linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/smp.c
   3 *
   4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/cache.h>
  17#include <linux/profile.h>
  18#include <linux/errno.h>
  19#include <linux/mm.h>
  20#include <linux/err.h>
  21#include <linux/cpu.h>
  22#include <linux/seq_file.h>
  23#include <linux/irq.h>
  24#include <linux/percpu.h>
  25#include <linux/clockchips.h>
  26#include <linux/completion.h>
  27#include <linux/cpufreq.h>
  28#include <linux/irq_work.h>
  29
  30#include <linux/atomic.h>
  31#include <asm/smp.h>
  32#include <asm/cacheflush.h>
  33#include <asm/cpu.h>
  34#include <asm/cputype.h>
  35#include <asm/exception.h>
  36#include <asm/idmap.h>
  37#include <asm/topology.h>
  38#include <asm/mmu_context.h>
  39#include <asm/pgtable.h>
  40#include <asm/pgalloc.h>
  41#include <asm/processor.h>
  42#include <asm/sections.h>
  43#include <asm/tlbflush.h>
  44#include <asm/ptrace.h>
  45#include <asm/smp_plat.h>
  46#include <asm/virt.h>
  47#include <asm/mach/arch.h>
  48#include <asm/mpu.h>
  49
  50/*
  51 * as from 2.5, kernels no longer have an init_tasks structure
  52 * so we need some other way of telling a new secondary core
  53 * where to place its SVC stack
  54 */
  55struct secondary_data secondary_data;
  56
  57/*
  58 * control for which core is the next to come out of the secondary
  59 * boot "holding pen"
  60 */
  61volatile int pen_release = -1;
  62
  63enum ipi_msg_type {
  64        IPI_WAKEUP,
  65        IPI_TIMER,
  66        IPI_RESCHEDULE,
  67        IPI_CALL_FUNC,
  68        IPI_CALL_FUNC_SINGLE,
  69        IPI_CPU_STOP,
  70        IPI_IRQ_WORK,
  71        IPI_COMPLETION,
  72};
  73
  74static DECLARE_COMPLETION(cpu_running);
  75
  76static struct smp_operations smp_ops;
  77
  78void __init smp_set_ops(struct smp_operations *ops)
  79{
  80        if (ops)
  81                smp_ops = *ops;
  82};
  83
  84static unsigned long get_arch_pgd(pgd_t *pgd)
  85{
  86        phys_addr_t pgdir = virt_to_idmap(pgd);
  87        BUG_ON(pgdir & ARCH_PGD_MASK);
  88        return pgdir >> ARCH_PGD_SHIFT;
  89}
  90
  91int __cpu_up(unsigned int cpu, struct task_struct *idle)
  92{
  93        int ret;
  94
  95        /*
  96         * We need to tell the secondary core where to find
  97         * its stack and the page tables.
  98         */
  99        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 100#ifdef CONFIG_ARM_MPU
 101        secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
 102#endif
 103
 104#ifdef CONFIG_MMU
 105        secondary_data.pgdir = get_arch_pgd(idmap_pgd);
 106        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 107#endif
 108        __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
 109        outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
 110
 111        /*
 112         * Now bring the CPU into our world.
 113         */
 114        ret = boot_secondary(cpu, idle);
 115        if (ret == 0) {
 116                /*
 117                 * CPU was successfully started, wait for it
 118                 * to come online or time out.
 119                 */
 120                wait_for_completion_timeout(&cpu_running,
 121                                                 msecs_to_jiffies(1000));
 122
 123                if (!cpu_online(cpu)) {
 124                        pr_crit("CPU%u: failed to come online\n", cpu);
 125                        ret = -EIO;
 126                }
 127        } else {
 128                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 129        }
 130
 131
 132        memset(&secondary_data, 0, sizeof(secondary_data));
 133        return ret;
 134}
 135
 136/* platform specific SMP operations */
 137void __init smp_init_cpus(void)
 138{
 139        if (smp_ops.smp_init_cpus)
 140                smp_ops.smp_init_cpus();
 141}
 142
 143int boot_secondary(unsigned int cpu, struct task_struct *idle)
 144{
 145        if (smp_ops.smp_boot_secondary)
 146                return smp_ops.smp_boot_secondary(cpu, idle);
 147        return -ENOSYS;
 148}
 149
 150int platform_can_cpu_hotplug(void)
 151{
 152#ifdef CONFIG_HOTPLUG_CPU
 153        if (smp_ops.cpu_kill)
 154                return 1;
 155#endif
 156
 157        return 0;
 158}
 159
 160#ifdef CONFIG_HOTPLUG_CPU
 161static int platform_cpu_kill(unsigned int cpu)
 162{
 163        if (smp_ops.cpu_kill)
 164                return smp_ops.cpu_kill(cpu);
 165        return 1;
 166}
 167
 168static int platform_cpu_disable(unsigned int cpu)
 169{
 170        if (smp_ops.cpu_disable)
 171                return smp_ops.cpu_disable(cpu);
 172
 173        /*
 174         * By default, allow disabling all CPUs except the first one,
 175         * since this is special on a lot of platforms, e.g. because
 176         * of clock tick interrupts.
