linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <linux/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
  64
  65static cpumask_t smp_commenced_mask;
  66
  67void smp_info(struct seq_file *m)
  68{
  69        int i;
  70        
  71        seq_printf(m, "State:\n");
  72        for_each_online_cpu(i)
  73                seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78        int i;
  79        
  80        for_each_online_cpu(i)
  81                seq_printf(m,
  82                           "Cpu%dClkTck\t: %016lx\n",
  83                           i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void smp_callin(void)
  91{
  92        int cpuid = hard_smp_processor_id();
  93
  94        __local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96        if (tlb_type == hypervisor)
  97                sun4v_ktsb_register();
  98
  99        __flush_tlb_all();
 100
 101        setup_sparc64_timer();
 102
 103        if (cheetah_pcache_forced_on)
 104                cheetah_enable_pcache();
 105
 106        callin_flag = 1;
 107        __asm__ __volatile__("membar #Sync\n\t"
 108                             "flush  %%g6" : : : "memory");
 109
 110        /* Clear this or we will die instantly when we
 111         * schedule back to this idler...
 112         */
 113        current_thread_info()->new_child = 0;
 114
 115        /* Attach to the address space of init_task. */
 116        atomic_inc(&init_mm.mm_count);
 117        current->active_mm = &init_mm;
 118
 119        /* inform the notifiers about the new cpu */
 120        notify_cpu_starting(cpuid);
 121
 122        while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 123                rmb();
 124
 125        set_cpu_online(cpuid, true);
 126
 127        /* idle thread is expected to have preempt disabled */
 128        preempt_disable();
 129
 130        local_irq_enable();
 131
 132        cpu_startup_entry(CPUHP_ONLINE);
 133}
 134
 135void cpu_panic(void)
 136{
 137        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 138        panic("SMP bolixed\n");
 139}
 140
 141/* This tick register synchronization scheme is taken entirely from
 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 143 *
 144 * The only change I've made is to rework it so that the master
 145 * initiates the synchonization instead of the slave. -DaveM
 146 */
 147
 148#define MASTER  0
 149#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 150
 151#define NUM_ROUNDS      64      /* magic value */
 152#define NUM_ITERS       5       /* likewise */
 153
 154static DEFINE_SPINLOCK(itc_sync_lock);
 155static unsigned long go[SLAVE + 1];
 156
 157#define DEBUG_TICK_SYNC 0
 158
 159static inline long get_delta (long *rt, long *master)
 160{
 161        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 162        unsigned long tcenter, t0, t1, tm;
 163        unsigned long i;
 164
 165        for (i = 0; i < NUM_ITERS; i++) {
 166                t0 = tick_ops->get_tick();
 167                go[MASTER] = 1;
 168                membar_safe("#StoreLoad");
 169                while (!(tm = go[SLAVE]))
 170                        rmb();
 171                go[SLAVE] = 0;
 172                wmb();
 173                t1 = tick_ops->get_tick();
 174
 175                if (t1 - t0 < best_t1 - best_t0)
 176                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 177        }
 178
 179        *rt = best_t1 - best_t0;
 180        *master = best_tm - best_t0;
 181
 182        /* average best_t0 and best_t1 without overflow: */
 183        tcenter = (best_t0/2 + best_t1/2);
 184        if (best_t0 % 2 + best_t1 % 2 == 2)
 185                tcenter++;
 186        return tcenter - best_tm;
 187}
 188
 189void smp_synchronize_tick_client(void)
 190{
 191        long i, delta, adj, adjust_latency = 0, done = 0;
 192        unsigned long flags, rt, master_time_stamp;
 193#if DEBUG_TICK_SYNC
 194        struct {
 195                long rt;        /* roundtrip time */
 196                long master;    /* master's timestamp */
 197                long diff;      /* difference between midpoint and master's timestamp */
 198                long lat;       /* estimate of itc adjustment latency */
 199        } t[NUM_ROUNDS];
 200#endif
 201
 202        go[MASTER] = 1;
 203
 204        while (go[MASTER])
 205                rmb();
 206
 207        local_irq_save(flags);
 208        {
 209                for (i = 0; i < NUM_ROUNDS; i++) {
 210                        delta = get_delta(&rt, &master_time_stamp);
 211                        if (delta == 0)
 212                                done = 1;       /* let's lock on to this... */
 213
 214                        if (!done) {
 215                                if (i > 0) {
