linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/uaccess.h>
  56#include <asm/pgtable.h>
  57
  58#include "coalesced_mmio.h"
  59#include "async_pf.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/kvm.h>
  63
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
  67/*
  68 * Ordering of locks:
  69 *
  70 *              kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  71 */
  72
  73DEFINE_RAW_SPINLOCK(kvm_lock);
  74LIST_HEAD(vm_list);
  75
  76static cpumask_var_t cpus_hardware_enabled;
  77static int kvm_usage_count = 0;
  78static atomic_t hardware_enable_failed;
  79
  80struct kmem_cache *kvm_vcpu_cache;
  81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  82
  83static __read_mostly struct preempt_ops kvm_preempt_ops;
  84
  85struct dentry *kvm_debugfs_dir;
  86
  87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88                           unsigned long arg);
  89#ifdef CONFIG_COMPAT
  90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91                                  unsigned long arg);
  92#endif
  93static int hardware_enable_all(void);
  94static void hardware_disable_all(void);
  95
  96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  97
  98bool kvm_rebooting;
  99EXPORT_SYMBOL_GPL(kvm_rebooting);
 100
 101static bool largepages_enabled = true;
 102
 103bool kvm_is_mmio_pfn(pfn_t pfn)
 104{
 105        if (pfn_valid(pfn))
 106                return PageReserved(pfn_to_page(pfn));
 107
 108        return true;
 109}
 110
 111/*
 112 * Switches to specified vcpu, until a matching vcpu_put()
 113 */
 114int vcpu_load(struct kvm_vcpu *vcpu)
 115{
 116        int cpu;
 117
 118        if (mutex_lock_killable(&vcpu->mutex))
 119                return -EINTR;
 120        if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 121                /* The thread running this VCPU changed. */
 122                struct pid *oldpid = vcpu->pid;
 123                struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 124                rcu_assign_pointer(vcpu->pid, newpid);
 125                synchronize_rcu();
 126                put_pid(oldpid);
 127        }
 128        cpu = get_cpu();
 129        preempt_notifier_register(&vcpu->preempt_notifier);
 130        kvm_arch_vcpu_load(vcpu, cpu);
 131        put_cpu();
 132        return 0;
 133}
 134
 135void vcpu_put(struct kvm_vcpu *vcpu)
 136{
 137        preempt_disable();
 138        kvm_arch_vcpu_put(vcpu);
 139        preempt_notifier_unregister(&vcpu->preempt_notifier);
 140        preempt_enable();
 141        mutex_unlock(&vcpu->mutex);
 142}
 143
 144static void ack_flush(void *_completed)
 145{
 146}
 147
 148static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 149{
 150        int i, cpu, me;
 151        cpumask_var_t cpus;
 152        bool called = true;
 153        struct kvm_vcpu *vcpu;
 154
 155        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 156
 157        me = get_cpu();
 158        kvm_for_each_vcpu(i, vcpu, kvm) {
 159                kvm_make_request(req, vcpu);
 160                cpu = vcpu->cpu;
 161
 162                /* Set ->requests bit before we read ->mode */
 163                smp_mb();
 164
 165                if (cpus != NULL && cpu != -1 && cpu != me &&
 166                      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 167                        cpumask_set_cpu(cpu, cpus);
 168        }
 169        if (unlikely(cpus == NULL))
 170                smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 171        else if (!cpumask_empty(cpus))
 172                smp_call_function_many(cpus, ack_flush, NULL, 1);
 173        else
 174                called = false;
 175        put_cpu();
 176        free_cpumask_var(cpus);
 177        return called;
 178}
 179
 180void kvm_flush_remote_tlbs(struct kvm *kvm)
 181{
 182        long dirty_count = kvm->tlbs_dirty;
 183
 184        smp_mb();
 185        if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 186                ++kvm->stat.remote_tlb_flush;
 187        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 188}
 189
 190void kvm_reload_remote_mmus(struct kvm *kvm)
 191{
 192        make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 193}
 194
 195void kvm_make_mclock_inprogress_request(struct kvm *kvm)
 196{
 197        make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
 198}
 199
 200void kvm_make_scan_ioapic_request(struct kvm *kvm)
 201{
 202        make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
 203}
 204
 205int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 206{
 207        struct page *page;
 208        int r;
 209
 210        mutex_init(&vcpu->mutex);
 211        vcpu->cpu = -1;
 212        vcpu->kvm = kvm;
 213        vcpu->vcpu_id = id;
 214        vcpu->pid = NULL;
 215        init_waitqueue_head(&vcpu->wq);
 216        kvm_async_pf_vcpu_init(vcpu);
 217
 218        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 219        if (!page) {
 220                r = -ENOMEM;
 221                goto fail;
 222        }
 223        vcpu->run = page_address(page);
 224
 225        kvm_vcpu_set_in_spin_loop(vcpu, false);
 226        kvm_vcpu_set_dy_eligible(vcpu, false);
 227        vcpu->preempted = false;
 228
 229        r = kvm_arch_vcpu_init(vcpu);
 230        if (r < 0)
 231                goto fail_free_run;
 232        return 0;
 233
 234fail_free_run:
 235        free_page((unsigned long)vcpu->run);
 236fail:
 237        return r;
 238}
 239EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 240
 241void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 242{
 243        put_pid(vcpu->pid);
 244        kvm_arch_vcpu_uninit(vcpu);
 245        free_page((unsigned long)vcpu->run);
 246}
 247EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 248
 249#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 250static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 251{
 252        return container_of(mn, struct kvm, mmu_notifier);
 253}
 254
 255static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 256                                             struct mm_struct *mm,
 257                                             unsigned long address)
 258{
 259        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 260        int need_tlb_flush, idx;
 261
 262        /*
 263         * When ->invalidate_page runs, the linux pte has been zapped
 264         * already but the page is still allocated until
 265         * ->invalidate_page returns. So if we increase the sequence
 266         * here the kvm page fault will notice if the spte can't be
 267         * established because the page is going to be freed. If
 268         * instead the kvm page fault establishes the spte before
 269         * ->invalidate_page runs, kvm_unmap_hva will release it
 270         * before returning.
 271         *
 272         * The sequence increase only need to be seen at spin_unlock
 273         * time, and not at spin_lock time.
 274         *
 275         * Increasing the sequence after the spin_unlock would be
 276         * unsafe because the kvm page fault could then establish the
 277         * pte after kvm_unmap_hva returned, without noticing the page
 278         * is going to be freed.
 279         */
 280        idx = srcu_read_lock(&kvm->srcu);
 281        spin_lock(&kvm->mmu_lock);
 282
 283        kvm->mmu_notifier_seq++;
 284        need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 285        /* we've to flush the tlb before the pages can be freed */
 286        if (need_tlb_flush)
 287                kvm_flush_remote_tlbs(kvm);
 288
 289        spin_unlock(&kvm->mmu_lock);
 290        srcu_read_unlock(&kvm->srcu, idx);
 291}
 292
 293static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 294                                        struct mm_struct *mm,
 295                                        unsigned long address,
 296                                        pte_t pte)
 297{
 298        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 299        int idx;
 300
 301        idx = srcu_read_lock(&kvm->srcu);
 302        spin_lock(&kvm->mmu_lock);
 303        kvm->mmu_notifier_seq++;
 304        kvm_set_spte_hva(kvm, address, pte);
 305        spin_unlock(&kvm->mmu_lock);
 306        srcu_read_unlock(&kvm->srcu, idx);
 307}
 308
 309static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 310                                                    struct mm_struct *mm,
 311                                                    unsigned long start,
 312                                                    unsigned long end)
 313{
 314        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 315        int need_tlb_flush = 0, idx;
 316
 317        idx = srcu_read_lock(&kvm->srcu);
 318        spin_lock(&kvm->mmu_lock);
 319        /*
 320         * The count increase must become visible at unlock time as no
 321         * spte can be established without taking the mmu_lock and
 322         * count is also read inside the mmu_lock critical section.
 323         */
 324        kvm->mmu_notifier_count++;
 325        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 326        need_tlb_flush |= kvm->tlbs_dirty;
 327        /* we've to flush the tlb before the pages can be freed */
 328        if (need_tlb_flush)
 329                kvm_flush_remote_tlbs(kvm);
 330
 331        spin_unlock(&kvm->mmu_lock);
 332        srcu_read_unlock(&kvm->srcu, idx);
 333}
 334
 335static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 336                                                  struct mm_struct *mm,
 337                                                  unsigned long start,
 338                                                  unsigned long end)
 339{
 340        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 341
 342        spin_lock(&kvm->mmu_lock);
 343        /*
 344         * This sequence increase will notify the kvm page fault that
 345         * the page that is going to be mapped in the spte could have
 346         * been freed.
 347         */
 348        kvm->mmu_notifier_seq++;
 349        smp_wmb();
 350        /*
 351         * The above sequence increase must be visible before the
 352         * below count decrease, which is ensured by the smp_wmb above
 353         * in conjunction with the smp_rmb in mmu_notifier_retry().
 354         */
 355        kvm->mmu_notifier_count--;
 356        spin_unlock(&kvm->mmu_lock);
 357
 358        BUG_ON(kvm->mmu_notifier_count < 0);
 359}
 360
 361static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 362                                              struct mm_struct *mm,
 363                                              unsigned long address)
 364{
 365        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 366        int young, idx;
 367
 368        idx = srcu_read_lock(&kvm->srcu);
 369        spin_lock(&kvm->mmu_lock);
 370
 371        young = kvm_age_hva(kvm, address);
 372        if (young)
 373                kvm_flush_remote_tlbs(kvm);
 374
 375        spin_unlock(&kvm->mmu_lock);
 376        srcu_read_unlock(&kvm->srcu, idx);
 377
 378        return young;
 379}
 380
 381static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 382                                       struct mm_struct *mm,
 383                                       unsigned long address)
 384{
 385        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 386        int young, idx;
 387
 388        idx = srcu_read_lock(&kvm->srcu);
 389        spin_lock(&kvm->mmu_lock);
 390        young = kvm_test_age_hva(kvm, address);
 391        spin_unlock(&kvm->mmu_lock);
 392        srcu_read_unlock(&kvm->srcu, idx);
 393
 394        return young;
 395}
 396
 397static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 398                                     struct mm_struct *mm)
 399{
 400        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 401        int idx;
 402
 403        idx = srcu_read_lock(&kvm->srcu);
 404        kvm_arch_flush_shadow_all(kvm);
 405        srcu_read_unlock(&kvm->srcu, idx);
 406}
 407
 408static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 409        .invalidate_page        = kvm_mmu_notifier_invalidate_page,
 410        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 411        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 412        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 413        .test_young             = kvm_mmu_notifier_test_young,
 414        .change_pte             = kvm_mmu_notifier_change_pte,
 415        .release                = kvm_mmu_notifier_release,
 416};
 417
 418static int kvm_init_mmu_notifier(struct kvm *kvm)
 419{
 420        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 421        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 422}
 423
 424#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 425
 426static int kvm_init_mmu_notifier(struct kvm *kvm)
 427{
 428        return 0;
 429}
 430
 431#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 432
 433static void kvm_init_memslots_id(struct kvm *kvm)
 434{
 435        int i;
 436        struct kvm_memslots *slots = kvm->memslots;
 437
 438        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 439                slots->id_to_index[i] = slots->memslots[i].id = i;
 440}
 441
 442static struct kvm *kvm_create_vm(unsigned long type)
 443{
 444        int r, i;
 445        struct kvm *kvm = kvm_arch_alloc_vm();
 446
 447        if (!kvm)
 448                return ERR_PTR(-ENOMEM);
 449
 450        r = kvm_arch_init_vm(kvm, type);
 451        if (r)
 452                goto out_err_nodisable;
 453
 454        r = hardware_enable_all();
 455        if (r)
 456                goto out_err_nodisable;
 457
 458#ifdef CONFIG_HAVE_KVM_IRQCHIP
 459        INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 460        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 461#endif
 462
 463        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 464
 465        r = -ENOMEM;
 466        kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 467        if (!kvm->memslots)
 468                goto out_err_nosrcu;
 469        kvm_init_memslots_id(kvm);
 470        if (init_srcu_struct(&kvm->srcu))
 471                goto out_err_nosrcu;
 472        for (i = 0; i < KVM_NR_BUSES; i++) {
 473                kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 474                                        GFP_KERNEL);
 475                if (!kvm->buses[i])
 476                        goto out_err;
 477        }
 478
 479        spin_lock_init(&kvm->mmu_lock);
 480        kvm->mm = current->mm;
 481        atomic_inc(&kvm->mm->mm_count);
 482        kvm_eventfd_init(kvm);
 483        mutex_init(&kvm->lock);
 484        mutex_init(&kvm->irq_lock);
 485        mutex_init(&kvm->slots_lock);
 486        atomic_set(&kvm->users_count, 1);
 487        INIT_LIST_HEAD(&kvm->devices);
 488
 489        r = kvm_init_mmu_notifier(kvm);
 490        if (r)
 491                goto out_err;
 492
 493        raw_spin_lock(&kvm_lock);
 494        list_add(&kvm->vm_list, &vm_list);
 495        raw_spin_unlock(&kvm_lock);
 496
 497        return kvm;
 498
 499out_err:
 500        cleanup_srcu_struct(&kvm->srcu);
 501out_err_nosrcu:
 502        hardware_disable_all();
 503out_err_nodisable:
 504        for (i = 0; i < KVM_NR_BUSES; i++)
 505                kfree(kvm->buses[i]);
 506        kfree(kvm->memslots);
 507        kvm_arch_free_vm(kvm);
 508        return ERR_PTR(r);
 509}
 510
 511/*
 512 * Avoid using vmalloc for a small buffer.
