linux/arch/ia64/kernel/efi.c
<<
>>
Prefs
   1/*
   2 * Extensible Firmware Interface
   3 *
   4 * Based on Extensible Firmware Interface Specification version 0.9
   5 * April 30, 1999
   6 *
   7 * Copyright (C) 1999 VA Linux Systems
   8 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
   9 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  10 *      David Mosberger-Tang <davidm@hpl.hp.com>
  11 *      Stephane Eranian <eranian@hpl.hp.com>
  12 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  13 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  14 *
  15 * All EFI Runtime Services are not implemented yet as EFI only
  16 * supports physical mode addressing on SoftSDV. This is to be fixed
  17 * in a future version.  --drummond 1999-07-20
  18 *
  19 * Implemented EFI runtime services and virtual mode calls.  --davidm
  20 *
  21 * Goutham Rao: <goutham.rao@intel.com>
  22 *      Skip non-WB memory and ignore empty memory ranges.
  23 */
  24#include <linux/module.h>
  25#include <linux/bootmem.h>
  26#include <linux/crash_dump.h>
  27#include <linux/kernel.h>
  28#include <linux/init.h>
  29#include <linux/types.h>
  30#include <linux/slab.h>
  31#include <linux/time.h>
  32#include <linux/efi.h>
  33#include <linux/kexec.h>
  34#include <linux/mm.h>
  35
  36#include <asm/io.h>
  37#include <asm/kregs.h>
  38#include <asm/meminit.h>
  39#include <asm/pgtable.h>
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG       0
  46
  47static __initdata unsigned long palo_phys;
  48
  49static __initdata efi_config_table_type_t arch_tables[] = {
  50        {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
  51        {NULL_GUID, NULL, 0},
  52};
  53
  54extern efi_status_t efi_call_phys (void *, ...);
  55
  56static efi_runtime_services_t *runtime;
  57static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  58
  59#define efi_call_virt(f, args...)       (*(f))(args)
  60
  61#define STUB_GET_TIME(prefix, adjust_arg)                                      \
  62static efi_status_t                                                            \
  63prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
  64{                                                                              \
  65        struct ia64_fpreg fr[6];                                               \
  66        efi_time_cap_t *atc = NULL;                                            \
  67        efi_status_t ret;                                                      \
  68                                                                               \
  69        if (tc)                                                                \
  70                atc = adjust_arg(tc);                                          \
  71        ia64_save_scratch_fpregs(fr);                                          \
  72        ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  73                                adjust_arg(tm), atc);                          \
  74        ia64_load_scratch_fpregs(fr);                                          \
  75        return ret;                                                            \
  76}
  77
  78#define STUB_SET_TIME(prefix, adjust_arg)                                      \
  79static efi_status_t                                                            \
  80prefix##_set_time (efi_time_t *tm)                                             \
  81{                                                                              \
  82        struct ia64_fpreg fr[6];                                               \
  83        efi_status_t ret;                                                      \
  84                                                                               \
  85        ia64_save_scratch_fpregs(fr);                                          \
  86        ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
  87                                adjust_arg(tm));                               \
  88        ia64_load_scratch_fpregs(fr);                                          \
  89        return ret;                                                            \
  90}
  91
  92#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
  93static efi_status_t                                                            \
  94prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
  95                          efi_time_t *tm)                                      \
  96{                                                                              \
  97        struct ia64_fpreg fr[6];                                               \
  98        efi_status_t ret;                                                      \
  99                                                                               \
 100        ia64_save_scratch_fpregs(fr);                                          \
 101        ret = efi_call_##prefix(                                               \
 102                (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 103                adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 104        ia64_load_scratch_fpregs(fr);                                          \
 105        return ret;                                                            \
 106}
 107
 108#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
 109static efi_status_t                                                            \
 110prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
 111{                                                                              \
 112        struct ia64_fpreg fr[6];                                               \
 113        efi_time_t *atm = NULL;                                                \
 114        efi_status_t ret;                                                      \
 115                                                                               \
 116        if (tm)                                                                \
 117                atm = adjust_arg(tm);                                          \
 118        ia64_save_scratch_fpregs(fr);                                          \
 119        ret = efi_call_##prefix(                                               \
 120                (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 121                enabled, atm);                                                 \
 122        ia64_load_scratch_fpregs(fr);                                          \
 123        return ret;                                                            \
 124}
 125
 126#define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
 127static efi_status_t                                                            \
 128prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 129                       unsigned long *data_size, void *data)                   \
 130{                                                                              \
 131        struct ia64_fpreg fr[6];                                               \
 132        u32 *aattr = NULL;                                                     \
 133        efi_status_t ret;                                                      \
 134                                                                               \
 135        if (attr)                                                              \
 136                aattr = adjust_arg(attr);                                      \
 137        ia64_save_scratch_fpregs(fr);                                          \
 138        ret = efi_call_##prefix(                                               \
 139                (efi_get_variable_t *) __va(runtime->get_variable),            \
 140                adjust_arg(name), adjust_arg(vendor), aattr,                   \
 141                adjust_arg(data_size), adjust_arg(data));                      \
 142        ia64_load_scratch_fpregs(fr);                                          \
 143        return ret;                                                            \
 144}
 145
 146#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