 216                                        adjust_latency += -delta;
 217                                        adj = -delta + adjust_latency/4;
 218                                } else
 219                                        adj = -delta;
 220
 221                                tick_ops->add_tick(adj);
 222                        }
 223#if DEBUG_TICK_SYNC
 224                        t[i].rt = rt;
 225                        t[i].master = master_time_stamp;
 226                        t[i].diff = delta;
 227                        t[i].lat = adjust_latency/4;
 228#endif
 229                }
 230        }
 231        local_irq_restore(flags);
 232
 233#if DEBUG_TICK_SYNC
 234        for (i = 0; i < NUM_ROUNDS; i++)
 235                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 236                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 237#endif
 238
 239        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 240               "(last diff %ld cycles, maxerr %lu cycles)\n",
 241               smp_processor_id(), delta, rt);
 242}
 243
 244static void smp_start_sync_tick_client(int cpu);
 245
 246static void smp_synchronize_one_tick(int cpu)
 247{
 248        unsigned long flags, i;
 249
 250        go[MASTER] = 0;
 251
 252        smp_start_sync_tick_client(cpu);
 253
 254        /* wait for client to be ready */
 255        while (!go[MASTER])
 256                rmb();
 257
 258        /* now let the client proceed into his loop */
 259        go[MASTER] = 0;
 260        membar_safe("#StoreLoad");
 261
 262        spin_lock_irqsave(&itc_sync_lock, flags);
 263        {
 264                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 265                        while (!go[MASTER])
 266                                rmb();
 267                        go[MASTER] = 0;
 268                        wmb();
 269                        go[SLAVE] = tick_ops->get_tick();
 270                        membar_safe("#StoreLoad");
 271                }
 272        }
 273        spin_unlock_irqrestore(&itc_sync_lock, flags);
 274}
 275
 276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 277/* XXX Put this in some common place. XXX */
 278static unsigned long kimage_addr_to_ra(void *p)
 279{
 280        unsigned long val = (unsigned long) p;
 281
 282        return kern_base + (val - KERNBASE);
 283}
 284
 285static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 286                                void **descrp)
 287{
 288        extern unsigned long sparc64_ttable_tl0;
 289        extern unsigned long kern_locked_tte_data;
 290        struct hvtramp_descr *hdesc;
 291        unsigned long trampoline_ra;
 292        struct trap_per_cpu *tb;
 293        u64 tte_vaddr, tte_data;
 294        unsigned long hv_err;
 295        int i;
 296
 297        hdesc = kzalloc(sizeof(*hdesc) +
 298                        (sizeof(struct hvtramp_mapping) *
 299                         num_kernel_image_mappings - 1),
 300                        GFP_KERNEL);
 301        if (!hdesc) {
 302                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 303                       "hvtramp_descr.\n");
 304                return;
 305        }
 306        *descrp = hdesc;
 307
 308        hdesc->cpu = cpu;
 309        hdesc->num_mappings = num_kernel_image_mappings;
 310
 311        tb = &trap_block[cpu];
 312
 313        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 314        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 315
 316        hdesc->thread_reg = thread_reg;
 317
 318        tte_vaddr = (unsigned long) KERNBASE;
 319        tte_data = kern_locked_tte_data;
 320
 321        for (i = 0; i < hdesc->num_mappings; i++) {
 322                hdesc->maps[i].vaddr = tte_vaddr;
 323                hdesc->maps[i].tte   = tte_data;
 324                tte_vaddr += 0x400000;
 325                tte_data  += 0x400000;
 326        }
 327
 328        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 329
 330        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 331                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 332                                 __pa(hdesc));
 333        if (hv_err)
 334                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 335                       "gives error %lu\n", hv_err);
 336}
 337#endif
 338
 339extern unsigned long sparc64_cpu_startup;
 340
 341/* The OBP cpu startup callback truncates the 3rd arg cookie to
 342 * 32-bits (I think) so to be safe we have it read the pointer
 343 * contained here so we work on >4GB machines. -DaveM
 344 */
 345static struct thread_info *cpu_new_thread = NULL;
 346
 347static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 348{
 349        unsigned long entry =
