linux/tools/perf/builtin-timechart.c
<<
>>
Prefs
   1/*
   2 * builtin-timechart.c - make an svg timechart of system activity
   3 *
   4 * (C) Copyright 2009 Intel Corporation
   5 *
   6 * Authors:
   7 *     Arjan van de Ven <arjan@linux.intel.com>
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; version 2
  12 * of the License.
  13 */
  14
  15#include <traceevent/event-parse.h>
  16
  17#include "builtin.h"
  18
  19#include "util/util.h"
  20
  21#include "util/color.h"
  22#include <linux/list.h>
  23#include "util/cache.h"
  24#include "util/evlist.h"
  25#include "util/evsel.h"
  26#include <linux/rbtree.h>
  27#include "util/symbol.h"
  28#include "util/callchain.h"
  29#include "util/strlist.h"
  30
  31#include "perf.h"
  32#include "util/header.h"
  33#include "util/parse-options.h"
  34#include "util/parse-events.h"
  35#include "util/event.h"
  36#include "util/session.h"
  37#include "util/svghelper.h"
  38#include "util/tool.h"
  39
  40#define SUPPORT_OLD_POWER_EVENTS 1
  41#define PWR_EVENT_EXIT -1
  42
  43
  44static unsigned int     numcpus;
  45static u64              min_freq;       /* Lowest CPU frequency seen */
  46static u64              max_freq;       /* Highest CPU frequency seen */
  47static u64              turbo_frequency;
  48
  49static u64              first_time, last_time;
  50
  51static bool             power_only;
  52
  53
  54struct per_pid;
  55struct per_pidcomm;
  56
  57struct cpu_sample;
  58struct power_event;
  59struct wake_event;
  60
  61struct sample_wrapper;
  62
  63/*
  64 * Datastructure layout:
  65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
  66 * Each "pid" entry, has a list of "comm"s.
  67 *      this is because we want to track different programs different, while
  68 *      exec will reuse the original pid (by design).
  69 * Each comm has a list of samples that will be used to draw
  70 * final graph.
  71 */
  72
  73struct per_pid {
  74        struct per_pid *next;
  75
  76        int             pid;
  77        int             ppid;
  78
  79        u64             start_time;
  80        u64             end_time;
  81        u64             total_time;
  82        int             display;
  83
  84        struct per_pidcomm *all;
  85        struct per_pidcomm *current;
  86};
  87
  88
  89struct per_pidcomm {
  90        struct per_pidcomm *next;
  91
  92        u64             start_time;
  93        u64             end_time;
  94        u64             total_time;
  95
  96        int             Y;
  97        int             display;
  98
  99        long            state;
 100        u64             state_since;
 101
 102        char            *comm;
 103
 104        struct cpu_sample *samples;
 105};
 106
 107struct sample_wrapper {
 108        struct sample_wrapper *next;
 109
 110        u64             timestamp;
 111        unsigned char   data[0];
 112};
 113
 114#define TYPE_NONE       0
 115#define TYPE_RUNNING    1
 116#define TYPE_WAITING    2
 117#define TYPE_BLOCKED    3
 118
 119struct cpu_sample {
 120        struct cpu_sample *next;
 121
 122        u64 start_time;
 123        u64 end_time;
 124        int type;
 125        int cpu;
 126};
 127
 128static struct per_pid *all_data;
 129
 130#define CSTATE 1
 131#define PSTATE 2
 132
 133struct power_event {
 134        struct power_event *next;
 135        int type;
 136        int state;
 137        u64 start_time;
 138        u64 end_time;
 139        int cpu;
 140};
 141
 142struct wake_event {
 143        struct wake_event *next;
 144        int waker;
 145        int wakee;
 146        u64 time;
 147};
 148
 149static struct power_event    *power_events;
 150static struct wake_event     *wake_events;
 151
 152struct process_filter;
 153struct process_filter {
 154        char                    *name;
 155        int                     pid;
 156        struct process_filter   *next;
 157};
 158
 159static struct process_filter *process_filter;
 160
 161
 162static struct per_pid *find_create_pid(int pid)
 163{
 164        struct per_pid *cursor = all_data;
 165
 166        while (cursor) {
 167                if (cursor->pid == pid)
 168                        return cursor;
 169                cursor = cursor->next;
 170        }
 171        cursor = zalloc(sizeof(*cursor));
 172        assert(cursor != NULL);
