linux/sound/soc/fsl/fsl_ssi.c
<<
>>
Prefs
   1/*
   2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
   3 *
   4 * Author: Timur Tabi <timur@freescale.com>
   5 *
   6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
   7 *
   8 * This file is licensed under the terms of the GNU General Public License
   9 * version 2.  This program is licensed "as is" without any warranty of any
  10 * kind, whether express or implied.
  11 *
  12 *
  13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
  14 *
  15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
  16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
  17 * one FIFO which combines all valid receive slots. We cannot even select
  18 * which slots we want to receive. The WM9712 with which this driver
  19 * was developed with always sends GPIO status data in slot 12 which
  20 * we receive in our (PCM-) data stream. The only chance we have is to
  21 * manually skip this data in the FIQ handler. With sampling rates different
  22 * from 48000Hz not every frame has valid receive data, so the ratio
  23 * between pcm data and GPIO status data changes. Our FIQ handler is not
  24 * able to handle this, hence this driver only works with 48000Hz sampling
  25 * rate.
  26 * Reading and writing AC97 registers is another challenge. The core
  27 * provides us status bits when the read register is updated with *another*
  28 * value. When we read the same register two times (and the register still
  29 * contains the same value) these status bits are not set. We work
  30 * around this by not polling these bits but only wait a fixed delay.
  31 */
  32
  33#include <linux/init.h>
  34#include <linux/io.h>
  35#include <linux/module.h>
  36#include <linux/interrupt.h>
  37#include <linux/clk.h>
  38#include <linux/device.h>
  39#include <linux/delay.h>
  40#include <linux/slab.h>
  41#include <linux/of_address.h>
  42#include <linux/of_irq.h>
  43#include <linux/of_platform.h>
  44
  45#include <sound/core.h>
  46#include <sound/pcm.h>
  47#include <sound/pcm_params.h>
  48#include <sound/initval.h>
  49#include <sound/soc.h>
  50#include <sound/dmaengine_pcm.h>
  51
  52#include "fsl_ssi.h"
  53#include "imx-pcm.h"
  54
  55#ifdef PPC
  56#define read_ssi(addr)                   in_be32(addr)
  57#define write_ssi(val, addr)             out_be32(addr, val)
  58#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
  59#else
  60#define read_ssi(addr)                   readl(addr)
  61#define write_ssi(val, addr)             writel(val, addr)
  62/*
  63 * FIXME: Proper locking should be added at write_ssi_mask caller level
  64 * to ensure this register read/modify/write sequence is race free.
  65 */
  66static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
  67{
  68        u32 val = readl(addr);
  69        val = (val & ~clear) | set;
  70        writel(val, addr);
  71}
  72#endif
  73
  74/**
  75 * FSLSSI_I2S_RATES: sample rates supported by the I2S
  76 *
  77 * This driver currently only supports the SSI running in I2S slave mode,
  78 * which means the codec determines the sample rate.  Therefore, we tell
  79 * ALSA that we support all rates and let the codec driver decide what rates
  80 * are really supported.
  81 */
  82#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  83                          SNDRV_PCM_RATE_CONTINUOUS)
  84
  85/**
  86 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
  87 *
  88 * This driver currently only supports the SSI running in I2S slave mode.
  89 *
  90 * The SSI has a limitation in that the samples must be in the same byte
  91 * order as the host CPU.  This is because when multiple bytes are written
  92 * to the STX register, the bytes and bits must be written in the same
  93 * order.  The STX is a shift register, so all the bits need to be aligned
  94 * (bit-endianness must match byte-endianness).  Processors typically write
  95 * the bits within a byte in the same order that the bytes of a word are
  96 * written in.  So if the host CPU is big-endian, then only big-endian
  97 * samples will be written to STX properly.