 177         */
 178        return cpu == 0 ? -EPERM : 0;
 179}
 180/*
 181 * __cpu_disable runs on the processor to be shutdown.
 182 */
 183int __cpu_disable(void)
 184{
 185        unsigned int cpu = smp_processor_id();
 186        int ret;
 187
 188        ret = platform_cpu_disable(cpu);
 189        if (ret)
 190                return ret;
 191
 192        /*
 193         * Take this CPU offline.  Once we clear this, we can't return,
 194         * and we must not schedule until we're ready to give up the cpu.
 195         */
 196        set_cpu_online(cpu, false);
 197
 198        /*
 199         * OK - migrate IRQs away from this CPU
 200         */
 201        migrate_irqs();
 202
 203        /*
 204         * Flush user cache and TLB mappings, and then remove this CPU
 205         * from the vm mask set of all processes.
 206         *
 207         * Caches are flushed to the Level of Unification Inner Shareable
 208         * to write-back dirty lines to unified caches shared by all CPUs.
 209         */
 210        flush_cache_louis();
 211        local_flush_tlb_all();
 212
 213        clear_tasks_mm_cpumask(cpu);
 214
 215        return 0;
 216}
 217
 218static DECLARE_COMPLETION(cpu_died);
 219
 220/*
 221 * called on the thread which is asking for a CPU to be shutdown -
 222 * waits until shutdown has completed, or it is timed out.
 223 */
 224void __cpu_die(unsigned int cpu)
 225{
 226        if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 227                pr_err("CPU%u: cpu didn't die\n", cpu);
 228                return;
 229        }
 230        printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
 231
 232        /*
 233         * platform_cpu_kill() is generally expected to do the powering off
 234         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 235         * be done by the CPU which is dying in preference to supporting
 236         * this call, but that means there is _no_ synchronisation between
 237         * the requesting CPU and the dying CPU actually losing power.
 238         */
 239        if (!platform_cpu_kill(cpu))
 240                printk("CPU%u: unable to kill\n", cpu);
 241}
 242
 243/*
 244 * Called from the idle thread for the CPU which has been shutdown.
 245 *
 246 * Note that we disable IRQs here, but do not re-enable them
 247 * before returning to the caller. This is also the behaviour
 248 * of the other hotplug-cpu capable cores, so presumably coming
 249 * out of idle fixes this.
 250 */
 251void __ref cpu_die(void)
 252{
 253        unsigned int cpu = smp_processor_id();
 254
 255        idle_task_exit();
 256
 257        local_irq_disable();
 258
 259        /*
 260         * Flush the data out of the L1 cache for this CPU.  This must be
 261         * before the completion to ensure that data is safely written out
 262         * before platform_cpu_kill() gets called - which may disable
 263         * *this* CPU and power down its cache.
 264         */
 265        flush_cache_louis();
 266
 267        /*
 268         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 269         * this returns, power and/or clocks can be removed at any point
 270         * from this CPU and its cache by platform_cpu_kill().
 271         */
 272        complete(&cpu_died);
 273
 274        /*
 275         * Ensure that the cache lines associated with that completion are
 276         * written out.  This covers the case where _this_ CPU is doing the
 277         * powering down, to ensure that the completion is visible to the
 278         * CPU waiting for this one.
 279         */
 280        flush_cache_louis();
 281
 282        /*
 283         * The actual CPU shutdown procedure is at least platform (if not
 284         * CPU) specific.  This may remove power, or it may simply spin.