 513 * Should not be used when the size is statically known.
 514 */
 515void *kvm_kvzalloc(unsigned long size)
 516{
 517        if (size > PAGE_SIZE)
 518                return vzalloc(size);
 519        else
 520                return kzalloc(size, GFP_KERNEL);
 521}
 522
 523void kvm_kvfree(const void *addr)
 524{
 525        if (is_vmalloc_addr(addr))
 526                vfree(addr);
 527        else
 528                kfree(addr);
 529}
 530
 531static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 532{
 533        if (!memslot->dirty_bitmap)
 534                return;
 535
 536        kvm_kvfree(memslot->dirty_bitmap);
 537        memslot->dirty_bitmap = NULL;
 538}
 539
 540/*
 541 * Free any memory in @free but not in @dont.
 542 */
 543static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 544                                  struct kvm_memory_slot *dont)
 545{
 546        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 547                kvm_destroy_dirty_bitmap(free);
 548
 549        kvm_arch_free_memslot(free, dont);
 550
 551        free->npages = 0;
 552}
 553
 554void kvm_free_physmem(struct kvm *kvm)
 555{
 556        struct kvm_memslots *slots = kvm->memslots;
 557        struct kvm_memory_slot *memslot;
 558
 559        kvm_for_each_memslot(memslot, slots)
 560                kvm_free_physmem_slot(memslot, NULL);
 561
 562        kfree(kvm->memslots);
 563}
 564
 565static void kvm_destroy_devices(struct kvm *kvm)
 566{
 567        struct list_head *node, *tmp;
 568
 569        list_for_each_safe(node, tmp, &kvm->devices) {
 570                struct kvm_device *dev =
 571                        list_entry(node, struct kvm_device, vm_node);
 572
 573                list_del(node);
 574                dev->ops->destroy(dev);
 575        }
 576}
 577
 578static void kvm_destroy_vm(struct kvm *kvm)
 579{
 580        int i;
 581        struct mm_struct *mm = kvm->mm;
 582
 583        kvm_arch_sync_events(kvm);
 584        raw_spin_lock(&kvm_lock);
 585        list_del(&kvm->vm_list);
 586        raw_spin_unlock(&kvm_lock);
 587        kvm_free_irq_routing(kvm);
 588        for (i = 0; i < KVM_NR_BUSES; i++)
 589                kvm_io_bus_destroy(kvm->buses[i]);
 590        kvm_coalesced_mmio_free(kvm);
 591#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 592        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 593#else
 594        kvm_arch_flush_shadow_all(kvm);
 595#endif
 596        kvm_arch_destroy_vm(kvm);
 597        kvm_destroy_devices(kvm);
 598        kvm_free_physmem(kvm);
 599        cleanup_srcu_struct(&kvm->srcu);
 600        kvm_arch_free_vm(kvm);
 601        hardware_disable_all();
 602        mmdrop(mm);
 603}
 604
 605void kvm_get_kvm(struct kvm *kvm)
 606{
 607        atomic_inc(&kvm->users_count);
 608}
 609EXPORT_SYMBOL_GPL(kvm_get_kvm);
 610
 611void kvm_put_kvm(struct kvm *kvm)
 612{
 613        if (atomic_dec_and_test(&kvm->users_count))
 614                kvm_destroy_vm(kvm);
 615}
 616EXPORT_SYMBOL_GPL(kvm_put_kvm);
 617
 618
 619static int kvm_vm_release(struct inode *inode, struct file *filp)
 620{
 621        struct kvm *kvm = filp->private_data;
 622
 623        kvm_irqfd_release(kvm);
 624
 625        kvm_put_kvm(kvm);
 626        return 0;
 627}
 628
 629/*
 630 * Allocation size is twice as large as the actual dirty bitmap size.
 631 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 632 */
 633static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 634{
 635#ifndef CONFIG_S390
 636        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 637
 638        memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
 639        if (!memslot->dirty_bitmap)
 640                return -ENOMEM;
 641
 642#endif /* !CONFIG_S390 */
 643        return 0;
 644}
 645
 646static int cmp_memslot(const void *slot1, const void *slot2)
 647{
 648        struct kvm_memory_slot *s1, *s2;
 649
 650        s1 = (struct kvm_memory_slot *)slot1;
 651        s2 = (struct kvm_memory_slot *)slot2;
 652
 653        if (s1->npages < s2->npages)
 654                return 1;
 655        if (s1->npages > s2->npages)
 656                return -1;
 657
 658        return 0;
 659}
 660
 661/*
 662 * Sort the memslots base on its size, so the larger slots
 663 * will get better fit.
 664 */
 665static void sort_memslots(struct kvm_memslots *slots)
 666{
 667        int i;
 668
 669        sort(slots->memslots, KVM_MEM_SLOTS_NUM,
 670              sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
 671
 672        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 673                slots->id_to_index[slots->memslots[i].id] = i;
 674}
 675
 676void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
 677                     u64 last_generation)
 678{
 679        if (new) {
 680                int id = new->id;
 681                struct kvm_memory_slot *old = id_to_memslot(slots, id);
 682                unsigned long npages = old->npages;
 683
 684                *old = *new;
 685                if (new->npages != npages)
 686                        sort_memslots(slots);
 687        }
 688
 689        slots->generation = last_generation + 1;
 690}
 691
 692static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
 693{
 694        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 695
 696#ifdef KVM_CAP_READONLY_MEM
 697        valid_flags |= KVM_MEM_READONLY;
 698#endif
 699
 700        if (mem->flags & ~valid_flags)
 701                return -EINVAL;
 702
 703        return 0;
 704}
 705
 706static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 707                struct kvm_memslots *slots, struct kvm_memory_slot *new)
 708{
 709        struct kvm_memslots *old_memslots = kvm->memslots;
 710
 711        update_memslots(slots, new, kvm->memslots->generation);
 712        rcu_assign_pointer(kvm->memslots, slots);
 713        synchronize_srcu_expedited(&kvm->srcu);
 714
 715        kvm_arch_memslots_updated(kvm);
 716
 717        return old_memslots;
 718}
 719
 720/*
 721 * Allocate some memory and give it an address in the guest physical address
 722 * space.
 723 *
 724 * Discontiguous memory is allowed, mostly for framebuffers.
 725 *
 726 * Must be called holding mmap_sem for write.
 727 */
 728int __kvm_set_memory_region(struct kvm *kvm,
 729                            struct kvm_userspace_memory_region *mem)
 730{
 731        int r;
 732        gfn_t base_gfn;
 733        unsigned long npages;
 734        struct kvm_memory_slot *slot;
 735        struct kvm_memory_slot old, new;
 736        struct kvm_memslots *slots = NULL, *old_memslots;
 737        enum kvm_mr_change change;
 738
 739        r = check_memory_region_flags(mem);
 740        if (r)
 741                goto out;
 742
 743        r = -EINVAL;
 744        /* General sanity checks */
 745        if (mem->memory_size & (PAGE_SIZE - 1))
 746                goto out;
 747        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 748                goto out;
 749        /* We can read the guest memory with __xxx_user() later on. */
 750        if ((mem->slot < KVM_USER_MEM_SLOTS) &&
 751            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 752             !access_ok(VERIFY_WRITE,
 753                        (void __user *)(unsigned long)mem->userspace_addr,
 754                        mem->memory_size)))
 755                goto out;
 756        if (mem->slot >= KVM_MEM_SLOTS_NUM)
 757                goto out;
 758        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 759                goto out;
 760
 761        slot = id_to_memslot(kvm->memslots, mem->slot);
 762        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 763        npages = mem->memory_size >> PAGE_SHIFT;
 764
 765        r = -EINVAL;
 766        if (npages > KVM_MEM_MAX_NR_PAGES)
 767                goto out;
 768
 769        if (!npages)
 770                mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 771
 772        new = old = *slot;
 773
 774        new.id = mem->slot;
 775        new.base_gfn = base_gfn;
 776        new.npages = npages;
 777        new.flags = mem->flags;
 778
 779        r = -EINVAL;
 780        if (npages) {
 781                if (!old.npages)
 782                        change = KVM_MR_CREATE;
 783                else { /* Modify an existing slot. */
 784                        if ((mem->userspace_addr != old.userspace_addr) ||
 785                            (npages != old.npages) ||
 786                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 787                                goto out;
 788
 789                        if (base_gfn != old.base_gfn)
 790                                change = KVM_MR_MOVE;
 791                        else if (new.flags != old.flags)
 792                                change = KVM_MR_FLAGS_ONLY;
 793                        else { /* Nothing to change. */
 794                                r = 0;
 795                                goto out;
 796                        }
 797                }
 798        } else if (old.npages) {
 799                change = KVM_MR_DELETE;
 800        } else /* Modify a non-existent slot: disallowed. */
 801                goto out;
 802
 803        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 804                /* Check for overlaps */
 805                r = -EEXIST;
 806                kvm_for_each_memslot(slot, kvm->memslots) {
 807                        if ((slot->id >= KVM_USER_MEM_SLOTS) ||
 808                            (slot->id == mem->slot))
 809                                continue;
 810                        if (!((base_gfn + npages <= slot->base_gfn) ||
 811                              (base_gfn >= slot->base_gfn + slot->npages)))
 812                                goto out;
 813                }
 814        }
 815
 816        /* Free page dirty bitmap if unneeded */
 817        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 818                new.dirty_bitmap = NULL;
 819
 820        r = -ENOMEM;
 821        if (change == KVM_MR_CREATE) {
 822                new.userspace_addr = mem->userspace_addr;
 823
 824                if (kvm_arch_create_memslot(&new, npages))
 825                        goto out_free;
 826        }
 827
 828        /* Allocate page dirty bitmap if needed */
 829        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 830                if (kvm_create_dirty_bitmap(&new) < 0)
 831                        goto out_free;
 832        }
 833
 834        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
 835                r = -ENOMEM;
 836                slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 837                                GFP_KERNEL);
 838                if (!slots)
 839                        goto out_free;
 840                slot = id_to_memslot(slots, mem->slot);
 841                slot->flags |= KVM_MEMSLOT_INVALID;
 842
 843                old_memslots = install_new_memslots(kvm, slots, NULL);
 844
 845                /* slot was deleted or moved, clear iommu mapping */
 846                kvm_iommu_unmap_pages(kvm, &old);
 847                /* From this point no new shadow pages pointing to a deleted,
 848                 * or moved, memslot will be created.