 173        cursor->pid = pid;
 174        cursor->next = all_data;
 175        all_data = cursor;
 176        return cursor;
 177}
 178
 179static void pid_set_comm(int pid, char *comm)
 180{
 181        struct per_pid *p;
 182        struct per_pidcomm *c;
 183        p = find_create_pid(pid);
 184        c = p->all;
 185        while (c) {
 186                if (c->comm && strcmp(c->comm, comm) == 0) {
 187                        p->current = c;
 188                        return;
 189                }
 190                if (!c->comm) {
 191                        c->comm = strdup(comm);
 192                        p->current = c;
 193                        return;
 194                }
 195                c = c->next;
 196        }
 197        c = zalloc(sizeof(*c));
 198        assert(c != NULL);
 199        c->comm = strdup(comm);
 200        p->current = c;
 201        c->next = p->all;
 202        p->all = c;
 203}
 204
 205static void pid_fork(int pid, int ppid, u64 timestamp)
 206{
 207        struct per_pid *p, *pp;
 208        p = find_create_pid(pid);
 209        pp = find_create_pid(ppid);
 210        p->ppid = ppid;
 211        if (pp->current && pp->current->comm && !p->current)
 212                pid_set_comm(pid, pp->current->comm);
 213
 214        p->start_time = timestamp;
 215        if (p->current) {
 216                p->current->start_time = timestamp;
 217                p->current->state_since = timestamp;
 218        }
 219}
 220
 221static void pid_exit(int pid, u64 timestamp)
 222{
 223        struct per_pid *p;
 224        p = find_create_pid(pid);
 225        p->end_time = timestamp;
 226        if (p->current)
 227                p->current->end_time = timestamp;
 228}
 229
 230static void
 231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
 232{
 233        struct per_pid *p;
 234        struct per_pidcomm *c;
 235        struct cpu_sample *sample;
 236
 237        p = find_create_pid(pid);
 238        c = p->current;
 239        if (!c) {
 240                c = zalloc(sizeof(*c));
 241                assert(c != NULL);
 242                p->current = c;
 243                c->next = p->all;
 244                p->all = c;
 245        }
 246
 247        sample = zalloc(sizeof(*sample));
 248        assert(sample != NULL);
 249        sample->start_time = start;
 250        sample->end_time = end;
 251        sample->type = type;
 252        sample->next = c->samples;
 253        sample->cpu = cpu;
 254        c->samples = sample;
 255
 256        if (sample->type == TYPE_RUNNING && end > start && start > 0) {
 257                c->total_time += (end-start);
 258                p->total_time += (end-start);
 259        }
 260
 261        if (c->start_time == 0 || c->start_time > start)
 262                c->start_time = start;
 263        if (p->start_time == 0 || p->start_time > start)
 264                p->start_time = start;
 265}
 266
 267#define MAX_CPUS 4096
 268
 269static u64 cpus_cstate_start_times[MAX_CPUS];
 270static int cpus_cstate_state[MAX_CPUS];
 271static u64 cpus_pstate_start_times[MAX_CPUS];
 272static u64 cpus_pstate_state[MAX_CPUS];
 273
 274static int process_comm_event(struct perf_tool *tool __maybe_unused,
 275                              union perf_event *event,
 276                              struct perf_sample *sample __maybe_unused,
 277                              struct machine *machine __maybe_unused)
 278{
 279        pid_set_comm(event->comm.tid, event->comm.comm);
 280        return 0;
 281}
 282
 283static int process_fork_event(struct perf_tool *tool __maybe_unused,
 284                              union perf_event *event,
 285                              struct perf_sample *sample __maybe_unused,
 286                              struct machine *machine __maybe_unused)
 287{
 288        pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
 289        return 0;
 290}
 291
 292static int process_exit_event(struct perf_tool *tool __maybe_unused,
 293                              union perf_event *event,
 294                              struct perf_sample *sample __maybe_unused,
 295                              struct machine *machine __maybe_unused)
 296{
 297        pid_exit(event->fork.pid, event->fork.time);
 298        return 0;
 299}
 300
 301struct trace_entry {