 285         *
 286         * Platforms are generally expected *NOT* to return from this call,
 287         * although there are some which do because they have no way to
 288         * power down the CPU.  These platforms are the _only_ reason we
 289         * have a return path which uses the fragment of assembly below.
 290         *
 291         * The return path should not be used for platforms which can
 292         * power off the CPU.
 293         */
 294        if (smp_ops.cpu_die)
 295                smp_ops.cpu_die(cpu);
 296
 297        /*
 298         * Do not return to the idle loop - jump back to the secondary
 299         * cpu initialisation.  There's some initialisation which needs
 300         * to be repeated to undo the effects of taking the CPU offline.
 301         */
 302        __asm__("mov    sp, %0\n"
 303        "       mov     fp, #0\n"
 304        "       b       secondary_start_kernel"
 305                :
 306                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 307}
 308#endif /* CONFIG_HOTPLUG_CPU */
 309
 310/*
 311 * Called by both boot and secondaries to move global data into
 312 * per-processor storage.
 313 */
 314static void smp_store_cpu_info(unsigned int cpuid)
 315{
 316        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 317
 318        cpu_info->loops_per_jiffy = loops_per_jiffy;
 319        cpu_info->cpuid = read_cpuid_id();
 320
 321        store_cpu_topology(cpuid);
 322}
 323
 324/*
 325 * This is the secondary CPU boot entry.  We're using this CPUs
 326 * idle thread stack, but a set of temporary page tables.
 327 */
 328asmlinkage void secondary_start_kernel(void)
 329{
 330        struct mm_struct *mm = &init_mm;
 331        unsigned int cpu;
 332
 333        /*
 334         * The identity mapping is uncached (strongly ordered), so
 335         * switch away from it before attempting any exclusive accesses.
 336         */
 337        cpu_switch_mm(mm->pgd, mm);
 338        local_flush_bp_all();
 339        enter_lazy_tlb(mm, current);
 340        local_flush_tlb_all();
 341
 342        /*
 343         * All kernel threads share the same mm context; grab a
 344         * reference and switch to it.
 345         */
 346        cpu = smp_processor_id();
 347        atomic_inc(&mm->mm_count);
 348        current->active_mm = mm;
 349        cpumask_set_cpu(cpu, mm_cpumask(mm));
 350
 351        cpu_init();
 352
 353        printk("CPU%u: Booted secondary processor\n", cpu);
 354
 355        preempt_disable();
 356        trace_hardirqs_off();
 357
 358        /*
 359         * Give the platform a chance to do its own initialisation.
 360         */
 361        if (smp_ops.smp_secondary_init)
 362                smp_ops.smp_secondary_init(cpu);
 363
 364        notify_cpu_starting(cpu);
 365
 366        calibrate_delay();
 367
 368        smp_store_cpu_info(cpu);
 369
 370        /*
 371         * OK, now it's safe to let the boot CPU continue.  Wait for
 372         * the CPU migration code to notice that the CPU is online
 373         * before we continue - which happens after __cpu_up returns.
 374         */
 375        set_cpu_online(cpu, true);
 376        complete(&cpu_running);
 377
 378        local_irq_enable();
 379        local_fiq_enable();
 380
 381        /*
 382         * OK, it's off to the idle thread for us
 383         */
 384        cpu_startup_entry(CPUHP_ONLINE);
 385}
 386
 387void __init smp_cpus_done(unsigned int max_cpus)
 388{
 389        printk(KERN_INFO "SMP: Total of %d processors activated.\n",
 390               num_online_cpus());
 391
 392        hyp_mode_check();
 393}
 394
 395void __init smp_prepare_boot_cpu(void)
 396{
 397        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 398}
 399
 400void __init smp_prepare_cpus(unsigned int max_cpus)
 401{
 402        unsigned int ncores = num_possible_cpus();
 403
 404        init_cpu_topology();
 405
 406        smp_store_cpu_info(smp_processor_id());
 407
 408        /*
 409         * are we trying to boot more cores than exist?
 410         */
 411        if (max_cpus > ncores)
 412                max_cpus = ncores;
 413        if (ncores > 1 && max_cpus) {
 414                /*
 415                 * Initialise the present map, which describes the set of CPUs
 416                 * actually populated at the present time. A platform should
 417                 * re-initialize the map in the platforms smp_prepare_cpus()
 418                 * if present != possible (e.g. physical hotplug).