 350                (unsigned long)(&sparc64_cpu_startup);
 351        unsigned long cookie =
 352                (unsigned long)(&cpu_new_thread);
 353        void *descr = NULL;
 354        int timeout, ret;
 355
 356        callin_flag = 0;
 357        cpu_new_thread = task_thread_info(idle);
 358
 359        if (tlb_type == hypervisor) {
 360#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 361                if (ldom_domaining_enabled)
 362                        ldom_startcpu_cpuid(cpu,
 363                                            (unsigned long) cpu_new_thread,
 364                                            &descr);
 365                else
 366#endif
 367                        prom_startcpu_cpuid(cpu, entry, cookie);
 368        } else {
 369                struct device_node *dp = of_find_node_by_cpuid(cpu);
 370
 371                prom_startcpu(dp->phandle, entry, cookie);
 372        }
 373
 374        for (timeout = 0; timeout < 50000; timeout++) {
 375                if (callin_flag)
 376                        break;
 377                udelay(100);
 378        }
 379
 380        if (callin_flag) {
 381                ret = 0;
 382        } else {
 383                printk("Processor %d is stuck.\n", cpu);
 384                ret = -ENODEV;
 385        }
 386        cpu_new_thread = NULL;
 387
 388        kfree(descr);
 389
 390        return ret;
 391}
 392
 393static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 394{
 395        u64 result, target;
 396        int stuck, tmp;
 397
 398        if (this_is_starfire) {
 399                /* map to real upaid */
 400                cpu = (((cpu & 0x3c) << 1) |
 401                        ((cpu & 0x40) >> 4) |
 402                        (cpu & 0x3));
 403        }
 404
 405        target = (cpu << 14) | 0x70;
 406again:
 407        /* Ok, this is the real Spitfire Errata #54.
 408         * One must read back from a UDB internal register
 409         * after writes to the UDB interrupt dispatch, but
 410         * before the membar Sync for that write.
 411         * So we use the high UDB control register (ASI 0x7f,
 412         * ADDR 0x20) for the dummy read. -DaveM
 413         */
 414        tmp = 0x40;
 415        __asm__ __volatile__(
 416        "wrpr   %1, %2, %%pstate\n\t"
 417        "stxa   %4, [%0] %3\n\t"
 418        "stxa   %5, [%0+%8] %3\n\t"
 419        "add    %0, %8, %0\n\t"
 420        "stxa   %6, [%0+%8] %3\n\t"
 421        "membar #Sync\n\t"
 422        "stxa   %%g0, [%7] %3\n\t"
 423        "membar #Sync\n\t"
 424        "mov    0x20, %%g1\n\t"
 425        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 426        "membar #Sync"
 427        : "=r" (tmp)
 428        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 429          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 430          "r" (0x10), "0" (tmp)
 431        : "g1");
 432
 433        /* NOTE: PSTATE_IE is still clear. */
 434        stuck = 100000;
 435        do {
 436                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 437                        : "=r" (result)
 438                        : "i" (ASI_INTR_DISPATCH_STAT));
 439                if (result == 0) {
 440                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 441                                             : : "r" (pstate));
 442                        return;
 443                }
 444                stuck -= 1;
 445                if (stuck == 0)
 446                        break;
 447        } while (result & 0x1);
 448        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 449                             : : "r" (pstate));
 450        if (stuck == 0) {
 451                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 452                       smp_processor_id(), result);
 453        } else {
 454                udelay(2);
 455                goto again;
 456        }
 457}
 458
 459static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 460{
 461        u64 *mondo, data0, data1, data2;
 462        u16 *cpu_list;
 463        u64 pstate;
 464        int i;
 465
 466        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 467        cpu_list = __va(tb->cpu_list_pa);
 468        mondo = __va(tb->cpu_mondo_block_pa);
 469        data0 = mondo[0];
 470        data1 = mondo[1];
 471        data2 = mondo[2];
 472        for (i = 0; i < cnt; i++)
 473                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 474}
 475
 476/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 477 * packet, but we have no use for that.  However we do take advantage of
 478 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 479 */
 480static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 481{