 302        unsigned short          type;
 303        unsigned char           flags;
 304        unsigned char           preempt_count;
 305        int                     pid;
 306        int                     lock_depth;
 307};
 308
 309#ifdef SUPPORT_OLD_POWER_EVENTS
 310static int use_old_power_events;
 311struct power_entry_old {
 312        struct trace_entry te;
 313        u64     type;
 314        u64     value;
 315        u64     cpu_id;
 316};
 317#endif
 318
 319struct power_processor_entry {
 320        struct trace_entry te;
 321        u32     state;
 322        u32     cpu_id;
 323};
 324
 325#define TASK_COMM_LEN 16
 326struct wakeup_entry {
 327        struct trace_entry te;
 328        char comm[TASK_COMM_LEN];
 329        int   pid;
 330        int   prio;
 331        int   success;
 332};
 333
 334struct sched_switch {
 335        struct trace_entry te;
 336        char prev_comm[TASK_COMM_LEN];
 337        int  prev_pid;
 338        int  prev_prio;
 339        long prev_state; /* Arjan weeps. */
 340        char next_comm[TASK_COMM_LEN];
 341        int  next_pid;
 342        int  next_prio;
 343};
 344
 345static void c_state_start(int cpu, u64 timestamp, int state)
 346{
 347        cpus_cstate_start_times[cpu] = timestamp;
 348        cpus_cstate_state[cpu] = state;
 349}
 350
 351static void c_state_end(int cpu, u64 timestamp)
 352{
 353        struct power_event *pwr = zalloc(sizeof(*pwr));
 354
 355        if (!pwr)
 356                return;
 357
 358        pwr->state = cpus_cstate_state[cpu];
 359        pwr->start_time = cpus_cstate_start_times[cpu];
 360        pwr->end_time = timestamp;
 361        pwr->cpu = cpu;
 362        pwr->type = CSTATE;
 363        pwr->next = power_events;
 364
 365        power_events = pwr;
 366}
 367
 368static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
 369{
 370        struct power_event *pwr;
 371
 372        if (new_freq > 8000000) /* detect invalid data */
 373                return;
 374
 375        pwr = zalloc(sizeof(*pwr));
 376        if (!pwr)
 377                return;
 378
 379        pwr->state = cpus_pstate_state[cpu];
 380        pwr->start_time = cpus_pstate_start_times[cpu];
 381        pwr->end_time = timestamp;
 382        pwr->cpu = cpu;
 383        pwr->type = PSTATE;
 384        pwr->next = power_events;
 385
 386        if (!pwr->start_time)
 387                pwr->start_time = first_time;
 388
 389        power_events = pwr;
 390
 391        cpus_pstate_state[cpu] = new_freq;
 392        cpus_pstate_start_times[cpu] = timestamp;
 393
 394        if ((u64)new_freq > max_freq)
 395                max_freq = new_freq;
 396
 397        if (new_freq < min_freq || min_freq == 0)
 398                min_freq = new_freq;
 399
 400        if (new_freq == max_freq - 1000)
 401                        turbo_frequency = max_freq;
 402}
 403
 404static void
 405sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
 406{
 407        struct per_pid *p;
 408        struct wakeup_entry *wake = (void *)te;
 409        struct wake_event *we = zalloc(sizeof(*we));
 410
 411        if (!we)
 412                return;
 413
 414        we->time = timestamp;
 415        we->waker = pid;
 416
 417        if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
 418                we->waker = -1;
 419
 420        we->wakee = wake->pid;
 421        we->next = wake_events;
 422        wake_events = we;
 423        p = find_create_pid(we->wakee);
 424
 425        if (p && p->current && p->current->state == TYPE_NONE) {
 426                p->current->state_since = timestamp;
 427                p->current->state = TYPE_WAITING;
 428        }
 429        if (p && p->current && p->current->state == TYPE_BLOCKED) {
 430                pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
 431                p->current->state_since = timestamp;
 432                p->current->state = TYPE_WAITING;
 433        }
 434}
 435
 436static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
 437{
 438        struct per_pid *p = NULL, *prev_p;
 439        struct sched_switch *sw = (void *)te;
 440
 441
 442        prev_p = find_create_pid(sw->prev_pid);
 443
 444        p = find_create_pid(sw->next_pid);
 445
 446        if (prev_p->current && prev_p->current->state != TYPE_NONE)
