1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19#include "iodev.h"
20
21#include <linux/kvm_host.h>
22#include <linux/kvm.h>
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/percpu.h>
26#include <linux/mm.h>
27#include <linux/miscdevice.h>
28#include <linux/vmalloc.h>
29#include <linux/reboot.h>
30#include <linux/debugfs.h>
31#include <linux/highmem.h>
32#include <linux/file.h>
33#include <linux/syscore_ops.h>
34#include <linux/cpu.h>
35#include <linux/sched.h>
36#include <linux/cpumask.h>
37#include <linux/smp.h>
38#include <linux/anon_inodes.h>
39#include <linux/profile.h>
40#include <linux/kvm_para.h>
41#include <linux/pagemap.h>
42#include <linux/mman.h>
43#include <linux/swap.h>
44#include <linux/bitops.h>
45#include <linux/spinlock.h>
46#include <linux/compat.h>
47#include <linux/srcu.h>
48#include <linux/hugetlb.h>
49#include <linux/slab.h>
50#include <linux/sort.h>
51#include <linux/bsearch.h>
52
53#include <asm/processor.h>
54#include <asm/io.h>
55#include <asm/uaccess.h>
56#include <asm/pgtable.h>
57
58#include "coalesced_mmio.h"
59#include "async_pf.h"
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/kvm.h>
63
64MODULE_AUTHOR("Qumranet");
65MODULE_LICENSE("GPL");
66
67
68
69
70
71
72
73DEFINE_RAW_SPINLOCK(kvm_lock);
74LIST_HEAD(vm_list);
75
76static cpumask_var_t cpus_hardware_enabled;
77static int kvm_usage_count = 0;
78static atomic_t hardware_enable_failed;
79
80struct kmem_cache *kvm_vcpu_cache;
81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82
83static __read_mostly struct preempt_ops kvm_preempt_ops;
84
85struct dentry *kvm_debugfs_dir;
86
87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89#ifdef CONFIG_COMPAT
90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92#endif
93static int hardware_enable_all(void);
94static void hardware_disable_all(void);
95
96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97
98bool kvm_rebooting;
99EXPORT_SYMBOL_GPL(kvm_rebooting);
100
101static bool largepages_enabled = true;
102
103bool kvm_is_mmio_pfn(pfn_t pfn)
104{
105 if (pfn_valid(pfn))
106 return PageReserved(pfn_to_page(pfn));
107
108 return true;
109}
110
111
112
113
114int vcpu_load(struct kvm_vcpu *vcpu)
115{
116 int cpu;
117
118 if (mutex_lock_killable(&vcpu->mutex))
119 return -EINTR;
120 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
121
122 struct pid *oldpid = vcpu->pid;
123 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
124 rcu_assign_pointer(vcpu->pid, newpid);
125 synchronize_rcu();
126 put_pid(oldpid);
127 }
128 cpu = get_cpu();
129 preempt_notifier_register(&vcpu->preempt_notifier);
130 kvm_arch_vcpu_load(vcpu, cpu);
131 put_cpu();
132 return 0;
133}
134
135void vcpu_put(struct kvm_vcpu *vcpu)
136{
137 preempt_disable();
138 kvm_arch_vcpu_put(vcpu);
139 preempt_notifier_unregister(&vcpu->preempt_notifier);
140 preempt_enable();
141 mutex_unlock(&vcpu->mutex);
142}
143
144static void ack_flush(void *_completed)
145{
146}
147
148static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
149{
150 int i, cpu, me;
151 cpumask_var_t cpus;
152 bool called = true;
153 struct kvm_vcpu *vcpu;
154
155 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
156
157 me = get_cpu();
158 kvm_for_each_vcpu(i, vcpu, kvm) {
159 kvm_make_request(req, vcpu);
160 cpu = vcpu->cpu;
161
162
163 smp_mb();
164
165 if (cpus != NULL && cpu != -1 && cpu != me &&
166 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
167 cpumask_set_cpu(cpu, cpus);
168 }
169 if (unlikely(cpus == NULL))
170 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
171 else if (!cpumask_empty(cpus))
172 smp_call_function_many(cpus, ack_flush, NULL, 1);
173 else
174 called = false;
175 put_cpu();
176 free_cpumask_var(cpus);
177 return called;
178}
179
180void kvm_flush_remote_tlbs(struct kvm *kvm)
181{
182 long dirty_count = kvm->tlbs_dirty;
183
184 smp_mb();
185 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
186 ++kvm->stat.remote_tlb_flush;
187 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
188}
189
190void kvm_reload_remote_mmus(struct kvm *kvm)
191{
192 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193}
194
195void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196{
197 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198}
199
200void kvm_make_scan_ioapic_request(struct kvm *kvm)
201{
202 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203}
204
205int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206{
207 struct page *page;
208 int r;
209
210 mutex_init(&vcpu->mutex);
211 vcpu->cpu = -1;
212 vcpu->kvm = kvm;
213 vcpu->vcpu_id = id;
214 vcpu->pid = NULL;
215 init_waitqueue_head(&vcpu->wq);
216 kvm_async_pf_vcpu_init(vcpu);
217
218 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 if (!page) {
220 r = -ENOMEM;
221 goto fail;
222 }
223 vcpu->run = page_address(page);
224
225 kvm_vcpu_set_in_spin_loop(vcpu, false);
226 kvm_vcpu_set_dy_eligible(vcpu, false);
227 vcpu->preempted = false;
228
229 r = kvm_arch_vcpu_init(vcpu);
230 if (r < 0)
231 goto fail_free_run;
232 return 0;
233
234fail_free_run:
235 free_page((unsigned long)vcpu->run);
236fail:
237 return r;
238}
239EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240
241void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242{
243 put_pid(vcpu->pid);
244 kvm_arch_vcpu_uninit(vcpu);
245 free_page((unsigned long)vcpu->run);
246}
247EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248
249#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251{
252 return container_of(mn, struct kvm, mmu_notifier);
253}
254
255static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 struct mm_struct *mm,
257 unsigned long address)
258{
259 struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 int need_tlb_flush, idx;
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280 idx = srcu_read_lock(&kvm->srcu);
281 spin_lock(&kvm->mmu_lock);
282
283 kvm->mmu_notifier_seq++;
284 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285
286 if (need_tlb_flush)
287 kvm_flush_remote_tlbs(kvm);
288
289 spin_unlock(&kvm->mmu_lock);
290 srcu_read_unlock(&kvm->srcu, idx);
291}
292
293static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
294 struct mm_struct *mm,
295 unsigned long address,
296 pte_t pte)
297{
298 struct kvm *kvm = mmu_notifier_to_kvm(mn);
299 int idx;
300
301 idx = srcu_read_lock(&kvm->srcu);
302 spin_lock(&kvm->mmu_lock);
303 kvm->mmu_notifier_seq++;
304 kvm_set_spte_hva(kvm, address, pte);
305 spin_unlock(&kvm->mmu_lock);
306 srcu_read_unlock(&kvm->srcu, idx);
307}
308
309static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
310 struct mm_struct *mm,
311 unsigned long start,
312 unsigned long end)
313{
314 struct kvm *kvm = mmu_notifier_to_kvm(mn);
315 int need_tlb_flush = 0, idx;
316
317 idx = srcu_read_lock(&kvm->srcu);
318 spin_lock(&kvm->mmu_lock);
319
320
321
322
323
324 kvm->mmu_notifier_count++;
325 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
326 need_tlb_flush |= kvm->tlbs_dirty;
327
328 if (need_tlb_flush)
329 kvm_flush_remote_tlbs(kvm);
330
331 spin_unlock(&kvm->mmu_lock);
332 srcu_read_unlock(&kvm->srcu, idx);
333}
334
335static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
336 struct mm_struct *mm,
337 unsigned long start,
338 unsigned long end)
339{
340 struct kvm *kvm = mmu_notifier_to_kvm(mn);
341
342 spin_lock(&kvm->mmu_lock);
343
344
345
346
347
348 kvm->mmu_notifier_seq++;
349 smp_wmb();
350
351
352
353
354
355 kvm->mmu_notifier_count--;
356 spin_unlock(&kvm->mmu_lock);
357
358 BUG_ON(kvm->mmu_notifier_count < 0);
359}
360
361static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
362 struct mm_struct *mm,
363 unsigned long address)
364{
365 struct kvm *kvm = mmu_notifier_to_kvm(mn);
366 int young, idx;
367
368 idx = srcu_read_lock(&kvm->srcu);
369 spin_lock(&kvm->mmu_lock);
370
371 young = kvm_age_hva(kvm, address);
372 if (young)
373 kvm_flush_remote_tlbs(kvm);
374
375 spin_unlock(&kvm->mmu_lock);
376 srcu_read_unlock(&kvm->srcu, idx);
377
378 return young;
379}
380
381static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
382 struct mm_struct *mm,
383 unsigned long address)
384{
385 struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 int young, idx;
387
388 idx = srcu_read_lock(&kvm->srcu);
389 spin_lock(&kvm->mmu_lock);
390 young = kvm_test_age_hva(kvm, address);
391 spin_unlock(&kvm->mmu_lock);
392 srcu_read_unlock(&kvm->srcu, idx);
393
394 return young;
395}
396
397static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
398 struct mm_struct *mm)
399{
400 struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 int idx;
402
403 idx = srcu_read_lock(&kvm->srcu);
404 kvm_arch_flush_shadow_all(kvm);
405 srcu_read_unlock(&kvm->srcu, idx);
406}
407
408static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
409 .invalidate_page = kvm_mmu_notifier_invalidate_page,
410 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
411 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
412 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
413 .test_young = kvm_mmu_notifier_test_young,
414 .change_pte = kvm_mmu_notifier_change_pte,
415 .release = kvm_mmu_notifier_release,
416};
417
418static int kvm_init_mmu_notifier(struct kvm *kvm)
419{
420 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
421 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
422}
423
424#else
425
426static int kvm_init_mmu_notifier(struct kvm *kvm)
427{
428 return 0;
429}
430
431#endif
432
433static void kvm_init_memslots_id(struct kvm *kvm)
434{
435 int i;
436 struct kvm_memslots *slots = kvm->memslots;