 147static efi_status_t                                                            \
 148prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 149                            efi_guid_t *vendor)                                \
 150{                                                                              \
 151        struct ia64_fpreg fr[6];                                               \
 152        efi_status_t ret;                                                      \
 153                                                                               \
 154        ia64_save_scratch_fpregs(fr);                                          \
 155        ret = efi_call_##prefix(                                               \
 156                (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 157                adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 158        ia64_load_scratch_fpregs(fr);                                          \
 159        return ret;                                                            \
 160}
 161
 162#define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
 163static efi_status_t                                                            \
 164prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
 165                       u32 attr, unsigned long data_size,                      \
 166                       void *data)                                             \
 167{                                                                              \
 168        struct ia64_fpreg fr[6];                                               \
 169        efi_status_t ret;                                                      \
 170                                                                               \
 171        ia64_save_scratch_fpregs(fr);                                          \
 172        ret = efi_call_##prefix(                                               \
 173                (efi_set_variable_t *) __va(runtime->set_variable),            \
 174                adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
 175                adjust_arg(data));                                             \
 176        ia64_load_scratch_fpregs(fr);                                          \
 177        return ret;                                                            \
 178}
 179
 180#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
 181static efi_status_t                                                            \
 182prefix##_get_next_high_mono_count (u32 *count)                                 \
 183{                                                                              \
 184        struct ia64_fpreg fr[6];                                               \
 185        efi_status_t ret;                                                      \
 186                                                                               \
 187        ia64_save_scratch_fpregs(fr);                                          \
 188        ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
 189                                __va(runtime->get_next_high_mono_count),       \
 190                                adjust_arg(count));                            \
 191        ia64_load_scratch_fpregs(fr);                                          \
 192        return ret;                                                            \
 193}
 194
 195#define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
 196static void                                                                    \
 197prefix##_reset_system (int reset_type, efi_status_t status,                    \
 198                       unsigned long data_size, efi_char16_t *data)            \
 199{                                                                              \
 200        struct ia64_fpreg fr[6];                                               \
 201        efi_char16_t *adata = NULL;                                            \
 202                                                                               \
 203        if (data)                                                              \
 204                adata = adjust_arg(data);                                      \
 205                                                                               \
 206        ia64_save_scratch_fpregs(fr);                                          \
 207        efi_call_##prefix(                                                     \
 208                (efi_reset_system_t *) __va(runtime->reset_system),            \
 209                reset_type, status, data_size, adata);                         \
 210        /* should not return, but just in case... */                           \
 211        ia64_load_scratch_fpregs(fr);                                          \
 212}
 213
 214#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 215
 216STUB_GET_TIME(phys, phys_ptr)
 217STUB_SET_TIME(phys, phys_ptr)
 218STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 219STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 220STUB_GET_VARIABLE(phys, phys_ptr)
 221STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 222STUB_SET_VARIABLE(phys, phys_ptr)
 223STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 224STUB_RESET_SYSTEM(phys, phys_ptr)
 225
 226#define id(arg) arg
 227
 228STUB_GET_TIME(virt, id)
 229STUB_SET_TIME(virt, id)
 230STUB_GET_WAKEUP_TIME(virt, id)
 231STUB_SET_WAKEUP_TIME(virt, id)
 232STUB_GET_VARIABLE(virt, id)
 233STUB_GET_NEXT_VARIABLE(virt, id)
 234STUB_SET_VARIABLE(virt, id)
 235STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 236STUB_RESET_SYSTEM(virt, id)
 237
 238void
 239efi_gettimeofday (struct timespec *ts)
 240{
 241        efi_time_t tm;
 242
 243        if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 244                memset(ts, 0, sizeof(*ts));
 245                return;
 246        }
 247
 248        ts->tv_sec = mktime(tm.year, tm.month, tm.day,
 249                            tm.hour, tm.minute, tm.second);
 250        ts->tv_nsec = tm.nanosecond;
 251}
 252
 253static int
 254is_memory_available (efi_memory_desc_t *md)
 255{
 256        if (!(md->attribute & EFI_MEMORY_WB))
 257                return 0;
 258
 259        switch (md->type) {
 260              case EFI_LOADER_CODE:
 261              case EFI_LOADER_DATA:
 262              case EFI_BOOT_SERVICES_CODE:
 263              case EFI_BOOT_SERVICES_DATA:
 264              case EFI_CONVENTIONAL_MEMORY:
 265                return 1;
 266        }
 267        return 0;
 268}
 269
 270typedef struct kern_memdesc {
 271        u64 attribute;
 272        u64 start;
 273        u64 num_pages;
 274} kern_memdesc_t;
 275
 276static kern_memdesc_t *kern_memmap;
 277
 278#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 279
 280static inline u64
 281kmd_end(kern_memdesc_t *kmd)
 282{
 283        return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 284}
 285
 286static inline u64
 287efi_md_end(efi_memory_desc_t *md)
 288{
 289        return (md->phys_addr + efi_md_size(md));
 290}
 291
 292static inline int
 293efi_wb(efi_memory_desc_t *md)
 294{
 295        return (md->attribute & EFI_MEMORY_WB);
 296}
 297
 298static inline int
 299efi_uc(efi_memory_desc_t *md)
 300{
 301        return (md->attribute & EFI_MEMORY_UC);
 302}
 303
 304static void
 305walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 306{
 307        kern_memdesc_t *k;
 308        u64 start, end, voff;
 309
 310        voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 311        for (k = kern_memmap; k->start != ~0UL; k++) {
 312                if (k->attribute != attr)
 313                        continue;
 314                start = PAGE_ALIGN(k->start);
 315                end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 316                if (start < end)
 317                        if ((*callback)(start + voff, end + voff, arg) < 0)
 318                                return;
 319        }
 320}
 321
 322/*
 323 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 324 * descriptor that has memory that is available for OS use.