 447                pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
 448        if (p && p->current) {
 449                if (p->current->state != TYPE_NONE)
 450                        pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
 451
 452                p->current->state_since = timestamp;
 453                p->current->state = TYPE_RUNNING;
 454        }
 455
 456        if (prev_p->current) {
 457                prev_p->current->state = TYPE_NONE;
 458                prev_p->current->state_since = timestamp;
 459                if (sw->prev_state & 2)
 460                        prev_p->current->state = TYPE_BLOCKED;
 461                if (sw->prev_state == 0)
 462                        prev_p->current->state = TYPE_WAITING;
 463        }
 464}
 465
 466typedef int (*tracepoint_handler)(struct perf_evsel *evsel,
 467                                  struct perf_sample *sample);
 468
 469static int process_sample_event(struct perf_tool *tool __maybe_unused,
 470                                union perf_event *event __maybe_unused,
 471                                struct perf_sample *sample,
 472                                struct perf_evsel *evsel,
 473                                struct machine *machine __maybe_unused)
 474{
 475        if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
 476                if (!first_time || first_time > sample->time)
 477                        first_time = sample->time;
 478                if (last_time < sample->time)
 479                        last_time = sample->time;
 480        }
 481
 482        if (sample->cpu > numcpus)
 483                numcpus = sample->cpu;
 484
 485        if (evsel->handler.func != NULL) {
 486                tracepoint_handler f = evsel->handler.func;
 487                return f(evsel, sample);
 488        }
 489
 490        return 0;
 491}
 492
 493static int
 494process_sample_cpu_idle(struct perf_evsel *evsel __maybe_unused,
 495                        struct perf_sample *sample)
 496{
 497        struct power_processor_entry *ppe = sample->raw_data;
 498
 499        if (ppe->state == (u32) PWR_EVENT_EXIT)
 500                c_state_end(ppe->cpu_id, sample->time);
 501        else
 502                c_state_start(ppe->cpu_id, sample->time, ppe->state);
 503        return 0;
 504}
 505
 506static int
 507process_sample_cpu_frequency(struct perf_evsel *evsel __maybe_unused,
 508                             struct perf_sample *sample)
 509{
 510        struct power_processor_entry *ppe = sample->raw_data;
 511
 512        p_state_change(ppe->cpu_id, sample->time, ppe->state);
 513        return 0;
 514}
 515
 516static int
 517process_sample_sched_wakeup(struct perf_evsel *evsel __maybe_unused,
 518                            struct perf_sample *sample)
 519{
 520        struct trace_entry *te = sample->raw_data;
 521
 522        sched_wakeup(sample->cpu, sample->time, sample->pid, te);
 523        return 0;
 524}
 525
 526static int
 527process_sample_sched_switch(struct perf_evsel *evsel __maybe_unused,
 528                            struct perf_sample *sample)
 529{
 530        struct trace_entry *te = sample->raw_data;
 531
 532        sched_switch(sample->cpu, sample->time, te);
 533        return 0;
 534}
 535
 536#ifdef SUPPORT_OLD_POWER_EVENTS
 537static int
 538process_sample_power_start(struct perf_evsel *evsel __maybe_unused,
 539                           struct perf_sample *sample)
 540{
 541        struct power_entry_old *peo = sample->raw_data;
 542
 543        c_state_start(peo->cpu_id, sample->time, peo->value);
 544        return 0;
 545}
 546
 547static int
 548process_sample_power_end(struct perf_evsel *evsel __maybe_unused,
 549                         struct perf_sample *sample)
 550{
 551        c_state_end(sample->cpu, sample->time);
 552        return 0;
 553}
 554
 555static int
 556process_sample_power_frequency(struct perf_evsel *evsel __maybe_unused,
 557                               struct perf_sample *sample)
 558{
 559        struct power_entry_old *peo = sample->raw_data;
 560
 561        p_state_change(peo->cpu_id, sample->time, peo->value);
 562        return 0;
 563}
 564#endif /* SUPPORT_OLD_POWER_EVENTS */
 565
 566/*
 567 * After the last sample we need to wrap up the current C/P state
 568 * and close out each CPU for these.