437
438 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
439 slots->id_to_index[i] = slots->memslots[i].id = i;
440}
441
442static struct kvm *kvm_create_vm(unsigned long type)
443{
444 int r, i;
445 struct kvm *kvm = kvm_arch_alloc_vm();
446
447 if (!kvm)
448 return ERR_PTR(-ENOMEM);
449
450 r = kvm_arch_init_vm(kvm, type);
451 if (r)
452 goto out_err_nodisable;
453
454 r = hardware_enable_all();
455 if (r)
456 goto out_err_nodisable;
457
458#ifdef CONFIG_HAVE_KVM_IRQCHIP
459 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
460 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
461#endif
462
463 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
464
465 r = -ENOMEM;
466 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467 if (!kvm->memslots)
468 goto out_err_nosrcu;
469 kvm_init_memslots_id(kvm);
470 if (init_srcu_struct(&kvm->srcu))
471 goto out_err_nosrcu;
472 for (i = 0; i < KVM_NR_BUSES; i++) {
473 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
474 GFP_KERNEL);
475 if (!kvm->buses[i])
476 goto out_err;
477 }
478
479 spin_lock_init(&kvm->mmu_lock);
480 kvm->mm = current->mm;
481 atomic_inc(&kvm->mm->mm_count);
482 kvm_eventfd_init(kvm);
483 mutex_init(&kvm->lock);
484 mutex_init(&kvm->irq_lock);
485 mutex_init(&kvm->slots_lock);
486 atomic_set(&kvm->users_count, 1);
487 INIT_LIST_HEAD(&kvm->devices);
488
489 r = kvm_init_mmu_notifier(kvm);
490 if (r)
491 goto out_err;
492
493 raw_spin_lock(&kvm_lock);
494 list_add(&kvm->vm_list, &vm_list);
495 raw_spin_unlock(&kvm_lock);
496
497 return kvm;
498
499out_err:
500 cleanup_srcu_struct(&kvm->srcu);
501out_err_nosrcu:
502 hardware_disable_all();
503out_err_nodisable:
504 for (i = 0; i < KVM_NR_BUSES; i++)
505 kfree(kvm->buses[i]);
506 kfree(kvm->memslots);
507 kvm_arch_free_vm(kvm);
508 return ERR_PTR(r);
509}
510
511
512
513
514
515void *kvm_kvzalloc(unsigned long size)
516{
517 if (size > PAGE_SIZE)
518 return vzalloc(size);
519 else
520 return kzalloc(size, GFP_KERNEL);
521}
522
523void kvm_kvfree(const void *addr)
524{
525 if (is_vmalloc_addr(addr))
526 vfree(addr);
527 else
528 kfree(addr);
529}
530
531static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532{
533 if (!memslot->dirty_bitmap)
534 return;
535
536 kvm_kvfree(memslot->dirty_bitmap);
537 memslot->dirty_bitmap = NULL;
538}
539
540
541
542
543static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
544 struct kvm_memory_slot *dont)
545{
546 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547 kvm_destroy_dirty_bitmap(free);
548
549 kvm_arch_free_memslot(free, dont);
550
551 free->npages = 0;
552}
553
554void kvm_free_physmem(struct kvm *kvm)
555{
556 struct kvm_memslots *slots = kvm->memslots;
557 struct kvm_memory_slot *memslot;
558
559 kvm_for_each_memslot(memslot, slots)
560 kvm_free_physmem_slot(memslot, NULL);
561
562 kfree(kvm->memslots);
563}
564
565static void kvm_destroy_devices(struct kvm *kvm)
566{
567 struct list_head *node, *tmp;
568
569 list_for_each_safe(node, tmp, &kvm->devices) {
570 struct kvm_device *dev =
571 list_entry(node, struct kvm_device, vm_node);
572
573 list_del(node);
574 dev->ops->destroy(dev);
575 }
576}
577
578static void kvm_destroy_vm(struct kvm *kvm)
579{
580 int i;
581 struct mm_struct *mm = kvm->mm;
582
583 kvm_arch_sync_events(kvm);
584 raw_spin_lock(&kvm_lock);
585 list_del(&kvm->vm_list);
586 raw_spin_unlock(&kvm_lock);
587 kvm_free_irq_routing(kvm);
588 for (i = 0; i < KVM_NR_BUSES; i++)
589 kvm_io_bus_destroy(kvm->buses[i]);
590 kvm_coalesced_mmio_free(kvm);
591#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593#else
594 kvm_arch_flush_shadow_all(kvm);
595#endif
596 kvm_arch_destroy_vm(kvm);
597 kvm_destroy_devices(kvm);
598 kvm_free_physmem(kvm);
599 cleanup_srcu_struct(&kvm->srcu);
600 kvm_arch_free_vm(kvm);
601 hardware_disable_all();
602 mmdrop(mm);
603}
604
605void kvm_get_kvm(struct kvm *kvm)
606{
607 atomic_inc(&kvm->users_count);
608}
609EXPORT_SYMBOL_GPL(kvm_get_kvm);
610
611void kvm_put_kvm(struct kvm *kvm)
612{
613 if (atomic_dec_and_test(&kvm->users_count))
614 kvm_destroy_vm(kvm);
615}
616EXPORT_SYMBOL_GPL(kvm_put_kvm);
617
618
619static int kvm_vm_release(struct inode *inode, struct file *filp)
620{
621 struct kvm *kvm = filp->private_data;
622
623 kvm_irqfd_release(kvm);
624
625 kvm_put_kvm(kvm);
626 return 0;
627}
628
629
630
631
632
633static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
634{
635#ifndef CONFIG_S390
636 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
637
638 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
639 if (!memslot->dirty_bitmap)
640 return -ENOMEM;
641
642#endif
643 return 0;
644}
645
646static int cmp_memslot(const void *slot1, const void *slot2)
647{
648 struct kvm_memory_slot *s1, *s2;
649
650 s1 = (struct kvm_memory_slot *)slot1;
651 s2 = (struct kvm_memory_slot *)slot2;
652
653 if (s1->npages < s2->npages)
654 return 1;
655 if (s1->npages > s2->npages)
656 return -1;
657
658 return 0;
659}
660
661
662
663
664
665static void sort_memslots(struct kvm_memslots *slots)
666{
667 int i;
668
669 sort(slots->memslots, KVM_MEM_SLOTS_NUM,
670 sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
671
672 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
673 slots->id_to_index[slots->memslots[i].id] = i;
674}
675
676void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
677 u64 last_generation)
678{
679 if (new) {
680 int id = new->id;
681 struct kvm_memory_slot *old = id_to_memslot(slots, id);
682 unsigned long npages = old->npages;
683
684 *old = *new;
685 if (new->npages != npages)
686 sort_memslots(slots);
687 }
688
689 slots->generation = last_generation + 1;
690}
691
692static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
693{
694 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
695
696#ifdef KVM_CAP_READONLY_MEM
697 valid_flags |= KVM_MEM_READONLY;
698#endif
699
700 if (mem->flags & ~valid_flags)
701 return -EINVAL;
702
703 return 0;
704}
705
706static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
707 struct kvm_memslots *slots, struct kvm_memory_slot *new)
708{
709 struct kvm_memslots *old_memslots = kvm->memslots;
710
711 update_memslots(slots, new, kvm->memslots->generation);
712 rcu_assign_pointer(kvm->memslots, slots);
713 synchronize_srcu_expedited(&kvm->srcu);
714
715 kvm_arch_memslots_updated(kvm);
716
717 return old_memslots;
718}
719
720
721
722
723
724
725
726
727
728int __kvm_set_memory_region(struct kvm *kvm,
729 struct kvm_userspace_memory_region *mem)
730{
731 int r;
732 gfn_t base_gfn;
733 unsigned long npages;
734 struct kvm_memory_slot *slot;
735 struct kvm_memory_slot old, new;
736 struct kvm_memslots *slots = NULL, *old_memslots;
737 enum kvm_mr_change change;
738
739 r = check_memory_region_flags(mem);
740 if (r)
741 goto out;
742
743 r = -EINVAL;
744
745 if (mem->memory_size & (PAGE_SIZE - 1))
746 goto out;
747 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
748 goto out;
749
750 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
751 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
752 !access_ok(VERIFY_WRITE,
753 (void __user *)(unsigned long)mem->userspace_addr,
754 mem->memory_size)))
755 goto out;
756 if (mem->slot >= KVM_MEM_SLOTS_NUM)
757 goto out;
758 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
759 goto out;
760
761 slot = id_to_memslot(kvm->memslots, mem->slot);
762 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
763 npages = mem->memory_size >> PAGE_SHIFT;
764
765 r = -EINVAL;
766 if (npages > KVM_MEM_MAX_NR_PAGES)
767 goto out;
768
769 if (!npages)
770 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
771
772 new = old = *slot;
773
774 new.id = mem->slot;
775 new.base_gfn = base_gfn;
776 new.npages = npages;
777 new.flags = mem->flags;
778
779 r = -EINVAL;
780 if (npages) {
781 if (!old.npages)
782 change = KVM_MR_CREATE;
783 else {
784 if ((mem->userspace_addr != old.userspace_addr) ||
785 (npages != old.npages) ||
786 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
787 goto out;
788
789 if (base_gfn != old.base_gfn)
790 change = KVM_MR_MOVE;
791 else if (new.flags != old.flags)
792 change = KVM_MR_FLAGS_ONLY;
793 else {
794 r = 0;
795 goto out;
796 }
797 }
798 } else if (old.npages) {
799 change = KVM_MR_DELETE;
800 } else
801 goto out;
802
803 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
804
805 r = -EEXIST;
806 kvm_for_each_memslot(slot, kvm->memslots) {
807 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
808 (slot->id == mem->slot))
809 continue;
810 if (!((base_gfn + npages <= slot->base_gfn) ||
811 (base_gfn >= slot->base_gfn + slot->npages)))
812 goto out;
813 }
814 }
815
816
817 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
818 new.dirty_bitmap = NULL;
819
820 r = -ENOMEM;
821 if (change == KVM_MR_CREATE) {
822 new.userspace_addr = mem->userspace_addr;
823
824 if (kvm_arch_create_memslot(&new, npages))
825 goto out_free;
826 }
827
828
829 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
830 if (kvm_create_dirty_bitmap(&new) < 0)
831 goto out_free;
832 }
833
834 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
835 r = -ENOMEM;
836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 GFP_KERNEL);
838 if (!slots)
839 goto out_free;
840 slot = id_to_memslot(slots, mem->slot);
841 slot->flags |= KVM_MEMSLOT_INVALID;
842
843 old_memslots = install_new_memslots(kvm, slots, NULL);
844
845
846 kvm_iommu_unmap_pages(kvm, &old);
847
848
849
850
851
852
853
854 kvm_arch_flush_shadow_memslot(kvm, slot);
855 slots = old_memslots;
856 }
857