 325 */
 326void
 327efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 328{
 329        walk(callback, arg, EFI_MEMORY_WB);
 330}
 331
 332/*
 333 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 334 * descriptor that has memory that is available for uncached allocator.
 335 */
 336void
 337efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 338{
 339        walk(callback, arg, EFI_MEMORY_UC);
 340}
 341
 342/*
 343 * Look for the PAL_CODE region reported by EFI and map it using an
 344 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 345 * Abstraction Layer chapter 11 in ADAG
 346 */
 347void *
 348efi_get_pal_addr (void)
 349{
 350        void *efi_map_start, *efi_map_end, *p;
 351        efi_memory_desc_t *md;
 352        u64 efi_desc_size;
 353        int pal_code_count = 0;
 354        u64 vaddr, mask;
 355
 356        efi_map_start = __va(ia64_boot_param->efi_memmap);
 357        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 358        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 359
 360        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 361                md = p;
 362                if (md->type != EFI_PAL_CODE)
 363                        continue;
 364
 365                if (++pal_code_count > 1) {
 366                        printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 367                               "dropped @ %llx\n", md->phys_addr);
 368                        continue;
 369                }
 370                /*
 371                 * The only ITLB entry in region 7 that is used is the one
 372                 * installed by __start().  That entry covers a 64MB range.
 373                 */
 374                mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 375                vaddr = PAGE_OFFSET + md->phys_addr;
 376
 377                /*
 378                 * We must check that the PAL mapping won't overlap with the
 379                 * kernel mapping.
 380                 *
 381                 * PAL code is guaranteed to be aligned on a power of 2 between
 382                 * 4k and 256KB and that only one ITR is needed to map it. This
 383                 * implies that the PAL code is always aligned on its size,
 384                 * i.e., the closest matching page size supported by the TLB.
 385                 * Therefore PAL code is guaranteed never to cross a 64MB unless
 386                 * it is bigger than 64MB (very unlikely!).  So for now the
 387                 * following test is enough to determine whether or not we need
 388                 * a dedicated ITR for the PAL code.
 389                 */
 390                if ((vaddr & mask) == (KERNEL_START & mask)) {
 391                        printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 392                               __func__);
 393                        continue;
 394                }
 395
 396                if (efi_md_size(md) > IA64_GRANULE_SIZE)
 397                        panic("Whoa!  PAL code size bigger than a granule!");
 398
 399#if EFI_DEBUG
 400                mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 401
 402                printk(KERN_INFO "CPU %d: mapping PAL code "
 403                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 404                       smp_processor_id(), md->phys_addr,
 405                       md->phys_addr + efi_md_size(md),
 406                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 407#endif
 408                return __va(md->phys_addr);
 409        }
 410        printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 411               __func__);
 412        return NULL;
 413}
 414
 415
 416static u8 __init palo_checksum(u8 *buffer, u32 length)
 417{
 418        u8 sum = 0;
 419        u8 *end = buffer + length;
 420
 421        while (buffer < end)
 422                sum = (u8) (sum + *(buffer++));
 423
 424        return sum;
 425}
 426
 427/*
 428 * Parse and handle PALO table which is published at:
 429 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 430 */
 431static void __init handle_palo(unsigned long phys_addr)
 432{
 433        struct palo_table *palo = __va(phys_addr);
 434        u8  checksum;
 435
 436        if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 437                printk(KERN_INFO "PALO signature incorrect.\n");
 438                return;
 439        }
 440
 441        checksum = palo_checksum((u8 *)palo, palo->length);
 442        if (checksum) {
 443                printk(KERN_INFO "PALO checksum incorrect.\n");
 444                return;
 445        }
 446
 447        setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 448}
 449
 450void
 451efi_map_pal_code (void)
 452{
 453        void *pal_vaddr = efi_get_pal_addr ();
 454        u64 psr;
 455
 456        if (!pal_vaddr)
 457                return;
 458
 459        /*
 460         * Cannot write to CRx with PSR.ic=1
 461         */
 462        psr = ia64_clear_ic();
 463        ia64_itr(0x1, IA64_TR_PALCODE,
 464                 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 465                 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 466                 IA64_GRANULE_SHIFT);
 467        paravirt_dv_serialize_data();
 468        ia64_set_psr(psr);              /* restore psr */
 469}
 470
 471void __init
 472efi_init (void)
 473{
 474        void *efi_map_start, *efi_map_end;
 475        efi_char16_t *c16;
 476        u64 efi_desc_size;
 477        char *cp, vendor[100] = "unknown";
 478        int i;
 479
 480        /*
 481         * It's too early to be able to use the standard kernel command line
 482         * support...
