linux/arch/sparc/kernel/kprobes.c
<<
>>
Prefs
   1/* arch/sparc64/kernel/kprobes.c
   2 *
   3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/kprobes.h>
   8#include <linux/module.h>
   9#include <linux/kdebug.h>
  10#include <linux/slab.h>
  11#include <linux/context_tracking.h>
  12#include <asm/signal.h>
  13#include <asm/cacheflush.h>
  14#include <asm/uaccess.h>
  15
  16/* We do not have hardware single-stepping on sparc64.
  17 * So we implement software single-stepping with breakpoint
  18 * traps.  The top-level scheme is similar to that used
  19 * in the x86 kprobes implementation.
  20 *
  21 * In the kprobe->ainsn.insn[] array we store the original
  22 * instruction at index zero and a break instruction at
  23 * index one.
  24 *
  25 * When we hit a kprobe we:
  26 * - Run the pre-handler
  27 * - Remember "regs->tnpc" and interrupt level stored in
  28 *   "regs->tstate" so we can restore them later
  29 * - Disable PIL interrupts
  30 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
  31 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
  32 * - Mark that we are actively in a kprobe
  33 *
  34 * At this point we wait for the second breakpoint at
  35 * kprobe->ainsn.insn[1] to hit.  When it does we:
  36 * - Run the post-handler
  37 * - Set regs->tpc to "remembered" regs->tnpc stored above,
  38 *   restore the PIL interrupt level in "regs->tstate" as well
  39 * - Make any adjustments necessary to regs->tnpc in order
  40 *   to handle relative branches correctly.  See below.
  41 * - Mark that we are no longer actively in a kprobe.
  42 */
  43
  44DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  45DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  46
  47struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  48
  49int __kprobes arch_prepare_kprobe(struct kprobe *p)
  50{
  51        if ((unsigned long) p->addr & 0x3UL)
  52                return -EILSEQ;
  53
  54        p->ainsn.insn[0] = *p->addr;
  55        flushi(&p->ainsn.insn[0]);
  56
  57        p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
  58        flushi(&p->ainsn.insn[1]);
  59
  60        p->opcode = *p->addr;
  61        return 0;
  62}
  63
  64void __kprobes arch_arm_kprobe(struct kprobe *p)
  65{
  66        *p->addr = BREAKPOINT_INSTRUCTION;
  67        flushi(p->addr);
  68}
  69
  70void __kprobes arch_disarm_kprobe(struct kprobe *p)
  71{
  72        *p->addr = p->opcode;
  73        flushi(p->addr);
  74}
  75
  76static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  77{
  78        kcb->prev_kprobe.kp = kprobe_running();
  79        kcb->prev_kprobe.status = kcb->kprobe_status;
  80        kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
  81        kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
  82}
  83
  84static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  85{
  86        __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  87        kcb->kprobe_status = kcb->prev_kprobe.status;
  88        kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
  89        kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
  90}
  91
  92static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  93                                struct kprobe_ctlblk *kcb)
  94{
  95        __get_cpu_var(current_kprobe) = p;
  96        kcb->kprobe_orig_tnpc = regs->tnpc;
  97        kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
  98}
  99
 100static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
 101                        struct kprobe_ctlblk *kcb)
 102{
 103        regs->tstate |= TSTATE_PIL;
 104
 105        /*single step inline, if it a breakpoint instruction*/
 106        if (p->opcode == BREAKPOINT_INSTRUCTION) {
 107                regs->tpc = (unsigned long) p->addr;
 108                regs->tnpc = kcb->kprobe_orig_tnpc;
 109        } else {
 110                regs->tpc = (unsigned long) &p->ainsn.insn[0];
 111                regs->tnpc = (unsigned long) &p->ainsn.insn[1];
 112        }
 113}
 114
 115static int __kprobes kprobe_handler(struct pt_regs *regs)
 116{
 117        struct kprobe *p;
 118        void *addr = (void *) regs->tpc;
 119        int ret = 0;
 120        struct kprobe_ctlblk *kcb;
 121
 122        /*
 123         * We don't want to be preempted for the entire
 124         * duration of kprobe processing
 125         */
 126        preempt_disable();
 127        kcb = get_kprobe_ctlblk();
 128
 129        if (kprobe_running()) {
 130                p = get_kprobe(addr);
 131                if (p) {
 132                        if (kcb->kprobe_status == KPROBE_HIT_SS) {
 133                                regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 134                                        kcb->kprobe_orig_tstate_pil);
 135                                goto no_kprobe;
 136                        }
 137                        /* We have reentered the kprobe_handler(), since
 138                         * another probe was hit while within the handler.
 139                         * We here save the original kprobes variables and
 140                         * just single step on the instruction of the new probe
 141                         * without calling any user handlers.
