linux/tools/lguest/lguest.c
<<
>>
Prefs
   1/*P:100
   2 * This is the Launcher code, a simple program which lays out the "physical"
   3 * memory for the new Guest by mapping the kernel image and the virtual
   4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
   5 * control it.
   6:*/
   7#define _LARGEFILE64_SOURCE
   8#define _GNU_SOURCE
   9#include <stdio.h>
  10#include <string.h>
  11#include <unistd.h>
  12#include <err.h>
  13#include <stdint.h>
  14#include <stdlib.h>
  15#include <elf.h>
  16#include <sys/mman.h>
  17#include <sys/param.h>
  18#include <sys/types.h>
  19#include <sys/stat.h>
  20#include <sys/wait.h>
  21#include <sys/eventfd.h>
  22#include <fcntl.h>
  23#include <stdbool.h>
  24#include <errno.h>
  25#include <ctype.h>
  26#include <sys/socket.h>
  27#include <sys/ioctl.h>
  28#include <sys/time.h>
  29#include <time.h>
  30#include <netinet/in.h>
  31#include <net/if.h>
  32#include <linux/sockios.h>
  33#include <linux/if_tun.h>
  34#include <sys/uio.h>
  35#include <termios.h>
  36#include <getopt.h>
  37#include <assert.h>
  38#include <sched.h>
  39#include <limits.h>
  40#include <stddef.h>
  41#include <signal.h>
  42#include <pwd.h>
  43#include <grp.h>
  44
  45#ifndef VIRTIO_F_ANY_LAYOUT
  46#define VIRTIO_F_ANY_LAYOUT             27
  47#endif
  48
  49/*L:110
  50 * We can ignore the 43 include files we need for this program, but I do want
  51 * to draw attention to the use of kernel-style types.
  52 *
  53 * As Linus said, "C is a Spartan language, and so should your naming be."  I
  54 * like these abbreviations, so we define them here.  Note that u64 is always
  55 * unsigned long long, which works on all Linux systems: this means that we can
  56 * use %llu in printf for any u64.
  57 */
  58typedef unsigned long long u64;
  59typedef uint32_t u32;
  60typedef uint16_t u16;
  61typedef uint8_t u8;
  62/*:*/
  63
  64#include <linux/virtio_config.h>
  65#include <linux/virtio_net.h>
  66#include <linux/virtio_blk.h>
  67#include <linux/virtio_console.h>
  68#include <linux/virtio_rng.h>
  69#include <linux/virtio_ring.h>
  70#include <asm/bootparam.h>
  71#include "../../include/linux/lguest_launcher.h"
  72
  73#define BRIDGE_PFX "bridge:"
  74#ifndef SIOCBRADDIF
  75#define SIOCBRADDIF     0x89a2          /* add interface to bridge      */
  76#endif
  77/* We can have up to 256 pages for devices. */
  78#define DEVICE_PAGES 256
  79/* This will occupy 3 pages: it must be a power of 2. */
  80#define VIRTQUEUE_NUM 256
  81
  82/*L:120
  83 * verbose is both a global flag and a macro.  The C preprocessor allows
  84 * this, and although I wouldn't recommend it, it works quite nicely here.
  85 */
  86static bool verbose;
  87#define verbose(args...) \
  88        do { if (verbose) printf(args); } while(0)
  89/*:*/
  90
  91/* The pointer to the start of guest memory. */
  92static void *guest_base;
  93/* The maximum guest physical address allowed, and maximum possible. */
  94static unsigned long guest_limit, guest_max;
  95/* The /dev/lguest file descriptor. */
  96static int lguest_fd;
  97
  98/* a per-cpu variable indicating whose vcpu is currently running */
  99static unsigned int __thread cpu_id;
 100
 101/* This is our list of devices. */
 102struct device_list {
 103        /* Counter to assign interrupt numbers. */
 104        unsigned int next_irq;
 105
 106        /* Counter to print out convenient device numbers. */
 107        unsigned int device_num;
 108
 109        /* The descriptor page for the devices. */
 110        u8 *descpage;
 111
 112        /* A single linked list of devices. */
 113        struct device *dev;
 114        /* And a pointer to the last device for easy append. */
 115        struct device *lastdev;
 116};
 117
 118/* The list of Guest devices, based on command line arguments. */
 119static struct device_list devices;
 120
 121/* The device structure describes a single device. */
 122struct device {
 123        /* The linked-list pointer. */
 124        struct device *next;
 125
 126        /* The device's descriptor, as mapped into the Guest. */
 127        struct lguest_device_desc *desc;
 128
 129        /* We can't trust desc values once Guest has booted: we use these. */
 130        unsigned int feature_len;
 131        unsigned int num_vq;
 132
 133        /* The name of this device, for --verbose. */
 134        const char *name;
 135
 136        /* Any queues attached to this device */
 137        struct virtqueue *vq;
 138
 139        /* Is it operational */
 140        bool running;
 141
 142        /* Device-specific data. */
 143        void *priv;
 144};
 145
 146/* The virtqueue structure describes a queue attached to a device. */
 147struct virtqueue {
 148        struct virtqueue *next;
 149
 150        /* Which device owns me. */
 151        struct device *dev;
 152
 153        /* The configuration for this queue. */
 154        struct lguest_vqconfig config;
 155
 156        /* The actual ring of buffers. */
 157        struct vring vring;
 158
 159        /* Last available index we saw. */
 160        u16 last_avail_idx;
 161
 162        /* How many are used since we sent last irq? */
 163        unsigned int pending_used;
 164
 165        /* Eventfd where Guest notifications arrive. */
 166        int eventfd;
 167
 168        /* Function for the thread which is servicing this virtqueue. */
 169        void (*service)(struct virtqueue *vq);
 170        pid_t thread;
 171};
 172
 173/* Remember the arguments to the program so we can "reboot" */
 174static char **main_args;
 175
 176/* The original tty settings to restore on exit. */
 177static struct termios orig_term;
 178
 179/*
 180 * We have to be careful with barriers: our devices are all run in separate
 181 * threads and so we need to make sure that changes visible to the Guest happen
 182 * in precise order.
 183 */
 184#define wmb() __asm__ __volatile__("" : : : "memory")
 185#define rmb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
 186#define mb() __asm__ __volatile__("lock; addl $0,0(%%esp)" : : : "memory")
 187
 188/* Wrapper for the last available index.  Makes it easier to change. */
 189#define lg_last_avail(vq)       ((vq)->last_avail_idx)
 190
 191/*
 192 * The virtio configuration space is defined to be little-endian.  x86 is
 193 * little-endian too, but it's nice to be explicit so we have these helpers.
 194 */
 195#define cpu_to_le16(v16) (v16)
 196#define cpu_to_le32(v32) (v32)
 197#define cpu_to_le64(v64) (v64)
 198#define le16_to_cpu(v16) (v16)
 199#define le32_to_cpu(v32) (v32)
 200#define le64_to_cpu(v64) (v64)
 201
 202/* Is this iovec empty? */
 203static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
 204{
 205        unsigned int i;
 206
 207        for (i = 0; i < num_iov; i++)
 208                if (iov[i].iov_len)
 209                        return false;
 210        return true;
 211}
 212
 213/* Take len bytes from the front of this iovec. */
 214static void iov_consume(struct iovec iov[], unsigned num_iov,
 215                        void *dest, unsigned len)
 216{
 217        unsigned int i;
 218
 219        for (i = 0; i < num_iov; i++) {
 220                unsigned int used;
 221
 222                used = iov[i].iov_len < len ? iov[i].iov_len : len;
 223                if (dest) {
 224                        memcpy(dest, iov[i].iov_base, used);
 225                        dest += used;
 226                }
 227                iov[i].iov_base += used;
 228                iov[i].iov_len -= used;
 229                len -= used;
 230        }
 231        if (len != 0)
 232                errx(1, "iovec too short!");
 233}
 234
 235/* The device virtqueue descriptors are followed by feature bitmasks. */
 236static u8 *get_feature_bits(struct device *dev)
 237{
 238        return (u8 *)(dev->desc + 1)
 239                + dev->num_vq * sizeof(struct lguest_vqconfig);
 240}
 241
 242/*L:100
 243 * The Launcher code itself takes us out into userspace, that scary place where
 244 * pointers run wild and free!  Unfortunately, like most userspace programs,
 245 * it's quite boring (which is why everyone likes to hack on the kernel!).
 246 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
 247 * you through this section.  Or, maybe not.
 248 *
 249 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
 250 * memory and stores it in "guest_base".  In other words, Guest physical ==
 251 * Launcher virtual with an offset.