 569 */
 570static void end_sample_processing(void)
 571{
 572        u64 cpu;
 573        struct power_event *pwr;
 574
 575        for (cpu = 0; cpu <= numcpus; cpu++) {
 576                /* C state */
 577#if 0
 578                pwr = zalloc(sizeof(*pwr));
 579                if (!pwr)
 580                        return;
 581
 582                pwr->state = cpus_cstate_state[cpu];
 583                pwr->start_time = cpus_cstate_start_times[cpu];
 584                pwr->end_time = last_time;
 585                pwr->cpu = cpu;
 586                pwr->type = CSTATE;
 587                pwr->next = power_events;
 588
 589                power_events = pwr;
 590#endif
 591                /* P state */
 592
 593                pwr = zalloc(sizeof(*pwr));
 594                if (!pwr)
 595                        return;
 596
 597                pwr->state = cpus_pstate_state[cpu];
 598                pwr->start_time = cpus_pstate_start_times[cpu];
 599                pwr->end_time = last_time;
 600                pwr->cpu = cpu;
 601                pwr->type = PSTATE;
 602                pwr->next = power_events;
 603
 604                if (!pwr->start_time)
 605                        pwr->start_time = first_time;
 606                if (!pwr->state)
 607                        pwr->state = min_freq;
 608                power_events = pwr;
 609        }
 610}
 611
 612/*
 613 * Sort the pid datastructure
 614 */
 615static void sort_pids(void)
 616{
 617        struct per_pid *new_list, *p, *cursor, *prev;
 618        /* sort by ppid first, then by pid, lowest to highest */
 619
 620        new_list = NULL;
 621
 622        while (all_data) {
 623                p = all_data;
 624                all_data = p->next;
 625                p->next = NULL;
 626
 627                if (new_list == NULL) {
 628                        new_list = p;
 629                        p->next = NULL;
 630                        continue;
 631                }
 632                prev = NULL;
 633                cursor = new_list;
 634                while (cursor) {
 635                        if (cursor->ppid > p->ppid ||
 636                                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
 637                                /* must insert before */
 638                                if (prev) {
 639                                        p->next = prev->next;
 640                                        prev->next = p;
 641                                        cursor = NULL;
 642                                        continue;
 643                                } else {
 644                                        p->next = new_list;
 645                                        new_list = p;
 646                                        cursor = NULL;
 647                                        continue;
 648                                }
 649                        }
 650
 651                        prev = cursor;
 652                        cursor = cursor->next;
 653                        if (!cursor)
 654                                prev->next = p;
 655                }
 656        }
 657        all_data = new_list;
 658}
 659
 660
 661static void draw_c_p_states(void)
 662{
 663        struct power_event *pwr;
 664        pwr = power_events;
 665
 666        /*
 667         * two pass drawing so that the P state bars are on top of the C state blocks
 668         */
 669        while (pwr) {
 670                if (pwr->type == CSTATE)
 671                        svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 672                pwr = pwr->next;
 673        }
 674
 675        pwr = power_events;
 676        while (pwr) {
 677                if (pwr->type == PSTATE) {
 678                        if (!pwr->state)
 679                                pwr->state = min_freq;
 680                        svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
 681                }
 682                pwr = pwr->next;
 683        }
 684}
 685
 686static void draw_wakeups(void)
 687{
 688        struct wake_event *we;
 689        struct per_pid *p;
 690        struct per_pidcomm *c;
 691
 692        we = wake_events;
 693        while (we) {
 694                int from = 0, to = 0;
 695                char *task_from = NULL, *task_to = NULL;
 696
 697                /* locate the column of the waker and wakee */
 698                p = all_data;
 699                while (p) {
 700                        if (p->pid == we->waker || p->pid == we->wakee) {
 701                                c = p->all;
 702                                while (c) {
 703                                        if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
 704                                                if (p->pid == we->waker && !from) {
 705                                                        from = c->Y;
 706                                                        task_from = strdup(c->comm);
 707                                                }