 419                 */
 420                init_cpu_present(cpu_possible_mask);
 421
 422                /*
 423                 * Initialise the SCU if there are more than one CPU
 424                 * and let them know where to start.
 425                 */
 426                if (smp_ops.smp_prepare_cpus)
 427                        smp_ops.smp_prepare_cpus(max_cpus);
 428        }
 429}
 430
 431static void (*smp_cross_call)(const struct cpumask *, unsigned int);
 432
 433void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 434{
 435        if (!smp_cross_call)
 436                smp_cross_call = fn;
 437}
 438
 439void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 440{
 441        smp_cross_call(mask, IPI_CALL_FUNC);
 442}
 443
 444void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 445{
 446        smp_cross_call(mask, IPI_WAKEUP);
 447}
 448
 449void arch_send_call_function_single_ipi(int cpu)
 450{
 451        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
 452}
 453
 454#ifdef CONFIG_IRQ_WORK
 455void arch_irq_work_raise(void)
 456{
 457        if (is_smp())
 458                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 459}
 460#endif
 461
 462static const char *ipi_types[NR_IPI] = {
 463#define S(x,s)  [x] = s
 464        S(IPI_WAKEUP, "CPU wakeup interrupts"),
 465        S(IPI_TIMER, "Timer broadcast interrupts"),
 466        S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 467        S(IPI_CALL_FUNC, "Function call interrupts"),
 468        S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
 469        S(IPI_CPU_STOP, "CPU stop interrupts"),
 470        S(IPI_IRQ_WORK, "IRQ work interrupts"),
 471        S(IPI_COMPLETION, "completion interrupts"),
 472};
 473
 474void show_ipi_list(struct seq_file *p, int prec)
 475{
 476        unsigned int cpu, i;
 477
 478        for (i = 0; i < NR_IPI; i++) {
 479                seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 480
 481                for_each_online_cpu(cpu)
 482                        seq_printf(p, "%10u ",
 483                                   __get_irq_stat(cpu, ipi_irqs[i]));
 484
 485                seq_printf(p, " %s\n", ipi_types[i]);
 486        }
 487}
 488
 489u64 smp_irq_stat_cpu(unsigned int cpu)
 490{
 491        u64 sum = 0;
 492        int i;
 493
 494        for (i = 0; i < NR_IPI; i++)
 495                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 496
 497        return sum;
 498}
 499
 500#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 501void tick_broadcast(const struct cpumask *mask)
 502{
 503        smp_cross_call(mask, IPI_TIMER);
 504}
 505#endif
 506
 507static DEFINE_RAW_SPINLOCK(stop_lock);
 508
 509/*
 510 * ipi_cpu_stop - handle IPI from smp_send_stop()
 511 */
 512static void ipi_cpu_stop(unsigned int cpu)
 513{
 514        if (system_state == SYSTEM_BOOTING ||
 515            system_state == SYSTEM_RUNNING) {
 516                raw_spin_lock(&stop_lock);
 517                printk(KERN_CRIT "CPU%u: stopping\n", cpu);
 518                dump_stack();
 519                raw_spin_unlock(&stop_lock);
 520        }
 521
 522        set_cpu_online(cpu, false);
 523
 524        local_fiq_disable();
 525        local_irq_disable();
 526
 527        while (1)
 528                cpu_relax();
 529}
 530
 531static DEFINE_PER_CPU(struct completion *, cpu_completion);
 532
 533int register_ipi_completion(struct completion *completion, int cpu)
 534{
 535        per_cpu(cpu_completion, cpu) = completion;
 536        return IPI_COMPLETION;
 537}
 538
 539static void ipi_complete(unsigned int cpu)
 540{
 541        complete(per_cpu(cpu_completion, cpu));
 542}
 543
 544/*
 545 * Main handler for inter-processor interrupts
 546 */
 547asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 548{
 549        handle_IPI(ipinr, regs);
 550}
 551
 552void handle_IPI(int ipinr, struct pt_regs *regs)
 553{
 554        unsigned int cpu = smp_processor_id();
 555        struct pt_regs *old_regs = set_irq_regs(regs);
 556
 557        if (ipinr < NR_IPI)
 558                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 559
 560        switch (ipinr) {
 561        case IPI_WAKEUP:
 562                break;
 563
 564#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 565        case IPI_TIMER:
 566                irq_enter();