858 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
859 if (r)
860 goto out_slots;
861
862 r = -ENOMEM;
863
864
865
866
867
868 if (!slots) {
869 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
870 GFP_KERNEL);
871 if (!slots)
872 goto out_free;
873 }
874
875
876
877
878
879
880
881
882
883
884 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885 r = kvm_iommu_map_pages(kvm, &new);
886 if (r)
887 goto out_slots;
888 }
889
890
891 if (change == KVM_MR_DELETE) {
892 new.dirty_bitmap = NULL;
893 memset(&new.arch, 0, sizeof(new.arch));
894 }
895
896 old_memslots = install_new_memslots(kvm, slots, &new);
897
898 kvm_arch_commit_memory_region(kvm, mem, &old, change);
899
900 kvm_free_physmem_slot(&old, &new);
901 kfree(old_memslots);
902
903 return 0;
904
905out_slots:
906 kfree(slots);
907out_free:
908 kvm_free_physmem_slot(&new, &old);
909out:
910 return r;
911}
912EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913
914int kvm_set_memory_region(struct kvm *kvm,
915 struct kvm_userspace_memory_region *mem)
916{
917 int r;
918
919 mutex_lock(&kvm->slots_lock);
920 r = __kvm_set_memory_region(kvm, mem);
921 mutex_unlock(&kvm->slots_lock);
922 return r;
923}
924EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925
926int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927 struct kvm_userspace_memory_region *mem)
928{
929 if (mem->slot >= KVM_USER_MEM_SLOTS)
930 return -EINVAL;
931 return kvm_set_memory_region(kvm, mem);
932}
933
934int kvm_get_dirty_log(struct kvm *kvm,
935 struct kvm_dirty_log *log, int *is_dirty)
936{
937 struct kvm_memory_slot *memslot;
938 int r, i;
939 unsigned long n;
940 unsigned long any = 0;
941
942 r = -EINVAL;
943 if (log->slot >= KVM_USER_MEM_SLOTS)
944 goto out;
945
946 memslot = id_to_memslot(kvm->memslots, log->slot);
947 r = -ENOENT;
948 if (!memslot->dirty_bitmap)
949 goto out;
950
951 n = kvm_dirty_bitmap_bytes(memslot);
952
953 for (i = 0; !any && i < n/sizeof(long); ++i)
954 any = memslot->dirty_bitmap[i];
955
956 r = -EFAULT;
957 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958 goto out;
959
960 if (any)
961 *is_dirty = 1;
962
963 r = 0;
964out:
965 return r;
966}
967
968bool kvm_largepages_enabled(void)
969{
970 return largepages_enabled;
971}
972
973void kvm_disable_largepages(void)
974{
975 largepages_enabled = false;
976}
977EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978
979struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980{
981 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982}
983EXPORT_SYMBOL_GPL(gfn_to_memslot);
984
985int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986{
987 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988
989 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990 memslot->flags & KVM_MEMSLOT_INVALID)
991 return 0;
992
993 return 1;
994}
995EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996
997unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998{
999 struct vm_area_struct *vma;
1000 unsigned long addr, size;
1001
1002 size = PAGE_SIZE;
1003
1004 addr = gfn_to_hva(kvm, gfn);
1005 if (kvm_is_error_hva(addr))
1006 return PAGE_SIZE;
1007
1008 down_read(¤t->mm->mmap_sem);
1009 vma = find_vma(current->mm, addr);
1010 if (!vma)
1011 goto out;
1012
1013 size = vma_kernel_pagesize(vma);
1014
1015out:
1016 up_read(¤t->mm->mmap_sem);
1017
1018 return size;
1019}
1020
1021static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022{
1023 return slot->flags & KVM_MEM_READONLY;
1024}
1025
1026static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027 gfn_t *nr_pages, bool write)
1028{
1029 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030 return KVM_HVA_ERR_BAD;
1031
1032 if (memslot_is_readonly(slot) && write)
1033 return KVM_HVA_ERR_RO_BAD;
1034
1035 if (nr_pages)
1036 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1037
1038 return __gfn_to_hva_memslot(slot, gfn);
1039}
1040
1041static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042 gfn_t *nr_pages)
1043{
1044 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045}
1046
1047unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048 gfn_t gfn)
1049{
1050 return gfn_to_hva_many(slot, gfn, NULL);
1051}
1052EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053
1054unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055{
1056 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057}
1058EXPORT_SYMBOL_GPL(gfn_to_hva);
1059
1060
1061
1062
1063
1064unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1065{
1066 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1067 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1068
1069 if (!kvm_is_error_hva(hva) && writable)
1070 *writable = !memslot_is_readonly(slot);
1071
1072 return hva;
1073}
1074
1075static int kvm_read_hva(void *data, void __user *hva, int len)
1076{
1077 return __copy_from_user(data, hva, len);
1078}
1079
1080static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1081{
1082 return __copy_from_user_inatomic(data, hva, len);
1083}
1084
1085static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1086 unsigned long start, int write, struct page **page)
1087{
1088 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1089
1090 if (write)
1091 flags |= FOLL_WRITE;
1092
1093 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1094}
1095
1096static inline int check_user_page_hwpoison(unsigned long addr)
1097{
1098 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1099
1100 rc = __get_user_pages(current, current->mm, addr, 1,
1101 flags, NULL, NULL, NULL);
1102 return rc == -EHWPOISON;
1103}
1104
1105
1106
1107
1108
1109static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1110 bool write_fault, bool *writable, pfn_t *pfn)
1111{
1112 struct page *page[1];
1113 int npages;
1114
1115 if (!(async || atomic))
1116 return false;
1117
1118
1119
1120
1121
1122
1123 if (!(write_fault || writable))
1124 return false;
1125
1126 npages = __get_user_pages_fast(addr, 1, 1, page);
1127 if (npages == 1) {
1128 *pfn = page_to_pfn(page[0]);
1129
1130 if (writable)
1131 *writable = true;
1132 return true;
1133 }
1134
1135 return false;
1136}
1137
1138
1139
1140
1141
1142static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1143 bool *writable, pfn_t *pfn)
1144{
1145 struct page *page[1];
1146 int npages = 0;
1147
1148 might_sleep();
1149
1150 if (writable)
1151 *writable = write_fault;
1152
1153 if (async) {
1154 down_read(¤t->mm->mmap_sem);
1155 npages = get_user_page_nowait(current, current->mm,
1156 addr, write_fault, page);
1157 up_read(¤t->mm->mmap_sem);
1158 } else
1159 npages = get_user_pages_fast(addr, 1, write_fault,
1160 page);
1161 if (npages != 1)
1162 return npages;
1163
1164
1165 if (unlikely(!write_fault) && writable) {
1166 struct page *wpage[1];
1167
1168 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1169 if (npages == 1) {
1170 *writable = true;
1171 put_page(page[0]);
1172 page[0] = wpage[0];
1173 }
1174
1175 npages = 1;
1176 }
1177 *pfn = page_to_pfn(page[0]);
1178 return npages;
1179}
1180
1181static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1182{
1183 if (unlikely(!(vma->vm_flags & VM_READ)))
1184 return false;
1185
1186 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1187 return false;
1188
1189 return true;
1190}
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1207 bool write_fault, bool *writable)
1208{
1209 struct vm_area_struct *vma;
1210 pfn_t pfn = 0;
1211 int npages;
1212
1213
1214 BUG_ON(atomic && async);
1215
1216 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1217 return pfn;
1218
1219 if (atomic)
1220 return KVM_PFN_ERR_FAULT;
1221
1222 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1223 if (npages == 1)
1224 return pfn;
1225
1226 down_read(¤t->mm->mmap_sem);
1227 if (npages == -EHWPOISON ||
1228 (!async && check_user_page_hwpoison(addr))) {
1229 pfn = KVM_PFN_ERR_HWPOISON;
1230 goto exit;
1231 }
1232
1233 vma = find_vma_intersection(current->mm, addr, addr + 1);
1234
1235 if (vma == NULL)
1236 pfn = KVM_PFN_ERR_FAULT;
1237 else if ((vma->vm_flags & VM_PFNMAP)) {
1238 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1239 vma->vm_pgoff;
1240 BUG_ON(!kvm_is_mmio_pfn(pfn));
1241 } else {
1242 if (async && vma_is_valid(vma, write_fault))
1243 *async = true;
1244 pfn = KVM_PFN_ERR_FAULT;
1245 }
1246exit:
1247 up_read(¤t->mm->mmap_sem);
1248 return pfn;
1249}
1250
1251static pfn_t
1252__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1253 bool *async, bool write_fault, bool *writable)
1254{
1255 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1256
1257 if (addr == KVM_HVA_ERR_RO_BAD)
1258 return KVM_PFN_ERR_RO_FAULT;
1259
1260 if (kvm_is_error_hva(addr))
1261 return KVM_PFN_NOSLOT;
1262
1263
1264 if (writable && memslot_is_readonly(slot)) {
1265 *writable = false;
1266 writable = NULL;
1267 }
1268
1269 return hva_to_pfn(addr, atomic, async, write_fault,
1270 writable);
1271}
1272
1273static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1274 bool write_fault, bool *writable)
1275{
1276 struct kvm_memory_slot *slot;
1277
1278 if (async)
1279 *async = false;
1280
1281 slot = gfn_to_memslot(kvm, gfn);
1282
1283 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1284 writable);
1285}
1286
1287pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1288{
1289 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1290}
1291EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1292
1293pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1294 bool write_fault, bool *writable)
1295{