  98 */
  99#ifdef __BIG_ENDIAN
 100#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
 101         SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
 102         SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
 103#else
 104#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
 105         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
 106         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
 107#endif
 108
 109/* SIER bitflag of interrupts to enable */
 110#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
 111                    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
 112                    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
 113                    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
 114                    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
 115
 116/**
 117 * fsl_ssi_private: per-SSI private data
 118 *
 119 * @ssi: pointer to the SSI's registers
 120 * @ssi_phys: physical address of the SSI registers
 121 * @irq: IRQ of this SSI
 122 * @first_stream: pointer to the stream that was opened first
 123 * @second_stream: pointer to second stream
 124 * @playback: the number of playback streams opened
 125 * @capture: the number of capture streams opened
 126 * @cpu_dai: the CPU DAI for this device
 127 * @dev_attr: the sysfs device attribute structure
 128 * @stats: SSI statistics
 129 * @name: name for this device
 130 */
 131struct fsl_ssi_private {
 132        struct ccsr_ssi __iomem *ssi;
 133        dma_addr_t ssi_phys;
 134        unsigned int irq;
 135        struct snd_pcm_substream *first_stream;
 136        struct snd_pcm_substream *second_stream;
 137        unsigned int fifo_depth;
 138        struct snd_soc_dai_driver cpu_dai_drv;
 139        struct device_attribute dev_attr;
 140        struct platform_device *pdev;
 141
 142        bool new_binding;
 143        bool ssi_on_imx;
 144        bool imx_ac97;
 145        bool use_dma;
 146        struct clk *clk;
 147        struct snd_dmaengine_dai_dma_data dma_params_tx;
 148        struct snd_dmaengine_dai_dma_data dma_params_rx;
 149        struct imx_dma_data filter_data_tx;
 150        struct imx_dma_data filter_data_rx;
 151        struct imx_pcm_fiq_params fiq_params;
 152
 153        struct {
 154                unsigned int rfrc;
 155                unsigned int tfrc;
 156                unsigned int cmdau;
 157                unsigned int cmddu;
 158                unsigned int rxt;
 159                unsigned int rdr1;
 160                unsigned int rdr0;
 161                unsigned int tde1;
 162                unsigned int tde0;
 163                unsigned int roe1;
 164                unsigned int roe0;
 165                unsigned int tue1;
 166                unsigned int tue0;
 167                unsigned int tfs;
 168                unsigned int rfs;
 169                unsigned int tls;
 170                unsigned int rls;
 171                unsigned int rff1;
 172                unsigned int rff0;
 173                unsigned int tfe1;
 174                unsigned int tfe0;
 175        } stats;
 176
 177        char name[1];
 178};
 179
 180/**
 181 * fsl_ssi_isr: SSI interrupt handler
 182 *
 183 * Although it's possible to use the interrupt handler to send and receive
 184 * data to/from the SSI, we use the DMA instead.  Programming is more
 185 * complicated, but the performance is much better.
 186 *
 187 * This interrupt handler is used only to gather statistics.
 188 *
 189 * @irq: IRQ of the SSI device
 190 * @dev_id: pointer to the ssi_private structure for this SSI device
 191 */
 192static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
 193{
 194        struct fsl_ssi_private *ssi_private = dev_id;
 195        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 196        irqreturn_t ret = IRQ_NONE;
 197        __be32 sisr;
 198        __be32 sisr2 = 0;
 199
 200        /* We got an interrupt, so read the status register to see what we
 201           were interrupted for.  We mask it with the Interrupt Enable register
 202           so that we only check for events that we're interested in.
 203         */
 204        sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
 205
 206        if (sisr & CCSR_SSI_SISR_RFRC) {
 207                ssi_private->stats.rfrc++;
 208                sisr2 |= CCSR_SSI_SISR_RFRC;
 209                ret = IRQ_HANDLED;
 210        }
 211
 212        if (sisr & CCSR_SSI_SISR_TFRC) {
 213                ssi_private->stats.tfrc++;
 214                sisr2 |= CCSR_SSI_SISR_TFRC;
 215                ret = IRQ_HANDLED;
 216        }
 217
 218        if (sisr & CCSR_SSI_SISR_CMDAU) {
 219                ssi_private->stats.cmdau++;
 220                ret = IRQ_HANDLED;
 221        }
 222
 223        if (sisr & CCSR_SSI_SISR_CMDDU) {
 224                ssi_private->stats.cmddu++;
 225                ret = IRQ_HANDLED;
 226        }
 227
 228        if (sisr & CCSR_SSI_SISR_RXT) {
 229                ssi_private->stats.rxt++;
 230                ret = IRQ_HANDLED;
 231        }
 232
 233        if (sisr & CCSR_SSI_SISR_RDR1) {
 234                ssi_private->stats.rdr1++;
 235                ret = IRQ_HANDLED;
 236        }
 237
 238        if (sisr & CCSR_SSI_SISR_RDR0) {
 239                ssi_private->stats.rdr0++;
 240                ret = IRQ_HANDLED;
 241        }
 242
 243        if (sisr & CCSR_SSI_SISR_TDE1) {
 244                ssi_private->stats.tde1++;
 245                ret = IRQ_HANDLED;
 246        }
 247
 248        if (sisr & CCSR_SSI_SISR_TDE0) {
 249                ssi_private->stats.tde0++;
 250                ret = IRQ_HANDLED;
 251        }
 252
 253        if (sisr & CCSR_SSI_SISR_ROE1) {
 254                ssi_private->stats.roe1++;
 255                sisr2 |= CCSR_SSI_SISR_ROE1;
 256                ret = IRQ_HANDLED;
 257        }
 258
 259        if (sisr & CCSR_SSI_SISR_ROE0) {
 260                ssi_private->stats.roe0++;
 261                sisr2 |= CCSR_SSI_SISR_ROE0;
 262                ret = IRQ_HANDLED;
 263        }
 264