 482        int nack_busy_id, is_jbus, need_more;
 483        u64 *mondo, pstate, ver, busy_mask;
 484        u16 *cpu_list;
 485
 486        cpu_list = __va(tb->cpu_list_pa);
 487        mondo = __va(tb->cpu_mondo_block_pa);
 488
 489        /* Unfortunately, someone at Sun had the brilliant idea to make the
 490         * busy/nack fields hard-coded by ITID number for this Ultra-III
 491         * derivative processor.
 492         */
 493        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 494        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 495                   (ver >> 32) == __SERRANO_ID);
 496
 497        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 498
 499retry:
 500        need_more = 0;
 501        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 502                             : : "r" (pstate), "i" (PSTATE_IE));
 503
 504        /* Setup the dispatch data registers. */
 505        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 506                             "stxa      %1, [%4] %6\n\t"
 507                             "stxa      %2, [%5] %6\n\t"
 508                             "membar    #Sync\n\t"
 509                             : /* no outputs */
 510                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 511                               "r" (0x40), "r" (0x50), "r" (0x60),
 512                               "i" (ASI_INTR_W));
 513
 514        nack_busy_id = 0;
 515        busy_mask = 0;
 516        {
 517                int i;
 518
 519                for (i = 0; i < cnt; i++) {
 520                        u64 target, nr;
 521
 522                        nr = cpu_list[i];
 523                        if (nr == 0xffff)
 524                                continue;
 525
 526                        target = (nr << 14) | 0x70;
 527                        if (is_jbus) {
 528                                busy_mask |= (0x1UL << (nr * 2));
 529                        } else {
 530                                target |= (nack_busy_id << 24);
 531                                busy_mask |= (0x1UL <<
 532                                              (nack_busy_id * 2));
 533                        }
 534                        __asm__ __volatile__(
 535                                "stxa   %%g0, [%0] %1\n\t"
 536                                "membar #Sync\n\t"
 537                                : /* no outputs */
 538                                : "r" (target), "i" (ASI_INTR_W));
 539                        nack_busy_id++;
 540                        if (nack_busy_id == 32) {
 541                                need_more = 1;
 542                                break;
 543                        }
 544                }
 545        }
 546
 547        /* Now, poll for completion. */
 548        {
 549                u64 dispatch_stat, nack_mask;
 550                long stuck;
 551
 552                stuck = 100000 * nack_busy_id;
 553                nack_mask = busy_mask << 1;
 554                do {
 555                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 556                                             : "=r" (dispatch_stat)
 557                                             : "i" (ASI_INTR_DISPATCH_STAT));
 558                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 559                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 560                                                     : : "r" (pstate));
 561                                if (unlikely(need_more)) {
 562                                        int i, this_cnt = 0;
 563                                        for (i = 0; i < cnt; i++) {
 564                                                if (cpu_list[i] == 0xffff)
 565                                                        continue;
 566                                                cpu_list[i] = 0xffff;
 567                                                this_cnt++;
 568                                                if (this_cnt == 32)
 569                                                        break;
 570                                        }
 571                                        goto retry;
 572                                }
 573                                return;
 574                        }
 575                        if (!--stuck)
 576                                break;
 577                } while (dispatch_stat & busy_mask);
 578
 579                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 580                                     : : "r" (pstate));
 581
 582                if (dispatch_stat & busy_mask) {
 583                        /* Busy bits will not clear, continue instead
 584                         * of freezing up on this cpu.