 849                 *
 850                 * validation of sp->gfn happens in:
 851                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 852                 *      - kvm_is_visible_gfn (mmu_check_roots)
 853                 */
 854                kvm_arch_flush_shadow_memslot(kvm, slot);
 855                slots = old_memslots;
 856        }
 857
 858        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
 859        if (r)
 860                goto out_slots;
 861
 862        r = -ENOMEM;
 863        /*
 864         * We can re-use the old_memslots from above, the only difference
 865         * from the currently installed memslots is the invalid flag.  This
 866         * will get overwritten by update_memslots anyway.
 867         */
 868        if (!slots) {
 869                slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 870                                GFP_KERNEL);
 871                if (!slots)
 872                        goto out_free;
 873        }
 874
 875        /*
 876         * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
 877         * un-mapped and re-mapped if their base changes.  Since base change
 878         * unmapping is handled above with slot deletion, mapping alone is
 879         * needed here.  Anything else the iommu might care about for existing
 880         * slots (size changes, userspace addr changes and read-only flag
 881         * changes) is disallowed above, so any other attribute changes getting
 882         * here can be skipped.
 883         */
 884        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 885                r = kvm_iommu_map_pages(kvm, &new);
 886                if (r)
 887                        goto out_slots;
 888        }
 889
 890        /* actual memory is freed via old in kvm_free_physmem_slot below */
 891        if (change == KVM_MR_DELETE) {
 892                new.dirty_bitmap = NULL;
 893                memset(&new.arch, 0, sizeof(new.arch));
 894        }
 895
 896        old_memslots = install_new_memslots(kvm, slots, &new);
 897
 898        kvm_arch_commit_memory_region(kvm, mem, &old, change);
 899
 900        kvm_free_physmem_slot(&old, &new);
 901        kfree(old_memslots);
 902
 903        return 0;
 904
 905out_slots:
 906        kfree(slots);
 907out_free:
 908        kvm_free_physmem_slot(&new, &old);
 909out:
 910        return r;
 911}
 912EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 913
 914int kvm_set_memory_region(struct kvm *kvm,
 915                          struct kvm_userspace_memory_region *mem)
 916{
 917        int r;
 918
 919        mutex_lock(&kvm->slots_lock);
 920        r = __kvm_set_memory_region(kvm, mem);
 921        mutex_unlock(&kvm->slots_lock);
 922        return r;
 923}
 924EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 925
 926int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 927                                   struct kvm_userspace_memory_region *mem)
 928{
 929        if (mem->slot >= KVM_USER_MEM_SLOTS)
 930                return -EINVAL;
 931        return kvm_set_memory_region(kvm, mem);
 932}
 933
 934int kvm_get_dirty_log(struct kvm *kvm,
 935                        struct kvm_dirty_log *log, int *is_dirty)
 936{
 937        struct kvm_memory_slot *memslot;
 938        int r, i;
 939        unsigned long n;
 940        unsigned long any = 0;
 941
 942        r = -EINVAL;
 943        if (log->slot >= KVM_USER_MEM_SLOTS)
 944                goto out;
 945
 946        memslot = id_to_memslot(kvm->memslots, log->slot);
 947        r = -ENOENT;
 948        if (!memslot->dirty_bitmap)
 949                goto out;
 950
 951        n = kvm_dirty_bitmap_bytes(memslot);
 952
 953        for (i = 0; !any && i < n/sizeof(long); ++i)
 954                any = memslot->dirty_bitmap[i];
 955
 956        r = -EFAULT;
 957        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 958                goto out;
 959
 960        if (any)
 961                *is_dirty = 1;
 962
 963        r = 0;
 964out:
 965        return r;
 966}
 967
 968bool kvm_largepages_enabled(void)
 969{
 970        return largepages_enabled;
 971}
 972
 973void kvm_disable_largepages(void)
 974{
 975        largepages_enabled = false;
 976}
 977EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 978
 979struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 980{
 981        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 982}
 983EXPORT_SYMBOL_GPL(gfn_to_memslot);
 984
 985int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
 986{
 987        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
 988
 989        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
 990              memslot->flags & KVM_MEMSLOT_INVALID)
 991                return 0;
 992
 993        return 1;
 994}
 995EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
 996
 997unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
 998{
 999        struct vm_area_struct *vma;
1000        unsigned long addr, size;
1001
1002        size = PAGE_SIZE;
1003
1004        addr = gfn_to_hva(kvm, gfn);
1005        if (kvm_is_error_hva(addr))
1006                return PAGE_SIZE;
1007
1008        down_read(&current->mm->mmap_sem);
1009        vma = find_vma(current->mm, addr);
1010        if (!vma)
1011                goto out;
1012
1013        size = vma_kernel_pagesize(vma);
1014
1015out:
1016        up_read(&current->mm->mmap_sem);
1017
1018        return size;
1019}
1020
1021static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022{
1023        return slot->flags & KVM_MEM_READONLY;
1024}
1025
1026static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027                                       gfn_t *nr_pages, bool write)
1028{
1029        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030                return KVM_HVA_ERR_BAD;
1031
1032        if (memslot_is_readonly(slot) && write)
1033                return KVM_HVA_ERR_RO_BAD;
1034
1035        if (nr_pages)
1036                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1037
1038        return __gfn_to_hva_memslot(slot, gfn);
1039}
1040
1041static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042                                     gfn_t *nr_pages)
1043{
1044        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045}
1046
1047unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048                                 gfn_t gfn)
1049{
1050        return gfn_to_hva_many(slot, gfn, NULL);
1051}
1052EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053
1054unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055{
1056        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057}
1058EXPORT_SYMBOL_GPL(gfn_to_hva);
1059
1060/*
1061 * If writable is set to false, the hva returned by this function is only
1062 * allowed to be read.
1063 */
1064unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1065{
1066        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1067        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1068
1069        if (!kvm_is_error_hva(hva) && writable)
1070                *writable = !memslot_is_readonly(slot);
1071
1072        return hva;
1073}
1074
1075static int kvm_read_hva(void *data, void __user *hva, int len)
1076{
1077        return __copy_from_user(data, hva, len);
1078}
1079
1080static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1081{
1082        return __copy_from_user_inatomic(data, hva, len);
1083}
1084
1085static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1086        unsigned long start, int write, struct page **page)
1087{
1088        int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1089
1090        if (write)
1091                flags |= FOLL_WRITE;
1092
1093        return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1094}
1095
1096static inline int check_user_page_hwpoison(unsigned long addr)
1097{
1098        int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1099
1100        rc = __get_user_pages(current, current->mm, addr, 1,
1101                              flags, NULL, NULL, NULL);
1102        return rc == -EHWPOISON;
1103}
1104
1105/*
1106 * The atomic path to get the writable pfn which will be stored in @pfn,
1107 * true indicates success, otherwise false is returned.
1108 */
1109static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1110                            bool write_fault, bool *writable, pfn_t *pfn)
1111{
1112        struct page *page[1];
1113        int npages;
1114
1115        if (!(async || atomic))
1116                return false;
1117
1118        /*
1119         * Fast pin a writable pfn only if it is a write fault request
1120         * or the caller allows to map a writable pfn for a read fault
1121         * request.
1122         */
1123        if (!(write_fault || writable))
1124                return false;
1125
1126        npages = __get_user_pages_fast(addr, 1, 1, page);
1127        if (npages == 1) {
1128                *pfn = page_to_pfn(page[0]);
1129
1130                if (writable)
1131                        *writable = true;
1132                return true;
1133        }
1134
1135        return false;
1136}
1137
1138/*
1139 * The slow path to get the pfn of the specified host virtual address,
1140 * 1 indicates success, -errno is returned if error is detected.
1141 */
1142static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1143                           bool *writable, pfn_t *pfn)
1144{
1145        struct page *page[1];
1146        int npages = 0;
1147
1148        might_sleep();
1149
1150        if (writable)
1151                *writable = write_fault;
1152
1153        if (async) {
1154                down_read(&current->mm->mmap_sem);
1155                npages = get_user_page_nowait(current, current->mm,
1156                                              addr, write_fault, page);
1157                up_read(&current->mm->mmap_sem);
1158        } else
1159                npages = get_user_pages_fast(addr, 1, write_fault,
1160                                             page);
1161        if (npages != 1)
1162                return npages;
1163
1164        /* map read fault as writable if possible */
1165        if (unlikely(!write_fault) && writable) {
1166                struct page *wpage[1];
1167
1168                npages = __get_user_pages_fast(addr, 1, 1, wpage);
1169                if (npages == 1) {
1170                        *writable = true;
1171                        put_page(page[0]);
1172                        page[0] = wpage[0];
1173                }
1174
1175                npages = 1;
1176        }
1177        *pfn = page_to_pfn(page[0]);
1178        return npages;
1179}
1180
1181static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1182{
1183        if (unlikely(!(vma->vm_flags & VM_READ)))
1184                return false;
1185
1186        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1187                return false;
1188
1189        return true;
1190}
1191
1192/*
1193 * Pin guest page in memory and return its pfn.
1194 * @addr: host virtual address which maps memory to the guest
1195 * @atomic: whether this function can sleep
1196 * @async: whether this function need to wait IO complete if the
1197 *         host page is not in the memory
1198 * @write_fault: whether we should get a writable host page
1199 * @writable: whether it allows to map a writable host page for !@write_fault
1200 *
1201 * The function will map a writable host page for these two cases:
1202 * 1): @write_fault = true
1203 * 2): @write_fault = false && @writable, @writable will tell the caller
1204 *     whether the mapping is writable.