 265        if (sisr & CCSR_SSI_SISR_TUE1) {
 266                ssi_private->stats.tue1++;
 267                sisr2 |= CCSR_SSI_SISR_TUE1;
 268                ret = IRQ_HANDLED;
 269        }
 270
 271        if (sisr & CCSR_SSI_SISR_TUE0) {
 272                ssi_private->stats.tue0++;
 273                sisr2 |= CCSR_SSI_SISR_TUE0;
 274                ret = IRQ_HANDLED;
 275        }
 276
 277        if (sisr & CCSR_SSI_SISR_TFS) {
 278                ssi_private->stats.tfs++;
 279                ret = IRQ_HANDLED;
 280        }
 281
 282        if (sisr & CCSR_SSI_SISR_RFS) {
 283                ssi_private->stats.rfs++;
 284                ret = IRQ_HANDLED;
 285        }
 286
 287        if (sisr & CCSR_SSI_SISR_TLS) {
 288                ssi_private->stats.tls++;
 289                ret = IRQ_HANDLED;
 290        }
 291
 292        if (sisr & CCSR_SSI_SISR_RLS) {
 293                ssi_private->stats.rls++;
 294                ret = IRQ_HANDLED;
 295        }
 296
 297        if (sisr & CCSR_SSI_SISR_RFF1) {
 298                ssi_private->stats.rff1++;
 299                ret = IRQ_HANDLED;
 300        }
 301
 302        if (sisr & CCSR_SSI_SISR_RFF0) {
 303                ssi_private->stats.rff0++;
 304                ret = IRQ_HANDLED;
 305        }
 306
 307        if (sisr & CCSR_SSI_SISR_TFE1) {
 308                ssi_private->stats.tfe1++;
 309                ret = IRQ_HANDLED;
 310        }
 311
 312        if (sisr & CCSR_SSI_SISR_TFE0) {
 313                ssi_private->stats.tfe0++;
 314                ret = IRQ_HANDLED;
 315        }
 316
 317        /* Clear the bits that we set */
 318        if (sisr2)
 319                write_ssi(sisr2, &ssi->sisr);
 320
 321        return ret;
 322}
 323
 324static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
 325{
 326        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 327        u8 i2s_mode;
 328        u8 wm;
 329        int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
 330
 331        if (ssi_private->imx_ac97)
 332                i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
 333        else
 334                i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
 335
 336        /*
 337         * Section 16.5 of the MPC8610 reference manual says that the SSI needs
 338         * to be disabled before updating the registers we set here.
 339         */
 340        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
 341
 342        /*
 343         * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
 344         * enable the transmit and receive FIFO.
 345         *
 346         * FIXME: Little-endian samples require a different shift dir
 347         */
 348        write_ssi_mask(&ssi->scr,
 349                CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
 350                CCSR_SSI_SCR_TFR_CLK_DIS |
 351                i2s_mode |
 352                (synchronous ? CCSR_SSI_SCR_SYN : 0));
 353
 354        write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
 355                 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
 356                 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
 357
 358        write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
 359                 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
 360                 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
 361        /*
 362         * The DC and PM bits are only used if the SSI is the clock master.
 363         */
 364
 365        /*
 366         * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
 367         * use FIFO 1. We program the transmit water to signal a DMA transfer
 368         * if there are only two (or fewer) elements left in the FIFO. Two
 369         * elements equals one frame (left channel, right channel). This value,
 370         * however, depends on the depth of the transmit buffer.
 371         *
 372         * We set the watermark on the same level as the DMA burstsize.  For
 373         * fiq it is probably better to use the biggest possible watermark
 374         * size.
 375         */
 376        if (ssi_private->use_dma)
 377                wm = ssi_private->fifo_depth - 2;
 378        else
 379                wm = ssi_private->fifo_depth;
 380
 381        write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
 382                CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
 383                &ssi->sfcsr);
 384
 385        /*
 386         * For ac97 interrupts are enabled with the startup of the substream
 387         * because it is also running without an active substream. Normally SSI
 388         * is only enabled when there is a substream.
 389         */
 390        if (ssi_private->imx_ac97) {
 391                /*
 392                 * Setup the clock control register
 393                 */
 394                write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
 395                                &ssi->stccr);
 396                write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
 397                                &ssi->srccr);
 398
 399                /*
 400                 * Enable AC97 mode and startup the SSI
 401                 */
 402                write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
 403                                &ssi->sacnt);
 404                write_ssi(0xff, &ssi->saccdis);
 405                write_ssi(0x300, &ssi->saccen);
 406
 407                /*
 408                 * Enable SSI, Transmit and Receive
 409                 */
 410                write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
 411                                CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
 412
 413                write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
 414        }
 415
 416        return 0;
 417}
 418
 419
 420/**
 421 * fsl_ssi_startup: create a new substream
 422 *
 423 * This is the first function called when a stream is opened.
 424 *
 425 * If this is the first stream open, then grab the IRQ and program most of
 426 * the SSI registers.