1296 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1297}
1298EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1299
1300pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1301{
1302 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1303}
1304EXPORT_SYMBOL_GPL(gfn_to_pfn);
1305
1306pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1307 bool *writable)
1308{
1309 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1310}
1311EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1312
1313pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1314{
1315 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1316}
1317
1318pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1319{
1320 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1321}
1322EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1323
1324int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1325 int nr_pages)
1326{
1327 unsigned long addr;
1328 gfn_t entry;
1329
1330 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1331 if (kvm_is_error_hva(addr))
1332 return -1;
1333
1334 if (entry < nr_pages)
1335 return 0;
1336
1337 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1338}
1339EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1340
1341static struct page *kvm_pfn_to_page(pfn_t pfn)
1342{
1343 if (is_error_noslot_pfn(pfn))
1344 return KVM_ERR_PTR_BAD_PAGE;
1345
1346 if (kvm_is_mmio_pfn(pfn)) {
1347 WARN_ON(1);
1348 return KVM_ERR_PTR_BAD_PAGE;
1349 }
1350
1351 return pfn_to_page(pfn);
1352}
1353
1354struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1355{
1356 pfn_t pfn;
1357
1358 pfn = gfn_to_pfn(kvm, gfn);
1359
1360 return kvm_pfn_to_page(pfn);
1361}
1362
1363EXPORT_SYMBOL_GPL(gfn_to_page);
1364
1365void kvm_release_page_clean(struct page *page)
1366{
1367 WARN_ON(is_error_page(page));
1368
1369 kvm_release_pfn_clean(page_to_pfn(page));
1370}
1371EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1372
1373void kvm_release_pfn_clean(pfn_t pfn)
1374{
1375 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1376 put_page(pfn_to_page(pfn));
1377}
1378EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1379
1380void kvm_release_page_dirty(struct page *page)
1381{
1382 WARN_ON(is_error_page(page));
1383
1384 kvm_release_pfn_dirty(page_to_pfn(page));
1385}
1386EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1387
1388void kvm_release_pfn_dirty(pfn_t pfn)
1389{
1390 kvm_set_pfn_dirty(pfn);
1391 kvm_release_pfn_clean(pfn);
1392}
1393EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1394
1395void kvm_set_page_dirty(struct page *page)
1396{
1397 kvm_set_pfn_dirty(page_to_pfn(page));
1398}
1399EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1400
1401void kvm_set_pfn_dirty(pfn_t pfn)
1402{
1403 if (!kvm_is_mmio_pfn(pfn)) {
1404 struct page *page = pfn_to_page(pfn);
1405 if (!PageReserved(page))
1406 SetPageDirty(page);
1407 }
1408}
1409EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1410
1411void kvm_set_pfn_accessed(pfn_t pfn)
1412{
1413 if (!kvm_is_mmio_pfn(pfn))
1414 mark_page_accessed(pfn_to_page(pfn));
1415}
1416EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1417
1418void kvm_get_pfn(pfn_t pfn)
1419{
1420 if (!kvm_is_mmio_pfn(pfn))
1421 get_page(pfn_to_page(pfn));
1422}
1423EXPORT_SYMBOL_GPL(kvm_get_pfn);
1424
1425static int next_segment(unsigned long len, int offset)
1426{
1427 if (len > PAGE_SIZE - offset)
1428 return PAGE_SIZE - offset;
1429 else
1430 return len;
1431}
1432
1433int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1434 int len)
1435{
1436 int r;
1437 unsigned long addr;
1438
1439 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1440 if (kvm_is_error_hva(addr))
1441 return -EFAULT;
1442 r = kvm_read_hva(data, (void __user *)addr + offset, len);
1443 if (r)
1444 return -EFAULT;
1445 return 0;
1446}
1447EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1448
1449int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1450{
1451 gfn_t gfn = gpa >> PAGE_SHIFT;
1452 int seg;
1453 int offset = offset_in_page(gpa);
1454 int ret;
1455
1456 while ((seg = next_segment(len, offset)) != 0) {
1457 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1458 if (ret < 0)
1459 return ret;
1460 offset = 0;
1461 len -= seg;
1462 data += seg;
1463 ++gfn;
1464 }
1465 return 0;
1466}
1467EXPORT_SYMBOL_GPL(kvm_read_guest);
1468
1469int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1470 unsigned long len)
1471{
1472 int r;
1473 unsigned long addr;
1474 gfn_t gfn = gpa >> PAGE_SHIFT;
1475 int offset = offset_in_page(gpa);
1476
1477 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1478 if (kvm_is_error_hva(addr))
1479 return -EFAULT;
1480 pagefault_disable();
1481 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1482 pagefault_enable();
1483 if (r)
1484 return -EFAULT;
1485 return 0;
1486}
1487EXPORT_SYMBOL(kvm_read_guest_atomic);
1488
1489int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1490 int offset, int len)
1491{
1492 int r;
1493 unsigned long addr;
1494
1495 addr = gfn_to_hva(kvm, gfn);
1496 if (kvm_is_error_hva(addr))
1497 return -EFAULT;
1498 r = __copy_to_user((void __user *)addr + offset, data, len);
1499 if (r)
1500 return -EFAULT;
1501 mark_page_dirty(kvm, gfn);
1502 return 0;
1503}
1504EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1505
1506int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1507 unsigned long len)
1508{
1509 gfn_t gfn = gpa >> PAGE_SHIFT;
1510 int seg;
1511 int offset = offset_in_page(gpa);
1512 int ret;
1513
1514 while ((seg = next_segment(len, offset)) != 0) {
1515 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1516 if (ret < 0)
1517 return ret;
1518 offset = 0;
1519 len -= seg;
1520 data += seg;
1521 ++gfn;
1522 }
1523 return 0;
1524}
1525
1526int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1527 gpa_t gpa, unsigned long len)
1528{
1529 struct kvm_memslots *slots = kvm_memslots(kvm);
1530 int offset = offset_in_page(gpa);
1531 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1532 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1533 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1534 gfn_t nr_pages_avail;
1535
1536 ghc->gpa = gpa;
1537 ghc->generation = slots->generation;
1538 ghc->len = len;
1539 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1540 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1541 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1542 ghc->hva += offset;
1543 } else {
1544
1545
1546
1547
1548 while (start_gfn <= end_gfn) {
1549 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1550 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1551 &nr_pages_avail);
1552 if (kvm_is_error_hva(ghc->hva))
1553 return -EFAULT;
1554 start_gfn += nr_pages_avail;
1555 }
1556
1557 ghc->memslot = NULL;
1558 }
1559 return 0;
1560}
1561EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1562
1563int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1564 void *data, unsigned long len)
1565{
1566 struct kvm_memslots *slots = kvm_memslots(kvm);
1567 int r;
1568
1569 BUG_ON(len > ghc->len);
1570
1571 if (slots->generation != ghc->generation)
1572 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1573
1574 if (unlikely(!ghc->memslot))
1575 return kvm_write_guest(kvm, ghc->gpa, data, len);
1576
1577 if (kvm_is_error_hva(ghc->hva))
1578 return -EFAULT;
1579
1580 r = __copy_to_user((void __user *)ghc->hva, data, len);
1581 if (r)
1582 return -EFAULT;
1583 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1584
1585 return 0;
1586}
1587EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1588
1589int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1590 void *data, unsigned long len)
1591{
1592 struct kvm_memslots *slots = kvm_memslots(kvm);
1593 int r;
1594
1595 BUG_ON(len > ghc->len);
1596
1597 if (slots->generation != ghc->generation)
1598 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1599
1600 if (unlikely(!ghc->memslot))
1601 return kvm_read_guest(kvm, ghc->gpa, data, len);
1602
1603 if (kvm_is_error_hva(ghc->hva))
1604 return -EFAULT;
1605
1606 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1607 if (r)
1608 return -EFAULT;
1609
1610 return 0;
1611}
1612EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1613
1614int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1615{
1616 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1617 offset, len);
1618}
1619EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1620
1621int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1622{
1623 gfn_t gfn = gpa >> PAGE_SHIFT;
1624 int seg;
1625 int offset = offset_in_page(gpa);
1626 int ret;
1627
1628 while ((seg = next_segment(len, offset)) != 0) {
1629 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1630 if (ret < 0)
1631 return ret;
1632 offset = 0;
1633 len -= seg;
1634 ++gfn;
1635 }
1636 return 0;
1637}
1638EXPORT_SYMBOL_GPL(kvm_clear_guest);
1639
1640void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1641 gfn_t gfn)
1642{
1643 if (memslot && memslot->dirty_bitmap) {
1644 unsigned long rel_gfn = gfn - memslot->base_gfn;
1645
1646 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1647 }
1648}
1649
1650void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1651{
1652 struct kvm_memory_slot *memslot;
1653
1654 memslot = gfn_to_memslot(kvm, gfn);
1655 mark_page_dirty_in_slot(kvm, memslot, gfn);
1656}
1657
1658
1659
1660
1661void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1662{
1663 DEFINE_WAIT(wait);
1664
1665 for (;;) {
1666 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1667