 252 *
 253 * This can be tough to get your head around, but usually it just means that we
 254 * use these trivial conversion functions when the Guest gives us its
 255 * "physical" addresses:
 256 */
 257static void *from_guest_phys(unsigned long addr)
 258{
 259        return guest_base + addr;
 260}
 261
 262static unsigned long to_guest_phys(const void *addr)
 263{
 264        return (addr - guest_base);
 265}
 266
 267/*L:130
 268 * Loading the Kernel.
 269 *
 270 * We start with couple of simple helper routines.  open_or_die() avoids
 271 * error-checking code cluttering the callers:
 272 */
 273static int open_or_die(const char *name, int flags)
 274{
 275        int fd = open(name, flags);
 276        if (fd < 0)
 277                err(1, "Failed to open %s", name);
 278        return fd;
 279}
 280
 281/* map_zeroed_pages() takes a number of pages. */
 282static void *map_zeroed_pages(unsigned int num)
 283{
 284        int fd = open_or_die("/dev/zero", O_RDONLY);
 285        void *addr;
 286
 287        /*
 288         * We use a private mapping (ie. if we write to the page, it will be
 289         * copied). We allocate an extra two pages PROT_NONE to act as guard
 290         * pages against read/write attempts that exceed allocated space.
 291         */
 292        addr = mmap(NULL, getpagesize() * (num+2),
 293                    PROT_NONE, MAP_PRIVATE, fd, 0);
 294
 295        if (addr == MAP_FAILED)
 296                err(1, "Mmapping %u pages of /dev/zero", num);
 297
 298        if (mprotect(addr + getpagesize(), getpagesize() * num,
 299                     PROT_READ|PROT_WRITE) == -1)
 300                err(1, "mprotect rw %u pages failed", num);
 301
 302        /*
 303         * One neat mmap feature is that you can close the fd, and it
 304         * stays mapped.
 305         */
 306        close(fd);
 307
 308        /* Return address after PROT_NONE page */
 309        return addr + getpagesize();
 310}
 311
 312/* Get some more pages for a device. */
 313static void *get_pages(unsigned int num)
 314{
 315        void *addr = from_guest_phys(guest_limit);
 316
 317        guest_limit += num * getpagesize();
 318        if (guest_limit > guest_max)
 319                errx(1, "Not enough memory for devices");
 320        return addr;
 321}
 322
 323/*
 324 * This routine is used to load the kernel or initrd.  It tries mmap, but if
 325 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
 326 * it falls back to reading the memory in.
 327 */
 328static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
 329{
 330        ssize_t r;
 331
 332        /*
 333         * We map writable even though for some segments are marked read-only.
 334         * The kernel really wants to be writable: it patches its own
 335         * instructions.
 336         *
 337         * MAP_PRIVATE means that the page won't be copied until a write is
 338         * done to it.  This allows us to share untouched memory between
 339         * Guests.
 340         */
 341        if (mmap(addr, len, PROT_READ|PROT_WRITE,
 342                 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
 343                return;
 344
 345        /* pread does a seek and a read in one shot: saves a few lines. */
 346        r = pread(fd, addr, len, offset);
 347        if (r != len)
 348                err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
 349}
 350
 351/*
 352 * This routine takes an open vmlinux image, which is in ELF, and maps it into
 353 * the Guest memory.  ELF = Embedded Linking Format, which is the format used
 354 * by all modern binaries on Linux including the kernel.
 355 *
 356 * The ELF headers give *two* addresses: a physical address, and a virtual
 357 * address.  We use the physical address; the Guest will map itself to the
 358 * virtual address.
 359 *
 360 * We return the starting address.
 361 */
 362static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
 363{
 364        Elf32_Phdr phdr[ehdr->e_phnum];
 365        unsigned int i;
 366
 367        /*
 368         * Sanity checks on the main ELF header: an x86 executable with a
 369         * reasonable number of correctly-sized program headers.
 370         */
 371        if (ehdr->e_type != ET_EXEC
 372            || ehdr->e_machine != EM_386
 373            || ehdr->e_phentsize != sizeof(Elf32_Phdr)
 374            || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
 375                errx(1, "Malformed elf header");
 376
 377        /*
 378         * An ELF executable contains an ELF header and a number of "program"
 379         * headers which indicate which parts ("segments") of the program to
 380         * load where.
 381         */
 382
 383        /* We read in all the program headers at once: */
 384        if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
 385                err(1, "Seeking to program headers");
 386        if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
 387                err(1, "Reading program headers");
 388
 389        /*
 390         * Try all the headers: there are usually only three.  A read-only one,
 391         * a read-write one, and a "note" section which we don't load.
 392         */
 393        for (i = 0; i < ehdr->e_phnum; i++) {
 394                /* If this isn't a loadable segment, we ignore it */
 395                if (phdr[i].p_type != PT_LOAD)
 396                        continue;
 397
 398                verbose("Section %i: size %i addr %p\n",
 399                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 400
 401                /* We map this section of the file at its physical address. */
 402                map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
 403                       phdr[i].p_offset, phdr[i].p_filesz);
 404        }
 405
 406        /* The entry point is given in the ELF header. */
 407        return ehdr->e_entry;
 408}
 409
 410/*L:150
 411 * A bzImage, unlike an ELF file, is not meant to be loaded.  You're supposed
 412 * to jump into it and it will unpack itself.  We used to have to perform some
 413 * hairy magic because the unpacking code scared me.
 414 *
 415 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
 416 * a small patch to jump over the tricky bits in the Guest, so now we just read
 417 * the funky header so we know where in the file to load, and away we go!
 418 */
 419static unsigned long load_bzimage(int fd)
 420{
 421        struct boot_params boot;
 422        int r;
 423        /* Modern bzImages get loaded at 1M. */
 424        void *p = from_guest_phys(0x100000);
 425
 426        /*
 427         * Go back to the start of the file and read the header.  It should be
 428         * a Linux boot header (see Documentation/x86/boot.txt)
 429         */
 430        lseek(fd, 0, SEEK_SET);
 431        read(fd, &boot, sizeof(boot));
 432
 433        /* Inside the setup_hdr, we expect the magic "HdrS" */
 434        if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
 435                errx(1, "This doesn't look like a bzImage to me");
 436
 437        /* Skip over the extra sectors of the header. */
 438        lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
 439
 440        /* Now read everything into memory. in nice big chunks. */
 441        while ((r = read(fd, p, 65536)) > 0)
 442                p += r;
 443
 444        /* Finally, code32_start tells us where to enter the kernel. */
 445        return boot.hdr.code32_start;
 446}
 447
 448/*L:140
 449 * Loading the kernel is easy when it's a "vmlinux", but most kernels
 450 * come wrapped up in the self-decompressing "bzImage" format.  With a little
 451 * work, we can load those, too.
 452 */
 453static unsigned long load_kernel(int fd)
 454{
 455        Elf32_Ehdr hdr;
 456
 457        /* Read in the first few bytes. */
 458        if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
 459                err(1, "Reading kernel");
 460
 461        /* If it's an ELF file, it starts with "\177ELF" */
 462        if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
 463                return map_elf(fd, &hdr);
 464
 465        /* Otherwise we assume it's a bzImage, and try to load it. */
 466        return load_bzimage(fd);
 467}
 468
 469/*
 470 * This is a trivial little helper to align pages.  Andi Kleen hated it because
 471 * it calls getpagesize() twice: "it's dumb code."
 472 *
 473 * Kernel guys get really het up about optimization, even when it's not
 474 * necessary.  I leave this code as a reaction against that.
 475 */
 476static inline unsigned long page_align(unsigned long addr)
 477{
 478        /* Add upwards and truncate downwards. */
 479        return ((addr + getpagesize()-1) & ~(getpagesize()-1));
 480}
 481
 482/*L:180
 483 * An "initial ram disk" is a disk image loaded into memory along with the
 484 * kernel which the kernel can use to boot from without needing any drivers.
 485 * Most distributions now use this as standard: the initrd contains the code to
 486 * load the appropriate driver modules for the current machine.
 487 *
 488 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
 489 * kernels.  He sent me this (and tells me when I break it).
 490 */
 491static unsigned long load_initrd(const char *name, unsigned long mem)
 492{
 493        int ifd;
 494        struct stat st;
 495        unsigned long len;
 496
 497        ifd = open_or_die(name, O_RDONLY);
 498        /* fstat() is needed to get the file size. */
 499        if (fstat(ifd, &st) < 0)
 500                err(1, "fstat() on initrd '%s'", name);
 501
 502        /*
 503         * We map the initrd at the top of memory, but mmap wants it to be
 504         * page-aligned, so we round the size up for that.
 505         */
 506        len = page_align(st.st_size);
 507        map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
 508        /*
 509         * Once a file is mapped, you can close the file descriptor.  It's a
 510         * little odd, but quite useful.