 427 */
 428static int fsl_ssi_startup(struct snd_pcm_substream *substream,
 429                           struct snd_soc_dai *dai)
 430{
 431        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 432        struct fsl_ssi_private *ssi_private =
 433                snd_soc_dai_get_drvdata(rtd->cpu_dai);
 434        int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
 435
 436        /*
 437         * If this is the first stream opened, then request the IRQ
 438         * and initialize the SSI registers.
 439         */
 440        if (!ssi_private->first_stream) {
 441                ssi_private->first_stream = substream;
 442
 443                /*
 444                 * fsl_ssi_setup was already called by ac97_init earlier if
 445                 * the driver is in ac97 mode.
 446                 */
 447                if (!ssi_private->imx_ac97)
 448                        fsl_ssi_setup(ssi_private);
 449        } else {
 450                if (synchronous) {
 451                        struct snd_pcm_runtime *first_runtime =
 452                                ssi_private->first_stream->runtime;
 453                        /*
 454                         * This is the second stream open, and we're in
 455                         * synchronous mode, so we need to impose sample
 456                         * sample size constraints. This is because STCCR is
 457                         * used for playback and capture in synchronous mode,
 458                         * so there's no way to specify different word
 459                         * lengths.
 460                         *
 461                         * Note that this can cause a race condition if the
 462                         * second stream is opened before the first stream is
 463                         * fully initialized.  We provide some protection by
 464                         * checking to make sure the first stream is
 465                         * initialized, but it's not perfect.  ALSA sometimes
 466                         * re-initializes the driver with a different sample
 467                         * rate or size.  If the second stream is opened
 468                         * before the first stream has received its final
 469                         * parameters, then the second stream may be
 470                         * constrained to the wrong sample rate or size.
 471                         */
 472                        if (!first_runtime->sample_bits) {
 473                                dev_err(substream->pcm->card->dev,
 474                                        "set sample size in %s stream first\n",
 475                                        substream->stream ==
 476                                        SNDRV_PCM_STREAM_PLAYBACK
 477                                        ? "capture" : "playback");
 478                                return -EAGAIN;
 479                        }
 480
 481                        snd_pcm_hw_constraint_minmax(substream->runtime,
 482                                SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
 483                                first_runtime->sample_bits,
 484                                first_runtime->sample_bits);
 485                }
 486
 487                ssi_private->second_stream = substream;
 488        }
 489
 490        return 0;
 491}
 492
 493/**
 494 * fsl_ssi_hw_params - program the sample size
 495 *
 496 * Most of the SSI registers have been programmed in the startup function,
 497 * but the word length must be programmed here.  Unfortunately, programming
 498 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 499 * cause a problem with supporting simultaneous playback and capture.  If
 500 * the SSI is already playing a stream, then that stream may be temporarily
 501 * stopped when you start capture.
 502 *
 503 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 504 * clock master.
 505 */
 506static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
 507        struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
 508{
 509        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
 510        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 511        unsigned int sample_size =
 512                snd_pcm_format_width(params_format(hw_params));
 513        u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
 514        int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
 515
 516        /*
 517         * If we're in synchronous mode, and the SSI is already enabled,
 518         * then STCCR is already set properly.
 519         */
 520        if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
 521                return 0;
 522
 523        /*
 524         * FIXME: The documentation says that SxCCR[WL] should not be
 525         * modified while the SSI is enabled.  The only time this can
 526         * happen is if we're trying to do simultaneous playback and
 527         * capture in asynchronous mode.  Unfortunately, I have been enable
 528         * to get that to work at all on the P1022DS.  Therefore, we don't
 529         * bother to disable/enable the SSI when setting SxCCR[WL], because
 530         * the SSI will stop anyway.  Maybe one day, this will get fixed.
 531         */
 532
 533        /* In synchronous mode, the SSI uses STCCR for capture */
 534        if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
 535            ssi_private->cpu_dai_drv.symmetric_rates)
 536                write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
 537        else
 538                write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
 539
 540        return 0;
 541}
 542
 543/**
 544 * fsl_ssi_trigger: start and stop the DMA transfer.
 545 *
 546 * This function is called by ALSA to start, stop, pause, and resume the DMA
 547 * transfer of data.
 548 *
 549 * The DMA channel is in external master start and pause mode, which
 550 * means the SSI completely controls the flow of data.
