
5626        .sb_alloc_security =            selinux_sb_alloc_security,
5627        .sb_free_security =             selinux_sb_free_security,
5628        .sb_copy_data =                 selinux_sb_copy_data,
5629        .sb_remount =                   selinux_sb_remount,
5630        .sb_kern_mount =                selinux_sb_kern_mount,
5631        .sb_show_options =              selinux_sb_show_options,
5632        .sb_statfs =                    selinux_sb_statfs,
5633        .sb_mount =                     selinux_mount,
5634        .sb_umount =                    selinux_umount,
5635        .sb_set_mnt_opts =              selinux_set_mnt_opts,
5636        .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5637        .sb_parse_opts_str =            selinux_parse_opts_str,
5638
5639        .dentry_init_security =         selinux_dentry_init_security,
5640
5641        .inode_alloc_security =         selinux_inode_alloc_security,
5642        .inode_free_security =          selinux_inode_free_security,
5643        .inode_init_security =          selinux_inode_init_security,
5644        .inode_create =                 selinux_inode_create,
5645        .inode_link =                   selinux_inode_link,
5646        .inode_unlink =                 selinux_inode_unlink,
5647        .inode_symlink =                selinux_inode_symlink,
5648        .inode_mkdir =                  selinux_inode_mkdir,
5649        .inode_rmdir =                  selinux_inode_rmdir,
5650        .inode_mknod =                  selinux_inode_mknod,
5651        .inode_rename =                 selinux_inode_rename,
5652        .inode_readlink =               selinux_inode_readlink,
5653        .inode_follow_link =            selinux_inode_follow_link,
5654        .inode_permission =             selinux_inode_permission,
5655        .inode_setattr =                selinux_inode_setattr,
5656        .inode_getattr =                selinux_inode_getattr,
5657        .inode_setxattr =               selinux_inode_setxattr,
5658        .inode_post_setxattr =          selinux_inode_post_setxattr,
5659        .inode_getxattr =               selinux_inode_getxattr,
5660        .inode_listxattr =              selinux_inode_listxattr,
5661        .inode_removexattr =            selinux_inode_removexattr,
5662        .inode_getsecurity =            selinux_inode_getsecurity,
5663        .inode_setsecurity =            selinux_inode_setsecurity,
5664        .inode_listsecurity =           selinux_inode_listsecurity,
5665        .inode_getsecid =               selinux_inode_getsecid,
5666
5667        .file_permission =              selinux_file_permission,
5668        .file_alloc_security =          selinux_file_alloc_security,
5669        .file_free_security =           selinux_file_free_security,
5670        .file_ioctl =                   selinux_file_ioctl,
5671        .mmap_file =                    selinux_mmap_file,
5672        .mmap_addr =                    selinux_mmap_addr,
5673        .file_mprotect =                selinux_file_mprotect,
5674        .file_lock =                    selinux_file_lock,
5675        .file_fcntl =                   selinux_file_fcntl,
5676        .file_set_fowner =              selinux_file_set_fowner,
5677        .file_send_sigiotask =          selinux_file_send_sigiotask,
5678        .file_receive =                 selinux_file_receive,
5679
5680        .file_open =                    selinux_file_open,
5681
5682        .task_create =                  selinux_task_create,
5683        .cred_alloc_blank =             selinux_cred_alloc_blank,
5684        .cred_free =                    selinux_cred_free,
5685        .cred_prepare =                 selinux_cred_prepare,
5686        .cred_transfer =                selinux_cred_transfer,
5687        .kernel_act_as =                selinux_kernel_act_as,
5688        .kernel_create_files_as =       selinux_kernel_create_files_as,
5689        .kernel_module_request =        selinux_kernel_module_request,
5690        .task_setpgid =                 selinux_task_setpgid,
5691        .task_getpgid =                 selinux_task_getpgid,
5692        .task_getsid =                  selinux_task_getsid,
5693        .task_getsecid =                selinux_task_getsecid,
5694        .task_setnice =                 selinux_task_setnice,
5695        .task_setioprio =               selinux_task_setioprio,
5696        .task_getioprio =               selinux_task_getioprio,
5697        .task_setrlimit =               selinux_task_setrlimit,
5698        .task_setscheduler =            selinux_task_setscheduler,
5699        .task_getscheduler =            selinux_task_getscheduler,
5700        .task_movememory =              selinux_task_movememory,
5701        .task_kill =                    selinux_task_kill,
5702        .task_wait =                    selinux_task_wait,
5703        .task_to_inode =                selinux_task_to_inode,
5704
5705        .ipc_permission =               selinux_ipc_permission,
5706        .ipc_getsecid =                 selinux_ipc_getsecid,
5707
5708        .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5709        .msg_msg_free_security =        selinux_msg_msg_free_security,
5710
5711        .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5712        .msg_queue_free_security =      selinux_msg_queue_free_security,
5713        .msg_queue_associate =          selinux_msg_queue_associate,
5714        .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5715        .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5716        .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5717