 142                         */
 143                        save_previous_kprobe(kcb);
 144                        set_current_kprobe(p, regs, kcb);
 145                        kprobes_inc_nmissed_count(p);
 146                        kcb->kprobe_status = KPROBE_REENTER;
 147                        prepare_singlestep(p, regs, kcb);
 148                        return 1;
 149                } else {
 150                        if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
 151                        /* The breakpoint instruction was removed by
 152                         * another cpu right after we hit, no further
 153                         * handling of this interrupt is appropriate
 154                         */
 155                                ret = 1;
 156                                goto no_kprobe;
 157                        }
 158                        p = __get_cpu_var(current_kprobe);
 159                        if (p->break_handler && p->break_handler(p, regs))
 160                                goto ss_probe;
 161                }
 162                goto no_kprobe;
 163        }
 164
 165        p = get_kprobe(addr);
 166        if (!p) {
 167                if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
 168                        /*
 169                         * The breakpoint instruction was removed right
 170                         * after we hit it.  Another cpu has removed
 171                         * either a probepoint or a debugger breakpoint
 172                         * at this address.  In either case, no further
 173                         * handling of this interrupt is appropriate.
 174                         */
 175                        ret = 1;
 176                }
 177                /* Not one of ours: let kernel handle it */
 178                goto no_kprobe;
 179        }
 180
 181        set_current_kprobe(p, regs, kcb);
 182        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 183        if (p->pre_handler && p->pre_handler(p, regs))
 184                return 1;
 185
 186ss_probe:
 187        prepare_singlestep(p, regs, kcb);
 188        kcb->kprobe_status = KPROBE_HIT_SS;
 189        return 1;
 190
 191no_kprobe:
 192        preempt_enable_no_resched();
 193        return ret;
 194}
 195
 196/* If INSN is a relative control transfer instruction,
 197 * return the corrected branch destination value.
 198 *
 199 * regs->tpc and regs->tnpc still hold the values of the
 200 * program counters at the time of trap due to the execution
 201 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
 202 * 
 203 */
 204static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
 205                                               struct pt_regs *regs)
 206{
 207        unsigned long real_pc = (unsigned long) p->addr;
 208
 209        /* Branch not taken, no mods necessary.  */
 210        if (regs->tnpc == regs->tpc + 0x4UL)
 211                return real_pc + 0x8UL;
 212
 213        /* The three cases are call, branch w/prediction,
 214         * and traditional branch.
 215         */
 216        if ((insn & 0xc0000000) == 0x40000000 ||
 217            (insn & 0xc1c00000) == 0x00400000 ||
 218            (insn & 0xc1c00000) == 0x00800000) {
 219                unsigned long ainsn_addr;
 220
 221                ainsn_addr = (unsigned long) &p->ainsn.insn[0];
 222
 223                /* The instruction did all the work for us
 224                 * already, just apply the offset to the correct
 225                 * instruction location.
 226                 */
 227                return (real_pc + (regs->tnpc - ainsn_addr));
 228        }
 229
 230        /* It is jmpl or some other absolute PC modification instruction,
 231         * leave NPC as-is.
 232         */
 233        return regs->tnpc;
 234}
 235
 236/* If INSN is an instruction which writes it's PC location
 237 * into a destination register, fix that up.
 238 */
 239static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
 240                                  unsigned long real_pc)
 241{
 242        unsigned long *slot = NULL;
 243
 244        /* Simplest case is 'call', which always uses %o7 */
 245        if ((insn & 0xc0000000) == 0x40000000) {
 246                slot = &regs->u_regs[UREG_I7];
 247        }
 248
 249        /* 'jmpl' encodes the register inside of the opcode */
 250        if ((insn & 0xc1f80000) == 0x81c00000) {
 251                unsigned long rd = ((insn >> 25) & 0x1f);
 252
 253                if (rd <= 15) {
 254                        slot = &regs->u_regs[rd];
 255                } else {
 256                        /* Hard case, it goes onto the stack. */
 257                        flushw_all();
 258
 259                        rd -= 16;
 260                        slot = (unsigned long *)
 261                                (regs->u_regs[UREG_FP] + STACK_BIAS);
 262                        slot += rd;
 263                }
 264        }
 265        if (slot != NULL)
 266                *slot = real_pc;
 267}
 268
 269/*
 270 * Called after single-stepping.  p->addr is the address of the
 271 * instruction which has been replaced by the breakpoint
 272 * instruction.  To avoid the SMP problems that can occur when we
 273 * temporarily put back the original opcode to single-step, we
 274 * single-stepped a copy of the instruction.  The address of this
 275 * copy is &p->ainsn.insn[0].
 276 *
 277 * This function prepares to return from the post-single-step
 278 * breakpoint trap.