 551 */
 552static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
 553                           struct snd_soc_dai *dai)
 554{
 555        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 556        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
 557        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 558        unsigned int sier_bits;
 559
 560        /*
 561         *  Enable only the interrupts and DMA requests
 562         *  that are needed for the channel. As the fiq
 563         *  is polling for this bits, we have to ensure
 564         *  that this are aligned with the preallocated
 565         *  buffers
 566         */
 567
 568        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 569                if (ssi_private->use_dma)
 570                        sier_bits = SIER_FLAGS;
 571                else
 572                        sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
 573        } else {
 574                if (ssi_private->use_dma)
 575                        sier_bits = SIER_FLAGS;
 576                else
 577                        sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
 578        }
 579
 580        switch (cmd) {
 581        case SNDRV_PCM_TRIGGER_START:
 582        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 583                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 584                        write_ssi_mask(&ssi->scr, 0,
 585                                CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
 586                else
 587                        write_ssi_mask(&ssi->scr, 0,
 588                                CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
 589                break;
 590
 591        case SNDRV_PCM_TRIGGER_STOP:
 592        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 593                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 594                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
 595                else
 596                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
 597
 598                if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
 599                                        (CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
 600                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
 601                break;
 602
 603        default:
 604                return -EINVAL;
 605        }
 606
 607        write_ssi(sier_bits, &ssi->sier);
 608
 609        return 0;
 610}
 611
 612/**
 613 * fsl_ssi_shutdown: shutdown the SSI
 614 *
 615 * Shutdown the SSI if there are no other substreams open.
 616 */
 617static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
 618                             struct snd_soc_dai *dai)
 619{
 620        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 621        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
 622
 623        if (ssi_private->first_stream == substream)
 624                ssi_private->first_stream = ssi_private->second_stream;
 625
 626        ssi_private->second_stream = NULL;
 627}
 628
 629static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
 630{
 631        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
 632
 633        if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
 634                dai->playback_dma_data = &ssi_private->dma_params_tx;
 635                dai->capture_dma_data = &ssi_private->dma_params_rx;
 636        }
 637
 638        return 0;
 639}
 640
 641static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
 642        .startup        = fsl_ssi_startup,
 643        .hw_params      = fsl_ssi_hw_params,
 644        .shutdown       = fsl_ssi_shutdown,
 645        .trigger        = fsl_ssi_trigger,
 646};
 647
 648/* Template for the CPU dai driver structure */
 649static struct snd_soc_dai_driver fsl_ssi_dai_template = {
 650        .probe = fsl_ssi_dai_probe,
 651        .playback = {
 652                /* The SSI does not support monaural audio. */
 653                .channels_min = 2,
 654                .channels_max = 2,
 655                .rates = FSLSSI_I2S_RATES,
 656                .formats = FSLSSI_I2S_FORMATS,
 657        },
 658        .capture = {
 659                .channels_min = 2,
 660                .channels_max = 2,
 661                .rates = FSLSSI_I2S_RATES,
 662                .formats = FSLSSI_I2S_FORMATS,
 663        },
 664        .ops = &fsl_ssi_dai_ops,
 665};
 666
 667static const struct snd_soc_component_driver fsl_ssi_component = {
 668        .name           = "fsl-ssi",
 669};
 670
 671/**
 672 * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
 673 *
 674 * This function is called by ALSA to start, stop, pause, and resume the
 675 * transfer of data.
 676 */
 677static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
 678                           struct snd_soc_dai *dai)
 679{
 680        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 681        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
 682                        rtd->cpu_dai);
 683        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 684
 685        switch (cmd) {
 686        case SNDRV_PCM_TRIGGER_START:
 687        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 688                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 689                        write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
 690                                        CCSR_SSI_SIER_TFE0_EN);
 691                else
 692                        write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
 693                                        CCSR_SSI_SIER_RFF0_EN);
 694                break;
 695
 696        case SNDRV_PCM_TRIGGER_STOP:
 697        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 698                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 699                        write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
 700                                        CCSR_SSI_SIER_TFE0_EN, 0);
 701                else
 702                        write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
 703                                        CCSR_SSI_SIER_RFF0_EN, 0);
 704                break;
 705
 706        default:
 707                return -EINVAL;
 708        }
 709
 710        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 711                write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
 712        else
 713                write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
 714
 715        return 0;
 716}
 717
 718static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
 719        .startup        = fsl_ssi_startup,
 720        .shutdown       = fsl_ssi_shutdown,
 721        .trigger        = fsl_ssi_ac97_trigger,
 722};
 723
 724static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
 725        .ac97_control = 1,
 726        .playback = {
 727                .stream_name = "AC97 Playback",
 728                .channels_min = 2,
 729                .channels_max = 2,
 730                .rates = SNDRV_PCM_RATE_8000_48000,
 731                .formats = SNDRV_PCM_FMTBIT_S16_LE,
 732        },
 733        .capture = {
 734                .stream_name = "AC97 Capture",
 735                .channels_min = 2,
 736                .channels_max = 2,
 737                .rates = SNDRV_PCM_RATE_48000,
 738                .formats = SNDRV_PCM_FMTBIT_S16_LE,
 739        },
 740        .ops = &fsl_ssi_ac97_dai_ops,
 741};
 742
 743
 744static struct fsl_ssi_private *fsl_ac97_data;
 745
 746static void fsl_ssi_ac97_init(void)
 747{
 748        fsl_ssi_setup(fsl_ac97_data);
 749}
 750
 751void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 752                unsigned short val)
 753{
 754        struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
 755        unsigned int lreg;
 756        unsigned int lval;
 757
 758        if (reg > 0x7f)
 759                return;
 760
 761
 762        lreg = reg <<  12;
 763        write_ssi(lreg, &ssi->sacadd);
 764
 765        lval = val << 4;
 766        write_ssi(lval , &ssi->sacdat);
 767
 768        write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
 769                        CCSR_SSI_SACNT_WR);
 770        udelay(100);
 771}
 772
 773unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
 774                unsigned short reg)
 775{
 776        struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
 777
 778        unsigned short val = -1;
 779        unsigned int lreg;
 780
 781        lreg = (reg & 0x7f) <<  12;
 782        write_ssi(lreg, &ssi->sacadd);
 783        write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
 784                        CCSR_SSI_SACNT_RD);
 785
 786        udelay(100);
 787
 788        val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;
 789
 790        return val;
 791}
 792
 793static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
 794        .read           = fsl_ssi_ac97_read,
 795        .write          = fsl_ssi_ac97_write,
 796};
 797
 798/* Show the statistics of a flag only if its interrupt is enabled.  The
 799 * compiler will optimze this code to a no-op if the interrupt is not
 800 * enabled.