 511         */
 512        close(ifd);
 513        verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
 514
 515        /* We return the initrd size. */
 516        return len;
 517}
 518/*:*/
 519
 520/*
 521 * Simple routine to roll all the commandline arguments together with spaces
 522 * between them.
 523 */
 524static void concat(char *dst, char *args[])
 525{
 526        unsigned int i, len = 0;
 527
 528        for (i = 0; args[i]; i++) {
 529                if (i) {
 530                        strcat(dst+len, " ");
 531                        len++;
 532                }
 533                strcpy(dst+len, args[i]);
 534                len += strlen(args[i]);
 535        }
 536        /* In case it's empty. */
 537        dst[len] = '\0';
 538}
 539
 540/*L:185
 541 * This is where we actually tell the kernel to initialize the Guest.  We
 542 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
 543 * the base of Guest "physical" memory, the top physical page to allow and the
 544 * entry point for the Guest.
 545 */
 546static void tell_kernel(unsigned long start)
 547{
 548        unsigned long args[] = { LHREQ_INITIALIZE,
 549                                 (unsigned long)guest_base,
 550                                 guest_limit / getpagesize(), start };
 551        verbose("Guest: %p - %p (%#lx)\n",
 552                guest_base, guest_base + guest_limit, guest_limit);
 553        lguest_fd = open_or_die("/dev/lguest", O_RDWR);
 554        if (write(lguest_fd, args, sizeof(args)) < 0)
 555                err(1, "Writing to /dev/lguest");
 556}
 557/*:*/
 558
 559/*L:200
 560 * Device Handling.
 561 *
 562 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
 563 * We need to make sure it's not trying to reach into the Launcher itself, so
 564 * we have a convenient routine which checks it and exits with an error message
 565 * if something funny is going on:
 566 */
 567static void *_check_pointer(unsigned long addr, unsigned int size,
 568                            unsigned int line)
 569{
 570        /*
 571         * Check if the requested address and size exceeds the allocated memory,
 572         * or addr + size wraps around.
 573         */
 574        if ((addr + size) > guest_limit || (addr + size) < addr)
 575                errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
 576        /*
 577         * We return a pointer for the caller's convenience, now we know it's
 578         * safe to use.
 579         */
 580        return from_guest_phys(addr);
 581}
 582/* A macro which transparently hands the line number to the real function. */
 583#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 584
 585/*
 586 * Each buffer in the virtqueues is actually a chain of descriptors.  This
 587 * function returns the next descriptor in the chain, or vq->vring.num if we're
 588 * at the end.
 589 */
 590static unsigned next_desc(struct vring_desc *desc,
 591                          unsigned int i, unsigned int max)
 592{
 593        unsigned int next;
 594
 595        /* If this descriptor says it doesn't chain, we're done. */
 596        if (!(desc[i].flags & VRING_DESC_F_NEXT))
 597                return max;
 598
 599        /* Check they're not leading us off end of descriptors. */
 600        next = desc[i].next;
 601        /* Make sure compiler knows to grab that: we don't want it changing! */
 602        wmb();
 603
 604        if (next >= max)
 605                errx(1, "Desc next is %u", next);
 606
 607        return next;
 608}
 609
 610/*
 611 * This actually sends the interrupt for this virtqueue, if we've used a
 612 * buffer.
 613 */
 614static void trigger_irq(struct virtqueue *vq)
 615{
 616        unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
 617
 618        /* Don't inform them if nothing used. */
 619        if (!vq->pending_used)
 620                return;
 621        vq->pending_used = 0;
 622
 623        /* If they don't want an interrupt, don't send one... */
 624        if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
 625                return;
 626        }
 627
 628        /* Send the Guest an interrupt tell them we used something up. */
 629        if (write(lguest_fd, buf, sizeof(buf)) != 0)
 630                err(1, "Triggering irq %i", vq->config.irq);
 631}
 632
 633/*
 634 * This looks in the virtqueue for the first available buffer, and converts
 635 * it to an iovec for convenient access.  Since descriptors consist of some
 636 * number of output then some number of input descriptors, it's actually two
 637 * iovecs, but we pack them into one and note how many of each there were.
 638 *
 639 * This function waits if necessary, and returns the descriptor number found.
 640 */
 641static unsigned wait_for_vq_desc(struct virtqueue *vq,
 642                                 struct iovec iov[],
 643                                 unsigned int *out_num, unsigned int *in_num)
 644{
 645        unsigned int i, head, max;
 646        struct vring_desc *desc;
 647        u16 last_avail = lg_last_avail(vq);
 648
 649        /* There's nothing available? */
 650        while (last_avail == vq->vring.avail->idx) {
 651                u64 event;
 652
 653                /*
 654                 * Since we're about to sleep, now is a good time to tell the
 655                 * Guest about what we've used up to now.
 656                 */
 657                trigger_irq(vq);
 658
 659                /* OK, now we need to know about added descriptors. */
 660                vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
 661
 662                /*
 663                 * They could have slipped one in as we were doing that: make
 664                 * sure it's written, then check again.
 665                 */
 666                mb();
 667                if (last_avail != vq->vring.avail->idx) {
 668                        vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 669                        break;
 670                }
 671
 672                /* Nothing new?  Wait for eventfd to tell us they refilled. */
 673                if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
 674                        errx(1, "Event read failed?");
 675
 676                /* We don't need to be notified again. */
 677                vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
 678        }
 679
 680        /* Check it isn't doing very strange things with descriptor numbers. */
 681        if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
 682                errx(1, "Guest moved used index from %u to %u",
 683                     last_avail, vq->vring.avail->idx);
 684
 685        /* 
 686         * Make sure we read the descriptor number *after* we read the ring
 687         * update; don't let the cpu or compiler change the order.
 688         */
 689        rmb();
 690
 691        /*
 692         * Grab the next descriptor number they're advertising, and increment
 693         * the index we've seen.
 694         */
 695        head = vq->vring.avail->ring[last_avail % vq->vring.num];
 696        lg_last_avail(vq)++;
 697
 698        /* If their number is silly, that's a fatal mistake. */
 699        if (head >= vq->vring.num)
 700                errx(1, "Guest says index %u is available", head);
 701
 702        /* When we start there are none of either input nor output. */
 703        *out_num = *in_num = 0;
 704
 705        max = vq->vring.num;
 706        desc = vq->vring.desc;
 707        i = head;
 708
 709        /*
 710         * We have to read the descriptor after we read the descriptor number,
 711         * but there's a data dependency there so the CPU shouldn't reorder
 712         * that: no rmb() required.
 713         */
 714
 715        /*
 716         * If this is an indirect entry, then this buffer contains a descriptor
 717         * table which we handle as if it's any normal descriptor chain.
 718         */
 719        if (desc[i].flags & VRING_DESC_F_INDIRECT) {
 720                if (desc[i].len % sizeof(struct vring_desc))
 721                        errx(1, "Invalid size for indirect buffer table");
 722
 723                max = desc[i].len / sizeof(struct vring_desc);
 724                desc = check_pointer(desc[i].addr, desc[i].len);
 725                i = 0;
 726        }
 727
 728        do {
 729                /* Grab the first descriptor, and check it's OK. */
 730                iov[*out_num + *in_num].iov_len = desc[i].len;
 731                iov[*out_num + *in_num].iov_base
 732                        = check_pointer(desc[i].addr, desc[i].len);
 733                /* If this is an input descriptor, increment that count. */
 734                if (desc[i].flags & VRING_DESC_F_WRITE)
 735                        (*in_num)++;
 736                else {
 737                        /*
 738                         * If it's an output descriptor, they're all supposed
 739                         * to come before any input descriptors.
 740                         */
 741                        if (*in_num)
 742                                errx(1, "Descriptor has out after in");
 743                        (*out_num)++;
 744                }
 745
 746                /* If we've got too many, that implies a descriptor loop. */
 747                if (*out_num + *in_num > max)
 748                        errx(1, "Looped descriptor");
 749        } while ((i = next_desc(desc, i, max)) != max);
 750
 751        return head;
 752}
 753
 754/*
 755 * After we've used one of their buffers, we tell the Guest about it.  Sometime
 756 * later we'll want to send them an interrupt using trigger_irq(); note that
 757 * wait_for_vq_desc() does that for us if it has to wait.
 758 */
 759static void add_used(struct virtqueue *vq, unsigned int head, int len)
 760{
 761        struct vring_used_elem *used;
 762
 763        /*
 764         * The virtqueue contains a ring of used buffers.  Get a pointer to the
 765         * next entry in that used ring.