1205 */
1206static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1207                        bool write_fault, bool *writable)
1208{
1209        struct vm_area_struct *vma;
1210        pfn_t pfn = 0;
1211        int npages;
1212
1213        /* we can do it either atomically or asynchronously, not both */
1214        BUG_ON(atomic && async);
1215
1216        if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1217                return pfn;
1218
1219        if (atomic)
1220                return KVM_PFN_ERR_FAULT;
1221
1222        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1223        if (npages == 1)
1224                return pfn;
1225
1226        down_read(&current->mm->mmap_sem);
1227        if (npages == -EHWPOISON ||
1228              (!async && check_user_page_hwpoison(addr))) {
1229                pfn = KVM_PFN_ERR_HWPOISON;
1230                goto exit;
1231        }
1232
1233        vma = find_vma_intersection(current->mm, addr, addr + 1);
1234
1235        if (vma == NULL)
1236                pfn = KVM_PFN_ERR_FAULT;
1237        else if ((vma->vm_flags & VM_PFNMAP)) {
1238                pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1239                        vma->vm_pgoff;
1240                BUG_ON(!kvm_is_mmio_pfn(pfn));
1241        } else {
1242                if (async && vma_is_valid(vma, write_fault))
1243                        *async = true;
1244                pfn = KVM_PFN_ERR_FAULT;
1245        }
1246exit:
1247        up_read(&current->mm->mmap_sem);
1248        return pfn;
1249}
1250
1251static pfn_t
1252__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1253                     bool *async, bool write_fault, bool *writable)
1254{
1255        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1256
1257        if (addr == KVM_HVA_ERR_RO_BAD)
1258                return KVM_PFN_ERR_RO_FAULT;
1259
1260        if (kvm_is_error_hva(addr))
1261                return KVM_PFN_NOSLOT;
1262
1263        /* Do not map writable pfn in the readonly memslot. */
1264        if (writable && memslot_is_readonly(slot)) {
1265                *writable = false;
1266                writable = NULL;
1267        }
1268
1269        return hva_to_pfn(addr, atomic, async, write_fault,
1270                          writable);
1271}
1272
1273static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1274                          bool write_fault, bool *writable)
1275{
1276        struct kvm_memory_slot *slot;
1277
1278        if (async)
1279                *async = false;
1280
1281        slot = gfn_to_memslot(kvm, gfn);
1282
1283        return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1284                                    writable);
1285}
1286
1287pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1288{
1289        return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1290}
1291EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1292
1293pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1294                       bool write_fault, bool *writable)
1295{
1296        return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1297}
1298EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1299
1300pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1301{
1302        return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1303}
1304EXPORT_SYMBOL_GPL(gfn_to_pfn);
1305
1306pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1307                      bool *writable)
1308{
1309        return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1310}
1311EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1312
1313pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1314{
1315        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1316}
1317
1318pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1319{
1320        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1321}
1322EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1323
1324int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1325                                                                  int nr_pages)
1326{
1327        unsigned long addr;
1328        gfn_t entry;
1329
1330        addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1331        if (kvm_is_error_hva(addr))
1332                return -1;
1333
1334        if (entry < nr_pages)
1335                return 0;
1336
1337        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1338}
1339EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1340
1341static struct page *kvm_pfn_to_page(pfn_t pfn)
1342{
1343        if (is_error_noslot_pfn(pfn))
1344                return KVM_ERR_PTR_BAD_PAGE;
1345
1346        if (kvm_is_mmio_pfn(pfn)) {
1347                WARN_ON(1);
1348                return KVM_ERR_PTR_BAD_PAGE;
1349        }
1350
1351        return pfn_to_page(pfn);
1352}
1353
1354struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1355{
1356        pfn_t pfn;
1357
1358        pfn = gfn_to_pfn(kvm, gfn);
1359
1360        return kvm_pfn_to_page(pfn);
1361}
1362
1363EXPORT_SYMBOL_GPL(gfn_to_page);
1364
1365void kvm_release_page_clean(struct page *page)
1366{
1367        WARN_ON(is_error_page(page));
1368
1369        kvm_release_pfn_clean(page_to_pfn(page));
1370}
1371EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1372
1373void kvm_release_pfn_clean(pfn_t pfn)
1374{
1375        if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1376                put_page(pfn_to_page(pfn));
1377}
1378EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1379
1380void kvm_release_page_dirty(struct page *page)
1381{
1382        WARN_ON(is_error_page(page));
1383
1384        kvm_release_pfn_dirty(page_to_pfn(page));
1385}
1386EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1387
1388void kvm_release_pfn_dirty(pfn_t pfn)
1389{
1390        kvm_set_pfn_dirty(pfn);
1391        kvm_release_pfn_clean(pfn);
1392}
1393EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1394
1395void kvm_set_page_dirty(struct page *page)
1396{
1397        kvm_set_pfn_dirty(page_to_pfn(page));
1398}
1399EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1400
1401void kvm_set_pfn_dirty(pfn_t pfn)
1402{
1403        if (!kvm_is_mmio_pfn(pfn)) {
1404                struct page *page = pfn_to_page(pfn);
1405                if (!PageReserved(page))
1406                        SetPageDirty(page);
1407        }
1408}
1409EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1410
1411void kvm_set_pfn_accessed(pfn_t pfn)
1412{
1413        if (!kvm_is_mmio_pfn(pfn))
1414                mark_page_accessed(pfn_to_page(pfn));
1415}
1416EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1417
1418void kvm_get_pfn(pfn_t pfn)
1419{
1420        if (!kvm_is_mmio_pfn(pfn))
1421                get_page(pfn_to_page(pfn));
1422}
1423EXPORT_SYMBOL_GPL(kvm_get_pfn);
1424
1425static int next_segment(unsigned long len, int offset)
1426{
1427        if (len > PAGE_SIZE - offset)
1428                return PAGE_SIZE - offset;
1429        else
1430                return len;
1431}
1432
1433int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1434                        int len)
1435{
1436        int r;
1437        unsigned long addr;
1438
1439        addr = gfn_to_hva_prot(kvm, gfn, NULL);
1440        if (kvm_is_error_hva(addr))
1441                return -EFAULT;
1442        r = kvm_read_hva(data, (void __user *)addr + offset, len);
1443        if (r)
1444                return -EFAULT;
1445        return 0;
1446}
1447EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1448
1449int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1450{
1451        gfn_t gfn = gpa >> PAGE_SHIFT;
1452        int seg;
1453        int offset = offset_in_page(gpa);
1454        int ret;
1455
1456        while ((seg = next_segment(len, offset)) != 0) {
1457                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1458                if (ret < 0)
1459                        return ret;
1460                offset = 0;
1461                len -= seg;
1462                data += seg;
1463                ++gfn;
1464        }
1465        return 0;
1466}
1467EXPORT_SYMBOL_GPL(kvm_read_guest);
1468
1469int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1470                          unsigned long len)
1471{
1472        int r;
1473        unsigned long addr;
1474        gfn_t gfn = gpa >> PAGE_SHIFT;
1475        int offset = offset_in_page(gpa);
1476
1477        addr = gfn_to_hva_prot(kvm, gfn, NULL);
1478        if (kvm_is_error_hva(addr))
1479                return -EFAULT;
1480        pagefault_disable();
1481        r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1482        pagefault_enable();
1483        if (r)
1484                return -EFAULT;
1485        return 0;
1486}
1487EXPORT_SYMBOL(kvm_read_guest_atomic);
1488
1489int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1490                         int offset, int len)
1491{
1492        int r;
1493        unsigned long addr;
1494
1495        addr = gfn_to_hva(kvm, gfn);
1496        if (kvm_is_error_hva(addr))
1497                return -EFAULT;
1498        r = __copy_to_user((void __user *)addr + offset, data, len);
1499        if (r)
1500                return -EFAULT;
1501        mark_page_dirty(kvm, gfn);
1502        return 0;
1503}
1504EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1505
1506int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1507                    unsigned long len)
1508{
1509        gfn_t gfn = gpa >> PAGE_SHIFT;
1510        int seg;
1511        int offset = offset_in_page(gpa);
1512        int ret;
1513
1514        while ((seg = next_segment(len, offset)) != 0) {
1515                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1516                if (ret < 0)
1517                        return ret;
1518                offset = 0;
1519                len -= seg;
1520                data += seg;
1521                ++gfn;
1522        }
1523        return 0;
1524}
1525
1526int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1527                              gpa_t gpa, unsigned long len)
1528{
1529        struct kvm_memslots *slots = kvm_memslots(kvm);
1530        int offset = offset_in_page(gpa);
1531        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1532        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1533        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1534        gfn_t nr_pages_avail;
1535
1536        ghc->gpa = gpa;
1537        ghc->generation = slots->generation;
1538        ghc->len = len;
1539        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1540        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1541        if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1542                ghc->hva += offset;
1543        } else {
1544                /*
1545                 * If the requested region crosses two memslots, we still
1546                 * verify that the entire region is valid here.
1547                 */
1548                while (start_gfn <= end_gfn) {
1549                        ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1550                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1551                                                   &nr_pages_avail);
1552                        if (kvm_is_error_hva(ghc->hva))
1553                                return -EFAULT;
1554                        start_gfn += nr_pages_avail;
1555                }
1556                /* Use the slow path for cross page reads and writes. */
1557                ghc->memslot = NULL;
1558        }
1559        return 0;
1560}
1561EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1562
1563int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1564                           void *data, unsigned long len)
1565{
1566        struct kvm_memslots *slots = kvm_memslots(kvm);
1567        int r;
1568
1569        BUG_ON(len > ghc->len);
1570
1571        if (slots->generation != ghc->generation)
1572                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1573
1574        if (unlikely(!ghc->memslot))
1575                return kvm_write_guest(kvm, ghc->gpa, data, len);
1576
1577        if (kvm_is_error_hva(ghc->hva))
1578                return -EFAULT;
1579
1580        r = __copy_to_user((void __user *)ghc->hva, data, len);
1581        if (r)
1582                return -EFAULT;
1583        mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1584
1585        return 0;
1586}
1587EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1588
1589int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1590                           void *data, unsigned long len)
1591{
1592        struct kvm_memslots *slots = kvm_memslots(kvm);
1593        int r;
1594
1595        BUG_ON(len > ghc->len);
1596
1597        if (slots->generation != ghc->generation)
1598                kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1599
1600        if (unlikely(!ghc->memslot))
1601                return kvm_read_guest(kvm, ghc->gpa, data, len);
1602
1603        if (kvm_is_error_hva(ghc->hva))
1604                return -EFAULT;
1605
1606        r = __copy_from_user(data, (void __user *)ghc->hva, len);
1607        if (r)
1608                return -EFAULT;
1609
1610        return 0;
1611}
1612EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1613
1614int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1615{
1616        return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1617                                    offset, len);
1618}
1619EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1620
1621int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1622{
1623        gfn_t gfn = gpa >> PAGE_SHIFT;
1624        int seg;
1625        int offset = offset_in_page(gpa);
1626        int ret;
1627
1628        while ((seg = next_segment(len, offset)) != 0) {
1629                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1630                if (ret < 0)
1631                        return ret;
1632                offset = 0;
1633                len -= seg;
1634                ++gfn;
1635        }
1636        return 0;
1637}
1638EXPORT_SYMBOL_GPL(kvm_clear_guest);
1639
1640void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1641                             gfn_t gfn)
1642{
1643        if (memslot && memslot->dirty_bitmap) {
1644                unsigned long rel_gfn = gfn - memslot->base_gfn;
1645
1646                set_bit_le(rel_gfn, memslot->dirty_bitmap);
1647        }
1648}
1649
1650void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1651{
1652        struct kvm_memory_slot *memslot;
1653
1654        memslot = gfn_to_memslot(kvm, gfn);
1655        mark_page_dirty_in_slot(kvm, memslot, gfn);
1656}
1657
1658/*
1659 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1660 */
1661void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1662{
1663        DEFINE_WAIT(wait);
1664
1665        for (;;) {
1666                prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1667
1668                if (kvm_arch_vcpu_runnable(vcpu)) {
1669                        kvm_make_request(KVM_REQ_UNHALT, vcpu);
1670                        break;
1671                }
1672                if (kvm_cpu_has_pending_timer(vcpu))
1673                        break;
1674                if (signal_pending(current))
1675                        break;
1676
1677                schedule();
1678        }
1679
1680        finish_wait(&vcpu->wq, &wait);
1681}
1682
1683#ifndef CONFIG_S390
1684/*
1685 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1686 */
1687void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1688{
1689        int me;
1690        int cpu = vcpu->cpu;
1691        wait_queue_head_t *wqp;
1692
1693        wqp = kvm_arch_vcpu_wq(vcpu);
1694        if (waitqueue_active(wqp)) {
1695                wake_up_interruptible(wqp);
1696                ++vcpu->stat.halt_wakeup;
1697        }
1698
1699        me = get_cpu();
1700        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1701                if (kvm_arch_vcpu_should_kick(vcpu))
1702                        smp_send_reschedule(cpu);
1703        put_cpu();
1704}
1705EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1706#endif /* !CONFIG_S390 */
1707
1708void kvm_resched(struct kvm_vcpu *vcpu)
1709{
1710        if (!need_resched())
1711                return;
1712        cond_resched();
1713}
1714EXPORT_SYMBOL_GPL(kvm_resched);
1715
1716bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1717{
1718        struct pid *pid;
1719        struct task_struct *task = NULL;
1720        bool ret = false;
1721
1722        rcu_read_lock();
1723        pid = rcu_dereference(target->pid);
1724        if (pid)
1725                task = get_pid_task(target->pid, PIDTYPE_PID);
1726        rcu_read_unlock();
1727        if (!task)
1728                return ret;
1729        if (task->flags & PF_VCPU) {
1730                put_task_struct(task);
1731                return ret;
1732        }
1733        ret = yield_to(task, 1);
1734        put_task_struct(task);
1735
1736        return ret;
1737}
1738EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1739
1740#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1741/*
1742 * Helper that checks whether a VCPU is eligible for directed yield.