 279 */
 280static void __kprobes resume_execution(struct kprobe *p,
 281                struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 282{
 283        u32 insn = p->ainsn.insn[0];
 284
 285        regs->tnpc = relbranch_fixup(insn, p, regs);
 286
 287        /* This assignment must occur after relbranch_fixup() */
 288        regs->tpc = kcb->kprobe_orig_tnpc;
 289
 290        retpc_fixup(regs, insn, (unsigned long) p->addr);
 291
 292        regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 293                        kcb->kprobe_orig_tstate_pil);
 294}
 295
 296static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 297{
 298        struct kprobe *cur = kprobe_running();
 299        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 300
 301        if (!cur)
 302                return 0;
 303
 304        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 305                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 306                cur->post_handler(cur, regs, 0);
 307        }
 308
 309        resume_execution(cur, regs, kcb);
 310
 311        /*Restore back the original saved kprobes variables and continue. */
 312        if (kcb->kprobe_status == KPROBE_REENTER) {
 313                restore_previous_kprobe(kcb);
 314                goto out;
 315        }
 316        reset_current_kprobe();
 317out:
 318        preempt_enable_no_resched();
 319
 320        return 1;
 321}
 322
 323int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 324{
 325        struct kprobe *cur = kprobe_running();
 326        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 327        const struct exception_table_entry *entry;
 328
 329        switch(kcb->kprobe_status) {
 330        case KPROBE_HIT_SS:
 331        case KPROBE_REENTER:
 332                /*
 333                 * We are here because the instruction being single
 334                 * stepped caused a page fault. We reset the current
 335                 * kprobe and the tpc points back to the probe address
 336                 * and allow the page fault handler to continue as a
 337                 * normal page fault.
 338                 */
 339                regs->tpc = (unsigned long)cur->addr;
 340                regs->tnpc = kcb->kprobe_orig_tnpc;
 341                regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 342                                kcb->kprobe_orig_tstate_pil);
 343                if (kcb->kprobe_status == KPROBE_REENTER)
 344                        restore_previous_kprobe(kcb);
 345                else
 346                        reset_current_kprobe();
 347                preempt_enable_no_resched();
 348                break;
 349        case KPROBE_HIT_ACTIVE:
 350        case KPROBE_HIT_SSDONE:
 351                /*
 352                 * We increment the nmissed count for accounting,
 353                 * we can also use npre/npostfault count for accounting
 354                 * these specific fault cases.
 355                 */
 356                kprobes_inc_nmissed_count(cur);
 357
 358                /*
 359                 * We come here because instructions in the pre/post
 360                 * handler caused the page_fault, this could happen
 361                 * if handler tries to access user space by
 362                 * copy_from_user(), get_user() etc. Let the
 363                 * user-specified handler try to fix it first.
 364                 */
 365                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 366                        return 1;
 367
 368                /*
 369                 * In case the user-specified fault handler returned
 370                 * zero, try to fix up.
 371                 */
 372
 373                entry = search_exception_tables(regs->tpc);
 374                if (entry) {
 375                        regs->tpc = entry->fixup;
 376                        regs->tnpc = regs->tpc + 4;
 377                        return 1;
 378                }
 379
 380                /*
 381                 * fixup_exception() could not handle it,
 382                 * Let do_page_fault() fix it.
 383                 */
 384                break;
 385        default:
 386                break;
 387        }
 388
 389        return 0;
 390}
 391
 392/*
 393 * Wrapper routine to for handling exceptions.
 394 */
 395int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 396                                       unsigned long val, void *data)
 397{
 398        struct die_args *args = (struct die_args *)data;
 399        int ret = NOTIFY_DONE;
 400
 401        if (args->regs && user_mode(args->regs))
 402                return ret;
 403
 404        switch (val) {
 405        case DIE_DEBUG:
 406                if (kprobe_handler(args->regs))
 407                        ret = NOTIFY_STOP;
 408                break;
 409        case DIE_DEBUG_2:
 410                if (post_kprobe_handler(args->regs))
 411                        ret = NOTIFY_STOP;
 412                break;
 413        default:
 414                break;
 415        }
 416        return ret;
 417}
 418
 419asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
 420                                      struct pt_regs *regs)
 421{
 422        enum ctx_state prev_state = exception_enter();
 423
 424        BUG_ON(trap_level != 0x170 && trap_level != 0x171);
 425
 426        if (user_mode(regs)) {
 427                local_irq_enable();
 428                bad_trap(regs, trap_level);
 429                goto out;
 430        }
 431
 432        /* trap_level == 0x170 --> ta 0x70
 433         * trap_level == 0x171 --> ta 0x71
 434         */
 435        if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
 436                       (trap_level == 0x170) ? "debug" : "debug_2",
 437                       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
 438                bad_trap(regs, trap_level);
 439out:
 440        exception_exit(prev_state);
 441}
 442
 443/* Jprobes support.  */
 444int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 445{
 446        struct jprobe *jp = container_of(p, struct jprobe, kp);
 447        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 448
 449        memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
 450
 451        regs->tpc  = (unsigned long) jp->entry;
 452        regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
 453        regs->tstate |= TSTATE_PIL;
 454
 455        return 1;
 456}
 457
 458void __kprobes jprobe_return(void)
 459{
 460        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 461        register unsigned long orig_fp asm("g1");
 462
 463        orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
 464        __asm__ __volatile__("\n"
 465"1:     cmp             %%sp, %0\n\t"
 466        "blu,a,pt       %%xcc, 1b\n\t"
 467        " restore\n\t"
 468        ".globl         jprobe_return_trap_instruction\n"
 469"jprobe_return_trap_instruction:\n\t"
 470        "ta             0x70"
 471        : /* no outputs */
 472        : "r" (orig_fp));
 473}
 474
 475extern void jprobe_return_trap_instruction(void);
 476
 477int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 478{
 479        u32 *addr = (u32 *) regs->tpc;
 480        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 481
 482        if (addr == (u32 *) jprobe_return_trap_instruction) {
 483                memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
 484                preempt_enable_no_resched();
 485                return 1;
 486        }
 487        return 0;
 488}
 489
 490/* The value stored in the return address register is actually 2
 491 * instructions before where the callee will return to.