 483         */
 484        for (cp = boot_command_line; *cp; ) {
 485                if (memcmp(cp, "mem=", 4) == 0) {
 486                        mem_limit = memparse(cp + 4, &cp);
 487                } else if (memcmp(cp, "max_addr=", 9) == 0) {
 488                        max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 489                } else if (memcmp(cp, "min_addr=", 9) == 0) {
 490                        min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 491                } else {
 492                        while (*cp != ' ' && *cp)
 493                                ++cp;
 494                        while (*cp == ' ')
 495                                ++cp;
 496                }
 497        }
 498        if (min_addr != 0UL)
 499                printk(KERN_INFO "Ignoring memory below %lluMB\n",
 500                       min_addr >> 20);
 501        if (max_addr != ~0UL)
 502                printk(KERN_INFO "Ignoring memory above %lluMB\n",
 503                       max_addr >> 20);
 504
 505        efi.systab = __va(ia64_boot_param->efi_systab);
 506
 507        /*
 508         * Verify the EFI Table
 509         */
 510        if (efi.systab == NULL)
 511                panic("Whoa! Can't find EFI system table.\n");
 512        if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 513                panic("Whoa! EFI system table signature incorrect\n");
 514        if ((efi.systab->hdr.revision >> 16) == 0)
 515                printk(KERN_WARNING "Warning: EFI system table version "
 516                       "%d.%02d, expected 1.00 or greater\n",
 517                       efi.systab->hdr.revision >> 16,
 518                       efi.systab->hdr.revision & 0xffff);
 519
 520        /* Show what we know for posterity */
 521        c16 = __va(efi.systab->fw_vendor);
 522        if (c16) {
 523                for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
 524                        vendor[i] = *c16++;
 525                vendor[i] = '\0';
 526        }
 527
 528        printk(KERN_INFO "EFI v%u.%.02u by %s:",
 529               efi.systab->hdr.revision >> 16,
 530               efi.systab->hdr.revision & 0xffff, vendor);
 531
 532        palo_phys      = EFI_INVALID_TABLE_ADDR;
 533
 534        if (efi_config_init(arch_tables) != 0)
 535                return;
 536
 537        if (palo_phys != EFI_INVALID_TABLE_ADDR)
 538                handle_palo(palo_phys);
 539
 540        runtime = __va(efi.systab->runtime);
 541        efi.get_time = phys_get_time;
 542        efi.set_time = phys_set_time;
 543        efi.get_wakeup_time = phys_get_wakeup_time;
 544        efi.set_wakeup_time = phys_set_wakeup_time;
 545        efi.get_variable = phys_get_variable;
 546        efi.get_next_variable = phys_get_next_variable;
 547        efi.set_variable = phys_set_variable;
 548        efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 549        efi.reset_system = phys_reset_system;
 550
 551        efi_map_start = __va(ia64_boot_param->efi_memmap);
 552        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 553        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 554
 555#if EFI_DEBUG
 556        /* print EFI memory map: */
 557        {
 558                efi_memory_desc_t *md;
 559                void *p;
 560
 561                for (i = 0, p = efi_map_start; p < efi_map_end;
 562                     ++i, p += efi_desc_size)
 563                {
 564                        const char *unit;
 565                        unsigned long size;
 566
 567                        md = p;
 568                        size = md->num_pages << EFI_PAGE_SHIFT;
 569
 570                        if ((size >> 40) > 0) {
 571                                size >>= 40;
 572                                unit = "TB";
 573                        } else if ((size >> 30) > 0) {
 574                                size >>= 30;
 575                                unit = "GB";
 576                        } else if ((size >> 20) > 0) {
 577                                size >>= 20;
 578                                unit = "MB";
 579                        } else {
 580                                size >>= 10;
 581                                unit = "KB";
 582                        }
 583
 584                        printk("mem%02d: type=%2u, attr=0x%016lx, "
 585                               "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 586                               i, md->type, md->attribute, md->phys_addr,
 587                               md->phys_addr + efi_md_size(md), size, unit);
 588                }
 589        }
 590#endif
 591
 592        efi_map_pal_code();
 593        efi_enter_virtual_mode();
 594}
 595
 596void
 597efi_enter_virtual_mode (void)
 598{
 599        void *efi_map_start, *efi_map_end, *p;
 600        efi_memory_desc_t *md;
 601        efi_status_t status;
 602        u64 efi_desc_size;
 603
 604        efi_map_start = __va(ia64_boot_param->efi_memmap);
 605        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 606        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 607
 608        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 609                md = p;
 610                if (md->attribute & EFI_MEMORY_RUNTIME) {
 611                        /*
 612                         * Some descriptors have multiple bits set, so the
 613                         * order of the tests is relevant.
 614                         */
 615                        if (md->attribute & EFI_MEMORY_WB) {
 616                                md->virt_addr = (u64) __va(md->phys_addr);
 617                        } else if (md->attribute & EFI_MEMORY_UC) {
 618                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 619                        } else if (md->attribute & EFI_MEMORY_WC) {
 620#if 0
 621                                md->virt_addr = ia64_remap(md->phys_addr,
 622                                                           (_PAGE_A |
 623                                                            _PAGE_P |
 624                                                            _PAGE_D |
 625                                                            _PAGE_MA_WC |
 626                                                            _PAGE_PL_0 |
 627                                                            _PAGE_AR_RW));
 628#else
 629                                printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 630                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 631#endif
 632                        } else if (md->attribute & EFI_MEMORY_WT) {
 633#if 0
 634                                md->virt_addr = ia64_remap(md->phys_addr,
 635                                                           (_PAGE_A |
 636                                                            _PAGE_P |
 637                                                            _PAGE_D |
 638                                                            _PAGE_MA_WT |
 639                                                            _PAGE_PL_0 |
 640                                                            _PAGE_AR_RW));
 641#else
 642                                printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 643                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 644#endif
 645                        }
 646                }
 647        }
 648
 649        status = efi_call_phys(__va(runtime->set_virtual_address_map),
 650                               ia64_boot_param->efi_memmap_size,
 651                               efi_desc_size,
 652                               ia64_boot_param->efi_memdesc_version,
 653                               ia64_boot_param->efi_memmap);
 654        if (status != EFI_SUCCESS) {
 655                printk(KERN_WARNING "warning: unable to switch EFI into "
 656                       "virtual mode (status=%lu)\n", status);
 657                return;
 658        }
 659
 660        /*
 661         * Now that EFI is in virtual mode, we call the EFI functions more
 662         * efficiently:
 663         */
 664        efi.get_time = virt_get_time;
 665        efi.set_time = virt_set_time;
 666        efi.get_wakeup_time = virt_get_wakeup_time;
 667        efi.set_wakeup_time = virt_set_wakeup_time;
 668        efi.get_variable = virt_get_variable;
 669        efi.get_next_variable = virt_get_next_variable;
 670        efi.set_variable = virt_set_variable;
 671        efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 672        efi.reset_system = virt_reset_system;
 673}
 674
 675/*
 676 * Walk the EFI memory map looking for the I/O port range.  There can only be
 677 * one entry of this type, other I/O port ranges should be described via ACPI.