 801 */
 802#define SIER_SHOW(flag, name) \
 803        do { \
 804                if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
 805                        length += sprintf(buf + length, #name "=%u\n", \
 806                                ssi_private->stats.name); \
 807        } while (0)
 808
 809
 810/**
 811 * fsl_sysfs_ssi_show: display SSI statistics
 812 *
 813 * Display the statistics for the current SSI device.  To avoid confusion,
 814 * we only show those counts that are enabled.
 815 */
 816static ssize_t fsl_sysfs_ssi_show(struct device *dev,
 817        struct device_attribute *attr, char *buf)
 818{
 819        struct fsl_ssi_private *ssi_private =
 820                container_of(attr, struct fsl_ssi_private, dev_attr);
 821        ssize_t length = 0;
 822
 823        SIER_SHOW(RFRC_EN, rfrc);
 824        SIER_SHOW(TFRC_EN, tfrc);
 825        SIER_SHOW(CMDAU_EN, cmdau);
 826        SIER_SHOW(CMDDU_EN, cmddu);
 827        SIER_SHOW(RXT_EN, rxt);
 828        SIER_SHOW(RDR1_EN, rdr1);
 829        SIER_SHOW(RDR0_EN, rdr0);
 830        SIER_SHOW(TDE1_EN, tde1);
 831        SIER_SHOW(TDE0_EN, tde0);
 832        SIER_SHOW(ROE1_EN, roe1);
 833        SIER_SHOW(ROE0_EN, roe0);
 834        SIER_SHOW(TUE1_EN, tue1);
 835        SIER_SHOW(TUE0_EN, tue0);
 836        SIER_SHOW(TFS_EN, tfs);
 837        SIER_SHOW(RFS_EN, rfs);
 838        SIER_SHOW(TLS_EN, tls);
 839        SIER_SHOW(RLS_EN, rls);
 840        SIER_SHOW(RFF1_EN, rff1);
 841        SIER_SHOW(RFF0_EN, rff0);
 842        SIER_SHOW(TFE1_EN, tfe1);
 843        SIER_SHOW(TFE0_EN, tfe0);
 844
 845        return length;
 846}
 847
 848/**
 849 * Make every character in a string lower-case
 850 */
 851static void make_lowercase(char *s)
 852{
 853        char *p = s;
 854        char c;
 855
 856        while ((c = *p)) {
 857                if ((c >= 'A') && (c <= 'Z'))
 858                        *p = c + ('a' - 'A');
 859                p++;
 860        }
 861}
 862
 863static int fsl_ssi_probe(struct platform_device *pdev)
 864{
 865        struct fsl_ssi_private *ssi_private;
 866        int ret = 0;
 867        struct device_attribute *dev_attr = NULL;
 868        struct device_node *np = pdev->dev.of_node;
 869        const char *p, *sprop;
 870        const uint32_t *iprop;
 871        struct resource res;
 872        char name[64];
 873        bool shared;
 874        bool ac97 = false;
 875
 876        /* SSIs that are not connected on the board should have a
 877         *      status = "disabled"
 878         * property in their device tree nodes.