5718        .shm_alloc_security =           selinux_shm_alloc_security,
5719        .shm_free_security =            selinux_shm_free_security,
5720        .shm_associate =                selinux_shm_associate,
5721        .shm_shmctl =                   selinux_shm_shmctl,
5722        .shm_shmat =                    selinux_shm_shmat,
5723
5724        .sem_alloc_security =           selinux_sem_alloc_security,
5725        .sem_free_security =            selinux_sem_free_security,
5726        .sem_associate =                selinux_sem_associate,
5727        .sem_semctl =                   selinux_sem_semctl,
5728        .sem_semop =                    selinux_sem_semop,
5729
5730        .d_instantiate =                selinux_d_instantiate,
5731
5732        .getprocattr =                  selinux_getprocattr,
5733        .setprocattr =                  selinux_setprocattr,
5734
5735        .ismaclabel =                   selinux_ismaclabel,
5736        .secid_to_secctx =              selinux_secid_to_secctx,
5737        .secctx_to_secid =              selinux_secctx_to_secid,
5738        .release_secctx =               selinux_release_secctx,
5739        .inode_notifysecctx =           selinux_inode_notifysecctx,
5740        .inode_setsecctx =              selinux_inode_setsecctx,
5741        .inode_getsecctx =              selinux_inode_getsecctx,
5742
5743        .unix_stream_connect =          selinux_socket_unix_stream_connect,
5744        .unix_may_send =                selinux_socket_unix_may_send,
5745
5746        .socket_create =                selinux_socket_create,
5747        .socket_post_create =           selinux_socket_post_create,
5748        .socket_bind =                  selinux_socket_bind,
5749        .socket_connect =               selinux_socket_connect,
5750        .socket_listen =                selinux_socket_listen,
5751        .socket_accept =                selinux_socket_accept,
5752        .socket_sendmsg =               selinux_socket_sendmsg,
5753        .socket_recvmsg =               selinux_socket_recvmsg,
5754        .socket_getsockname =           selinux_socket_getsockname,
5755        .socket_getpeername =           selinux_socket_getpeername,
5756        .socket_getsockopt =            selinux_socket_getsockopt,
5757        .socket_setsockopt =            selinux_socket_setsockopt,
5758        .socket_shutdown =              selinux_socket_shutdown,
5759        .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5760        .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5761        .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5762        .sk_alloc_security =            selinux_sk_alloc_security,
5763        .sk_free_security =             selinux_sk_free_security,
5764        .sk_clone_security =            selinux_sk_clone_security,
5765        .sk_getsecid =                  selinux_sk_getsecid,
5766        .sock_graft =                   selinux_sock_graft,
5767        .inet_conn_request =            selinux_inet_conn_request,
5768        .inet_csk_clone =               selinux_inet_csk_clone,
5769        .inet_conn_established =        selinux_inet_conn_established,
5770        .secmark_relabel_packet =       selinux_secmark_relabel_packet,
5771        .secmark_refcount_inc =         selinux_secmark_refcount_inc,
5772        .secmark_refcount_dec =         selinux_secmark_refcount_dec,
5773        .req_classify_flow =            selinux_req_classify_flow,
5774        .tun_dev_alloc_security =       selinux_tun_dev_alloc_security,
5775        .tun_dev_free_security =        selinux_tun_dev_free_security,
5776        .tun_dev_create =               selinux_tun_dev_create,
5777        .tun_dev_attach_queue =         selinux_tun_dev_attach_queue,
5778        .tun_dev_attach =               selinux_tun_dev_attach,
5779        .tun_dev_open =                 selinux_tun_dev_open,
5780        .skb_owned_by =                 selinux_skb_owned_by,
5781
5782#ifdef CONFIG_SECURITY_NETWORK_XFRM
5783        .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5784        .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5785        .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5786        .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5787        .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5788        .xfrm_state_free_security =     selinux_xfrm_state_free,
5789        .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5790        .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5791        .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5792        .xfrm_decode_session =          selinux_xfrm_decode_session,
5793#endif
5794
5795#ifdef CONFIG_KEYS
5796        .key_alloc =                    selinux_key_alloc,
5797        .key_free =                     selinux_key_free,
5798        .key_permission =               selinux_key_permission,
5799        .key_getsecurity =              selinux_key_getsecurity,
5800#endif
5801
5802#ifdef CONFIG_AUDIT
5803        .audit_rule_init =              selinux_audit_rule_init,
5804        .audit_rule_known =             selinux_audit_rule_known,
5805        .audit_rule_match =             selinux_audit_rule_match,
5806        .audit_rule_free =              selinux_audit_rule_free,
5807#endif
5808};
5809
5810static __init int selinux_init(void)
5811{
5812        if (!security_module_enable(&selinux_ops)) {
5813                selinux_enabled = 0;
5814                return 0;
5815        }
5816
5817        if (!selinux_enabled) {