 678 */
 679u64
 680efi_get_iobase (void)
 681{
 682        void *efi_map_start, *efi_map_end, *p;
 683        efi_memory_desc_t *md;
 684        u64 efi_desc_size;
 685
 686        efi_map_start = __va(ia64_boot_param->efi_memmap);
 687        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 688        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 689
 690        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 691                md = p;
 692                if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 693                        if (md->attribute & EFI_MEMORY_UC)
 694                                return md->phys_addr;
 695                }
 696        }
 697        return 0;
 698}
 699
 700static struct kern_memdesc *
 701kern_memory_descriptor (unsigned long phys_addr)
 702{
 703        struct kern_memdesc *md;
 704
 705        for (md = kern_memmap; md->start != ~0UL; md++) {
 706                if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 707                         return md;
 708        }
 709        return NULL;
 710}
 711
 712static efi_memory_desc_t *
 713efi_memory_descriptor (unsigned long phys_addr)
 714{
 715        void *efi_map_start, *efi_map_end, *p;
 716        efi_memory_desc_t *md;
 717        u64 efi_desc_size;
 718
 719        efi_map_start = __va(ia64_boot_param->efi_memmap);
 720        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 721        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 722
 723        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 724                md = p;
 725
 726                if (phys_addr - md->phys_addr < efi_md_size(md))
 727                         return md;
 728        }
 729        return NULL;
 730}
 731
 732static int
 733efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 734{
 735        void *efi_map_start, *efi_map_end, *p;
 736        efi_memory_desc_t *md;
 737        u64 efi_desc_size;
 738        unsigned long end;
 739
 740        efi_map_start = __va(ia64_boot_param->efi_memmap);
 741        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 742        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 743
 744        end = phys_addr + size;
 745
 746        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 747                md = p;
 748                if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 749                        return 1;
 750        }
 751        return 0;
 752}
 753
 754u32
 755efi_mem_type (unsigned long phys_addr)
 756{
 757        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 758
 759        if (md)
 760                return md->type;
 761        return 0;
 762}
 763
 764u64
 765efi_mem_attributes (unsigned long phys_addr)
 766{
 767        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 768
 769        if (md)
 770                return md->attribute;
 771        return 0;
 772}
 773EXPORT_SYMBOL(efi_mem_attributes);
 774
 775u64
 776efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 777{
 778        unsigned long end = phys_addr + size;
 779        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 780        u64 attr;
 781
 782        if (!md)
 783                return 0;
 784
 785        /*
 786         * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 787         * the kernel that firmware needs this region mapped.
 788         */
 789        attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 790        do {
 791                unsigned long md_end = efi_md_end(md);
 792
 793                if (end <= md_end)
 794                        return attr;
 795
 796                md = efi_memory_descriptor(md_end);
 797                if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 798                        return 0;
 799        } while (md);
 800        return 0;       /* never reached */
 801}
 802
 803u64
 804kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 805{
 806        unsigned long end = phys_addr + size;
 807        struct kern_memdesc *md;
 808        u64 attr;
 809
 810        /*
 811         * This is a hack for ioremap calls before we set up kern_memmap.
 812         * Maybe we should do efi_memmap_init() earlier instead.
 813         */
 814        if (!kern_memmap) {
 815                attr = efi_mem_attribute(phys_addr, size);
 816                if (attr & EFI_MEMORY_WB)
 817                        return EFI_MEMORY_WB;
 818                return 0;
 819        }
 820
 821        md = kern_memory_descriptor(phys_addr);
 822        if (!md)
 823                return 0;
 824
 825        attr = md->attribute;
 826        do {
 827                unsigned long md_end = kmd_end(md);
 828
 829                if (end <= md_end)
 830                        return attr;
 831
 832                md = kern_memory_descriptor(md_end);
 833                if (!md || md->attribute != attr)
 834                        return 0;
 835        } while (md);
 836        return 0;       /* never reached */
 837}
 838EXPORT_SYMBOL(kern_mem_attribute);
 839
 840int
 841valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 842{
 843        u64 attr;
 844
 845        /*
 846         * /dev/mem reads and writes use copy_to_user(), which implicitly
 847         * uses a granule-sized kernel identity mapping.  It's really
 848         * only safe to do this for regions in kern_memmap.  For more
 849         * details, see Documentation/ia64/aliasing.txt.