 585                         */
 586                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 587                               smp_processor_id(), dispatch_stat);
 588                } else {
 589                        int i, this_busy_nack = 0;
 590
 591                        /* Delay some random time with interrupts enabled
 592                         * to prevent deadlock.
 593                         */
 594                        udelay(2 * nack_busy_id);
 595
 596                        /* Clear out the mask bits for cpus which did not
 597                         * NACK us.
 598                         */
 599                        for (i = 0; i < cnt; i++) {
 600                                u64 check_mask, nr;
 601
 602                                nr = cpu_list[i];
 603                                if (nr == 0xffff)
 604                                        continue;
 605
 606                                if (is_jbus)
 607                                        check_mask = (0x2UL << (2*nr));
 608                                else
 609                                        check_mask = (0x2UL <<
 610                                                      this_busy_nack);
 611                                if ((dispatch_stat & check_mask) == 0)
 612                                        cpu_list[i] = 0xffff;
 613                                this_busy_nack += 2;
 614                                if (this_busy_nack == 64)
 615                                        break;
 616                        }
 617
 618                        goto retry;
 619                }
 620        }
 621}
 622
 623/* Multi-cpu list version.  */
 624static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 625{
 626        int retries, this_cpu, prev_sent, i, saw_cpu_error;
 627        unsigned long status;
 628        u16 *cpu_list;
 629
 630        this_cpu = smp_processor_id();
 631
 632        cpu_list = __va(tb->cpu_list_pa);
 633
 634        saw_cpu_error = 0;
 635        retries = 0;
 636        prev_sent = 0;
 637        do {
 638                int forward_progress, n_sent;
 639
 640                status = sun4v_cpu_mondo_send(cnt,
 641                                              tb->cpu_list_pa,
 642                                              tb->cpu_mondo_block_pa);
 643
 644                /* HV_EOK means all cpus received the xcall, we're done.  */
 645                if (likely(status == HV_EOK))
 646                        break;
 647
 648                /* First, see if we made any forward progress.
 649                 *
 650                 * The hypervisor indicates successful sends by setting
 651                 * cpu list entries to the value 0xffff.
 652                 */
 653                n_sent = 0;
 654                for (i = 0; i < cnt; i++) {
 655                        if (likely(cpu_list[i] == 0xffff))
 656                                n_sent++;
 657                }
 658
 659                forward_progress = 0;
 660                if (n_sent > prev_sent)
 661                        forward_progress = 1;
 662
 663                prev_sent = n_sent;
 664
 665                /* If we get a HV_ECPUERROR, then one or more of the cpus
 666                 * in the list are in error state.  Use the cpu_state()
 667                 * hypervisor call to find out which cpus are in error state.
 668                 */
 669                if (unlikely(status == HV_ECPUERROR)) {
 670                        for (i = 0; i < cnt; i++) {
 671                                long err;
 672                                u16 cpu;
 673
 674                                cpu = cpu_list[i];
 675                                if (cpu == 0xffff)
 676                                        continue;
 677
 678                                err = sun4v_cpu_state(cpu);
 679                                if (err == HV_CPU_STATE_ERROR) {
 680                                        saw_cpu_error = (cpu + 1);
 681                                        cpu_list[i] = 0xffff;
 682                                }
 683                        }
 684                } else if (unlikely(status != HV_EWOULDBLOCK))
 685                        goto fatal_mondo_error;
 686
 687                /* Don't bother rewriting the CPU list, just leave the
 688                 * 0xffff and non-0xffff entries in there and the
 689                 * hypervisor will do the right thing.