1668 if (kvm_arch_vcpu_runnable(vcpu)) {
1669 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1670 break;
1671 }
1672 if (kvm_cpu_has_pending_timer(vcpu))
1673 break;
1674 if (signal_pending(current))
1675 break;
1676
1677 schedule();
1678 }
1679
1680 finish_wait(&vcpu->wq, &wait);
1681}
1682
1683#ifndef CONFIG_S390
1684
1685
1686
1687void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1688{
1689 int me;
1690 int cpu = vcpu->cpu;
1691 wait_queue_head_t *wqp;
1692
1693 wqp = kvm_arch_vcpu_wq(vcpu);
1694 if (waitqueue_active(wqp)) {
1695 wake_up_interruptible(wqp);
1696 ++vcpu->stat.halt_wakeup;
1697 }
1698
1699 me = get_cpu();
1700 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1701 if (kvm_arch_vcpu_should_kick(vcpu))
1702 smp_send_reschedule(cpu);
1703 put_cpu();
1704}
1705EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1706#endif
1707
1708void kvm_resched(struct kvm_vcpu *vcpu)
1709{
1710 if (!need_resched())
1711 return;
1712 cond_resched();
1713}
1714EXPORT_SYMBOL_GPL(kvm_resched);
1715
1716bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1717{
1718 struct pid *pid;
1719 struct task_struct *task = NULL;
1720 bool ret = false;
1721
1722 rcu_read_lock();
1723 pid = rcu_dereference(target->pid);
1724 if (pid)
1725 task = get_pid_task(target->pid, PIDTYPE_PID);
1726 rcu_read_unlock();
1727 if (!task)
1728 return ret;
1729 if (task->flags & PF_VCPU) {
1730 put_task_struct(task);
1731 return ret;
1732 }
1733 ret = yield_to(task, 1);
1734 put_task_struct(task);
1735
1736 return ret;
1737}
1738EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1739
1740#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1764{
1765 bool eligible;
1766
1767 eligible = !vcpu->spin_loop.in_spin_loop ||
1768 (vcpu->spin_loop.in_spin_loop &&
1769 vcpu->spin_loop.dy_eligible);
1770
1771 if (vcpu->spin_loop.in_spin_loop)
1772 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1773
1774 return eligible;
1775}
1776#endif
1777
1778void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1779{
1780 struct kvm *kvm = me->kvm;
1781 struct kvm_vcpu *vcpu;
1782 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1783 int yielded = 0;
1784 int try = 3;
1785 int pass;
1786 int i;
1787
1788 kvm_vcpu_set_in_spin_loop(me, true);
1789
1790
1791
1792
1793
1794
1795
1796 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1797 kvm_for_each_vcpu(i, vcpu, kvm) {
1798 if (!pass && i <= last_boosted_vcpu) {
1799 i = last_boosted_vcpu;
1800 continue;
1801 } else if (pass && i > last_boosted_vcpu)
1802 break;
1803 if (!ACCESS_ONCE(vcpu->preempted))
1804 continue;
1805 if (vcpu == me)
1806 continue;
1807 if (waitqueue_active(&vcpu->wq))
1808 continue;
1809 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1810 continue;
1811
1812 yielded = kvm_vcpu_yield_to(vcpu);
1813 if (yielded > 0) {
1814 kvm->last_boosted_vcpu = i;
1815 break;
1816 } else if (yielded < 0) {
1817 try--;
1818 if (!try)
1819 break;
1820 }
1821 }
1822 }
1823 kvm_vcpu_set_in_spin_loop(me, false);
1824
1825
1826 kvm_vcpu_set_dy_eligible(me, false);
1827}
1828EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1829
1830static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1831{
1832 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1833 struct page *page;
1834
1835 if (vmf->pgoff == 0)
1836 page = virt_to_page(vcpu->run);
1837#ifdef CONFIG_X86
1838 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1839 page = virt_to_page(vcpu->arch.pio_data);
1840#endif
1841#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1842 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1843 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1844#endif
1845 else
1846 return kvm_arch_vcpu_fault(vcpu, vmf);
1847 get_page(page);
1848 vmf->page = page;
1849 return 0;
1850}
1851
1852static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1853 .fault = kvm_vcpu_fault,
1854};
1855
1856static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1857{
1858 vma->vm_ops = &kvm_vcpu_vm_ops;
1859 return 0;
1860}
1861
1862static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1863{
1864 struct kvm_vcpu *vcpu = filp->private_data;
1865
1866 kvm_put_kvm(vcpu->kvm);
1867 return 0;
1868}
1869
1870static struct file_operations kvm_vcpu_fops = {
1871 .release = kvm_vcpu_release,
1872 .unlocked_ioctl = kvm_vcpu_ioctl,
1873#ifdef CONFIG_COMPAT
1874 .compat_ioctl = kvm_vcpu_compat_ioctl,
1875#endif
1876 .mmap = kvm_vcpu_mmap,
1877 .llseek = noop_llseek,
1878};
1879
1880
1881
1882
1883static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1884{
1885 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1886}
1887
1888
1889
1890
1891static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1892{
1893 int r;
1894 struct kvm_vcpu *vcpu, *v;
1895
1896 vcpu = kvm_arch_vcpu_create(kvm, id);
1897 if (IS_ERR(vcpu))
1898 return PTR_ERR(vcpu);
1899
1900 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1901
1902 r = kvm_arch_vcpu_setup(vcpu);
1903 if (r)
1904 goto vcpu_destroy;
1905
1906 mutex_lock(&kvm->lock);
1907 if (!kvm_vcpu_compatible(vcpu)) {
1908 r = -EINVAL;
1909 goto unlock_vcpu_destroy;
1910 }
1911 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1912 r = -EINVAL;
1913 goto unlock_vcpu_destroy;
1914 }
1915
1916 kvm_for_each_vcpu(r, v, kvm)
1917 if (v->vcpu_id == id) {
1918 r = -EEXIST;
1919 goto unlock_vcpu_destroy;
1920 }
1921
1922 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1923
1924
1925 kvm_get_kvm(kvm);
1926 r = create_vcpu_fd(vcpu);
1927 if (r < 0) {
1928 kvm_put_kvm(kvm);
1929 goto unlock_vcpu_destroy;
1930 }
1931
1932 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1933 smp_wmb();
1934 atomic_inc(&kvm->online_vcpus);
1935
1936 mutex_unlock(&kvm->lock);
1937 kvm_arch_vcpu_postcreate(vcpu);
1938 return r;
1939
1940unlock_vcpu_destroy:
1941 mutex_unlock(&kvm->lock);
1942vcpu_destroy:
1943 kvm_arch_vcpu_destroy(vcpu);
1944 return r;
1945}
1946
1947static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1948{
1949 if (sigset) {
1950 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1951 vcpu->sigset_active = 1;
1952 vcpu->sigset = *sigset;
1953 } else
1954 vcpu->sigset_active = 0;
1955 return 0;
1956}
1957
1958static long kvm_vcpu_ioctl(struct file *filp,
1959 unsigned int ioctl, unsigned long arg)
1960{
1961 struct kvm_vcpu *vcpu = filp->private_data;
1962 void __user *argp = (void __user *)arg;
1963 int r;
1964 struct kvm_fpu *fpu = NULL;
1965 struct kvm_sregs *kvm_sregs = NULL;
1966
1967 if (vcpu->kvm->mm != current->mm)
1968 return -EIO;
1969
1970#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1971
1972
1973
1974
1975 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1976 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1977#endif
1978
1979
1980 r = vcpu_load(vcpu);
1981 if (r)
1982 return r;
1983 switch (ioctl) {
1984 case KVM_RUN:
1985 r = -EINVAL;
1986 if (arg)
1987 goto out;
1988 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1989 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1990 break;
1991 case KVM_GET_REGS: {
1992 struct kvm_regs *kvm_regs;
1993
1994 r = -ENOMEM;
1995 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1996 if (!kvm_regs)
1997 goto out;
1998 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1999 if (r)
2000 goto out_free1;
2001 r = -EFAULT;
2002 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2003 goto out_free1;
2004 r = 0;
2005out_free1:
2006 kfree(kvm_regs);
2007 break;
2008 }
2009 case KVM_SET_REGS: {
2010 struct kvm_regs *kvm_regs;
2011
2012 r = -ENOMEM;
2013 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2014 if (IS_ERR(kvm_regs)) {
2015 r = PTR_ERR(kvm_regs);
2016 goto out;
2017 }
2018 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2019 kfree(kvm_regs);
2020 break;
2021 }
2022 case KVM_GET_SREGS: {
2023 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2024 r = -ENOMEM;
2025 if (!kvm_sregs)
2026 goto out;
2027 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2028 if (r)
2029 goto out;
2030 r = -EFAULT;
2031 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2032 goto out;
2033 r = 0;
2034 break;
2035 }
2036 case KVM_SET_SREGS: {
2037 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2038 if (IS_ERR(kvm_sregs)) {
2039 r = PTR_ERR(kvm_sregs);
2040 kvm_sregs = NULL;
2041 goto out;
2042 }
2043 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2044 break;
2045 }
2046 case KVM_GET_MP_STATE: {
2047 struct kvm_mp_state mp_state;
2048
2049 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2050 if (r)
2051 goto out;
2052 r = -EFAULT;
2053 if (copy_to_user(argp, &mp_state, sizeof mp_state))
2054 goto out;
2055 r = 0;
2056 break;
2057 }
2058 case KVM_SET_MP_STATE: {
2059 struct kvm_mp_state mp_state;
2060
2061 r = -EFAULT;
2062 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2063 goto out;
2064 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2065 break;
2066 }
2067 case KVM_TRANSLATE: {
2068 struct kvm_translation tr;
2069
2070 r = -EFAULT;
2071 if (copy_from_user(&tr, argp, sizeof tr))
2072 goto out;
2073 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2074 if (r)
2075 goto out;
2076 r = -EFAULT;
2077 if (copy_to_user(argp, &tr, sizeof tr))
2078 goto out;
2079 r = 0;
2080 break;
2081 }
2082 case KVM_SET_GUEST_DEBUG: {
2083 struct kvm_guest_debug dbg;
2084
2085 r = -EFAULT;
2086 if (copy_from_user(&dbg, argp, sizeof dbg))
2087 goto out;
2088 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2089 break;
2090 }
2091 case KVM_SET_SIGNAL_MASK: {
2092 struct kvm_signal_mask __user *sigmask_arg = argp;