 766         */
 767        used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
 768        used->id = head;
 769        used->len = len;
 770        /* Make sure buffer is written before we update index. */
 771        wmb();
 772        vq->vring.used->idx++;
 773        vq->pending_used++;
 774}
 775
 776/* And here's the combo meal deal.  Supersize me! */
 777static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
 778{
 779        add_used(vq, head, len);
 780        trigger_irq(vq);
 781}
 782
 783/*
 784 * The Console
 785 *
 786 * We associate some data with the console for our exit hack.
 787 */
 788struct console_abort {
 789        /* How many times have they hit ^C? */
 790        int count;
 791        /* When did they start? */
 792        struct timeval start;
 793};
 794
 795/* This is the routine which handles console input (ie. stdin). */
 796static void console_input(struct virtqueue *vq)
 797{
 798        int len;
 799        unsigned int head, in_num, out_num;
 800        struct console_abort *abort = vq->dev->priv;
 801        struct iovec iov[vq->vring.num];
 802
 803        /* Make sure there's a descriptor available. */
 804        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
 805        if (out_num)
 806                errx(1, "Output buffers in console in queue?");
 807
 808        /* Read into it.  This is where we usually wait. */
 809        len = readv(STDIN_FILENO, iov, in_num);
 810        if (len <= 0) {
 811                /* Ran out of input? */
 812                warnx("Failed to get console input, ignoring console.");
 813                /*
 814                 * For simplicity, dying threads kill the whole Launcher.  So
 815                 * just nap here.
 816                 */
 817                for (;;)
 818                        pause();
 819        }
 820
 821        /* Tell the Guest we used a buffer. */
 822        add_used_and_trigger(vq, head, len);
 823
 824        /*
 825         * Three ^C within one second?  Exit.
 826         *
 827         * This is such a hack, but works surprisingly well.  Each ^C has to
 828         * be in a buffer by itself, so they can't be too fast.  But we check
 829         * that we get three within about a second, so they can't be too
 830         * slow.
 831         */
 832        if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
 833                abort->count = 0;
 834                return;
 835        }
 836
 837        abort->count++;
 838        if (abort->count == 1)
 839                gettimeofday(&abort->start, NULL);
 840        else if (abort->count == 3) {
 841                struct timeval now;
 842                gettimeofday(&now, NULL);
 843                /* Kill all Launcher processes with SIGINT, like normal ^C */
 844                if (now.tv_sec <= abort->start.tv_sec+1)
 845                        kill(0, SIGINT);
 846                abort->count = 0;
 847        }
 848}
 849
 850/* This is the routine which handles console output (ie. stdout). */
 851static void console_output(struct virtqueue *vq)
 852{
 853        unsigned int head, out, in;
 854        struct iovec iov[vq->vring.num];
 855
 856        /* We usually wait in here, for the Guest to give us something. */
 857        head = wait_for_vq_desc(vq, iov, &out, &in);
 858        if (in)
 859                errx(1, "Input buffers in console output queue?");
 860
 861        /* writev can return a partial write, so we loop here. */
 862        while (!iov_empty(iov, out)) {
 863                int len = writev(STDOUT_FILENO, iov, out);
 864                if (len <= 0) {
 865                        warn("Write to stdout gave %i (%d)", len, errno);
 866                        break;
 867                }
 868                iov_consume(iov, out, NULL, len);
 869        }
 870
 871        /*
 872         * We're finished with that buffer: if we're going to sleep,
 873         * wait_for_vq_desc() will prod the Guest with an interrupt.
 874         */
 875        add_used(vq, head, 0);
 876}
 877
 878/*
 879 * The Network
 880 *
 881 * Handling output for network is also simple: we get all the output buffers
 882 * and write them to /dev/net/tun.
 883 */
 884struct net_info {
 885        int tunfd;
 886};
 887
 888static void net_output(struct virtqueue *vq)
 889{
 890        struct net_info *net_info = vq->dev->priv;
 891        unsigned int head, out, in;
 892        struct iovec iov[vq->vring.num];
 893
 894        /* We usually wait in here for the Guest to give us a packet. */
 895        head = wait_for_vq_desc(vq, iov, &out, &in);
 896        if (in)
 897                errx(1, "Input buffers in net output queue?");
 898        /*
 899         * Send the whole thing through to /dev/net/tun.  It expects the exact
 900         * same format: what a coincidence!
 901         */
 902        if (writev(net_info->tunfd, iov, out) < 0)
 903                warnx("Write to tun failed (%d)?", errno);
 904
 905        /*
 906         * Done with that one; wait_for_vq_desc() will send the interrupt if
 907         * all packets are processed.
 908         */
 909        add_used(vq, head, 0);
 910}
 911
 912/*
 913 * Handling network input is a bit trickier, because I've tried to optimize it.
 914 *
 915 * First we have a helper routine which tells is if from this file descriptor
 916 * (ie. the /dev/net/tun device) will block:
 917 */
 918static bool will_block(int fd)
 919{
 920        fd_set fdset;
 921        struct timeval zero = { 0, 0 };
 922        FD_ZERO(&fdset);
 923        FD_SET(fd, &fdset);
 924        return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
 925}
 926
 927/*
 928 * This handles packets coming in from the tun device to our Guest.  Like all
 929 * service routines, it gets called again as soon as it returns, so you don't
 930 * see a while(1) loop here.
 931 */
 932static void net_input(struct virtqueue *vq)
 933{
 934        int len;
 935        unsigned int head, out, in;
 936        struct iovec iov[vq->vring.num];
 937        struct net_info *net_info = vq->dev->priv;
 938
 939        /*
 940         * Get a descriptor to write an incoming packet into.  This will also
 941         * send an interrupt if they're out of descriptors.
 942         */
 943        head = wait_for_vq_desc(vq, iov, &out, &in);
 944        if (out)
 945                errx(1, "Output buffers in net input queue?");
 946
 947        /*
 948         * If it looks like we'll block reading from the tun device, send them
 949         * an interrupt.
 950         */
 951        if (vq->pending_used && will_block(net_info->tunfd))
 952                trigger_irq(vq);
 953
 954        /*
 955         * Read in the packet.  This is where we normally wait (when there's no
 956         * incoming network traffic).
 957         */
 958        len = readv(net_info->tunfd, iov, in);
 959        if (len <= 0)
 960                warn("Failed to read from tun (%d).", errno);
 961
 962        /*
 963         * Mark that packet buffer as used, but don't interrupt here.  We want
 964         * to wait until we've done as much work as we can.
 965         */
 966        add_used(vq, head, len);
 967}
 968/*:*/
 969
 970/* This is the helper to create threads: run the service routine in a loop. */
 971static int do_thread(void *_vq)
 972{
 973        struct virtqueue *vq = _vq;
 974
 975        for (;;)
 976                vq->service(vq);
 977        return 0;
 978}
 979
 980/*
 981 * When a child dies, we kill our entire process group with SIGTERM.  This
 982 * also has the side effect that the shell restores the console for us!
 983 */
 984static void kill_launcher(int signal)
 985{
 986        kill(0, SIGTERM);
 987}
 988
 989static void reset_device(struct device *dev)
 990{
 991        struct virtqueue *vq;
 992
 993        verbose("Resetting device %s\n", dev->name);
 994
 995        /* Clear any features they've acked. */
 996        memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
 997
 998        /* We're going to be explicitly killing threads, so ignore them. */
 999        signal(SIGCHLD, SIG_IGN);
1000
1001        /* Zero out the virtqueues, get rid of their threads */
1002        for (vq = dev->vq; vq; vq = vq->next) {
1003                if (vq->thread != (pid_t)-1) {
1004                        kill(vq->thread, SIGTERM);
1005                        waitpid(vq->thread, NULL, 0);
1006                        vq->thread = (pid_t)-1;
1007                }
1008                memset(vq->vring.desc, 0,
1009                       vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1010                lg_last_avail(vq) = 0;
1011        }
1012        dev->running = false;
1013
1014        /* Now we care if threads die. */
1015        signal(SIGCHLD, (void *)kill_launcher);
1016}
1017
1018/*L:216
1019 * This actually creates the thread which services the virtqueue for a device.
1020 */
1021static void create_thread(struct virtqueue *vq)
1022{
1023        /*
1024         * Create stack for thread.  Since the stack grows upwards, we point
1025         * the stack pointer to the end of this region.
1026         */
1027        char *stack = malloc(32768);
1028        unsigned long args[] = { LHREQ_EVENTFD,
1029                                 vq->config.pfn*getpagesize(), 0 };
1030
1031        /* Create a zero-initialized eventfd. */
1032        vq->eventfd = eventfd(0, 0);
1033        if (vq->eventfd < 0)
1034                err(1, "Creating eventfd");
1035        args[2] = vq->eventfd;
1036
1037        /*
1038         * Attach an eventfd to this virtqueue: it will go off when the Guest
1039         * does an LHCALL_NOTIFY for this vq.