 690                 *
 691                 * Only advance timeout state if we didn't make any
 692                 * forward progress.
 693                 */
 694                if (unlikely(!forward_progress)) {
 695                        if (unlikely(++retries > 10000))
 696                                goto fatal_mondo_timeout;
 697
 698                        /* Delay a little bit to let other cpus catch up
 699                         * on their cpu mondo queue work.
 700                         */
 701                        udelay(2 * cnt);
 702                }
 703        } while (1);
 704
 705        if (unlikely(saw_cpu_error))
 706                goto fatal_mondo_cpu_error;
 707
 708        return;
 709
 710fatal_mondo_cpu_error:
 711        printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 712               "(including %d) were in error state\n",
 713               this_cpu, saw_cpu_error - 1);
 714        return;
 715
 716fatal_mondo_timeout:
 717        printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 718               " progress after %d retries.\n",
 719               this_cpu, retries);
 720        goto dump_cpu_list_and_out;
 721
 722fatal_mondo_error:
 723        printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 724               this_cpu, status);
 725        printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 726               "mondo_block_pa(%lx)\n",
 727               this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 728
 729dump_cpu_list_and_out:
 730        printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 731        for (i = 0; i < cnt; i++)
 732                printk("%u ", cpu_list[i]);
 733        printk("]\n");
 734}
 735
 736static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 737
 738static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 739{
 740        struct trap_per_cpu *tb;
 741        int this_cpu, i, cnt;
 742        unsigned long flags;
 743        u16 *cpu_list;
 744        u64 *mondo;
 745
 746        /* We have to do this whole thing with interrupts fully disabled.
 747         * Otherwise if we send an xcall from interrupt context it will
 748         * corrupt both our mondo block and cpu list state.
 749         *
 750         * One consequence of this is that we cannot use timeout mechanisms
 751         * that depend upon interrupts being delivered locally.  So, for
 752         * example, we cannot sample jiffies and expect it to advance.
 753         *
 754         * Fortunately, udelay() uses %stick/%tick so we can use that.
 755         */
 756        local_irq_save(flags);
 757
 758        this_cpu = smp_processor_id();
 759        tb = &trap_block[this_cpu];
 760
 761        mondo = __va(tb->cpu_mondo_block_pa);
 762        mondo[0] = data0;
 763        mondo[1] = data1;
 764        mondo[2] = data2;
 765        wmb();
 766
 767        cpu_list = __va(tb->cpu_list_pa);
 768
 769        /* Setup the initial cpu list.  */
 770        cnt = 0;
 771        for_each_cpu(i, mask) {
 772                if (i == this_cpu || !cpu_online(i))
 773                        continue;
 774                cpu_list[cnt++] = i;
 775        }
 776
 777        if (cnt)
 778                xcall_deliver_impl(tb, cnt);
 779
 780        local_irq_restore(flags);
 781}
 782
 783/* Send cross call to all processors mentioned in MASK_P
 784 * except self.  Really, there are only two cases currently,
 785 * "cpu_online_mask" and "mm_cpumask(mm)".
 786 */
 787static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 788{
 789        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 790
 791        xcall_deliver(data0, data1, data2, mask);
 792}
 793
 794/* Send cross call to all processors except self. */
 795static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 796{
 797        smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 798}
 799
 800extern unsigned long xcall_sync_tick;
 801
 802static void smp_start_sync_tick_client(int cpu)
 803{
 804        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 805                      cpumask_of(cpu));
 806}
 807
 808extern unsigned long xcall_call_function;
 809
 810void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 811{
 812        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 813}
 814
 815extern unsigned long xcall_call_function_single;
 816
 817void arch_send_call_function_single_ipi(int cpu)
 818{
 819        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 820                      cpumask_of(cpu));
 821}
 822
 823void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 824{
 825        clear_softint(1 << irq);
 826        generic_smp_call_function_interrupt();
 827}
 828
 829void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 830{
 831        clear_softint(1 << irq);
 832        generic_smp_call_function_single_interrupt();
 833}
 834
 835static void tsb_sync(void *info)
 836{
 837        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 838        struct mm_struct *mm = info;
 839
 840        /* It is not valid to test "current->active_mm == mm" here.