 567                tick_receive_broadcast();
 568                irq_exit();
 569                break;
 570#endif
 571
 572        case IPI_RESCHEDULE:
 573                scheduler_ipi();
 574                break;
 575
 576        case IPI_CALL_FUNC:
 577                irq_enter();
 578                generic_smp_call_function_interrupt();
 579                irq_exit();
 580                break;
 581
 582        case IPI_CALL_FUNC_SINGLE:
 583                irq_enter();
 584                generic_smp_call_function_single_interrupt();
 585                irq_exit();
 586                break;
 587
 588        case IPI_CPU_STOP:
 589                irq_enter();
 590                ipi_cpu_stop(cpu);
 591                irq_exit();
 592                break;
 593
 594#ifdef CONFIG_IRQ_WORK
 595        case IPI_IRQ_WORK:
 596                irq_enter();
 597                irq_work_run();
 598                irq_exit();
 599                break;
 600#endif
 601
 602        case IPI_COMPLETION:
 603                irq_enter();
 604                ipi_complete(cpu);
 605                irq_exit();
 606                break;
 607
 608        default:
 609                printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
 610                       cpu, ipinr);
 611                break;
 612        }
 613        set_irq_regs(old_regs);
 614}
 615
 616void smp_send_reschedule(int cpu)
 617{
 618        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 619}
 620
 621void smp_send_stop(void)
 622{
 623        unsigned long timeout;
 624        struct cpumask mask;
 625
 626        cpumask_copy(&mask, cpu_online_mask);
 627        cpumask_clear_cpu(smp_processor_id(), &mask);
 628        if (!cpumask_empty(&mask))
 629                smp_cross_call(&mask, IPI_CPU_STOP);
 630
 631        /* Wait up to one second for other CPUs to stop */
 632        timeout = USEC_PER_SEC;
 633        while (num_online_cpus() > 1 && timeout--)
 634                udelay(1);
 635
 636        if (num_online_cpus() > 1)
 637                pr_warning("SMP: failed to stop secondary CPUs\n");
 638}
 639
 640/*
 641 * not supported here
 642 */
 643int setup_profiling_timer(unsigned int multiplier)
 644{
 645        return -EINVAL;
 646}
 647
 648#ifdef CONFIG_CPU_FREQ
 649
 650static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 651static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 652static unsigned long global_l_p_j_ref;
 653static unsigned long global_l_p_j_ref_freq;
 654
 655static int cpufreq_callback(struct notifier_block *nb,
 656                                        unsigned long val, void *data)
 657{
 658        struct cpufreq_freqs *freq = data;
 659        int cpu = freq->cpu;
 660
 661        if (freq->flags & CPUFREQ_CONST_LOOPS)
 662                return NOTIFY_OK;
 663
 664        if (!per_cpu(l_p_j_ref, cpu)) {
 665                per_cpu(l_p_j_ref, cpu) =
 666                        per_cpu(cpu_data, cpu).loops_per_jiffy;
 667                per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 668                if (!global_l_p_j_ref) {
 669                        global_l_p_j_ref = loops_per_jiffy;
 670                        global_l_p_j_ref_freq = freq->old;
 671                }
 672        }
 673
 674        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 675            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
 676            (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 677                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 678                                                global_l_p_j_ref_freq,
 679                                                freq->new);
 680                per_cpu(cpu_data, cpu).loops_per_jiffy =
 681                        cpufreq_scale(per_cpu(l_p_j_ref, cpu),
 682                                        per_cpu(l_p_j_ref_freq, cpu),
 683                                        freq->new);
 684        }
 685        return NOTIFY_OK;
 686}
 687
 688static struct notifier_block cpufreq_notifier = {
 689        .notifier_call  = cpufreq_callback,
 690};
 691
 692static int __init register_cpufreq_notifier(void)
 693{
 694        return cpufreq_register_notifier(&cpufreq_notifier,
 695                                                CPUFREQ_TRANSITION_NOTIFIER);
 696}
 697core_initcall(register_cpufreq_notifier);
 698
 699#endif
 700