1040         */
1041        if (write(lguest_fd, &args, sizeof(args)) != 0)
1042                err(1, "Attaching eventfd");
1043
1044        /*
1045         * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1046         * we get a signal if it dies.
1047         */
1048        vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1049        if (vq->thread == (pid_t)-1)
1050                err(1, "Creating clone");
1051
1052        /* We close our local copy now the child has it. */
1053        close(vq->eventfd);
1054}
1055
1056static void start_device(struct device *dev)
1057{
1058        unsigned int i;
1059        struct virtqueue *vq;
1060
1061        verbose("Device %s OK: offered", dev->name);
1062        for (i = 0; i < dev->feature_len; i++)
1063                verbose(" %02x", get_feature_bits(dev)[i]);
1064        verbose(", accepted");
1065        for (i = 0; i < dev->feature_len; i++)
1066                verbose(" %02x", get_feature_bits(dev)
1067                        [dev->feature_len+i]);
1068
1069        for (vq = dev->vq; vq; vq = vq->next) {
1070                if (vq->service)
1071                        create_thread(vq);
1072        }
1073        dev->running = true;
1074}
1075
1076static void cleanup_devices(void)
1077{
1078        struct device *dev;
1079
1080        for (dev = devices.dev; dev; dev = dev->next)
1081                reset_device(dev);
1082
1083        /* If we saved off the original terminal settings, restore them now. */
1084        if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1085                tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1086}
1087
1088/* When the Guest tells us they updated the status field, we handle it. */
1089static void update_device_status(struct device *dev)
1090{
1091        /* A zero status is a reset, otherwise it's a set of flags. */
1092        if (dev->desc->status == 0)
1093                reset_device(dev);
1094        else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
1095                warnx("Device %s configuration FAILED", dev->name);
1096                if (dev->running)
1097                        reset_device(dev);
1098        } else {
1099                if (dev->running)
1100                        err(1, "Device %s features finalized twice", dev->name);
1101                start_device(dev);
1102        }
1103}
1104
1105/*L:215
1106 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY.  In
1107 * particular, it's used to notify us of device status changes during boot.
1108 */
1109static void handle_output(unsigned long addr)
1110{
1111        struct device *i;
1112
1113        /* Check each device. */
1114        for (i = devices.dev; i; i = i->next) {
1115                struct virtqueue *vq;
1116
1117                /*
1118                 * Notifications to device descriptors mean they updated the
1119                 * device status.
1120                 */
1121                if (from_guest_phys(addr) == i->desc) {
1122                        update_device_status(i);
1123                        return;
1124                }
1125
1126                /* Devices should not be used before features are finalized. */
1127                for (vq = i->vq; vq; vq = vq->next) {
1128                        if (addr != vq->config.pfn*getpagesize())
1129                                continue;
1130                        errx(1, "Notification on %s before setup!", i->name);
1131                }
1132        }
1133
1134        /*
1135         * Early console write is done using notify on a nul-terminated string
1136         * in Guest memory.  It's also great for hacking debugging messages
1137         * into a Guest.
1138         */
1139        if (addr >= guest_limit)
1140                errx(1, "Bad NOTIFY %#lx", addr);
1141
1142        write(STDOUT_FILENO, from_guest_phys(addr),
1143              strnlen(from_guest_phys(addr), guest_limit - addr));
1144}
1145
1146/*L:190
1147 * Device Setup
1148 *
1149 * All devices need a descriptor so the Guest knows it exists, and a "struct
1150 * device" so the Launcher can keep track of it.  We have common helper
1151 * routines to allocate and manage them.
1152 */
1153
1154/*
1155 * The layout of the device page is a "struct lguest_device_desc" followed by a
1156 * number of virtqueue descriptors, then two sets of feature bits, then an
1157 * array of configuration bytes.  This routine returns the configuration
1158 * pointer.
1159 */
1160static u8 *device_config(const struct device *dev)
1161{
1162        return (void *)(dev->desc + 1)
1163                + dev->num_vq * sizeof(struct lguest_vqconfig)
1164                + dev->feature_len * 2;
1165}
1166
1167/*
1168 * This routine allocates a new "struct lguest_device_desc" from descriptor
1169 * table page just above the Guest's normal memory.  It returns a pointer to
1170 * that descriptor.
1171 */
1172static struct lguest_device_desc *new_dev_desc(u16 type)
1173{
1174        struct lguest_device_desc d = { .type = type };
1175        void *p;
1176
1177        /* Figure out where the next device config is, based on the last one. */
1178        if (devices.lastdev)
1179                p = device_config(devices.lastdev)
1180                        + devices.lastdev->desc->config_len;
1181        else
1182                p = devices.descpage;
1183
1184        /* We only have one page for all the descriptors. */
1185        if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1186                errx(1, "Too many devices");
1187
1188        /* p might not be aligned, so we memcpy in. */
1189        return memcpy(p, &d, sizeof(d));
1190}
1191
1192/*
1193 * Each device descriptor is followed by the description of its virtqueues.  We
1194 * specify how many descriptors the virtqueue is to have.
1195 */
1196static void add_virtqueue(struct device *dev, unsigned int num_descs,
1197                          void (*service)(struct virtqueue *))
1198{
1199        unsigned int pages;
1200        struct virtqueue **i, *vq = malloc(sizeof(*vq));
1201        void *p;
1202
1203        /* First we need some memory for this virtqueue. */
1204        pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
1205                / getpagesize();
1206        p = get_pages(pages);
1207
1208        /* Initialize the virtqueue */
1209        vq->next = NULL;
1210        vq->last_avail_idx = 0;
1211        vq->dev = dev;
1212
1213        /*
1214         * This is the routine the service thread will run, and its Process ID
1215         * once it's running.
1216         */
1217        vq->service = service;
1218        vq->thread = (pid_t)-1;
1219
1220        /* Initialize the configuration. */
1221        vq->config.num = num_descs;
1222        vq->config.irq = devices.next_irq++;
1223        vq->config.pfn = to_guest_phys(p) / getpagesize();
1224
1225        /* Initialize the vring. */
1226        vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
1227
1228        /*
1229         * Append virtqueue to this device's descriptor.  We use
1230         * device_config() to get the end of the device's current virtqueues;
1231         * we check that we haven't added any config or feature information
1232         * yet, otherwise we'd be overwriting them.
1233         */
1234        assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1235        memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1236        dev->num_vq++;
1237        dev->desc->num_vq++;
1238
1239        verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1240
1241        /*
1242         * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1243         * second.
1244         */
1245        for (i = &dev->vq; *i; i = &(*i)->next);
1246        *i = vq;
1247}
1248
1249/*
1250 * The first half of the feature bitmask is for us to advertise features.  The
1251 * second half is for the Guest to accept features.
1252 */
1253static void add_feature(struct device *dev, unsigned bit)
1254{
1255        u8 *features = get_feature_bits(dev);
1256
1257        /* We can't extend the feature bits once we've added config bytes */
1258        if (dev->desc->feature_len <= bit / CHAR_BIT) {
1259                assert(dev->desc->config_len == 0);
1260                dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
1261        }
1262
1263        features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1264}
1265
1266/*
1267 * This routine sets the configuration fields for an existing device's
1268 * descriptor.  It only works for the last device, but that's OK because that's
1269 * how we use it.
1270 */
1271static void set_config(struct device *dev, unsigned len, const void *conf)
1272{
1273        /* Check we haven't overflowed our single page. */
1274        if (device_config(dev) + len > devices.descpage + getpagesize())
1275                errx(1, "Too many devices");
1276
1277        /* Copy in the config information, and store the length. */
1278        memcpy(device_config(dev), conf, len);
1279        dev->desc->config_len = len;
1280
1281        /* Size must fit in config_len field (8 bits)! */
1282        assert(dev->desc->config_len == len);
1283}
1284
1285/*
1286 * This routine does all the creation and setup of a new device, including
1287 * calling new_dev_desc() to allocate the descriptor and device memory.  We
1288 * don't actually start the service threads until later.
1289 *
1290 * See what I mean about userspace being boring?
1291 */
1292static struct device *new_device(const char *name, u16 type)
1293{
1294        struct device *dev = malloc(sizeof(*dev));
1295
1296        /* Now we populate the fields one at a time. */
1297        dev->desc = new_dev_desc(type);
1298        dev->name = name;
1299        dev->vq = NULL;
1300        dev->feature_len = 0;
1301        dev->num_vq = 0;
1302        dev->running = false;
1303        dev->next = NULL;
1304
1305        /*
1306         * Append to device list.  Prepending to a single-linked list is
1307         * easier, but the user expects the devices to be arranged on the bus
1308         * in command-line order.  The first network device on the command line
1309         * is eth0, the first block device /dev/vda, etc.