 879         */
 880        if (!of_device_is_available(np))
 881                return -ENODEV;
 882
 883        /* We only support the SSI in "I2S Slave" mode */
 884        sprop = of_get_property(np, "fsl,mode", NULL);
 885        if (!sprop) {
 886                dev_err(&pdev->dev, "fsl,mode property is necessary\n");
 887                return -EINVAL;
 888        }
 889        if (!strcmp(sprop, "ac97-slave")) {
 890                ac97 = true;
 891        } else if (strcmp(sprop, "i2s-slave")) {
 892                dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
 893                return -ENODEV;
 894        }
 895
 896        /* The DAI name is the last part of the full name of the node. */
 897        p = strrchr(np->full_name, '/') + 1;
 898        ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
 899                              GFP_KERNEL);
 900        if (!ssi_private) {
 901                dev_err(&pdev->dev, "could not allocate DAI object\n");
 902                return -ENOMEM;
 903        }
 904
 905        strcpy(ssi_private->name, p);
 906
 907        ssi_private->use_dma = !of_property_read_bool(np,
 908                        "fsl,fiq-stream-filter");
 909
 910        if (ac97) {
 911                memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
 912                                sizeof(fsl_ssi_ac97_dai));
 913
 914                fsl_ac97_data = ssi_private;
 915                ssi_private->imx_ac97 = true;
 916
 917                snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
 918        } else {
 919                /* Initialize this copy of the CPU DAI driver structure */
 920                memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
 921                       sizeof(fsl_ssi_dai_template));
 922        }
 923        ssi_private->cpu_dai_drv.name = ssi_private->name;
 924
 925        /* Get the addresses and IRQ */
 926        ret = of_address_to_resource(np, 0, &res);
 927        if (ret) {
 928                dev_err(&pdev->dev, "could not determine device resources\n");
 929                return ret;
 930        }
 931        ssi_private->ssi = of_iomap(np, 0);
 932        if (!ssi_private->ssi) {
 933                dev_err(&pdev->dev, "could not map device resources\n");
 934                return -ENOMEM;
 935        }
 936        ssi_private->ssi_phys = res.start;
 937
 938        ssi_private->irq = irq_of_parse_and_map(np, 0);
 939        if (ssi_private->irq == 0) {
 940                dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
 941                return -ENXIO;
 942        }
 943
 944        /* Are the RX and the TX clocks locked? */
 945        if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
 946                ssi_private->cpu_dai_drv.symmetric_rates = 1;
 947
 948        /* Determine the FIFO depth. */
 949        iprop = of_get_property(np, "fsl,fifo-depth", NULL);
 950        if (iprop)
 951                ssi_private->fifo_depth = be32_to_cpup(iprop);
 952        else
 953                /* Older 8610 DTs didn't have the fifo-depth property */
 954                ssi_private->fifo_depth = 8;
 955
 956        if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
 957                u32 dma_events[2];
 958                ssi_private->ssi_on_imx = true;
 959
 960                ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
 961                if (IS_ERR(ssi_private->clk)) {
 962                        ret = PTR_ERR(ssi_private->clk);
 963                        dev_err(&pdev->dev, "could not get clock: %d\n", ret);
 964                        goto error_irqmap;
 965                }
 966                ret = clk_prepare_enable(ssi_private->clk);
 967                if (ret) {
 968                        dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
 969                                ret);
 970                        goto error_irqmap;
 971                }
 972
 973                /*
 974                 * We have burstsize be "fifo_depth - 2" to match the SSI
 975                 * watermark setting in fsl_ssi_startup().
 976                 */
 977                ssi_private->dma_params_tx.maxburst =
 978                        ssi_private->fifo_depth - 2;
 979                ssi_private->dma_params_rx.maxburst =
 980                        ssi_private->fifo_depth - 2;
 981                ssi_private->dma_params_tx.addr =
 982                        ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
 983                ssi_private->dma_params_rx.addr =
 984                        ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
 985                ssi_private->dma_params_tx.filter_data =
 986                        &ssi_private->filter_data_tx;
 987                ssi_private->dma_params_rx.filter_data =
 988                        &ssi_private->filter_data_rx;
 989                if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
 990                                ssi_private->use_dma) {
 991                        /*
 992                         * FIXME: This is a temporary solution until all
 993                         * necessary dma drivers support the generic dma
 994                         * bindings.
 995                         */
 996                        ret = of_property_read_u32_array(pdev->dev.of_node,
 997                                        "fsl,ssi-dma-events", dma_events, 2);
 998                        if (ret && ssi_private->use_dma) {
 999                                dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
1000                                goto error_clk;
1001                        }
1002                }
1003
1004                shared = of_device_is_compatible(of_get_parent(np),
1005                            "fsl,spba-bus");
1006
1007                imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1008                        dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1009                imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1010                        dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1011        } else if (ssi_private->use_dma) {
1012                /* The 'name' should not have any slashes in it. */
1013                ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1014                                        fsl_ssi_isr, 0, ssi_private->name,
1015                                        ssi_private);
1016                if (ret < 0) {
1017                        dev_err(&pdev->dev, "could not claim irq %u\n",
1018                                        ssi_private->irq);
1019                        goto error_irqmap;
1020                }
1021        }
1022
1023        /* Initialize the the device_attribute structure */
1024        dev_attr = &ssi_private->dev_attr;
1025        sysfs_attr_init(&dev_attr->attr);
1026        dev_attr->attr.name = "statistics";
1027        dev_attr->attr.mode = S_IRUGO;
1028        dev_attr->show = fsl_sysfs_ssi_show;
1029
1030        ret = device_create_file(&pdev->dev, dev_attr);
1031        if (ret) {
1032                dev_err(&pdev->dev, "could not create sysfs %s file\n",
1033                        ssi_private->dev_attr.attr.name);
1034                goto error_clk;
1035        }
1036
1037        /* Register with ASoC */
1038        dev_set_drvdata(&pdev->dev, ssi_private);
1039
1040        ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1041                                         &ssi_private->cpu_dai_drv, 1);
1042        if (ret) {
1043                dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1044                goto error_dev;
1045        }
1046
1047        if (ssi_private->ssi_on_imx) {
1048                if (!ssi_private->use_dma) {
1049
1050                        /*
1051                         * Some boards use an incompatible codec. To get it
1052                         * working, we are using imx-fiq-pcm-audio, that
1053                         * can handle those codecs. DMA is not possible in this
1054                         * situation.