1743 * Most eligible candidate to yield is decided by following heuristics:
1744 *
1745 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1746 *  (preempted lock holder), indicated by @in_spin_loop.
1747 *  Set at the beiginning and cleared at the end of interception/PLE handler.
1748 *
1749 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1750 *  chance last time (mostly it has become eligible now since we have probably
1751 *  yielded to lockholder in last iteration. This is done by toggling
1752 *  @dy_eligible each time a VCPU checked for eligibility.)
1753 *
1754 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1755 *  to preempted lock-holder could result in wrong VCPU selection and CPU
1756 *  burning. Giving priority for a potential lock-holder increases lock
1757 *  progress.
1758 *
1759 *  Since algorithm is based on heuristics, accessing another VCPU data without
1760 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1761 *  and continue with next VCPU and so on.
1762 */
1763bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1764{
1765        bool eligible;
1766
1767        eligible = !vcpu->spin_loop.in_spin_loop ||
1768                        (vcpu->spin_loop.in_spin_loop &&
1769                         vcpu->spin_loop.dy_eligible);
1770
1771        if (vcpu->spin_loop.in_spin_loop)
1772                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1773
1774        return eligible;
1775}
1776#endif
1777
1778void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1779{
1780        struct kvm *kvm = me->kvm;
1781        struct kvm_vcpu *vcpu;
1782        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1783        int yielded = 0;
1784        int try = 3;
1785        int pass;
1786        int i;
1787
1788        kvm_vcpu_set_in_spin_loop(me, true);
1789        /*
1790         * We boost the priority of a VCPU that is runnable but not
1791         * currently running, because it got preempted by something
1792         * else and called schedule in __vcpu_run.  Hopefully that
1793         * VCPU is holding the lock that we need and will release it.
1794         * We approximate round-robin by starting at the last boosted VCPU.
1795         */
1796        for (pass = 0; pass < 2 && !yielded && try; pass++) {
1797                kvm_for_each_vcpu(i, vcpu, kvm) {
1798                        if (!pass && i <= last_boosted_vcpu) {
1799                                i = last_boosted_vcpu;
1800                                continue;
1801                        } else if (pass && i > last_boosted_vcpu)
1802                                break;
1803                        if (!ACCESS_ONCE(vcpu->preempted))
1804                                continue;
1805                        if (vcpu == me)
1806                                continue;
1807                        if (waitqueue_active(&vcpu->wq))
1808                                continue;
1809                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1810                                continue;
1811
1812                        yielded = kvm_vcpu_yield_to(vcpu);
1813                        if (yielded > 0) {
1814                                kvm->last_boosted_vcpu = i;
1815                                break;
1816                        } else if (yielded < 0) {
1817                                try--;
1818                                if (!try)
1819                                        break;
1820                        }
1821                }
1822        }
1823        kvm_vcpu_set_in_spin_loop(me, false);
1824
1825        /* Ensure vcpu is not eligible during next spinloop */
1826        kvm_vcpu_set_dy_eligible(me, false);
1827}
1828EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1829
1830static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1831{
1832        struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1833        struct page *page;
1834
1835        if (vmf->pgoff == 0)
1836                page = virt_to_page(vcpu->run);
1837#ifdef CONFIG_X86
1838        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1839                page = virt_to_page(vcpu->arch.pio_data);
1840#endif
1841#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1842        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1843                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1844#endif
1845        else
1846                return kvm_arch_vcpu_fault(vcpu, vmf);
1847        get_page(page);
1848        vmf->page = page;
1849        return 0;
1850}
1851
1852static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1853        .fault = kvm_vcpu_fault,
1854};
1855
1856static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1857{
1858        vma->vm_ops = &kvm_vcpu_vm_ops;
1859        return 0;
1860}
1861
1862static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1863{
1864        struct kvm_vcpu *vcpu = filp->private_data;
1865
1866        kvm_put_kvm(vcpu->kvm);
1867        return 0;
1868}
1869
1870static struct file_operations kvm_vcpu_fops = {
1871        .release        = kvm_vcpu_release,
1872        .unlocked_ioctl = kvm_vcpu_ioctl,
1873#ifdef CONFIG_COMPAT
1874        .compat_ioctl   = kvm_vcpu_compat_ioctl,
1875#endif
1876        .mmap           = kvm_vcpu_mmap,
1877        .llseek         = noop_llseek,
1878};
1879
1880/*
1881 * Allocates an inode for the vcpu.
1882 */
1883static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1884{
1885        return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1886}
1887
1888/*
1889 * Creates some virtual cpus.  Good luck creating more than one.
1890 */
1891static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1892{
1893        int r;
1894        struct kvm_vcpu *vcpu, *v;
1895
1896        vcpu = kvm_arch_vcpu_create(kvm, id);
1897        if (IS_ERR(vcpu))
1898                return PTR_ERR(vcpu);
1899
1900        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1901
1902        r = kvm_arch_vcpu_setup(vcpu);
1903        if (r)
1904                goto vcpu_destroy;
1905
1906        mutex_lock(&kvm->lock);
1907        if (!kvm_vcpu_compatible(vcpu)) {
1908                r = -EINVAL;
1909                goto unlock_vcpu_destroy;
1910        }
1911        if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1912                r = -EINVAL;
1913                goto unlock_vcpu_destroy;
1914        }
1915
1916        kvm_for_each_vcpu(r, v, kvm)
1917                if (v->vcpu_id == id) {
1918                        r = -EEXIST;
1919                        goto unlock_vcpu_destroy;
1920                }
1921
1922        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1923
1924        /* Now it's all set up, let userspace reach it */
1925        kvm_get_kvm(kvm);
1926        r = create_vcpu_fd(vcpu);
1927        if (r < 0) {
1928                kvm_put_kvm(kvm);
1929                goto unlock_vcpu_destroy;
1930        }
1931
1932        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1933        smp_wmb();
1934        atomic_inc(&kvm->online_vcpus);
1935
1936        mutex_unlock(&kvm->lock);
1937        kvm_arch_vcpu_postcreate(vcpu);
1938        return r;
1939
1940unlock_vcpu_destroy:
1941        mutex_unlock(&kvm->lock);
1942vcpu_destroy:
1943        kvm_arch_vcpu_destroy(vcpu);
1944        return r;
1945}
1946
1947static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1948{
1949        if (sigset) {
1950                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1951                vcpu->sigset_active = 1;
1952                vcpu->sigset = *sigset;
1953        } else
1954                vcpu->sigset_active = 0;
1955        return 0;
1956}
1957
1958static long kvm_vcpu_ioctl(struct file *filp,
1959                           unsigned int ioctl, unsigned long arg)
1960{
1961        struct kvm_vcpu *vcpu = filp->private_data;
1962        void __user *argp = (void __user *)arg;
1963        int r;
1964        struct kvm_fpu *fpu = NULL;
1965        struct kvm_sregs *kvm_sregs = NULL;
1966
1967        if (vcpu->kvm->mm != current->mm)
1968                return -EIO;
1969
1970#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1971        /*
1972         * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1973         * so vcpu_load() would break it.