 850         */
 851        attr = kern_mem_attribute(phys_addr, size);
 852        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 853                return 1;
 854        return 0;
 855}
 856
 857int
 858valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 859{
 860        unsigned long phys_addr = pfn << PAGE_SHIFT;
 861        u64 attr;
 862
 863        attr = efi_mem_attribute(phys_addr, size);
 864
 865        /*
 866         * /dev/mem mmap uses normal user pages, so we don't need the entire
 867         * granule, but the entire region we're mapping must support the same
 868         * attribute.
 869         */
 870        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 871                return 1;
 872
 873        /*
 874         * Intel firmware doesn't tell us about all the MMIO regions, so
 875         * in general we have to allow mmap requests.  But if EFI *does*
 876         * tell us about anything inside this region, we should deny it.
 877         * The user can always map a smaller region to avoid the overlap.
 878         */
 879        if (efi_memmap_intersects(phys_addr, size))
 880                return 0;
 881
 882        return 1;
 883}
 884
 885pgprot_t
 886phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 887                     pgprot_t vma_prot)
 888{
 889        unsigned long phys_addr = pfn << PAGE_SHIFT;
 890        u64 attr;
 891
 892        /*
 893         * For /dev/mem mmap, we use user mappings, but if the region is
 894         * in kern_memmap (and hence may be covered by a kernel mapping),
 895         * we must use the same attribute as the kernel mapping.
 896         */
 897        attr = kern_mem_attribute(phys_addr, size);
 898        if (attr & EFI_MEMORY_WB)
 899                return pgprot_cacheable(vma_prot);
 900        else if (attr & EFI_MEMORY_UC)
 901                return pgprot_noncached(vma_prot);
 902
 903        /*
 904         * Some chipsets don't support UC access to memory.  If
 905         * WB is supported, we prefer that.
 906         */
 907        if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 908                return pgprot_cacheable(vma_prot);
 909
 910        return pgprot_noncached(vma_prot);
 911}
 912
 913int __init
 914efi_uart_console_only(void)
 915{
 916        efi_status_t status;
 917        char *s, name[] = "ConOut";
 918        efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 919        efi_char16_t *utf16, name_utf16[32];
 920        unsigned char data[1024];
 921        unsigned long size = sizeof(data);
 922        struct efi_generic_dev_path *hdr, *end_addr;
 923        int uart = 0;
 924
 925        /* Convert to UTF-16 */
 926        utf16 = name_utf16;
 927        s = name;
 928        while (*s)
 929                *utf16++ = *s++ & 0x7f;
 930        *utf16 = 0;
 931
 932        status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 933        if (status != EFI_SUCCESS) {
 934                printk(KERN_ERR "No EFI %s variable?\n", name);
 935                return 0;
 936        }
 937
 938        hdr = (struct efi_generic_dev_path *) data;
 939        end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 940        while (hdr < end_addr) {
 941                if (hdr->type == EFI_DEV_MSG &&
 942                    hdr->sub_type == EFI_DEV_MSG_UART)
 943                        uart = 1;
 944                else if (hdr->type == EFI_DEV_END_PATH ||
 945                          hdr->type == EFI_DEV_END_PATH2) {
 946                        if (!uart)
 947                                return 0;
 948                        if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 949                                return 1;
 950                        uart = 0;
 951                }
 952                hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 953        }
 954        printk(KERN_ERR "Malformed %s value\n", name);
 955        return 0;
 956}
 957
 958/*
 959 * Look for the first granule aligned memory descriptor memory
 960 * that is big enough to hold EFI memory map. Make sure this
 961 * descriptor is atleast granule sized so it does not get trimmed
 962 */
 963struct kern_memdesc *
 964find_memmap_space (void)
 965{
 966        u64     contig_low=0, contig_high=0;
 967        u64     as = 0, ae;
 968        void *efi_map_start, *efi_map_end, *p, *q;
 969        efi_memory_desc_t *md, *pmd = NULL, *check_md;
 970        u64     space_needed, efi_desc_size;
 971        unsigned long total_mem = 0;
 972
 973        efi_map_start = __va(ia64_boot_param->efi_memmap);
 974        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 975        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 976
 977        /*
 978         * Worst case: we need 3 kernel descriptors for each efi descriptor
 979         * (if every entry has a WB part in the middle, and UC head and tail),
 980         * plus one for the end marker.
 981         */
 982        space_needed = sizeof(kern_memdesc_t) *
 983                (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 984
 985        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 986                md = p;
 987                if (!efi_wb(md)) {
 988                        continue;
 989                }
 990                if (pmd == NULL || !efi_wb(pmd) ||
 991                    efi_md_end(pmd) != md->phys_addr) {
 992                        contig_low = GRANULEROUNDUP(md->phys_addr);
 993                        contig_high = efi_md_end(md);
 994                        for (q = p + efi_desc_size; q < efi_map_end;
 995                             q += efi_desc_size) {
 996                                check_md = q;
 997                                if (!efi_wb(check_md))
 998                                        break;
 999                                if (contig_high != check_md->phys_addr)
1000                                        break;
1001                                contig_high = efi_md_end(check_md);
1002                        }
1003                        contig_high = GRANULEROUNDDOWN(contig_high);
1004                }
1005                if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1006                        continue;
1007
1008                /* Round ends inward to granule boundaries */
1009                as = max(contig_low, md->phys_addr);
1010                ae = min(contig_high, efi_md_end(md));
1011
1012                /* keep within max_addr= and min_addr= command line arg */
1013                as = max(as, min_addr);
1014                ae = min(ae, max_addr);
1015                if (ae <= as)
1016                        continue;
1017
1018                /* avoid going over mem= command line arg */
1019                if (total_mem + (ae - as) > mem_limit)
1020                        ae -= total_mem + (ae - as) - mem_limit;
1021
1022                if (ae <= as)
1023                        continue;
1024
1025                if (ae - as > space_needed)
1026                        break;
1027        }
1028        if (p >= efi_map_end)
1029                panic("Can't allocate space for kernel memory descriptors");
1030
1031        return __va(as);
1032}
1033
1034/*
1035 * Walk the EFI memory map and gather all memory available for kernel
1036 * to use.  We can allocate partial granules only if the unavailable
1037 * parts exist, and are WB.