5818                printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5819                return 0;
5820        }
5821
5822        printk(KERN_INFO "SELinux:  Initializing.\n");
5823
5824        /* Set the security state for the initial task. */
5825        cred_init_security();
5826
5827        default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5828
5829        sel_inode_cache = kmem_cache_create("selinux_inode_security",
5830                                            sizeof(struct inode_security_struct),
5831                                            0, SLAB_PANIC, NULL);
5832        avc_init();
5833
5834        if (register_security(&selinux_ops))
5835                panic("SELinux: Unable to register with kernel.\n");
5836
5837        if (selinux_enforcing)
5838                printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5839        else
5840                printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5841
5842        return 0;
5843}
5844
5845static void delayed_superblock_init(struct super_block *sb, void *unused)
5846{
5847        superblock_doinit(sb, NULL);
5848}
5849
5850void selinux_complete_init(void)
5851{
5852        printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5853
5854        /* Set up any superblocks initialized prior to the policy load. */
5855        printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5856        iterate_supers(delayed_superblock_init, NULL);
5857}
5858
5859/* SELinux requires early initialization in order to label
5860   all processes and objects when they are created. */
5861security_initcall(selinux_init);
5862
5863#if defined(CONFIG_NETFILTER)
5864
5865static struct nf_hook_ops selinux_ipv4_ops[] = {
5866        {
5867                .hook =         selinux_ipv4_postroute,
5868                .owner =        THIS_MODULE,
5869                .pf =           NFPROTO_IPV4,
5870                .hooknum =      NF_INET_POST_ROUTING,
5871                .priority =     NF_IP_PRI_SELINUX_LAST,
5872        },
5873        {
5874                .hook =         selinux_ipv4_forward,
5875                .owner =        THIS_MODULE,
5876                .pf =           NFPROTO_IPV4,
5877                .hooknum =      NF_INET_FORWARD,
5878                .priority =     NF_IP_PRI_SELINUX_FIRST,
5879        },
5880        {
5881                .hook =         selinux_ipv4_output,
5882                .owner =        THIS_MODULE,
5883                .pf =           NFPROTO_IPV4,
5884                .hooknum =      NF_INET_LOCAL_OUT,
5885                .priority =     NF_IP_PRI_SELINUX_FIRST,
5886        }
5887};
5888
5889#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5890
5891static struct nf_hook_ops selinux_ipv6_ops[] = {
5892        {
5893                .hook =         selinux_ipv6_postroute,
5894                .owner =        THIS_MODULE,
5895                .pf =           NFPROTO_IPV6,
5896                .hooknum =      NF_INET_POST_ROUTING,
5897                .priority =     NF_IP6_PRI_SELINUX_LAST,
5898        },
5899        {
5900                .hook =         selinux_ipv6_forward,
5901                .owner =        THIS_MODULE,
5902                .pf =           NFPROTO_IPV6,
5903                .hooknum =      NF_INET_FORWARD,
5904                .priority =     NF_IP6_PRI_SELINUX_FIRST,
5905        }
5906};
5907
5908#endif  /* IPV6 */
5909
5910static int __init selinux_nf_ip_init(void)
5911{
5912        int err = 0;
5913
5914        if (!selinux_enabled)
5915                goto out;
5916
5917        printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5918
5919        err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5920        if (err)
5921                panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5922
5923#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5924        err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5925        if (err)
5926                panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5927#endif  /* IPV6 */
5928
5929out:
5930        return err;
5931}
5932
5933__initcall(selinux_nf_ip_init);
5934
5935#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5936static void selinux_nf_ip_exit(void)
5937{
5938        printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5939
5940        nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5941#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5942        nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5943#endif  /* IPV6 */
5944}
5945#endif
5946
5947#else /* CONFIG_NETFILTER */
5948
5949#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5950#define selinux_nf_ip_exit()
5951#endif
5952
5953#endif /* CONFIG_NETFILTER */
5954
5955#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5956static int selinux_disabled;
5957
5958int selinux_disable(void)
5959{
5960        if (ss_initialized) {
5961                /* Not permitted after initial policy load. */
5962                return -EINVAL;
5963        }
5964
5965        if (selinux_disabled) {
5966                /* Only do this once. */
5967                return -EINVAL;
5968        }
5969
5970        printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5971
5972        selinux_disabled = 1;
5973        selinux_enabled = 0;
5974
5975        reset_security_ops();
5976
5977        /* Try to destroy the avc node cache */
5978        avc_disable();
5979
5980        /* Unregister netfilter hooks. */
5981        selinux_nf_ip_exit();
5982
5983        /* Unregister selinuxfs. */
5984        exit_sel_fs();
5985
5986        return 0;
5987}
5988#endif
5989