2093 struct kvm_signal_mask kvm_sigmask;
2094 sigset_t sigset, *p;
2095
2096 p = NULL;
2097 if (argp) {
2098 r = -EFAULT;
2099 if (copy_from_user(&kvm_sigmask, argp,
2100 sizeof kvm_sigmask))
2101 goto out;
2102 r = -EINVAL;
2103 if (kvm_sigmask.len != sizeof sigset)
2104 goto out;
2105 r = -EFAULT;
2106 if (copy_from_user(&sigset, sigmask_arg->sigset,
2107 sizeof sigset))
2108 goto out;
2109 p = &sigset;
2110 }
2111 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2112 break;
2113 }
2114 case KVM_GET_FPU: {
2115 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2116 r = -ENOMEM;
2117 if (!fpu)
2118 goto out;
2119 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2120 if (r)
2121 goto out;
2122 r = -EFAULT;
2123 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2124 goto out;
2125 r = 0;
2126 break;
2127 }
2128 case KVM_SET_FPU: {
2129 fpu = memdup_user(argp, sizeof(*fpu));
2130 if (IS_ERR(fpu)) {
2131 r = PTR_ERR(fpu);
2132 fpu = NULL;
2133 goto out;
2134 }
2135 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2136 break;
2137 }
2138 default:
2139 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2140 }
2141out:
2142 vcpu_put(vcpu);
2143 kfree(fpu);
2144 kfree(kvm_sregs);
2145 return r;
2146}
2147
2148#ifdef CONFIG_COMPAT
2149static long kvm_vcpu_compat_ioctl(struct file *filp,
2150 unsigned int ioctl, unsigned long arg)
2151{
2152 struct kvm_vcpu *vcpu = filp->private_data;
2153 void __user *argp = compat_ptr(arg);
2154 int r;
2155
2156 if (vcpu->kvm->mm != current->mm)
2157 return -EIO;
2158
2159 switch (ioctl) {
2160 case KVM_SET_SIGNAL_MASK: {
2161 struct kvm_signal_mask __user *sigmask_arg = argp;
2162 struct kvm_signal_mask kvm_sigmask;
2163 compat_sigset_t csigset;
2164 sigset_t sigset;
2165
2166 if (argp) {
2167 r = -EFAULT;
2168 if (copy_from_user(&kvm_sigmask, argp,
2169 sizeof kvm_sigmask))
2170 goto out;
2171 r = -EINVAL;
2172 if (kvm_sigmask.len != sizeof csigset)
2173 goto out;
2174 r = -EFAULT;
2175 if (copy_from_user(&csigset, sigmask_arg->sigset,
2176 sizeof csigset))
2177 goto out;
2178 sigset_from_compat(&sigset, &csigset);
2179 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2180 } else
2181 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2182 break;
2183 }
2184 default:
2185 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2186 }
2187
2188out:
2189 return r;
2190}
2191#endif
2192
2193static int kvm_device_ioctl_attr(struct kvm_device *dev,
2194 int (*accessor)(struct kvm_device *dev,
2195 struct kvm_device_attr *attr),
2196 unsigned long arg)
2197{
2198 struct kvm_device_attr attr;
2199
2200 if (!accessor)
2201 return -EPERM;
2202
2203 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2204 return -EFAULT;
2205
2206 return accessor(dev, &attr);
2207}
2208
2209static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2210 unsigned long arg)
2211{
2212 struct kvm_device *dev = filp->private_data;
2213
2214 switch (ioctl) {
2215 case KVM_SET_DEVICE_ATTR:
2216 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2217 case KVM_GET_DEVICE_ATTR:
2218 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2219 case KVM_HAS_DEVICE_ATTR:
2220 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2221 default:
2222 if (dev->ops->ioctl)
2223 return dev->ops->ioctl(dev, ioctl, arg);
2224
2225 return -ENOTTY;
2226 }
2227}
2228
2229static int kvm_device_release(struct inode *inode, struct file *filp)
2230{
2231 struct kvm_device *dev = filp->private_data;
2232 struct kvm *kvm = dev->kvm;
2233
2234 kvm_put_kvm(kvm);
2235 return 0;
2236}
2237
2238static const struct file_operations kvm_device_fops = {
2239 .unlocked_ioctl = kvm_device_ioctl,
2240#ifdef CONFIG_COMPAT
2241 .compat_ioctl = kvm_device_ioctl,
2242#endif
2243 .release = kvm_device_release,
2244};
2245
2246struct kvm_device *kvm_device_from_filp(struct file *filp)
2247{
2248 if (filp->f_op != &kvm_device_fops)
2249 return NULL;
2250
2251 return filp->private_data;
2252}
2253
2254static int kvm_ioctl_create_device(struct kvm *kvm,
2255 struct kvm_create_device *cd)
2256{
2257 struct kvm_device_ops *ops = NULL;
2258 struct kvm_device *dev;
2259 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2260 int ret;
2261
2262 switch (cd->type) {
2263#ifdef CONFIG_KVM_MPIC
2264 case KVM_DEV_TYPE_FSL_MPIC_20:
2265 case KVM_DEV_TYPE_FSL_MPIC_42:
2266 ops = &kvm_mpic_ops;
2267 break;
2268#endif
2269#ifdef CONFIG_KVM_XICS
2270 case KVM_DEV_TYPE_XICS:
2271 ops = &kvm_xics_ops;
2272 break;
2273#endif
2274 default:
2275 return -ENODEV;
2276 }
2277
2278 if (test)
2279 return 0;
2280
2281 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2282 if (!dev)
2283 return -ENOMEM;
2284
2285 dev->ops = ops;
2286 dev->kvm = kvm;
2287
2288 ret = ops->create(dev, cd->type);
2289 if (ret < 0) {
2290 kfree(dev);
2291 return ret;
2292 }
2293
2294 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2295 if (ret < 0) {
2296 ops->destroy(dev);
2297 return ret;
2298 }
2299
2300 list_add(&dev->vm_node, &kvm->devices);
2301 kvm_get_kvm(kvm);
2302 cd->fd = ret;
2303 return 0;
2304}
2305
2306static long kvm_vm_ioctl(struct file *filp,
2307 unsigned int ioctl, unsigned long arg)
2308{
2309 struct kvm *kvm = filp->private_data;
2310 void __user *argp = (void __user *)arg;
2311 int r;
2312
2313 if (kvm->mm != current->mm)
2314 return -EIO;
2315 switch (ioctl) {
2316 case KVM_CREATE_VCPU:
2317 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2318 break;
2319 case KVM_SET_USER_MEMORY_REGION: {
2320 struct kvm_userspace_memory_region kvm_userspace_mem;
2321
2322 r = -EFAULT;
2323 if (copy_from_user(&kvm_userspace_mem, argp,
2324 sizeof kvm_userspace_mem))
2325 goto out;
2326
2327 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2328 break;
2329 }
2330 case KVM_GET_DIRTY_LOG: {
2331 struct kvm_dirty_log log;
2332
2333 r = -EFAULT;
2334 if (copy_from_user(&log, argp, sizeof log))
2335 goto out;
2336 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2337 break;
2338 }
2339#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2340 case KVM_REGISTER_COALESCED_MMIO: {
2341 struct kvm_coalesced_mmio_zone zone;
2342 r = -EFAULT;
2343 if (copy_from_user(&zone, argp, sizeof zone))
2344 goto out;
2345 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2346 break;
2347 }
2348 case KVM_UNREGISTER_COALESCED_MMIO: {
2349 struct kvm_coalesced_mmio_zone zone;
2350 r = -EFAULT;
2351 if (copy_from_user(&zone, argp, sizeof zone))
2352 goto out;
2353 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2354 break;
2355 }
2356#endif
2357 case KVM_IRQFD: {
2358 struct kvm_irqfd data;
2359
2360 r = -EFAULT;
2361 if (copy_from_user(&data, argp, sizeof data))
2362 goto out;
2363 r = kvm_irqfd(kvm, &data);
2364 break;
2365 }
2366 case KVM_IOEVENTFD: {
2367 struct kvm_ioeventfd data;
2368
2369 r = -EFAULT;
2370 if (copy_from_user(&data, argp, sizeof data))
2371 goto out;
2372 r = kvm_ioeventfd(kvm, &data);
2373 break;
2374 }
2375#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2376 case KVM_SET_BOOT_CPU_ID:
2377 r = 0;
2378 mutex_lock(&kvm->lock);
2379 if (atomic_read(&kvm->online_vcpus) != 0)
2380 r = -EBUSY;
2381 else
2382 kvm->bsp_vcpu_id = arg;
2383 mutex_unlock(&kvm->lock);
2384 break;
2385#endif
2386#ifdef CONFIG_HAVE_KVM_MSI
2387 case KVM_SIGNAL_MSI: {
2388 struct kvm_msi msi;
2389
2390 r = -EFAULT;
2391 if (copy_from_user(&msi, argp, sizeof msi))
2392 goto out;
2393 r = kvm_send_userspace_msi(kvm, &msi);
2394 break;
2395 }
2396#endif
2397#ifdef __KVM_HAVE_IRQ_LINE
2398 case KVM_IRQ_LINE_STATUS:
2399 case KVM_IRQ_LINE: {
2400 struct kvm_irq_level irq_event;
2401
2402 r = -EFAULT;
2403 if (copy_from_user(&irq_event, argp, sizeof irq_event))
2404 goto out;
2405
2406 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2407 ioctl == KVM_IRQ_LINE_STATUS);
2408 if (r)
2409 goto out;
2410
2411 r = -EFAULT;
2412 if (ioctl == KVM_IRQ_LINE_STATUS) {
2413 if (copy_to_user(argp, &irq_event, sizeof irq_event))
2414 goto out;
2415 }
2416
2417 r = 0;
2418 break;
2419 }
2420#endif
2421#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2422 case KVM_SET_GSI_ROUTING: {
2423 struct kvm_irq_routing routing;
2424 struct kvm_irq_routing __user *urouting;
2425 struct kvm_irq_routing_entry *entries;
2426
2427 r = -EFAULT;
2428 if (copy_from_user(&routing, argp, sizeof(routing)))
2429 goto out;
2430 r = -EINVAL;
2431 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2432 goto out;
2433 if (routing.flags)
2434 goto out;
2435 r = -ENOMEM;
2436 entries = vmalloc(routing.nr * sizeof(*entries));
2437 if (!entries)
2438 goto out;
2439 r = -EFAULT;
2440 urouting = argp;
2441 if (copy_from_user(entries, urouting->entries,
2442 routing.nr * sizeof(*entries)))
2443 goto out_free_irq_routing;
2444 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2445 routing.flags);
2446 out_free_irq_routing:
2447 vfree(entries);
2448 break;
2449 }
2450#endif
2451 case KVM_CREATE_DEVICE: {
2452 struct kvm_create_device cd;
2453
2454 r = -EFAULT;
2455 if (copy_from_user(&cd, argp, sizeof(cd)))
2456 goto out;
2457
2458 r = kvm_ioctl_create_device(kvm, &cd);
2459 if (r)
2460 goto out;
2461
2462 r = -EFAULT;
2463 if (copy_to_user(argp, &cd, sizeof(cd)))
2464 goto out;
2465
2466 r = 0;
2467 break;
2468 }
2469 default:
2470 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2471 if (r == -ENOTTY)
2472 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2473 }
2474out:
2475 return r;
2476}
2477
2478#ifdef CONFIG_COMPAT
2479struct compat_kvm_dirty_log {
2480 __u32 slot;
2481 __u32 padding1;
2482 union {