1974         */
1975        if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1976                return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1977#endif
1978
1979
1980        r = vcpu_load(vcpu);
1981        if (r)
1982                return r;
1983        switch (ioctl) {
1984        case KVM_RUN:
1985                r = -EINVAL;
1986                if (arg)
1987                        goto out;
1988                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1989                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1990                break;
1991        case KVM_GET_REGS: {
1992                struct kvm_regs *kvm_regs;
1993
1994                r = -ENOMEM;
1995                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1996                if (!kvm_regs)
1997                        goto out;
1998                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1999                if (r)
2000                        goto out_free1;
2001                r = -EFAULT;
2002                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2003                        goto out_free1;
2004                r = 0;
2005out_free1:
2006                kfree(kvm_regs);
2007                break;
2008        }
2009        case KVM_SET_REGS: {
2010                struct kvm_regs *kvm_regs;
2011
2012                r = -ENOMEM;
2013                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2014                if (IS_ERR(kvm_regs)) {
2015                        r = PTR_ERR(kvm_regs);
2016                        goto out;
2017                }
2018                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2019                kfree(kvm_regs);
2020                break;
2021        }
2022        case KVM_GET_SREGS: {
2023                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2024                r = -ENOMEM;
2025                if (!kvm_sregs)
2026                        goto out;
2027                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2028                if (r)
2029                        goto out;
2030                r = -EFAULT;
2031                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2032                        goto out;
2033                r = 0;
2034                break;
2035        }
2036        case KVM_SET_SREGS: {
2037                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2038                if (IS_ERR(kvm_sregs)) {
2039                        r = PTR_ERR(kvm_sregs);
2040                        kvm_sregs = NULL;
2041                        goto out;
2042                }
2043                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2044                break;
2045        }
2046        case KVM_GET_MP_STATE: {
2047                struct kvm_mp_state mp_state;
2048
2049                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2050                if (r)
2051                        goto out;
2052                r = -EFAULT;
2053                if (copy_to_user(argp, &mp_state, sizeof mp_state))
2054                        goto out;
2055                r = 0;
2056                break;
2057        }
2058        case KVM_SET_MP_STATE: {
2059                struct kvm_mp_state mp_state;
2060
2061                r = -EFAULT;
2062                if (copy_from_user(&mp_state, argp, sizeof mp_state))
2063                        goto out;
2064                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2065                break;
2066        }
2067        case KVM_TRANSLATE: {
2068                struct kvm_translation tr;
2069
2070                r = -EFAULT;
2071                if (copy_from_user(&tr, argp, sizeof tr))
2072                        goto out;
2073                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2074                if (r)
2075                        goto out;
2076                r = -EFAULT;
2077                if (copy_to_user(argp, &tr, sizeof tr))
2078                        goto out;
2079                r = 0;
2080                break;
2081        }
2082        case KVM_SET_GUEST_DEBUG: {
2083                struct kvm_guest_debug dbg;
2084
2085                r = -EFAULT;
2086                if (copy_from_user(&dbg, argp, sizeof dbg))
2087                        goto out;
2088                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2089                break;
2090        }
2091        case KVM_SET_SIGNAL_MASK: {
2092                struct kvm_signal_mask __user *sigmask_arg = argp;
2093                struct kvm_signal_mask kvm_sigmask;
2094                sigset_t sigset, *p;
2095
2096                p = NULL;
2097                if (argp) {
2098                        r = -EFAULT;
2099                        if (copy_from_user(&kvm_sigmask, argp,
2100                                           sizeof kvm_sigmask))
2101                                goto out;
2102                        r = -EINVAL;
2103                        if (kvm_sigmask.len != sizeof sigset)
2104                                goto out;
2105                        r = -EFAULT;
2106                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2107                                           sizeof sigset))
2108                                goto out;
2109                        p = &sigset;
2110                }
2111                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2112                break;
2113        }
2114        case KVM_GET_FPU: {
2115                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2116                r = -ENOMEM;
2117                if (!fpu)
2118                        goto out;
2119                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2120                if (r)
2121                        goto out;
2122                r = -EFAULT;
2123                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2124                        goto out;
2125                r = 0;
2126                break;
2127        }
2128        case KVM_SET_FPU: {
2129                fpu = memdup_user(argp, sizeof(*fpu));
2130                if (IS_ERR(fpu)) {
2131                        r = PTR_ERR(fpu);
2132                        fpu = NULL;
2133                        goto out;
2134                }
2135                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2136                break;
2137        }
2138        default:
2139                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2140        }
2141out:
2142        vcpu_put(vcpu);
2143        kfree(fpu);
2144        kfree(kvm_sregs);
2145        return r;
2146}
2147
2148#ifdef CONFIG_COMPAT
2149static long kvm_vcpu_compat_ioctl(struct file *filp,
2150                                  unsigned int ioctl, unsigned long arg)
2151{
2152        struct kvm_vcpu *vcpu = filp->private_data;
2153        void __user *argp = compat_ptr(arg);
2154        int r;
2155
2156        if (vcpu->kvm->mm != current->mm)
2157                return -EIO;
2158
2159        switch (ioctl) {
2160        case KVM_SET_SIGNAL_MASK: {
2161                struct kvm_signal_mask __user *sigmask_arg = argp;
2162                struct kvm_signal_mask kvm_sigmask;
2163                compat_sigset_t csigset;
2164                sigset_t sigset;
2165
2166                if (argp) {
2167                        r = -EFAULT;
2168                        if (copy_from_user(&kvm_sigmask, argp,
2169                                           sizeof kvm_sigmask))
2170                                goto out;
2171                        r = -EINVAL;
2172                        if (kvm_sigmask.len != sizeof csigset)
2173                                goto out;
2174                        r = -EFAULT;
2175                        if (copy_from_user(&csigset, sigmask_arg->sigset,
2176                                           sizeof csigset))
2177                                goto out;
2178                        sigset_from_compat(&sigset, &csigset);
2179                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2180                } else
2181                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2182                break;
2183        }
2184        default:
2185                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2186        }
2187
2188out:
2189        return r;
2190}
2191#endif
2192
2193static int kvm_device_ioctl_attr(struct kvm_device *dev,
2194                                 int (*accessor)(struct kvm_device *dev,
2195                                                 struct kvm_device_attr *attr),
2196                                 unsigned long arg)
2197{
2198        struct kvm_device_attr attr;
2199
2200        if (!accessor)
2201                return -EPERM;
2202
2203        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2204                return -EFAULT;
2205
2206        return accessor(dev, &attr);
2207}
2208
2209static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2210                             unsigned long arg)
2211{
2212        struct kvm_device *dev = filp->private_data;
2213
2214        switch (ioctl) {
2215        case KVM_SET_DEVICE_ATTR:
2216                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2217        case KVM_GET_DEVICE_ATTR:
2218                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2219        case KVM_HAS_DEVICE_ATTR:
2220                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2221        default:
2222                if (dev->ops->ioctl)
2223                        return dev->ops->ioctl(dev, ioctl, arg);
2224
2225                return -ENOTTY;
2226        }
2227}
2228
2229static int kvm_device_release(struct inode *inode, struct file *filp)
2230{
2231        struct kvm_device *dev = filp->private_data;
2232        struct kvm *kvm = dev->kvm;
2233
2234        kvm_put_kvm(kvm);
2235        return 0;
2236}
2237
2238static const struct file_operations kvm_device_fops = {
2239        .unlocked_ioctl = kvm_device_ioctl,
2240#ifdef CONFIG_COMPAT
2241        .compat_ioctl = kvm_device_ioctl,
2242#endif
2243        .release = kvm_device_release,
2244};
2245
2246struct kvm_device *kvm_device_from_filp(struct file *filp)
2247{
2248        if (filp->f_op != &kvm_device_fops)
2249                return NULL;
2250
2251        return filp->private_data;
2252}
2253
2254static int kvm_ioctl_create_device(struct kvm *kvm,
2255                                   struct kvm_create_device *cd)
2256{
2257        struct kvm_device_ops *ops = NULL;
2258        struct kvm_device *dev;
2259        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2260        int ret;
2261
2262        switch (cd->type) {
2263#ifdef CONFIG_KVM_MPIC
2264        case KVM_DEV_TYPE_FSL_MPIC_20:
2265        case KVM_DEV_TYPE_FSL_MPIC_42:
2266                ops = &kvm_mpic_ops;
2267                break;
2268#endif
2269#ifdef CONFIG_KVM_XICS
2270        case KVM_DEV_TYPE_XICS:
2271                ops = &kvm_xics_ops;
2272                break;
2273#endif
2274        default:
2275                return -ENODEV;
2276        }
2277
2278        if (test)
2279                return 0;
2280
2281        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2282        if (!dev)
2283                return -ENOMEM;
2284
2285        dev->ops = ops;
2286        dev->kvm = kvm;
2287
2288        ret = ops->create(dev, cd->type);
2289        if (ret < 0) {
2290                kfree(dev);
2291                return ret;
2292        }
2293
2294        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2295        if (ret < 0) {
2296                ops->destroy(dev);
2297                return ret;
2298        }
2299
2300        list_add(&dev->vm_node, &kvm->devices);
2301        kvm_get_kvm(kvm);
2302        cd->fd = ret;
2303        return 0;
2304}
2305
2306static long kvm_vm_ioctl(struct file *filp,
2307                           unsigned int ioctl, unsigned long arg)
2308{
2309        struct kvm *kvm = filp->private_data;
2310        void __user *argp = (void __user *)arg;
2311        int r;
2312
2313        if (kvm->mm != current->mm)
2314                return -EIO;
2315        switch (ioctl) {
2316        case KVM_CREATE_VCPU:
2317                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2318                break;
2319        case KVM_SET_USER_MEMORY_REGION: {
2320                struct kvm_userspace_memory_region kvm_userspace_mem;
2321
2322                r = -EFAULT;
2323                if (copy_from_user(&kvm_userspace_mem, argp,
2324                                                sizeof kvm_userspace_mem))
2325                        goto out;
2326
2327                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2328                break;
2329        }
2330        case KVM_GET_DIRTY_LOG: {
2331                struct kvm_dirty_log log;
2332
2333                r = -EFAULT;
2334                if (copy_from_user(&log, argp, sizeof log))
2335                        goto out;
2336                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2337                break;
2338        }
2339#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2340        case KVM_REGISTER_COALESCED_MMIO: {
2341                struct kvm_coalesced_mmio_zone zone;
2342                r = -EFAULT;
2343                if (copy_from_user(&zone, argp, sizeof zone))
2344                        goto out;
2345                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2346                break;
2347        }
2348        case KVM_UNREGISTER_COALESCED_MMIO: {
2349                struct kvm_coalesced_mmio_zone zone;
2350                r = -EFAULT;
2351                if (copy_from_user(&zone, argp, sizeof zone))
2352                        goto out;
2353                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2354                break;
2355        }
2356#endif
2357        case KVM_IRQFD: {
2358                struct kvm_irqfd data;
2359
2360                r = -EFAULT;
2361                if (copy_from_user(&data, argp, sizeof data))
2362                        goto out;
2363                r = kvm_irqfd(kvm, &data);
2364                break;
2365        }
2366        case KVM_IOEVENTFD: {
2367                struct kvm_ioeventfd data;
2368
2369                r = -EFAULT;
2370                if (copy_from_user(&data, argp, sizeof data))
2371                        goto out;
2372                r = kvm_ioeventfd(kvm, &data);
2373                break;
2374        }
2375#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2376        case KVM_SET_BOOT_CPU_ID:
2377                r = 0;
2378                mutex_lock(&kvm->lock);
2379                if (atomic_read(&kvm->online_vcpus) != 0)
2380                        r = -EBUSY;
2381                else
2382                        kvm->bsp_vcpu_id = arg;
2383                mutex_unlock(&kvm->lock);
2384                break;
2385#endif
2386#ifdef CONFIG_HAVE_KVM_MSI
2387        case KVM_SIGNAL_MSI: {
2388                struct kvm_msi msi;
2389
2390                r = -EFAULT;
2391                if (copy_from_user(&msi, argp, sizeof msi))
2392                        goto out;
2393                r = kvm_send_userspace_msi(kvm, &msi);
2394                break;
2395        }
2396#endif
2397#ifdef __KVM_HAVE_IRQ_LINE
2398        case KVM_IRQ_LINE_STATUS:
2399        case KVM_IRQ_LINE: {
2400                struct kvm_irq_level irq_event;
2401
2402                r = -EFAULT;
2403                if (copy_from_user(&irq_event, argp, sizeof irq_event))
2404                        goto out;
2405
2406                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2407                                        ioctl == KVM_IRQ_LINE_STATUS);
2408                if (r)
2409                        goto out;
2410
2411                r = -EFAULT;
2412                if (ioctl == KVM_IRQ_LINE_STATUS) {
2413                        if (copy_to_user(argp, &irq_event, sizeof irq_event))
2414                                goto out;
2415                }
2416
2417                r = 0;