1055                         */
1056
1057                        ssi_private->fiq_params.irq = ssi_private->irq;
1058                        ssi_private->fiq_params.base = ssi_private->ssi;
1059                        ssi_private->fiq_params.dma_params_rx =
1060                                &ssi_private->dma_params_rx;
1061                        ssi_private->fiq_params.dma_params_tx =
1062                                &ssi_private->dma_params_tx;
1063
1064                        ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1065                        if (ret)
1066                                goto error_dev;
1067                } else {
1068                        ret = imx_pcm_dma_init(pdev);
1069                        if (ret)
1070                                goto error_dev;
1071                }
1072        }
1073
1074        /*
1075         * If codec-handle property is missing from SSI node, we assume
1076         * that the machine driver uses new binding which does not require
1077         * SSI driver to trigger machine driver's probe.
1078         */
1079        if (!of_get_property(np, "codec-handle", NULL)) {
1080                ssi_private->new_binding = true;
1081                goto done;
1082        }
1083
1084        /* Trigger the machine driver's probe function.  The platform driver
1085         * name of the machine driver is taken from /compatible property of the
1086         * device tree.  We also pass the address of the CPU DAI driver
1087         * structure.
1088         */
1089        sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1090        /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1091        p = strrchr(sprop, ',');
1092        if (p)
1093                sprop = p + 1;
1094        snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1095        make_lowercase(name);
1096
1097        ssi_private->pdev =
1098                platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1099        if (IS_ERR(ssi_private->pdev)) {
1100                ret = PTR_ERR(ssi_private->pdev);
1101                dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1102                goto error_dai;
1103        }
1104
1105done:
1106        if (ssi_private->imx_ac97)
1107                fsl_ssi_ac97_init();
1108
1109        return 0;
1110
1111error_dai:
1112        if (ssi_private->ssi_on_imx)
1113                imx_pcm_dma_exit(pdev);
1114        snd_soc_unregister_component(&pdev->dev);
1115
1116error_dev:
1117        device_remove_file(&pdev->dev, dev_attr);
1118
1119error_clk:
1120        if (ssi_private->ssi_on_imx)
1121                clk_disable_unprepare(ssi_private->clk);
1122
1123error_irqmap:
1124        irq_dispose_mapping(ssi_private->irq);
1125
1126        return ret;
1127}
1128
1129static int fsl_ssi_remove(struct platform_device *pdev)
1130{
1131        struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1132
1133        if (!ssi_private->new_binding)
1134                platform_device_unregister(ssi_private->pdev);
1135        if (ssi_private->ssi_on_imx)
1136                imx_pcm_dma_exit(pdev);
1137        snd_soc_unregister_component(&pdev->dev);
1138        dev_set_drvdata(&pdev->dev, NULL);
1139        device_remove_file(&pdev->dev, &ssi_private->dev_attr);
1140        if (ssi_private->ssi_on_imx)
1141                clk_disable_unprepare(ssi_private->clk);
1142        irq_dispose_mapping(ssi_private->irq);
1143
1144        return 0;
1145}
1146
1147static const struct of_device_id fsl_ssi_ids[] = {
1148        { .compatible = "fsl,mpc8610-ssi", },
1149        { .compatible = "fsl,imx21-ssi", },
1150        {}
1151};
1152MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
1153
1154static struct platform_driver fsl_ssi_driver = {
1155        .driver = {
1156                .name = "fsl-ssi-dai",
1157                .owner = THIS_MODULE,
1158                .of_match_table = fsl_ssi_ids,
1159        },
1160        .probe = fsl_ssi_probe,
1161        .remove = fsl_ssi_remove,
1162};
1163
1164module_platform_driver(fsl_ssi_driver);
1165
1166MODULE_ALIAS("platform:fsl-ssi-dai");
1167MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1168MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1169MODULE_LICENSE("GPL v2");
1170