1038 */
1039unsigned long
1040efi_memmap_init(u64 *s, u64 *e)
1041{
1042        struct kern_memdesc *k, *prev = NULL;
1043        u64     contig_low=0, contig_high=0;
1044        u64     as, ae, lim;
1045        void *efi_map_start, *efi_map_end, *p, *q;
1046        efi_memory_desc_t *md, *pmd = NULL, *check_md;
1047        u64     efi_desc_size;
1048        unsigned long total_mem = 0;
1049
1050        k = kern_memmap = find_memmap_space();
1051
1052        efi_map_start = __va(ia64_boot_param->efi_memmap);
1053        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1054        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1055
1056        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1057                md = p;
1058                if (!efi_wb(md)) {
1059                        if (efi_uc(md) &&
1060                            (md->type == EFI_CONVENTIONAL_MEMORY ||
1061                             md->type == EFI_BOOT_SERVICES_DATA)) {
1062                                k->attribute = EFI_MEMORY_UC;
1063                                k->start = md->phys_addr;
1064                                k->num_pages = md->num_pages;
1065                                k++;
1066                        }
1067                        continue;
1068                }
1069                if (pmd == NULL || !efi_wb(pmd) ||
1070                    efi_md_end(pmd) != md->phys_addr) {
1071                        contig_low = GRANULEROUNDUP(md->phys_addr);
1072                        contig_high = efi_md_end(md);
1073                        for (q = p + efi_desc_size; q < efi_map_end;
1074                             q += efi_desc_size) {
1075                                check_md = q;
1076                                if (!efi_wb(check_md))
1077                                        break;
1078                                if (contig_high != check_md->phys_addr)
1079                                        break;
1080                                contig_high = efi_md_end(check_md);
1081                        }
1082                        contig_high = GRANULEROUNDDOWN(contig_high);
1083                }
1084                if (!is_memory_available(md))
1085                        continue;
1086
1087                /*
1088                 * Round ends inward to granule boundaries
1089                 * Give trimmings to uncached allocator
1090                 */
1091                if (md->phys_addr < contig_low) {
1092                        lim = min(efi_md_end(md), contig_low);
1093                        if (efi_uc(md)) {
1094                                if (k > kern_memmap &&
1095                                    (k-1)->attribute == EFI_MEMORY_UC &&
1096                                    kmd_end(k-1) == md->phys_addr) {
1097                                        (k-1)->num_pages +=
1098                                                (lim - md->phys_addr)
1099                                                >> EFI_PAGE_SHIFT;
1100                                } else {
1101                                        k->attribute = EFI_MEMORY_UC;
1102                                        k->start = md->phys_addr;
1103                                        k->num_pages = (lim - md->phys_addr)
1104                                                >> EFI_PAGE_SHIFT;
1105                                        k++;
1106                                }
1107                        }
1108                        as = contig_low;
1109                } else
1110                        as = md->phys_addr;
1111
1112                if (efi_md_end(md) > contig_high) {
1113                        lim = max(md->phys_addr, contig_high);
1114                        if (efi_uc(md)) {
1115                                if (lim == md->phys_addr && k > kern_memmap &&
1116                                    (k-1)->attribute == EFI_MEMORY_UC &&
1117                                    kmd_end(k-1) == md->phys_addr) {
1118                                        (k-1)->num_pages += md->num_pages;
1119                                } else {
1120                                        k->attribute = EFI_MEMORY_UC;
1121                                        k->start = lim;
1122                                        k->num_pages = (efi_md_end(md) - lim)
1123                                                >> EFI_PAGE_SHIFT;
1124                                        k++;
1125                                }
1126                        }
1127                        ae = contig_high;
1128                } else
1129                        ae = efi_md_end(md);
1130
1131                /* keep within max_addr= and min_addr= command line arg */
1132                as = max(as, min_addr);
1133                ae = min(ae, max_addr);
1134                if (ae <= as)
1135                        continue;
1136
1137                /* avoid going over mem= command line arg */
1138                if (total_mem + (ae - as) > mem_limit)
1139                        ae -= total_mem + (ae - as) - mem_limit;
1140
1141                if (ae <= as)
1142                        continue;
1143                if (prev && kmd_end(prev) == md->phys_addr) {
1144                        prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1145                        total_mem += ae - as;
1146                        continue;
1147                }
1148                k->attribute = EFI_MEMORY_WB;
1149                k->start = as;
1150                k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1151                total_mem += ae - as;
1152                prev = k++;
1153        }
1154        k->start = ~0L; /* end-marker */
1155
1156        /* reserve the memory we are using for kern_memmap */
1157        *s = (u64)kern_memmap;
1158        *e = (u64)++k;
1159
1160        return total_mem;
1161}
1162
1163void
1164efi_initialize_iomem_resources(struct resource *code_resource,
1165                               struct resource *data_resource,
1166                               struct resource *bss_resource)
1167{
1168        struct resource *res;
1169        void *efi_map_start, *efi_map_end, *p;
1170        efi_memory_desc_t *md;
1171        u64 efi_desc_size;
1172        char *name;
1173        unsigned long flags;
1174
1175        efi_map_start = __va(ia64_boot_param->efi_memmap);
1176        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1177        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1178