2418                break;
2419        }
2420#endif
2421#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2422        case KVM_SET_GSI_ROUTING: {
2423                struct kvm_irq_routing routing;
2424                struct kvm_irq_routing __user *urouting;
2425                struct kvm_irq_routing_entry *entries;
2426
2427                r = -EFAULT;
2428                if (copy_from_user(&routing, argp, sizeof(routing)))
2429                        goto out;
2430                r = -EINVAL;
2431                if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2432                        goto out;
2433                if (routing.flags)
2434                        goto out;
2435                r = -ENOMEM;
2436                entries = vmalloc(routing.nr * sizeof(*entries));
2437                if (!entries)
2438                        goto out;
2439                r = -EFAULT;
2440                urouting = argp;
2441                if (copy_from_user(entries, urouting->entries,
2442                                   routing.nr * sizeof(*entries)))
2443                        goto out_free_irq_routing;
2444                r = kvm_set_irq_routing(kvm, entries, routing.nr,
2445                                        routing.flags);
2446        out_free_irq_routing:
2447                vfree(entries);
2448                break;
2449        }
2450#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2451        case KVM_CREATE_DEVICE: {
2452                struct kvm_create_device cd;
2453
2454                r = -EFAULT;
2455                if (copy_from_user(&cd, argp, sizeof(cd)))
2456                        goto out;
2457
2458                r = kvm_ioctl_create_device(kvm, &cd);
2459                if (r)
2460                        goto out;
2461
2462                r = -EFAULT;
2463                if (copy_to_user(argp, &cd, sizeof(cd)))
2464                        goto out;
2465
2466                r = 0;
2467                break;
2468        }
2469        default:
2470                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2471                if (r == -ENOTTY)
2472                        r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2473        }
2474out:
2475        return r;
2476}
2477
2478#ifdef CONFIG_COMPAT
2479struct compat_kvm_dirty_log {
2480        __u32 slot;
2481        __u32 padding1;
2482        union {
2483                compat_uptr_t dirty_bitmap; /* one bit per page */
2484                __u64 padding2;
2485        };
2486};
2487
2488static long kvm_vm_compat_ioctl(struct file *filp,
2489                           unsigned int ioctl, unsigned long arg)
2490{
2491        struct kvm *kvm = filp->private_data;
2492        int r;
2493
2494        if (kvm->mm != current->mm)
2495                return -EIO;
2496        switch (ioctl) {
2497        case KVM_GET_DIRTY_LOG: {
2498                struct compat_kvm_dirty_log compat_log;
2499                struct kvm_dirty_log log;
2500
2501                r = -EFAULT;
2502                if (copy_from_user(&compat_log, (void __user *)arg,
2503                                   sizeof(compat_log)))
2504                        goto out;
2505                log.slot         = compat_log.slot;
2506                log.padding1     = compat_log.padding1;
2507                log.padding2     = compat_log.padding2;
2508                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2509
2510                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2511                break;
2512        }
2513        default:
2514                r = kvm_vm_ioctl(filp, ioctl, arg);
2515        }
2516
2517out:
2518        return r;
2519}
2520#endif
2521
2522static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2523{
2524        struct page *page[1];
2525        unsigned long addr;
2526        int npages;
2527        gfn_t gfn = vmf->pgoff;
2528        struct kvm *kvm = vma->vm_file->private_data;
2529
2530        addr = gfn_to_hva(kvm, gfn);
2531        if (kvm_is_error_hva(addr))
2532                return VM_FAULT_SIGBUS;
2533
2534        npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2535                                NULL);
2536        if (unlikely(npages != 1))
2537                return VM_FAULT_SIGBUS;
2538
2539        vmf->page = page[0];
2540        return 0;
2541}
2542
2543static const struct vm_operations_struct kvm_vm_vm_ops = {
2544        .fault = kvm_vm_fault,
2545};
2546
2547static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2548{
2549        vma->vm_ops = &kvm_vm_vm_ops;
2550        return 0;
2551}
2552
2553static struct file_operations kvm_vm_fops = {
2554        .release        = kvm_vm_release,
2555        .unlocked_ioctl = kvm_vm_ioctl,
2556#ifdef CONFIG_COMPAT
2557        .compat_ioctl   = kvm_vm_compat_ioctl,
2558#endif
2559        .mmap           = kvm_vm_mmap,
2560        .llseek         = noop_llseek,
2561};
2562
2563static int kvm_dev_ioctl_create_vm(unsigned long type)
2564{
2565        int r;
2566        struct kvm *kvm;
2567
2568        kvm = kvm_create_vm(type);
2569        if (IS_ERR(kvm))
2570                return PTR_ERR(kvm);
2571#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2572        r = kvm_coalesced_mmio_init(kvm);
2573        if (r < 0) {
2574                kvm_put_kvm(kvm);
2575                return r;
2576        }
2577#endif
2578        r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2579        if (r < 0)
2580                kvm_put_kvm(kvm);
2581
2582        return r;
2583}
2584
2585static long kvm_dev_ioctl_check_extension_generic(long arg)
2586{
2587        switch (arg) {
2588        case KVM_CAP_USER_MEMORY:
2589        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2590        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2591#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2592        case KVM_CAP_SET_BOOT_CPU_ID:
2593#endif
2594        case KVM_CAP_INTERNAL_ERROR_DATA:
2595#ifdef CONFIG_HAVE_KVM_MSI
2596        case KVM_CAP_SIGNAL_MSI:
2597#endif
2598#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2599        case KVM_CAP_IRQFD_RESAMPLE:
2600#endif
2601                return 1;
2602#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2603        case KVM_CAP_IRQ_ROUTING:
2604                return KVM_MAX_IRQ_ROUTES;
2605#endif
2606        default:
2607                break;
2608        }
2609        return kvm_dev_ioctl_check_extension(arg);
2610}
2611
2612static long kvm_dev_ioctl(struct file *filp,
2613                          unsigned int ioctl, unsigned long arg)
2614{
2615        long r = -EINVAL;
2616
2617        switch (ioctl) {
2618        case KVM_GET_API_VERSION:
2619                r = -EINVAL;
2620                if (arg)
2621                        goto out;
2622                r = KVM_API_VERSION;
2623                break;
2624        case KVM_CREATE_VM:
2625                r = kvm_dev_ioctl_create_vm(arg);
2626                break;
2627        case KVM_CHECK_EXTENSION:
2628                r = kvm_dev_ioctl_check_extension_generic(arg);
2629                break;
2630        case KVM_GET_VCPU_MMAP_SIZE:
2631                r = -EINVAL;
2632                if (arg)
2633                        goto out;
2634                r = PAGE_SIZE;     /* struct kvm_run */
2635#ifdef CONFIG_X86
2636                r += PAGE_SIZE;    /* pio data page */
2637#endif
2638#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2639                r += PAGE_SIZE;    /* coalesced mmio ring page */
2640#endif
2641                break;
2642        case KVM_TRACE_ENABLE:
2643        case KVM_TRACE_PAUSE:
2644        case KVM_TRACE_DISABLE:
2645                r = -EOPNOTSUPP;
2646                break;
2647        default:
2648                return kvm_arch_dev_ioctl(filp, ioctl, arg);
2649        }
2650out:
2651        return r;
2652}
2653
2654static struct file_operations kvm_chardev_ops = {
2655        .unlocked_ioctl = kvm_dev_ioctl,
2656        .compat_ioctl   = kvm_dev_ioctl,
2657        .llseek         = noop_llseek,
2658};
2659
2660static struct miscdevice kvm_dev = {
2661        KVM_MINOR,
2662        "kvm",
2663        &kvm_chardev_ops,
2664};
2665
2666static void hardware_enable_nolock(void *junk)
2667{
2668        int cpu = raw_smp_processor_id();
2669        int r;
2670
2671        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2672                return;
2673
2674        cpumask_set_cpu(cpu, cpus_hardware_enabled);
2675
2676        r = kvm_arch_hardware_enable(NULL);
2677
2678        if (r) {
2679                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2680                atomic_inc(&hardware_enable_failed);
2681                printk(KERN_INFO "kvm: enabling virtualization on "
2682                                 "CPU%d failed\n", cpu);
2683        }
2684}
2685
2686static void hardware_enable(void *junk)
2687{
2688        raw_spin_lock(&kvm_lock);
2689        hardware_enable_nolock(junk);
2690        raw_spin_unlock(&kvm_lock);
2691}
2692
2693static void hardware_disable_nolock(void *junk)
2694{
2695        int cpu = raw_smp_processor_id();
2696
2697        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2698                return;
2699        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2700        kvm_arch_hardware_disable(NULL);
2701}
2702
2703static void hardware_disable(void *junk)
2704{
2705        raw_spin_lock(&kvm_lock);
2706        hardware_disable_nolock(junk);
2707        raw_spin_unlock(&kvm_lock);
2708}
2709
2710static void hardware_disable_all_nolock(void)
2711{
2712        BUG_ON(!kvm_usage_count);
2713
2714        kvm_usage_count--;
2715        if (!kvm_usage_count)
2716                on_each_cpu(hardware_disable_nolock, NULL, 1);
2717}
2718
2719static void hardware_disable_all(void)
2720{
2721        raw_spin_lock(&kvm_lock);
2722        hardware_disable_all_nolock();
2723        raw_spin_unlock(&kvm_lock);
2724}
2725
2726static int hardware_enable_all(void)
2727{
2728        int r = 0;
2729
2730        raw_spin_lock(&kvm_lock);
2731
2732        kvm_usage_count++;
2733        if (kvm_usage_count == 1) {
2734                atomic_set(&hardware_enable_failed, 0);
2735                on_each_cpu(hardware_enable_nolock, NULL, 1);
2736
2737                if (atomic_read(&hardware_enable_failed)) {
2738                        hardware_disable_all_nolock();
2739                        r = -EBUSY;
2740                }
2741        }
2742
2743        raw_spin_unlock(&kvm_lock);
2744
2745        return r;
2746}
2747
2748static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2749                           void *v)
2750{
2751        int cpu = (long)v;
2752
2753        if (!kvm_usage_count)
2754                return NOTIFY_OK;
2755
2756        val &= ~CPU_TASKS_FROZEN;
2757        switch (val) {
2758        case CPU_DYING:
2759                printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2760                       cpu);
2761                hardware_disable(NULL);
2762                break;
2763        case CPU_STARTING:
2764                printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2765                       cpu);
2766                hardware_enable(NULL);
2767                break;
2768        }
2769        return NOTIFY_OK;
2770}
2771
2772static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2773                      void *v)
2774{
2775        /*
2776         * Some (well, at least mine) BIOSes hang on reboot if
2777         * in vmx root mode.
2778         *
2779         * And Intel TXT required VMX off for all cpu when system shutdown.
2780         */
2781        printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2782        kvm_rebooting = true;
2783        on_each_cpu(hardware_disable_nolock, NULL, 1);
2784        return NOTIFY_OK;
2785}
2786
2787static struct notifier_block kvm_reboot_notifier = {
2788        .notifier_call = kvm_reboot,
2789        .priority = 0,
2790};
2791
2792static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2793{
2794        int i;
2795
2796        for (i = 0; i < bus->dev_count; i++) {
2797                struct kvm_io_device *pos = bus->range[i].dev;
2798
2799                kvm_iodevice_destructor(pos);
2800        }
2801        kfree(bus);
2802}
2803
2804static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2805                                 const struct kvm_io_range *r2)
2806{
2807        if (r1->addr < r2->addr)
2808                return -1;
2809        if (r1->addr + r1->len > r2->addr + r2->len)
2810                return 1;
2811        return 0;
2812}
2813
2814static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2815{
2816        return kvm_io_bus_cmp(p1, p2);
2817}
2818
2819static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2820                          gpa_t addr, int len)
2821{
2822        bus->range[bus->dev_count++] = (struct kvm_io_range) {
2823                .addr = addr,
2824                .len = len,
2825                .dev = dev,
2826        };
2827
2828        sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2829                kvm_io_bus_sort_cmp, NULL);
2830
2831        return 0;
2832}
2833
2834static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2835                             gpa_t addr, int len)
2836{
2837        struct kvm_io_range *range, key;
2838        int off;
2839
2840        key = (struct kvm_io_range) {
2841                .addr = addr,
2842                .len = len,
2843        };
2844
2845        range = bsearch(&key, bus->range, bus->dev_count,
2846                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2847        if (range == NULL)
2848                return -ENOENT;
2849
2850        off = range - bus->range;
2851
2852        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2853                off--;
2854
2855        return off;
2856}
2857
2858static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2859                              struct kvm_io_range *range, const void *val)
2860{
2861        int idx;
2862
2863        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2864        if (idx < 0)
2865                return -EOPNOTSUPP;
2866
2867        while (idx < bus->dev_count &&
2868                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2869                if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2870                                        range->len, val))
2871                        return idx;
2872                idx++;
2873        }
2874
2875        return -EOPNOTSUPP;
2876}
2877
2878/* kvm_io_bus_write - called under kvm->slots_lock */
2879int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2880                     int len, const void *val)
2881{
2882        struct kvm_io_bus *bus;
2883        struct kvm_io_range range;
2884        int r;
2885
2886        range = (struct kvm_io_range) {
2887                .addr = addr,
2888                .len = len,
2889        };
2890
2891        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2892        r = __kvm_io_bus_write(bus, &range, val);
2893        return r < 0 ? r : 0;
2894}
2895
2896/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2897int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2898                            int len, const void *val, long cookie)
2899{
2900        struct kvm_io_bus *bus;
2901        struct kvm_io_range range;
2902
2903        range = (struct kvm_io_range) {
2904                .addr = addr,
2905                .len = len,
2906        };
2907
2908        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2909
2910        /* First try the device referenced by cookie. */
2911        if ((cookie >= 0) && (cookie < bus->dev_count) &&
2912            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2913                if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2914                                        val))
2915                        return cookie;
2916
2917        /*
2918         * cookie contained garbage; fall back to search and return the
2919         * correct cookie value.