 841         *
 842         * The value of "current" is not changed atomically with
 843         * switch_mm().  But that's OK, we just need to check the
 844         * current cpu's trap block PGD physical address.
 845         */
 846        if (tp->pgd_paddr == __pa(mm->pgd))
 847                tsb_context_switch(mm);
 848}
 849
 850void smp_tsb_sync(struct mm_struct *mm)
 851{
 852        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 853}
 854
 855extern unsigned long xcall_flush_tlb_mm;
 856extern unsigned long xcall_flush_tlb_page;
 857extern unsigned long xcall_flush_tlb_kernel_range;
 858extern unsigned long xcall_fetch_glob_regs;
 859extern unsigned long xcall_fetch_glob_pmu;
 860extern unsigned long xcall_fetch_glob_pmu_n4;
 861extern unsigned long xcall_receive_signal;
 862extern unsigned long xcall_new_mmu_context_version;
 863#ifdef CONFIG_KGDB
 864extern unsigned long xcall_kgdb_capture;
 865#endif
 866
 867#ifdef DCACHE_ALIASING_POSSIBLE
 868extern unsigned long xcall_flush_dcache_page_cheetah;
 869#endif
 870extern unsigned long xcall_flush_dcache_page_spitfire;
 871
 872#ifdef CONFIG_DEBUG_DCFLUSH
 873extern atomic_t dcpage_flushes;
 874extern atomic_t dcpage_flushes_xcall;
 875#endif
 876
 877static inline void __local_flush_dcache_page(struct page *page)
 878{
 879#ifdef DCACHE_ALIASING_POSSIBLE
 880        __flush_dcache_page(page_address(page),
 881                            ((tlb_type == spitfire) &&
 882                             page_mapping(page) != NULL));
 883#else
 884        if (page_mapping(page) != NULL &&
 885            tlb_type == spitfire)
 886                __flush_icache_page(__pa(page_address(page)));
 887#endif
 888}
 889
 890void smp_flush_dcache_page_impl(struct page *page, int cpu)
 891{
 892        int this_cpu;
 893
 894        if (tlb_type == hypervisor)
 895                return;
 896
 897#ifdef CONFIG_DEBUG_DCFLUSH
 898        atomic_inc(&dcpage_flushes);
 899#endif
 900
 901        this_cpu = get_cpu();
 902
 903        if (cpu == this_cpu) {
 904                __local_flush_dcache_page(page);
 905        } else if (cpu_online(cpu)) {
 906                void *pg_addr = page_address(page);
 907                u64 data0 = 0;
 908
 909                if (tlb_type == spitfire) {
 910                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 911                        if (page_mapping(page) != NULL)
 912                                data0 |= ((u64)1 << 32);
 913                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 914#ifdef DCACHE_ALIASING_POSSIBLE
 915                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 916#endif
 917                }
 918                if (data0) {
 919                        xcall_deliver(data0, __pa(pg_addr),
 920                                      (u64) pg_addr, cpumask_of(cpu));
 921#ifdef CONFIG_DEBUG_DCFLUSH
 922                        atomic_inc(&dcpage_flushes_xcall);
 923#endif
 924                }
 925        }
 926
 927        put_cpu();
 928}
 929
 930void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 931{
 932        void *pg_addr;
 933        u64 data0;
 934
 935        if (tlb_type == hypervisor)
 936                return;
 937
 938        preempt_disable();
 939
 940#ifdef CONFIG_DEBUG_DCFLUSH
 941        atomic_inc(&dcpage_flushes);
 942#endif
 943        data0 = 0;
 944        pg_addr = page_address(page);
 945        if (tlb_type == spitfire) {
 946                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 947                if (page_mapping(page) != NULL)
 948                        data0 |= ((u64)1 << 32);
 949        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 950#ifdef DCACHE_ALIASING_POSSIBLE
 951                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 952#endif
 953        }
 954        if (data0) {
 955                xcall_deliver(data0, __pa(pg_addr),
 956                              (u64) pg_addr, cpu_online_mask);
 957#ifdef CONFIG_DEBUG_DCFLUSH
 958                atomic_inc(&dcpage_flushes_xcall);
 959#endif
 960        }
 961        __local_flush_dcache_page(page);
 962
 963        preempt_enable();
 964}
 965
 966void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 967{
 968        struct mm_struct *mm;
 969        unsigned long flags;
 970
 971        clear_softint(1 << irq);
 972
 973        /* See if we need to allocate a new TLB context because
 974         * the version of the one we are using is now out of date.