 708                                                if (p->pid == we->wakee && !to) {
 709                                                        to = c->Y;
 710                                                        task_to = strdup(c->comm);
 711                                                }
 712                                        }
 713                                        c = c->next;
 714                                }
 715                                c = p->all;
 716                                while (c) {
 717                                        if (p->pid == we->waker && !from) {
 718                                                from = c->Y;
 719                                                task_from = strdup(c->comm);
 720                                        }
 721                                        if (p->pid == we->wakee && !to) {
 722                                                to = c->Y;
 723                                                task_to = strdup(c->comm);
 724                                        }
 725                                        c = c->next;
 726                                }
 727                        }
 728                        p = p->next;
 729                }
 730
 731                if (!task_from) {
 732                        task_from = malloc(40);
 733                        sprintf(task_from, "[%i]", we->waker);
 734                }
 735                if (!task_to) {
 736                        task_to = malloc(40);
 737                        sprintf(task_to, "[%i]", we->wakee);
 738                }
 739
 740                if (we->waker == -1)
 741                        svg_interrupt(we->time, to);
 742                else if (from && to && abs(from - to) == 1)
 743                        svg_wakeline(we->time, from, to);
 744                else
 745                        svg_partial_wakeline(we->time, from, task_from, to, task_to);
 746                we = we->next;
 747
 748                free(task_from);
 749                free(task_to);
 750        }
 751}
 752
 753static void draw_cpu_usage(void)
 754{
 755        struct per_pid *p;
 756        struct per_pidcomm *c;
 757        struct cpu_sample *sample;
 758        p = all_data;
 759        while (p) {
 760                c = p->all;
 761                while (c) {
 762                        sample = c->samples;
 763                        while (sample) {
 764                                if (sample->type == TYPE_RUNNING)
 765                                        svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
 766
 767                                sample = sample->next;
 768                        }
 769                        c = c->next;
 770                }
 771                p = p->next;
 772        }
 773}
 774
 775static void draw_process_bars(void)
 776{
 777        struct per_pid *p;
 778        struct per_pidcomm *c;
 779        struct cpu_sample *sample;
 780        int Y = 0;
 781
 782        Y = 2 * numcpus + 2;
 783
 784        p = all_data;
 785        while (p) {
 786                c = p->all;
 787                while (c) {
 788                        if (!c->display) {
 789                                c->Y = 0;
 790                                c = c->next;
 791                                continue;
 792                        }
 793
 794                        svg_box(Y, c->start_time, c->end_time, "process");
 795                        sample = c->samples;
 796                        while (sample) {
 797                                if (sample->type == TYPE_RUNNING)
 798                                        svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
 799                                if (sample->type == TYPE_BLOCKED)
 800                                        svg_box(Y, sample->start_time, sample->end_time, "blocked");
 801                                if (sample->type == TYPE_WAITING)
 802                                        svg_waiting(Y, sample->start_time, sample->end_time);
 803                                sample = sample->next;
 804                        }
 805
 806                        if (c->comm) {
 807                                char comm[256];
 808                                if (c->total_time > 5000000000) /* 5 seconds */
 809                                        sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
 810                                else
 811                                        sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
 812
 813                                svg_text(Y, c->start_time, comm);
 814                        }
 815                        c->Y = Y;
 816                        Y++;
 817                        c = c->next;
 818                }
 819                p = p->next;
 820        }
 821}
 822
 823static void add_process_filter(const char *string)
 824{
 825        int pid = strtoull(string, NULL, 10);
 826        struct process_filter *filt = malloc(sizeof(*filt));