2920         */
2921        return __kvm_io_bus_write(bus, &range, val);
2922}
2923
2924static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2925                             void *val)
2926{
2927        int idx;
2928
2929        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2930        if (idx < 0)
2931                return -EOPNOTSUPP;
2932
2933        while (idx < bus->dev_count &&
2934                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2935                if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2936                                       range->len, val))
2937                        return idx;
2938                idx++;
2939        }
2940
2941        return -EOPNOTSUPP;
2942}
2943
2944/* kvm_io_bus_read - called under kvm->slots_lock */
2945int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2946                    int len, void *val)
2947{
2948        struct kvm_io_bus *bus;
2949        struct kvm_io_range range;
2950        int r;
2951
2952        range = (struct kvm_io_range) {
2953                .addr = addr,
2954                .len = len,
2955        };
2956
2957        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2958        r = __kvm_io_bus_read(bus, &range, val);
2959        return r < 0 ? r : 0;
2960}
2961
2962/* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2963int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2964                           int len, void *val, long cookie)
2965{
2966        struct kvm_io_bus *bus;
2967        struct kvm_io_range range;
2968
2969        range = (struct kvm_io_range) {
2970                .addr = addr,
2971                .len = len,
2972        };
2973
2974        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2975
2976        /* First try the device referenced by cookie. */
2977        if ((cookie >= 0) && (cookie < bus->dev_count) &&
2978            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2979                if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2980                                       val))
2981                        return cookie;
2982
2983        /*
2984         * cookie contained garbage; fall back to search and return the
2985         * correct cookie value.
2986         */
2987        return __kvm_io_bus_read(bus, &range, val);
2988}
2989
2990/* Caller must hold slots_lock. */
2991int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2992                            int len, struct kvm_io_device *dev)
2993{
2994        struct kvm_io_bus *new_bus, *bus;
2995
2996        bus = kvm->buses[bus_idx];
2997        /* exclude ioeventfd which is limited by maximum fd */
2998        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2999                return -ENOSPC;
3000
3001        new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3002                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3003        if (!new_bus)
3004                return -ENOMEM;
3005        memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3006               sizeof(struct kvm_io_range)));
3007        kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3008        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3009        synchronize_srcu_expedited(&kvm->srcu);
3010        kfree(bus);
3011
3012        return 0;
3013}
3014
3015/* Caller must hold slots_lock. */
3016int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3017                              struct kvm_io_device *dev)
3018{
3019        int i, r;
3020        struct kvm_io_bus *new_bus, *bus;
3021
3022        bus = kvm->buses[bus_idx];
3023        r = -ENOENT;
3024        for (i = 0; i < bus->dev_count; i++)
3025                if (bus->range[i].dev == dev) {
3026                        r = 0;
3027                        break;
3028                }
3029
3030        if (r)
3031                return r;
3032
3033        new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3034                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3035        if (!new_bus)
3036                return -ENOMEM;
3037
3038        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3039        new_bus->dev_count--;
3040        memcpy(new_bus->range + i, bus->range + i + 1,
3041               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3042
3043        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3044        synchronize_srcu_expedited(&kvm->srcu);
3045        kfree(bus);
3046        return r;
3047}
3048
3049static struct notifier_block kvm_cpu_notifier = {
3050        .notifier_call = kvm_cpu_hotplug,
3051};
3052
3053static int vm_stat_get(void *_offset, u64 *val)
3054{
3055        unsigned offset = (long)_offset;
3056        struct kvm *kvm;
3057
3058        *val = 0;
3059        raw_spin_lock(&kvm_lock);
3060        list_for_each_entry(kvm, &vm_list, vm_list)
3061                *val += *(u32 *)((void *)kvm + offset);
3062        raw_spin_unlock(&kvm_lock);
3063        return 0;
3064}
3065
3066DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3067
3068static int vcpu_stat_get(void *_offset, u64 *val)
3069{
3070        unsigned offset = (long)_offset;
3071        struct kvm *kvm;
3072        struct kvm_vcpu *vcpu;
3073        int i;
3074
3075        *val = 0;
3076        raw_spin_lock(&kvm_lock);
3077        list_for_each_entry(kvm, &vm_list, vm_list)
3078                kvm_for_each_vcpu(i, vcpu, kvm)
3079                        *val += *(u32 *)((void *)vcpu + offset);
3080
3081        raw_spin_unlock(&kvm_lock);
3082        return 0;
3083}
3084
3085DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3086
3087static const struct file_operations *stat_fops[] = {
3088        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3089        [KVM_STAT_VM]   = &vm_stat_fops,
3090};
3091
3092static int kvm_init_debug(void)
3093{
3094        int r = -EEXIST;
3095        struct kvm_stats_debugfs_item *p;
3096
3097        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3098        if (kvm_debugfs_dir == NULL)
3099                goto out;
3100
3101        for (p = debugfs_entries; p->name; ++p) {
3102                p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3103                                                (void *)(long)p->offset,
3104                                                stat_fops[p->kind]);
3105                if (p->dentry == NULL)
3106                        goto out_dir;
3107        }
3108
3109        return 0;
3110
3111out_dir:
3112        debugfs_remove_recursive(kvm_debugfs_dir);
3113out:
3114        return r;
3115}
3116
3117static void kvm_exit_debug(void)
3118{
3119        struct kvm_stats_debugfs_item *p;
3120
3121        for (p = debugfs_entries; p->name; ++p)
3122                debugfs_remove(p->dentry);
3123        debugfs_remove(kvm_debugfs_dir);
3124}
3125
3126static int kvm_suspend(void)
3127{
3128        if (kvm_usage_count)
3129                hardware_disable_nolock(NULL);
3130        return 0;
3131}
3132
3133static void kvm_resume(void)
3134{
3135        if (kvm_usage_count) {
3136                WARN_ON(raw_spin_is_locked(&kvm_lock));
3137                hardware_enable_nolock(NULL);
3138        }
3139}
3140
3141static struct syscore_ops kvm_syscore_ops = {
3142        .suspend = kvm_suspend,
3143        .resume = kvm_resume,
3144};
3145
3146static inline
3147struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3148{
3149        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3150}
3151
3152static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3153{
3154        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3155        if (vcpu->preempted)
3156                vcpu->preempted = false;
3157
3158        kvm_arch_vcpu_load(vcpu, cpu);
3159}
3160
3161static void kvm_sched_out(struct preempt_notifier *pn,
3162                          struct task_struct *next)
3163{
3164        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3165
3166        if (current->state == TASK_RUNNING)
3167                vcpu->preempted = true;
3168        kvm_arch_vcpu_put(vcpu);
3169}
3170
3171int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3172                  struct module *module)
3173{
3174        int r;
3175        int cpu;
3176
3177        r = kvm_arch_init(opaque);
3178        if (r)
3179                goto out_fail;
3180
3181        /*
3182         * kvm_arch_init makes sure there's at most one caller
3183         * for architectures that support multiple implementations,
3184         * like intel and amd on x86.
3185         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3186         * conflicts in case kvm is already setup for another implementation.
3187         */
3188        r = kvm_irqfd_init();
3189        if (r)
3190                goto out_irqfd;
3191
3192        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3193                r = -ENOMEM;
3194                goto out_free_0;
3195        }
3196
3197        r = kvm_arch_hardware_setup();
3198        if (r < 0)
3199                goto out_free_0a;
3200
3201        for_each_online_cpu(cpu) {
3202                smp_call_function_single(cpu,
3203                                kvm_arch_check_processor_compat,
3204                                &r, 1);
3205                if (r < 0)
3206                        goto out_free_1;
3207        }
3208
3209        r = register_cpu_notifier(&kvm_cpu_notifier);
3210        if (r)
3211                goto out_free_2;
3212        register_reboot_notifier(&kvm_reboot_notifier);
3213
3214        /* A kmem cache lets us meet the alignment requirements of fx_save. */
3215        if (!vcpu_align)
3216                vcpu_align = __alignof__(struct kvm_vcpu);
3217        kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3218                                           0, NULL);
3219        if (!kvm_vcpu_cache) {
3220                r = -ENOMEM;
3221                goto out_free_3;
3222        }
3223
3224        r = kvm_async_pf_init();
3225        if (r)
3226                goto out_free;
3227
3228        kvm_chardev_ops.owner = module;
3229        kvm_vm_fops.owner = module;
3230        kvm_vcpu_fops.owner = module;
3231
3232        r = misc_register(&kvm_dev);
3233        if (r) {
3234                printk(KERN_ERR "kvm: misc device register failed\n");
3235                goto out_unreg;
3236        }
3237
3238        register_syscore_ops(&kvm_syscore_ops);
3239
3240        kvm_preempt_ops.sched_in = kvm_sched_in;
3241        kvm_preempt_ops.sched_out = kvm_sched_out;
3242
3243        r = kvm_init_debug();
3244        if (r) {
3245                printk(KERN_ERR "kvm: create debugfs files failed\n");
3246                goto out_undebugfs;
3247        }
3248
3249        return 0;
3250
3251out_undebugfs:
3252        unregister_syscore_ops(&kvm_syscore_ops);
3253        misc_deregister(&kvm_dev);
3254out_unreg:
3255        kvm_async_pf_deinit();
3256out_free:
3257        kmem_cache_destroy(kvm_vcpu_cache);
3258out_free_3:
3259        unregister_reboot_notifier(&kvm_reboot_notifier);
3260        unregister_cpu_notifier(&kvm_cpu_notifier);
3261out_free_2:
3262out_free_1:
3263        kvm_arch_hardware_unsetup();
3264out_free_0a:
3265        free_cpumask_var(cpus_hardware_enabled);
3266out_free_0:
3267        kvm_irqfd_exit();
3268out_irqfd:
3269        kvm_arch_exit();
3270out_fail:
3271        return r;
3272}
3273EXPORT_SYMBOL_GPL(kvm_init);
3274
3275void kvm_exit(void)
3276{
3277        kvm_exit_debug();
3278        misc_deregister(&kvm_dev);
3279        kmem_cache_destroy(kvm_vcpu_cache);
3280        kvm_async_pf_deinit();
3281        unregister_syscore_ops(&kvm_syscore_ops);
3282        unregister_reboot_notifier(&kvm_reboot_notifier);
3283        unregister_cpu_notifier(&kvm_cpu_notifier);
3284        on_each_cpu(hardware_disable_nolock, NULL, 1);
3285        kvm_arch_hardware_unsetup();
3286        kvm_arch_exit();
3287        kvm_irqfd_exit();
3288        free_cpumask_var(cpus_hardware_enabled);
3289}
3290EXPORT_SYMBOL_GPL(kvm_exit);
3291