1310         */
1311        if (devices.lastdev)
1312                devices.lastdev->next = dev;
1313        else
1314                devices.dev = dev;
1315        devices.lastdev = dev;
1316
1317        return dev;
1318}
1319
1320/*
1321 * Our first setup routine is the console.  It's a fairly simple device, but
1322 * UNIX tty handling makes it uglier than it could be.
1323 */
1324static void setup_console(void)
1325{
1326        struct device *dev;
1327
1328        /* If we can save the initial standard input settings... */
1329        if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1330                struct termios term = orig_term;
1331                /*
1332                 * Then we turn off echo, line buffering and ^C etc: We want a
1333                 * raw input stream to the Guest.
1334                 */
1335                term.c_lflag &= ~(ISIG|ICANON|ECHO);
1336                tcsetattr(STDIN_FILENO, TCSANOW, &term);
1337        }
1338
1339        dev = new_device("console", VIRTIO_ID_CONSOLE);
1340
1341        /* We store the console state in dev->priv, and initialize it. */
1342        dev->priv = malloc(sizeof(struct console_abort));
1343        ((struct console_abort *)dev->priv)->count = 0;
1344
1345        /*
1346         * The console needs two virtqueues: the input then the output.  When
1347         * they put something the input queue, we make sure we're listening to
1348         * stdin.  When they put something in the output queue, we write it to
1349         * stdout.
1350         */
1351        add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1352        add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
1353
1354        verbose("device %u: console\n", ++devices.device_num);
1355}
1356/*:*/
1357
1358/*M:010
1359 * Inter-guest networking is an interesting area.  Simplest is to have a
1360 * --sharenet=<name> option which opens or creates a named pipe.  This can be
1361 * used to send packets to another guest in a 1:1 manner.
1362 *
1363 * More sophisticated is to use one of the tools developed for project like UML
1364 * to do networking.
1365 *
1366 * Faster is to do virtio bonding in kernel.  Doing this 1:1 would be
1367 * completely generic ("here's my vring, attach to your vring") and would work
1368 * for any traffic.  Of course, namespace and permissions issues need to be
1369 * dealt with.  A more sophisticated "multi-channel" virtio_net.c could hide
1370 * multiple inter-guest channels behind one interface, although it would
1371 * require some manner of hotplugging new virtio channels.
1372 *
1373 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
1374:*/
1375
1376static u32 str2ip(const char *ipaddr)
1377{
1378        unsigned int b[4];
1379
1380        if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1381                errx(1, "Failed to parse IP address '%s'", ipaddr);
1382        return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1383}
1384
1385static void str2mac(const char *macaddr, unsigned char mac[6])
1386{
1387        unsigned int m[6];
1388        if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1389                   &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1390                errx(1, "Failed to parse mac address '%s'", macaddr);
1391        mac[0] = m[0];
1392        mac[1] = m[1];
1393        mac[2] = m[2];
1394        mac[3] = m[3];
1395        mac[4] = m[4];
1396        mac[5] = m[5];
1397}
1398
1399/*
1400 * This code is "adapted" from libbridge: it attaches the Host end of the
1401 * network device to the bridge device specified by the command line.
1402 *
1403 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1404 * dislike bridging), and I just try not to break it.
1405 */
1406static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1407{
1408        int ifidx;
1409        struct ifreq ifr;
1410
1411        if (!*br_name)
1412                errx(1, "must specify bridge name");
1413
1414        ifidx = if_nametoindex(if_name);
1415        if (!ifidx)
1416                errx(1, "interface %s does not exist!", if_name);
1417
1418        strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1419        ifr.ifr_name[IFNAMSIZ-1] = '\0';
1420        ifr.ifr_ifindex = ifidx;
1421        if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1422                err(1, "can't add %s to bridge %s", if_name, br_name);
1423}
1424
1425/*
1426 * This sets up the Host end of the network device with an IP address, brings
1427 * it up so packets will flow, the copies the MAC address into the hwaddr
1428 * pointer.
1429 */
1430static void configure_device(int fd, const char *tapif, u32 ipaddr)
1431{
1432        struct ifreq ifr;
1433        struct sockaddr_in sin;
1434
1435        memset(&ifr, 0, sizeof(ifr));
1436        strcpy(ifr.ifr_name, tapif);
1437
1438        /* Don't read these incantations.  Just cut & paste them like I did! */
1439        sin.sin_family = AF_INET;
1440        sin.sin_addr.s_addr = htonl(ipaddr);
1441        memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
1442        if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1443                err(1, "Setting %s interface address", tapif);
1444        ifr.ifr_flags = IFF_UP;
1445        if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1446                err(1, "Bringing interface %s up", tapif);
1447}
1448
1449static int get_tun_device(char tapif[IFNAMSIZ])
1450{
1451        struct ifreq ifr;
1452        int netfd;
1453
1454        /* Start with this zeroed.  Messy but sure. */
1455        memset(&ifr, 0, sizeof(ifr));
1456
1457        /*
1458         * We open the /dev/net/tun device and tell it we want a tap device.  A
1459         * tap device is like a tun device, only somehow different.  To tell
1460         * the truth, I completely blundered my way through this code, but it
1461         * works now!
1462         */
1463        netfd = open_or_die("/dev/net/tun", O_RDWR);
1464        ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
1465        strcpy(ifr.ifr_name, "tap%d");
1466        if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1467                err(1, "configuring /dev/net/tun");
1468
1469        if (ioctl(netfd, TUNSETOFFLOAD,
1470                  TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1471                err(1, "Could not set features for tun device");
1472
1473        /*
1474         * We don't need checksums calculated for packets coming in this
1475         * device: trust us!
1476         */
1477        ioctl(netfd, TUNSETNOCSUM, 1);
1478
1479        memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1480        return netfd;
1481}
1482
1483/*L:195
1484 * Our network is a Host<->Guest network.  This can either use bridging or
1485 * routing, but the principle is the same: it uses the "tun" device to inject
1486 * packets into the Host as if they came in from a normal network card.  We
1487 * just shunt packets between the Guest and the tun device.
1488 */
1489static void setup_tun_net(char *arg)
1490{
1491        struct device *dev;
1492        struct net_info *net_info = malloc(sizeof(*net_info));
1493        int ipfd;
1494        u32 ip = INADDR_ANY;
1495        bool bridging = false;
1496        char tapif[IFNAMSIZ], *p;
1497        struct virtio_net_config conf;
1498
1499        net_info->tunfd = get_tun_device(tapif);
1500
1501        /* First we create a new network device. */
1502        dev = new_device("net", VIRTIO_ID_NET);
1503        dev->priv = net_info;
1504
1505        /* Network devices need a recv and a send queue, just like console. */
1506        add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1507        add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
1508
1509        /*
1510         * We need a socket to perform the magic network ioctls to bring up the
1511         * tap interface, connect to the bridge etc.  Any socket will do!
1512         */
1513        ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1514        if (ipfd < 0)
1515                err(1, "opening IP socket");
1516
1517        /* If the command line was --tunnet=bridge:<name> do bridging. */
1518        if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1519                arg += strlen(BRIDGE_PFX);
1520                bridging = true;
1521        }
1522
1523        /* A mac address may follow the bridge name or IP address */
1524        p = strchr(arg, ':');
1525        if (p) {
1526                str2mac(p+1, conf.mac);
1527                add_feature(dev, VIRTIO_NET_F_MAC);
1528                *p = '\0';
1529        }
1530
1531        /* arg is now either an IP address or a bridge name */
1532        if (bridging)
1533                add_to_bridge(ipfd, tapif, arg);
1534        else
1535                ip = str2ip(arg);
1536
1537        /* Set up the tun device. */
1538        configure_device(ipfd, tapif, ip);
1539
1540        /* Expect Guest to handle everything except UFO */
1541        add_feature(dev, VIRTIO_NET_F_CSUM);
1542        add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
1543        add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1544        add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1545        add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1546        add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1547        add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1548        add_feature(dev, VIRTIO_NET_F_HOST_ECN);
1549        /* We handle indirect ring entries */
1550        add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
1551        /* We're compliant with the damn spec. */
1552        add_feature(dev, VIRTIO_F_ANY_LAYOUT);
1553        set_config(dev, sizeof(conf), &conf);
1554
1555        /* We don't need the socket any more; setup is done. */
1556        close(ipfd);
1557
1558        devices.device_num++;
1559
1560        if (bridging)
1561                verbose("device %u: tun %s attached to bridge: %s\n",
1562                        devices.device_num, tapif, arg);
1563        else
1564                verbose("device %u: tun %s: %s\n",
1565                        devices.device_num, tapif, arg);
1566}
1567/*:*/
1568
1569/* This hangs off device->priv. */
1570struct vblk_info {
1571        /* The size of the file. */
1572        off64_t len;
1573
1574        /* The file descriptor for the file. */
1575        int fd;
1576
1577};
1578
1579/*L:210
1580 * The Disk
1581 *
1582 * The disk only has one virtqueue, so it only has one thread.  It is really
1583 * simple: the Guest asks for a block number and we read or write that position
1584 * in the file.