 827
 828        if (!filt)
 829                return;
 830
 831        filt->name = strdup(string);
 832        filt->pid  = pid;
 833        filt->next = process_filter;
 834
 835        process_filter = filt;
 836}
 837
 838static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
 839{
 840        struct process_filter *filt;
 841        if (!process_filter)
 842                return 1;
 843
 844        filt = process_filter;
 845        while (filt) {
 846                if (filt->pid && p->pid == filt->pid)
 847                        return 1;
 848                if (strcmp(filt->name, c->comm) == 0)
 849                        return 1;
 850                filt = filt->next;
 851        }
 852        return 0;
 853}
 854
 855static int determine_display_tasks_filtered(void)
 856{
 857        struct per_pid *p;
 858        struct per_pidcomm *c;
 859        int count = 0;
 860
 861        p = all_data;
 862        while (p) {
 863                p->display = 0;
 864                if (p->start_time == 1)
 865                        p->start_time = first_time;
 866
 867                /* no exit marker, task kept running to the end */
 868                if (p->end_time == 0)
 869                        p->end_time = last_time;
 870
 871                c = p->all;
 872
 873                while (c) {
 874                        c->display = 0;
 875
 876                        if (c->start_time == 1)
 877                                c->start_time = first_time;
 878
 879                        if (passes_filter(p, c)) {
 880                                c->display = 1;
 881                                p->display = 1;
 882                                count++;
 883                        }
 884
 885                        if (c->end_time == 0)
 886                                c->end_time = last_time;
 887
 888                        c = c->next;
 889                }
 890                p = p->next;
 891        }
 892        return count;
 893}
 894
 895static int determine_display_tasks(u64 threshold)
 896{
 897        struct per_pid *p;
 898        struct per_pidcomm *c;
 899        int count = 0;
 900
 901        if (process_filter)
 902                return determine_display_tasks_filtered();
 903
 904        p = all_data;
 905        while (p) {
 906                p->display = 0;
 907                if (p->start_time == 1)
 908                        p->start_time = first_time;
 909
 910                /* no exit marker, task kept running to the end */
 911                if (p->end_time == 0)
 912                        p->end_time = last_time;
 913                if (p->total_time >= threshold && !power_only)
 914                        p->display = 1;
 915
 916                c = p->all;
 917
 918                while (c) {
 919                        c->display = 0;
 920
 921                        if (c->start_time == 1)
 922                                c->start_time = first_time;
 923
 924                        if (c->total_time >= threshold && !power_only) {
 925                                c->display = 1;
 926                                count++;
 927                        }
 928
 929                        if (c->end_time == 0)
 930                                c->end_time = last_time;
 931
 932                        c = c->next;
 933                }
 934                p = p->next;
 935        }
 936        return count;
 937}
 938
 939
 940
 941#define TIME_THRESH 10000000
 942
 943static void write_svg_file(const char *filename)
 944{
 945        u64 i;
 946        int count;
 947
 948        numcpus++;
 949
 950
 951        count = determine_display_tasks(TIME_THRESH);
 952
 953        /* We'd like to show at least 15 tasks; be less picky if we have fewer */
 954        if (count < 15)
 955                count = determine_display_tasks(TIME_THRESH / 10);
 956
 957        open_svg(filename, numcpus, count, first_time, last_time);
 958
 959        svg_time_grid();
 960        svg_legenda();
 961
 962        for (i = 0; i < numcpus; i++)
 963                svg_cpu_box(i, max_freq, turbo_frequency);
 964
 965        draw_cpu_usage();
 966        draw_process_bars();
 967        draw_c_p_states();
 968        draw_wakeups();
 969
 970        svg_close();
 971}
 972
 973static int __cmd_timechart(const char *output_name)
 974{
 975        struct perf_tool perf_timechart = {
 976                .comm            = process_comm_event,
 977                .fork            = process_fork_event,
 978                .exit            = process_exit_event,
 979                .sample          = process_sample_event,
 980                .ordered_samples = true,
 981        };
 982        const struct perf_evsel_str_handler power_tracepoints[] = {
 983                { "power:cpu_idle",             process_sample_cpu_idle },
 984                { "power:cpu_frequency",        process_sample_cpu_frequency },
 985                { "sched:sched_wakeup",         process_sample_sched_wakeup },