1179        res = NULL;
1180
1181        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1182                md = p;
1183
1184                if (md->num_pages == 0) /* should not happen */
1185                        continue;
1186
1187                flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1188                switch (md->type) {
1189
1190                        case EFI_MEMORY_MAPPED_IO:
1191                        case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1192                                continue;
1193
1194                        case EFI_LOADER_CODE:
1195                        case EFI_LOADER_DATA:
1196                        case EFI_BOOT_SERVICES_DATA:
1197                        case EFI_BOOT_SERVICES_CODE:
1198                        case EFI_CONVENTIONAL_MEMORY:
1199                                if (md->attribute & EFI_MEMORY_WP) {
1200                                        name = "System ROM";
1201                                        flags |= IORESOURCE_READONLY;
1202                                } else if (md->attribute == EFI_MEMORY_UC)
1203                                        name = "Uncached RAM";
1204                                else
1205                                        name = "System RAM";
1206                                break;
1207
1208                        case EFI_ACPI_MEMORY_NVS:
1209                                name = "ACPI Non-volatile Storage";
1210                                break;
1211
1212                        case EFI_UNUSABLE_MEMORY:
1213                                name = "reserved";
1214                                flags |= IORESOURCE_DISABLED;
1215                                break;
1216
1217                        case EFI_RESERVED_TYPE:
1218                        case EFI_RUNTIME_SERVICES_CODE:
1219                        case EFI_RUNTIME_SERVICES_DATA:
1220                        case EFI_ACPI_RECLAIM_MEMORY:
1221                        default:
1222                                name = "reserved";
1223                                break;
1224                }
1225
1226                if ((res = kzalloc(sizeof(struct resource),
1227                                   GFP_KERNEL)) == NULL) {
1228                        printk(KERN_ERR
1229                               "failed to allocate resource for iomem\n");
1230                        return;
1231                }
1232
1233                res->name = name;
1234                res->start = md->phys_addr;
1235                res->end = md->phys_addr + efi_md_size(md) - 1;
1236                res->flags = flags;
1237
1238                if (insert_resource(&iomem_resource, res) < 0)
1239                        kfree(res);
1240                else {
1241                        /*
1242                         * We don't know which region contains
1243                         * kernel data so we try it repeatedly and
1244                         * let the resource manager test it.
1245                         */
1246                        insert_resource(res, code_resource);
1247                        insert_resource(res, data_resource);
1248                        insert_resource(res, bss_resource);
1249#ifdef CONFIG_KEXEC
1250                        insert_resource(res, &efi_memmap_res);
1251                        insert_resource(res, &boot_param_res);
1252                        if (crashk_res.end > crashk_res.start)
1253                                insert_resource(res, &crashk_res);
1254#endif
1255                }
1256        }
1257}
1258
1259#ifdef CONFIG_KEXEC
1260/* find a block of memory aligned to 64M exclude reserved regions
1261   rsvd_regions are sorted
1262 */
1263unsigned long __init
1264kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1265{
1266        int i;
1267        u64 start, end;
1268        u64 alignment = 1UL << _PAGE_SIZE_64M;
1269        void *efi_map_start, *efi_map_end, *p;
1270        efi_memory_desc_t *md;
1271        u64 efi_desc_size;
1272
1273        efi_map_start = __va(ia64_boot_param->efi_memmap);
1274        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1275        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1276
1277        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1278                md = p;
1279                if (!efi_wb(md))
1280                        continue;
1281                start = ALIGN(md->phys_addr, alignment);
1282                end = efi_md_end(md);
1283                for (i = 0; i < n; i++) {
1284                        if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1285                                if (__pa(r[i].start) > start + size)
1286                                        return start;
1287                                start = ALIGN(__pa(r[i].end), alignment);
1288                                if (i < n-1 &&
1289                                    __pa(r[i+1].start) < start + size)
1290                                        continue;
1291                                else
1292                                        break;
1293                        }
1294                }
1295                if (end > start + size)
1296                        return start;
1297        }
1298
1299        printk(KERN_WARNING
1300               "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1301        return ~0UL;
1302}
1303#endif
1304
1305#ifdef CONFIG_CRASH_DUMP
1306/* locate the size find a the descriptor at a certain address */
1307unsigned long __init
1308vmcore_find_descriptor_size (unsigned long address)
1309{
1310        void *efi_map_start, *efi_map_end, *p;
1311        efi_memory_desc_t *md;
1312        u64 efi_desc_size;
1313        unsigned long ret = 0;
1314
1315        efi_map_start = __va(ia64_boot_param->efi_memmap);
1316        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1317        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1318
1319        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1320                md = p;
1321                if (efi_wb(md) && md->type == EFI_LOADER_DATA
1322                    && md->phys_addr == address) {
1323                        ret = efi_md_size(md);
1324                        break;
1325                }
1326        }
1327
1328        if (ret == 0)
1329                printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1330
1331        return ret;
1332}
1333#endif
1334