1585 *
1586 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1587 * slow: the Guest waits until the read is finished before running anything
1588 * else, even if it could have been doing useful work.
1589 *
1590 * We could have used async I/O, except it's reputed to suck so hard that
1591 * characters actually go missing from your code when you try to use it.
1592 */
1593static void blk_request(struct virtqueue *vq)
1594{
1595        struct vblk_info *vblk = vq->dev->priv;
1596        unsigned int head, out_num, in_num, wlen;
1597        int ret, i;
1598        u8 *in;
1599        struct virtio_blk_outhdr out;
1600        struct iovec iov[vq->vring.num];
1601        off64_t off;
1602
1603        /*
1604         * Get the next request, where we normally wait.  It triggers the
1605         * interrupt to acknowledge previously serviced requests (if any).
1606         */
1607        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1608
1609        /* Copy the output header from the front of the iov (adjusts iov) */
1610        iov_consume(iov, out_num, &out, sizeof(out));
1611
1612        /* Find and trim end of iov input array, for our status byte. */
1613        in = NULL;
1614        for (i = out_num + in_num - 1; i >= out_num; i--) {
1615                if (iov[i].iov_len > 0) {
1616                        in = iov[i].iov_base + iov[i].iov_len - 1;
1617                        iov[i].iov_len--;
1618                        break;
1619                }
1620        }
1621        if (!in)
1622                errx(1, "Bad virtblk cmd with no room for status");
1623
1624        /*
1625         * For historical reasons, block operations are expressed in 512 byte
1626         * "sectors".
1627         */
1628        off = out.sector * 512;
1629
1630        /*
1631         * In general the virtio block driver is allowed to try SCSI commands.
1632         * It'd be nice if we supported eject, for example, but we don't.
1633         */
1634        if (out.type & VIRTIO_BLK_T_SCSI_CMD) {
1635                fprintf(stderr, "Scsi commands unsupported\n");
1636                *in = VIRTIO_BLK_S_UNSUPP;
1637                wlen = sizeof(*in);
1638        } else if (out.type & VIRTIO_BLK_T_OUT) {
1639                /*
1640                 * Write
1641                 *
1642                 * Move to the right location in the block file.  This can fail
1643                 * if they try to write past end.
1644                 */
1645                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1646                        err(1, "Bad seek to sector %llu", out.sector);
1647
1648                ret = writev(vblk->fd, iov, out_num);
1649                verbose("WRITE to sector %llu: %i\n", out.sector, ret);
1650
1651                /*
1652                 * Grr... Now we know how long the descriptor they sent was, we
1653                 * make sure they didn't try to write over the end of the block
1654                 * file (possibly extending it).
1655                 */
1656                if (ret > 0 && off + ret > vblk->len) {
1657                        /* Trim it back to the correct length */
1658                        ftruncate64(vblk->fd, vblk->len);
1659                        /* Die, bad Guest, die. */
1660                        errx(1, "Write past end %llu+%u", off, ret);
1661                }
1662
1663                wlen = sizeof(*in);
1664                *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1665        } else if (out.type & VIRTIO_BLK_T_FLUSH) {
1666                /* Flush */
1667                ret = fdatasync(vblk->fd);
1668                verbose("FLUSH fdatasync: %i\n", ret);
1669                wlen = sizeof(*in);
1670                *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1671        } else {
1672                /*
1673                 * Read
1674                 *
1675                 * Move to the right location in the block file.  This can fail
1676                 * if they try to read past end.
1677                 */
1678                if (lseek64(vblk->fd, off, SEEK_SET) != off)
1679                        err(1, "Bad seek to sector %llu", out.sector);
1680
1681                ret = readv(vblk->fd, iov + out_num, in_num);
1682                if (ret >= 0) {
1683                        wlen = sizeof(*in) + ret;
1684                        *in = VIRTIO_BLK_S_OK;
1685                } else {
1686                        wlen = sizeof(*in);
1687                        *in = VIRTIO_BLK_S_IOERR;
1688                }
1689        }
1690
1691        /* Finished that request. */
1692        add_used(vq, head, wlen);
1693}
1694
1695/*L:198 This actually sets up a virtual block device. */
1696static void setup_block_file(const char *filename)
1697{
1698        struct device *dev;
1699        struct vblk_info *vblk;
1700        struct virtio_blk_config conf;
1701
1702        /* Creat the device. */
1703        dev = new_device("block", VIRTIO_ID_BLOCK);
1704
1705        /* The device has one virtqueue, where the Guest places requests. */
1706        add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
1707
1708        /* Allocate the room for our own bookkeeping */
1709        vblk = dev->priv = malloc(sizeof(*vblk));
1710
1711        /* First we open the file and store the length. */
1712        vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1713        vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1714
1715        /* We support FLUSH. */
1716        add_feature(dev, VIRTIO_BLK_F_FLUSH);
1717
1718        /* Tell Guest how many sectors this device has. */
1719        conf.capacity = cpu_to_le64(vblk->len / 512);
1720
1721        /*
1722         * Tell Guest not to put in too many descriptors at once: two are used
1723         * for the in and out elements.
1724         */
1725        add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1726        conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1727
1728        /* Don't try to put whole struct: we have 8 bit limit. */
1729        set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
1730
1731        verbose("device %u: virtblock %llu sectors\n",
1732                ++devices.device_num, le64_to_cpu(conf.capacity));
1733}
1734
1735/*L:211
1736 * Our random number generator device reads from /dev/random into the Guest's
1737 * input buffers.  The usual case is that the Guest doesn't want random numbers
1738 * and so has no buffers although /dev/random is still readable, whereas
1739 * console is the reverse.
1740 *
1741 * The same logic applies, however.
1742 */
1743struct rng_info {
1744        int rfd;
1745};
1746
1747static void rng_input(struct virtqueue *vq)
1748{
1749        int len;
1750        unsigned int head, in_num, out_num, totlen = 0;
1751        struct rng_info *rng_info = vq->dev->priv;
1752        struct iovec iov[vq->vring.num];
1753
1754        /* First we need a buffer from the Guests's virtqueue. */
1755        head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
1756        if (out_num)
1757                errx(1, "Output buffers in rng?");
1758
1759        /*
1760         * Just like the console write, we loop to cover the whole iovec.
1761         * In this case, short reads actually happen quite a bit.
1762         */
1763        while (!iov_empty(iov, in_num)) {
1764                len = readv(rng_info->rfd, iov, in_num);
1765                if (len <= 0)
1766                        err(1, "Read from /dev/random gave %i", len);
1767                iov_consume(iov, in_num, NULL, len);
1768                totlen += len;
1769        }
1770
1771        /* Tell the Guest about the new input. */
1772        add_used(vq, head, totlen);
1773}
1774
1775/*L:199
1776 * This creates a "hardware" random number device for the Guest.
1777 */
1778static void setup_rng(void)
1779{
1780        struct device *dev;
1781        struct rng_info *rng_info = malloc(sizeof(*rng_info));
1782
1783        /* Our device's privat info simply contains the /dev/random fd. */
1784        rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
1785
1786        /* Create the new device. */
1787        dev = new_device("rng", VIRTIO_ID_RNG);
1788        dev->priv = rng_info;
1789
1790        /* The device has one virtqueue, where the Guest places inbufs. */
1791        add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
1792
1793        verbose("device %u: rng\n", devices.device_num++);
1794}
1795/* That's the end of device setup. */
1796
1797/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1798static void __attribute__((noreturn)) restart_guest(void)
1799{
1800        unsigned int i;
1801
1802        /*
1803         * Since we don't track all open fds, we simply close everything beyond
1804         * stderr.
1805         */
1806        for (i = 3; i < FD_SETSIZE; i++)
1807                close(i);
1808
1809        /* Reset all the devices (kills all threads). */
1810        cleanup_devices();
1811
1812        execv(main_args[0], main_args);
1813        err(1, "Could not exec %s", main_args[0]);
1814}
1815
1816/*L:220
1817 * Finally we reach the core of the Launcher which runs the Guest, serves
1818 * its input and output, and finally, lays it to rest.