 492 * Sequences usually look something like this
 493 *
 494 *              call    some_function   <--- return register points here
 495 *               nop                    <--- call delay slot
 496 *              whatever                <--- where callee returns to
 497 *
 498 * To keep trampoline_probe_handler logic simpler, we normalize the
 499 * value kept in ri->ret_addr so we don't need to keep adjusting it
 500 * back and forth.
 501 */
 502void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 503                                      struct pt_regs *regs)
 504{
 505        ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
 506
 507        /* Replace the return addr with trampoline addr */
 508        regs->u_regs[UREG_RETPC] =
 509                ((unsigned long)kretprobe_trampoline) - 8;
 510}
 511
 512/*
 513 * Called when the probe at kretprobe trampoline is hit
 514 */
 515int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 516{
 517        struct kretprobe_instance *ri = NULL;
 518        struct hlist_head *head, empty_rp;
 519        struct hlist_node *tmp;
 520        unsigned long flags, orig_ret_address = 0;
 521        unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
 522
 523        INIT_HLIST_HEAD(&empty_rp);
 524        kretprobe_hash_lock(current, &head, &flags);
 525
 526        /*
 527         * It is possible to have multiple instances associated with a given
 528         * task either because an multiple functions in the call path
 529         * have a return probe installed on them, and/or more than one return
 530         * return probe was registered for a target function.
 531         *
 532         * We can handle this because:
 533         *     - instances are always inserted at the head of the list
 534         *     - when multiple return probes are registered for the same
 535         *       function, the first instance's ret_addr will point to the
 536         *       real return address, and all the rest will point to
 537         *       kretprobe_trampoline
 538         */
 539        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 540                if (ri->task != current)
 541                        /* another task is sharing our hash bucket */
 542                        continue;
 543
 544                if (ri->rp && ri->rp->handler)
 545                        ri->rp->handler(ri, regs);
 546
 547                orig_ret_address = (unsigned long)ri->ret_addr;
 548                recycle_rp_inst(ri, &empty_rp);
 549
 550                if (orig_ret_address != trampoline_address)
 551                        /*
 552                         * This is the real return address. Any other
 553                         * instances associated with this task are for
 554                         * other calls deeper on the call stack
 555                         */
 556                        break;
 557        }
 558
 559        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 560        regs->tpc = orig_ret_address;
 561        regs->tnpc = orig_ret_address + 4;
 562
 563        reset_current_kprobe();
 564        kretprobe_hash_unlock(current, &flags);
 565        preempt_enable_no_resched();
 566
 567        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 568                hlist_del(&ri->hlist);
 569                kfree(ri);
 570        }
 571        /*
 572         * By returning a non-zero value, we are telling
 573         * kprobe_handler() that we don't want the post_handler
 574         * to run (and have re-enabled preemption)
 575         */
 576        return 1;
 577}
 578
 579void kretprobe_trampoline_holder(void)
 580{
 581        asm volatile(".global kretprobe_trampoline\n"
 582                     "kretprobe_trampoline:\n"
 583                     "\tnop\n"
 584                     "\tnop\n");
 585}
 586static struct kprobe trampoline_p = {
 587        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 588        .pre_handler = trampoline_probe_handler
 589};
 590
 591int __init arch_init_kprobes(void)
 592{
 593        return register_kprobe(&trampoline_p);
 594}
 595
 596int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 597{
 598        if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
 599                return 1;
 600
 601        return 0;
 602}
 603