2483 compat_uptr_t dirty_bitmap;
2484 __u64 padding2;
2485 };
2486};
2487
2488static long kvm_vm_compat_ioctl(struct file *filp,
2489 unsigned int ioctl, unsigned long arg)
2490{
2491 struct kvm *kvm = filp->private_data;
2492 int r;
2493
2494 if (kvm->mm != current->mm)
2495 return -EIO;
2496 switch (ioctl) {
2497 case KVM_GET_DIRTY_LOG: {
2498 struct compat_kvm_dirty_log compat_log;
2499 struct kvm_dirty_log log;
2500
2501 r = -EFAULT;
2502 if (copy_from_user(&compat_log, (void __user *)arg,
2503 sizeof(compat_log)))
2504 goto out;
2505 log.slot = compat_log.slot;
2506 log.padding1 = compat_log.padding1;
2507 log.padding2 = compat_log.padding2;
2508 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2509
2510 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2511 break;
2512 }
2513 default:
2514 r = kvm_vm_ioctl(filp, ioctl, arg);
2515 }
2516
2517out:
2518 return r;
2519}
2520#endif
2521
2522static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2523{
2524 struct page *page[1];
2525 unsigned long addr;
2526 int npages;
2527 gfn_t gfn = vmf->pgoff;
2528 struct kvm *kvm = vma->vm_file->private_data;
2529
2530 addr = gfn_to_hva(kvm, gfn);
2531 if (kvm_is_error_hva(addr))
2532 return VM_FAULT_SIGBUS;
2533
2534 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2535 NULL);
2536 if (unlikely(npages != 1))
2537 return VM_FAULT_SIGBUS;
2538
2539 vmf->page = page[0];
2540 return 0;
2541}
2542
2543static const struct vm_operations_struct kvm_vm_vm_ops = {
2544 .fault = kvm_vm_fault,
2545};
2546
2547static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2548{
2549 vma->vm_ops = &kvm_vm_vm_ops;
2550 return 0;
2551}
2552
2553static struct file_operations kvm_vm_fops = {
2554 .release = kvm_vm_release,
2555 .unlocked_ioctl = kvm_vm_ioctl,
2556#ifdef CONFIG_COMPAT
2557 .compat_ioctl = kvm_vm_compat_ioctl,
2558#endif
2559 .mmap = kvm_vm_mmap,
2560 .llseek = noop_llseek,
2561};
2562
2563static int kvm_dev_ioctl_create_vm(unsigned long type)
2564{
2565 int r;
2566 struct kvm *kvm;
2567
2568 kvm = kvm_create_vm(type);
2569 if (IS_ERR(kvm))
2570 return PTR_ERR(kvm);
2571#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2572 r = kvm_coalesced_mmio_init(kvm);
2573 if (r < 0) {
2574 kvm_put_kvm(kvm);
2575 return r;
2576 }
2577#endif
2578 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2579 if (r < 0)
2580 kvm_put_kvm(kvm);
2581
2582 return r;
2583}
2584
2585static long kvm_dev_ioctl_check_extension_generic(long arg)
2586{
2587 switch (arg) {
2588 case KVM_CAP_USER_MEMORY:
2589 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2590 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2591#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2592 case KVM_CAP_SET_BOOT_CPU_ID:
2593#endif
2594 case KVM_CAP_INTERNAL_ERROR_DATA:
2595#ifdef CONFIG_HAVE_KVM_MSI
2596 case KVM_CAP_SIGNAL_MSI:
2597#endif
2598#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2599 case KVM_CAP_IRQFD_RESAMPLE:
2600#endif
2601 return 1;
2602#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2603 case KVM_CAP_IRQ_ROUTING:
2604 return KVM_MAX_IRQ_ROUTES;
2605#endif
2606 default:
2607 break;
2608 }
2609 return kvm_dev_ioctl_check_extension(arg);
2610}
2611
2612static long kvm_dev_ioctl(struct file *filp,
2613 unsigned int ioctl, unsigned long arg)
2614{
2615 long r = -EINVAL;
2616
2617 switch (ioctl) {
2618 case KVM_GET_API_VERSION:
2619 r = -EINVAL;
2620 if (arg)
2621 goto out;
2622 r = KVM_API_VERSION;
2623 break;
2624 case KVM_CREATE_VM:
2625 r = kvm_dev_ioctl_create_vm(arg);
2626 break;
2627 case KVM_CHECK_EXTENSION:
2628 r = kvm_dev_ioctl_check_extension_generic(arg);
2629 break;
2630 case KVM_GET_VCPU_MMAP_SIZE:
2631 r = -EINVAL;
2632 if (arg)
2633 goto out;
2634 r = PAGE_SIZE;
2635#ifdef CONFIG_X86
2636 r += PAGE_SIZE;
2637#endif
2638#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2639 r += PAGE_SIZE;
2640#endif
2641 break;
2642 case KVM_TRACE_ENABLE:
2643 case KVM_TRACE_PAUSE:
2644 case KVM_TRACE_DISABLE:
2645 r = -EOPNOTSUPP;
2646 break;
2647 default:
2648 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2649 }
2650out:
2651 return r;
2652}
2653
2654static struct file_operations kvm_chardev_ops = {
2655 .unlocked_ioctl = kvm_dev_ioctl,
2656 .compat_ioctl = kvm_dev_ioctl,
2657 .llseek = noop_llseek,
2658};
2659
2660static struct miscdevice kvm_dev = {
2661 KVM_MINOR,
2662 "kvm",
2663 &kvm_chardev_ops,
2664};
2665
2666static void hardware_enable_nolock(void *junk)
2667{
2668 int cpu = raw_smp_processor_id();
2669 int r;
2670
2671 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2672 return;
2673
2674 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2675
2676 r = kvm_arch_hardware_enable(NULL);
2677
2678 if (r) {
2679 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2680 atomic_inc(&hardware_enable_failed);
2681 printk(KERN_INFO "kvm: enabling virtualization on "
2682 "CPU%d failed\n", cpu);
2683 }
2684}
2685
2686static void hardware_enable(void *junk)
2687{
2688 raw_spin_lock(&kvm_lock);
2689 hardware_enable_nolock(junk);
2690 raw_spin_unlock(&kvm_lock);
2691}
2692
2693static void hardware_disable_nolock(void *junk)
2694{
2695 int cpu = raw_smp_processor_id();
2696
2697 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2698 return;
2699 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2700 kvm_arch_hardware_disable(NULL);
2701}
2702
2703static void hardware_disable(void *junk)
2704{
2705 raw_spin_lock(&kvm_lock);
2706 hardware_disable_nolock(junk);
2707 raw_spin_unlock(&kvm_lock);
2708}
2709
2710static void hardware_disable_all_nolock(void)
2711{
2712 BUG_ON(!kvm_usage_count);
2713
2714 kvm_usage_count--;
2715 if (!kvm_usage_count)
2716 on_each_cpu(hardware_disable_nolock, NULL, 1);
2717}
2718
2719static void hardware_disable_all(void)
2720{
2721 raw_spin_lock(&kvm_lock);
2722 hardware_disable_all_nolock();
2723 raw_spin_unlock(&kvm_lock);
2724}
2725
2726static int hardware_enable_all(void)
2727{
2728 int r = 0;
2729
2730 raw_spin_lock(&kvm_lock);
2731
2732 kvm_usage_count++;
2733 if (kvm_usage_count == 1) {
2734 atomic_set(&hardware_enable_failed, 0);
2735 on_each_cpu(hardware_enable_nolock, NULL, 1);
2736
2737 if (atomic_read(&hardware_enable_failed)) {
2738 hardware_disable_all_nolock();
2739 r = -EBUSY;
2740 }
2741 }
2742
2743 raw_spin_unlock(&kvm_lock);
2744
2745 return r;
2746}
2747
2748static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2749 void *v)
2750{
2751 int cpu = (long)v;
2752
2753 if (!kvm_usage_count)
2754 return NOTIFY_OK;
2755
2756 val &= ~CPU_TASKS_FROZEN;
2757 switch (val) {
2758 case CPU_DYING:
2759 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2760 cpu);
2761 hardware_disable(NULL);
2762 break;
2763 case CPU_STARTING:
2764 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2765 cpu);
2766 hardware_enable(NULL);
2767 break;
2768 }
2769 return NOTIFY_OK;
2770}
2771
2772static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2773 void *v)
2774{
2775
2776
2777
2778
2779
2780
2781 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2782 kvm_rebooting = true;
2783 on_each_cpu(hardware_disable_nolock, NULL, 1);
2784 return NOTIFY_OK;
2785}
2786
2787static struct notifier_block kvm_reboot_notifier = {
2788 .notifier_call = kvm_reboot,
2789 .priority = 0,
2790};
2791
2792static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2793{
2794 int i;
2795
2796 for (i = 0; i < bus->dev_count; i++) {
2797 struct kvm_io_device *pos = bus->range[i].dev;
2798
2799 kvm_iodevice_destructor(pos);
2800 }
2801 kfree(bus);
2802}
2803
2804static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2805 const struct kvm_io_range *r2)
2806{
2807 if (r1->addr < r2->addr)
2808 return -1;
2809 if (r1->addr + r1->len > r2->addr + r2->len)
2810 return 1;
2811 return 0;
2812}
2813
2814static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2815{
2816 return kvm_io_bus_cmp(p1, p2);
2817}
2818
2819static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2820 gpa_t addr, int len)
2821{
2822 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2823 .addr = addr,
2824 .len = len,
2825 .dev = dev,
2826 };
2827
2828 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2829 kvm_io_bus_sort_cmp, NULL);
2830
2831 return 0;
2832}
2833
2834static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2835 gpa_t addr, int len)
2836{
2837 struct kvm_io_range *range, key;
2838 int off;
2839
2840 key = (struct kvm_io_range) {
2841 .addr = addr,
2842 .len = len,
2843 };
2844
2845 range = bsearch(&key, bus->range, bus->dev_count,
2846 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2847 if (range == NULL)
2848 return -ENOENT;
2849
2850 off = range - bus->range;
2851
2852 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2853 off--;
2854
2855 return off;
2856}
2857
2858static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2859 struct kvm_io_range *range, const void *val)
2860{
2861 int idx;
2862
2863 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2864 if (idx < 0)
2865 return -EOPNOTSUPP;
2866
2867 while (idx < bus->dev_count &&
2868 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2869 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2870 range->len, val))
2871 return idx;
2872 idx++;
2873 }
2874
2875 return -EOPNOTSUPP;
2876}
2877
2878
2879int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2880 int len, const void *val)
2881{
2882 struct kvm_io_bus *bus;
2883 struct kvm_io_range range;
2884 int r;
2885
2886 range = (struct kvm_io_range) {
2887 .addr = addr,
2888 .len = len,
2889 };
2890