1819 */
1820static void __attribute__((noreturn)) run_guest(void)
1821{
1822        for (;;) {
1823                unsigned long notify_addr;
1824                int readval;
1825
1826                /* We read from the /dev/lguest device to run the Guest. */
1827                readval = pread(lguest_fd, &notify_addr,
1828                                sizeof(notify_addr), cpu_id);
1829
1830                /* One unsigned long means the Guest did HCALL_NOTIFY */
1831                if (readval == sizeof(notify_addr)) {
1832                        verbose("Notify on address %#lx\n", notify_addr);
1833                        handle_output(notify_addr);
1834                /* ENOENT means the Guest died.  Reading tells us why. */
1835                } else if (errno == ENOENT) {
1836                        char reason[1024] = { 0 };
1837                        pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1838                        errx(1, "%s", reason);
1839                /* ERESTART means that we need to reboot the guest */
1840                } else if (errno == ERESTART) {
1841                        restart_guest();
1842                /* Anything else means a bug or incompatible change. */
1843                } else
1844                        err(1, "Running guest failed");
1845        }
1846}
1847/*L:240
1848 * This is the end of the Launcher.  The good news: we are over halfway
1849 * through!  The bad news: the most fiendish part of the code still lies ahead
1850 * of us.
1851 *
1852 * Are you ready?  Take a deep breath and join me in the core of the Host, in
1853 * "make Host".
1854:*/
1855
1856static struct option opts[] = {
1857        { "verbose", 0, NULL, 'v' },
1858        { "tunnet", 1, NULL, 't' },
1859        { "block", 1, NULL, 'b' },
1860        { "rng", 0, NULL, 'r' },
1861        { "initrd", 1, NULL, 'i' },
1862        { "username", 1, NULL, 'u' },
1863        { "chroot", 1, NULL, 'c' },
1864        { NULL },
1865};
1866static void usage(void)
1867{
1868        errx(1, "Usage: lguest [--verbose] "
1869             "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
1870             "|--block=<filename>|--initrd=<filename>]...\n"
1871             "<mem-in-mb> vmlinux [args...]");
1872}
1873
1874/*L:105 The main routine is where the real work begins: */
1875int main(int argc, char *argv[])
1876{
1877        /* Memory, code startpoint and size of the (optional) initrd. */
1878        unsigned long mem = 0, start, initrd_size = 0;
1879        /* Two temporaries. */
1880        int i, c;
1881        /* The boot information for the Guest. */
1882        struct boot_params *boot;
1883        /* If they specify an initrd file to load. */
1884        const char *initrd_name = NULL;
1885
1886        /* Password structure for initgroups/setres[gu]id */
1887        struct passwd *user_details = NULL;
1888
1889        /* Directory to chroot to */
1890        char *chroot_path = NULL;
1891
1892        /* Save the args: we "reboot" by execing ourselves again. */
1893        main_args = argv;
1894
1895        /*
1896         * First we initialize the device list.  We keep a pointer to the last
1897         * device, and the next interrupt number to use for devices (1:
1898         * remember that 0 is used by the timer).
1899         */
1900        devices.lastdev = NULL;
1901        devices.next_irq = 1;
1902
1903        /* We're CPU 0.  In fact, that's the only CPU possible right now. */
1904        cpu_id = 0;
1905
1906        /*
1907         * We need to know how much memory so we can set up the device
1908         * descriptor and memory pages for the devices as we parse the command
1909         * line.  So we quickly look through the arguments to find the amount
1910         * of memory now.
1911         */
1912        for (i = 1; i < argc; i++) {
1913                if (argv[i][0] != '-') {
1914                        mem = atoi(argv[i]) * 1024 * 1024;
1915                        /*
1916                         * We start by mapping anonymous pages over all of
1917                         * guest-physical memory range.  This fills it with 0,
1918                         * and ensures that the Guest won't be killed when it
1919                         * tries to access it.
1920                         */
1921                        guest_base = map_zeroed_pages(mem / getpagesize()
1922                                                      + DEVICE_PAGES);
1923                        guest_limit = mem;
1924                        guest_max = mem + DEVICE_PAGES*getpagesize();
1925                        devices.descpage = get_pages(1);
1926                        break;
1927                }
1928        }
1929
1930        /* The options are fairly straight-forward */
1931        while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1932                switch (c) {
1933                case 'v':
1934                        verbose = true;
1935                        break;
1936                case 't':
1937                        setup_tun_net(optarg);
1938                        break;
1939                case 'b':
1940                        setup_block_file(optarg);
1941                        break;
1942                case 'r':
1943                        setup_rng();
1944                        break;
1945                case 'i':
1946                        initrd_name = optarg;
1947                        break;
1948                case 'u':
1949                        user_details = getpwnam(optarg);
1950                        if (!user_details)
1951                                err(1, "getpwnam failed, incorrect username?");
1952                        break;
1953                case 'c':
1954                        chroot_path = optarg;
1955                        break;
1956                default:
1957                        warnx("Unknown argument %s", argv[optind]);
1958                        usage();
1959                }
1960        }
1961        /*
1962         * After the other arguments we expect memory and kernel image name,
1963         * followed by command line arguments for the kernel.
1964         */
1965        if (optind + 2 > argc)
1966                usage();
1967
1968        verbose("Guest base is at %p\n", guest_base);
1969
1970        /* We always have a console device */
1971        setup_console();
1972
1973        /* Now we load the kernel */
1974        start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1975
1976        /* Boot information is stashed at physical address 0 */
1977        boot = from_guest_phys(0);
1978
1979        /* Map the initrd image if requested (at top of physical memory) */
1980        if (initrd_name) {
1981                initrd_size = load_initrd(initrd_name, mem);
1982                /*
1983                 * These are the location in the Linux boot header where the
1984                 * start and size of the initrd are expected to be found.
1985                 */
1986                boot->hdr.ramdisk_image = mem - initrd_size;
1987                boot->hdr.ramdisk_size = initrd_size;
1988                /* The bootloader type 0xFF means "unknown"; that's OK. */
1989                boot->hdr.type_of_loader = 0xFF;
1990        }
1991
1992        /*
1993         * The Linux boot header contains an "E820" memory map: ours is a
1994         * simple, single region.
1995         */
1996        boot->e820_entries = 1;
1997        boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1998        /*
1999         * The boot header contains a command line pointer: we put the command
2000         * line after the boot header.
2001         */
2002        boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
2003        /* We use a simple helper to copy the arguments separated by spaces. */
2004        concat((char *)(boot + 1), argv+optind+2);
2005
2006        /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
2007        boot->hdr.kernel_alignment = 0x1000000;
2008
2009        /* Boot protocol version: 2.07 supports the fields for lguest. */
2010        boot->hdr.version = 0x207;
2011
2012        /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
2013        boot->hdr.hardware_subarch = 1;
2014
2015        /* Tell the entry path not to try to reload segment registers. */
2016        boot->hdr.loadflags |= KEEP_SEGMENTS;
2017
2018        /* We tell the kernel to initialize the Guest. */
2019        tell_kernel(start);
2020
2021        /* Ensure that we terminate if a device-servicing child dies. */
2022        signal(SIGCHLD, kill_launcher);
2023
2024        /* If we exit via err(), this kills all the threads, restores tty. */
2025        atexit(cleanup_devices);
2026
2027        /* If requested, chroot to a directory */
2028        if (chroot_path) {
2029                if (chroot(chroot_path) != 0)
2030                        err(1, "chroot(\"%s\") failed", chroot_path);
2031
2032                if (chdir("/") != 0)
2033                        err(1, "chdir(\"/\") failed");
2034
2035                verbose("chroot done\n");
2036        }
2037
2038        /* If requested, drop privileges */
2039        if (user_details) {
2040                uid_t u;
2041                gid_t g;
2042
2043                u = user_details->pw_uid;
2044                g = user_details->pw_gid;
2045
2046                if (initgroups(user_details->pw_name, g) != 0)
2047                        err(1, "initgroups failed");
2048
2049                if (setresgid(g, g, g) != 0)
2050                        err(1, "setresgid failed");
2051
2052                if (setresuid(u, u, u) != 0)
2053                        err(1, "setresuid failed");
2054
2055                verbose("Dropping privileges completed\n");
2056        }
2057
2058        /* Finally, run the Guest.  This doesn't return. */
2059        run_guest();
2060}
2061/*:*/
2062
2063/*M:999
2064 * Mastery is done: you now know everything I do.
2065 *
2066 * But surely you have seen code, features and bugs in your wanderings which
2067 * you now yearn to attack?  That is the real game, and I look forward to you
2068 * patching and forking lguest into the Your-Name-Here-visor.
2069 *
2070 * Farewell, and good coding!
2071 * Rusty Russell.
2072 */
2073