 986                { "sched:sched_switch",         process_sample_sched_switch },
 987#ifdef SUPPORT_OLD_POWER_EVENTS
 988                { "power:power_start",          process_sample_power_start },
 989                { "power:power_end",            process_sample_power_end },
 990                { "power:power_frequency",      process_sample_power_frequency },
 991#endif
 992        };
 993        struct perf_session *session = perf_session__new(input_name, O_RDONLY,
 994                                                         0, false, &perf_timechart);
 995        int ret = -EINVAL;
 996
 997        if (session == NULL)
 998                return -ENOMEM;
 999
1000        if (!perf_session__has_traces(session, "timechart record"))
1001                goto out_delete;
1002
1003        if (perf_session__set_tracepoints_handlers(session,
1004                                                   power_tracepoints)) {
1005                pr_err("Initializing session tracepoint handlers failed\n");
1006                goto out_delete;
1007        }
1008
1009        ret = perf_session__process_events(session, &perf_timechart);
1010        if (ret)
1011                goto out_delete;
1012
1013        end_sample_processing();
1014
1015        sort_pids();
1016
1017        write_svg_file(output_name);
1018
1019        pr_info("Written %2.1f seconds of trace to %s.\n",
1020                (last_time - first_time) / 1000000000.0, output_name);
1021out_delete:
1022        perf_session__delete(session);
1023        return ret;
1024}
1025
1026static int __cmd_record(int argc, const char **argv)
1027{
1028#ifdef SUPPORT_OLD_POWER_EVENTS
1029        const char * const record_old_args[] = {
1030                "record", "-a", "-R", "-c", "1",
1031                "-e", "power:power_start",
1032                "-e", "power:power_end",
1033                "-e", "power:power_frequency",
1034                "-e", "sched:sched_wakeup",
1035                "-e", "sched:sched_switch",
1036        };
1037#endif
1038        const char * const record_new_args[] = {
1039                "record", "-a", "-R", "-c", "1",
1040                "-e", "power:cpu_frequency",
1041                "-e", "power:cpu_idle",
1042                "-e", "sched:sched_wakeup",
1043                "-e", "sched:sched_switch",
1044        };
1045        unsigned int rec_argc, i, j;
1046        const char **rec_argv;
1047        const char * const *record_args = record_new_args;
1048        unsigned int record_elems = ARRAY_SIZE(record_new_args);
1049
1050#ifdef SUPPORT_OLD_POWER_EVENTS
1051        if (!is_valid_tracepoint("power:cpu_idle") &&
1052            is_valid_tracepoint("power:power_start")) {
1053                use_old_power_events = 1;
1054                record_args = record_old_args;
1055                record_elems = ARRAY_SIZE(record_old_args);
1056        }
1057#endif
1058
1059        rec_argc = record_elems + argc - 1;
1060        rec_argv = calloc(rec_argc + 1, sizeof(char *));
1061
1062        if (rec_argv == NULL)
1063                return -ENOMEM;
1064
1065        for (i = 0; i < record_elems; i++)
1066                rec_argv[i] = strdup(record_args[i]);
1067
1068        for (j = 1; j < (unsigned int)argc; j++, i++)
1069                rec_argv[i] = argv[j];
1070
1071        return cmd_record(i, rec_argv, NULL);
1072}
1073
1074static int
1075parse_process(const struct option *opt __maybe_unused, const char *arg,
1076              int __maybe_unused unset)
1077{
1078        if (arg)
1079                add_process_filter(arg);
1080        return 0;
1081}
1082
1083int cmd_timechart(int argc, const char **argv,
1084                  const char *prefix __maybe_unused)
1085{
1086        const char *output_name = "output.svg";
1087        const struct option options[] = {
1088        OPT_STRING('i', "input", &input_name, "file", "input file name"),
1089        OPT_STRING('o', "output", &output_name, "file", "output file name"),
1090        OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1091        OPT_BOOLEAN('P', "power-only", &power_only, "output power data only"),
1092        OPT_CALLBACK('p', "process", NULL, "process",
1093                      "process selector. Pass a pid or process name.",
1094                       parse_process),
1095        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1096                    "Look for files with symbols relative to this directory"),
1097        OPT_END()
1098        };
1099        const char * const timechart_usage[] = {
1100                "perf timechart [<options>] {record}",
1101                NULL
1102        };
1103
1104        argc = parse_options(argc, argv, options, timechart_usage,
1105                        PARSE_OPT_STOP_AT_NON_OPTION);
1106
1107        symbol__init();
1108
1109        if (argc && !strncmp(argv[0], "rec", 3))
1110                return __cmd_record(argc, argv);
1111        else if (argc)
1112                usage_with_options(timechart_usage, options);
1113
1114        setup_pager();
1115
1116        return __cmd_timechart(output_name);
1117}
1118