2891 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2892 r = __kvm_io_bus_write(bus, &range, val);
2893 return r < 0 ? r : 0;
2894}
2895
2896
2897int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2898 int len, const void *val, long cookie)
2899{
2900 struct kvm_io_bus *bus;
2901 struct kvm_io_range range;
2902
2903 range = (struct kvm_io_range) {
2904 .addr = addr,
2905 .len = len,
2906 };
2907
2908 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2909
2910
2911 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2912 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2913 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2914 val))
2915 return cookie;
2916
2917
2918
2919
2920
2921 return __kvm_io_bus_write(bus, &range, val);
2922}
2923
2924static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2925 void *val)
2926{
2927 int idx;
2928
2929 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2930 if (idx < 0)
2931 return -EOPNOTSUPP;
2932
2933 while (idx < bus->dev_count &&
2934 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2935 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2936 range->len, val))
2937 return idx;
2938 idx++;
2939 }
2940
2941 return -EOPNOTSUPP;
2942}
2943
2944
2945int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2946 int len, void *val)
2947{
2948 struct kvm_io_bus *bus;
2949 struct kvm_io_range range;
2950 int r;
2951
2952 range = (struct kvm_io_range) {
2953 .addr = addr,
2954 .len = len,
2955 };
2956
2957 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2958 r = __kvm_io_bus_read(bus, &range, val);
2959 return r < 0 ? r : 0;
2960}
2961
2962
2963int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2964 int len, void *val, long cookie)
2965{
2966 struct kvm_io_bus *bus;
2967 struct kvm_io_range range;
2968
2969 range = (struct kvm_io_range) {
2970 .addr = addr,
2971 .len = len,
2972 };
2973
2974 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2975
2976
2977 if ((cookie >= 0) && (cookie < bus->dev_count) &&
2978 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2979 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2980 val))
2981 return cookie;
2982
2983
2984
2985
2986
2987 return __kvm_io_bus_read(bus, &range, val);
2988}
2989
2990
2991int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2992 int len, struct kvm_io_device *dev)
2993{
2994 struct kvm_io_bus *new_bus, *bus;
2995
2996 bus = kvm->buses[bus_idx];
2997
2998 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2999 return -ENOSPC;
3000
3001 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3002 sizeof(struct kvm_io_range)), GFP_KERNEL);
3003 if (!new_bus)
3004 return -ENOMEM;
3005 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3006 sizeof(struct kvm_io_range)));
3007 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3008 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3009 synchronize_srcu_expedited(&kvm->srcu);
3010 kfree(bus);
3011
3012 return 0;
3013}
3014
3015
3016int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3017 struct kvm_io_device *dev)
3018{
3019 int i, r;
3020 struct kvm_io_bus *new_bus, *bus;
3021
3022 bus = kvm->buses[bus_idx];
3023 r = -ENOENT;
3024 for (i = 0; i < bus->dev_count; i++)
3025 if (bus->range[i].dev == dev) {
3026 r = 0;
3027 break;
3028 }
3029
3030 if (r)
3031 return r;
3032
3033 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3034 sizeof(struct kvm_io_range)), GFP_KERNEL);
3035 if (!new_bus)
3036 return -ENOMEM;
3037
3038 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3039 new_bus->dev_count--;
3040 memcpy(new_bus->range + i, bus->range + i + 1,
3041 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3042
3043 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3044 synchronize_srcu_expedited(&kvm->srcu);
3045 kfree(bus);
3046 return r;
3047}
3048
3049static struct notifier_block kvm_cpu_notifier = {
3050 .notifier_call = kvm_cpu_hotplug,
3051};
3052
3053static int vm_stat_get(void *_offset, u64 *val)
3054{
3055 unsigned offset = (long)_offset;
3056 struct kvm *kvm;
3057
3058 *val = 0;
3059 raw_spin_lock(&kvm_lock);
3060 list_for_each_entry(kvm, &vm_list, vm_list)
3061 *val += *(u32 *)((void *)kvm + offset);
3062 raw_spin_unlock(&kvm_lock);
3063 return 0;
3064}
3065
3066DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3067
3068static int vcpu_stat_get(void *_offset, u64 *val)
3069{
3070 unsigned offset = (long)_offset;
3071 struct kvm *kvm;
3072 struct kvm_vcpu *vcpu;
3073 int i;
3074
3075 *val = 0;
3076 raw_spin_lock(&kvm_lock);
3077 list_for_each_entry(kvm, &vm_list, vm_list)
3078 kvm_for_each_vcpu(i, vcpu, kvm)
3079 *val += *(u32 *)((void *)vcpu + offset);
3080
3081 raw_spin_unlock(&kvm_lock);
3082 return 0;
3083}
3084
3085DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3086
3087static const struct file_operations *stat_fops[] = {
3088 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3089 [KVM_STAT_VM] = &vm_stat_fops,
3090};
3091
3092static int kvm_init_debug(void)
3093{
3094 int r = -EEXIST;
3095 struct kvm_stats_debugfs_item *p;
3096
3097 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3098 if (kvm_debugfs_dir == NULL)
3099 goto out;
3100
3101 for (p = debugfs_entries; p->name; ++p) {
3102 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3103 (void *)(long)p->offset,
3104 stat_fops[p->kind]);
3105 if (p->dentry == NULL)
3106 goto out_dir;
3107 }
3108
3109 return 0;
3110
3111out_dir:
3112 debugfs_remove_recursive(kvm_debugfs_dir);
3113out:
3114 return r;
3115}
3116
3117static void kvm_exit_debug(void)
3118{
3119 struct kvm_stats_debugfs_item *p;
3120
3121 for (p = debugfs_entries; p->name; ++p)
3122 debugfs_remove(p->dentry);
3123 debugfs_remove(kvm_debugfs_dir);
3124}
3125
3126static int kvm_suspend(void)
3127{
3128 if (kvm_usage_count)
3129 hardware_disable_nolock(NULL);
3130 return 0;
3131}
3132
3133static void kvm_resume(void)
3134{
3135 if (kvm_usage_count) {
3136 WARN_ON(raw_spin_is_locked(&kvm_lock));
3137 hardware_enable_nolock(NULL);
3138 }
3139}
3140
3141static struct syscore_ops kvm_syscore_ops = {
3142 .suspend = kvm_suspend,
3143 .resume = kvm_resume,
3144};
3145
3146static inline
3147struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3148{
3149 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3150}
3151
3152static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3153{
3154 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3155 if (vcpu->preempted)
3156 vcpu->preempted = false;
3157
3158 kvm_arch_vcpu_load(vcpu, cpu);
3159}
3160
3161static void kvm_sched_out(struct preempt_notifier *pn,
3162 struct task_struct *next)
3163{
3164 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3165
3166 if (current->state == TASK_RUNNING)
3167 vcpu->preempted = true;
3168 kvm_arch_vcpu_put(vcpu);
3169}
3170
3171int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3172 struct module *module)
3173{
3174 int r;
3175 int cpu;
3176
3177 r = kvm_arch_init(opaque);
3178 if (r)
3179 goto out_fail;
3180
3181
3182
3183
3184
3185
3186
3187
3188 r = kvm_irqfd_init();
3189 if (r)
3190 goto out_irqfd;
3191
3192 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3193 r = -ENOMEM;
3194 goto out_free_0;
3195 }
3196
3197 r = kvm_arch_hardware_setup();
3198 if (r < 0)
3199 goto out_free_0a;
3200
3201 for_each_online_cpu(cpu) {
3202 smp_call_function_single(cpu,
3203 kvm_arch_check_processor_compat,
3204 &r, 1);
3205 if (r < 0)
3206 goto out_free_1;
3207 }
3208
3209 r = register_cpu_notifier(&kvm_cpu_notifier);
3210 if (r)
3211 goto out_free_2;
3212 register_reboot_notifier(&kvm_reboot_notifier);
3213
3214
3215 if (!vcpu_align)
3216 vcpu_align = __alignof__(struct kvm_vcpu);
3217 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3218 0, NULL);
3219 if (!kvm_vcpu_cache) {
3220 r = -ENOMEM;
3221 goto out_free_3;
3222 }
3223
3224 r = kvm_async_pf_init();
3225 if (r)
3226 goto out_free;
3227
3228 kvm_chardev_ops.owner = module;
3229 kvm_vm_fops.owner = module;
3230 kvm_vcpu_fops.owner = module;
3231
3232 r = misc_register(&kvm_dev);
3233 if (r) {
3234 printk(KERN_ERR "kvm: misc device register failed\n");
3235 goto out_unreg;
3236 }
3237
3238 register_syscore_ops(&kvm_syscore_ops);
3239
3240 kvm_preempt_ops.sched_in = kvm_sched_in;
3241 kvm_preempt_ops.sched_out = kvm_sched_out;
3242
3243 r = kvm_init_debug();
3244 if (r) {
3245 printk(KERN_ERR "kvm: create debugfs files failed\n");
3246 goto out_undebugfs;
3247 }
3248
3249 return 0;
3250
3251out_undebugfs:
3252 unregister_syscore_ops(&kvm_syscore_ops);
3253 misc_deregister(&kvm_dev);
3254out_unreg:
3255 kvm_async_pf_deinit();
3256out_free:
3257 kmem_cache_destroy(kvm_vcpu_cache);
3258out_free_3:
3259 unregister_reboot_notifier(&kvm_reboot_notifier);
3260 unregister_cpu_notifier(&kvm_cpu_notifier);
3261out_free_2:
3262out_free_1:
3263 kvm_arch_hardware_unsetup();
3264out_free_0a:
3265 free_cpumask_var(cpus_hardware_enabled);
3266out_free_0:
3267 kvm_irqfd_exit();
3268out_irqfd:
3269 kvm_arch_exit();
3270out_fail:
3271 return r;
3272}
3273EXPORT_SYMBOL_GPL(kvm_init);
3274
3275void kvm_exit(void)
3276{
3277 kvm_exit_debug();
3278 misc_deregister(&kvm_dev);
3279 kmem_cache_destroy(kvm_vcpu_cache);
3280 kvm_async_pf_deinit();
3281 unregister_syscore_ops(&kvm_syscore_ops);
3282 unregister_reboot_notifier(&kvm_reboot_notifier);
3283 unregister_cpu_notifier(&kvm_cpu_notifier);
3284 on_each_cpu(hardware_disable_nolock, NULL, 1);
3285 kvm_arch_hardware_unsetup();
3286 kvm_arch_exit();
3287 kvm_irqfd_exit();
3288 free_cpumask_var(cpus_hardware_enabled);
3289}
3290EXPORT_SYMBOL_GPL(kvm_exit);
3291