 975         */
 976        mm = current->active_mm;
 977        if (unlikely(!mm || (mm == &init_mm)))
 978                return;
 979
 980        spin_lock_irqsave(&mm->context.lock, flags);
 981
 982        if (unlikely(!CTX_VALID(mm->context)))
 983                get_new_mmu_context(mm);
 984
 985        spin_unlock_irqrestore(&mm->context.lock, flags);
 986
 987        load_secondary_context(mm);
 988        __flush_tlb_mm(CTX_HWBITS(mm->context),
 989                       SECONDARY_CONTEXT);
 990}
 991
 992void smp_new_mmu_context_version(void)
 993{
 994        smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 995}
 996
 997#ifdef CONFIG_KGDB
 998void kgdb_roundup_cpus(unsigned long flags)
 999{
1000        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1001}
1002#endif
1003
1004void smp_fetch_global_regs(void)
1005{
1006        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1007}
1008
1009void smp_fetch_global_pmu(void)
1010{
1011        if (tlb_type == hypervisor &&
1012            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1013                smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1014        else
1015                smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1016}
1017
1018/* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1022 *
1023 * The SMP TLB coherency scheme we use works as follows:
1024 *
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 *    space has (potentially) executed on, this is the heuristic
1027 *    we use to avoid doing cross calls.
1028 *
1029 *    Also, for flushing from kswapd and also for clones, we
1030 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1031 *
1032 * 2) TLB context numbers are shared globally across all processors
1033 *    in the system, this allows us to play several games to avoid
1034 *    cross calls.
1035 *
1036 *    One invariant is that when a cpu switches to a process, and
1037 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1038 *    current cpu's bit set, that tlb context is flushed locally.
1039 *
1040 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1041 *    cross calls when we want to flush the currently running process's
1042 *    tlb state.  This is done by clearing all cpu bits except the current
1043 *    processor's in current->mm->cpu_vm_mask and performing the
1044 *    flush locally only.  This will force any subsequent cpus which run
1045 *    this task to flush the context from the local tlb if the process
1046 *    migrates to another cpu (again).
1047 *
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 *    bullet for most cases and perform the cross call (but only to
1050 *    the cpus listed in cpu_vm_mask).
1051 *
1052 *    The performance gain from "optimizing" away the cross call for threads is
1053 *    questionable (in theory the big win for threads is the massive sharing of
1054 *    address space state across processors).
1055 */
1056
1057/* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1060 */
1061void smp_flush_tlb_mm(struct mm_struct *mm)
1062{
1063        u32 ctx = CTX_HWBITS(mm->context);
1064        int cpu = get_cpu();
1065
1066        if (atomic_read(&mm->mm_users) == 1) {
1067                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1068                goto local_flush_and_out;
1069        }
1070
1071        smp_cross_call_masked(&xcall_flush_tlb_mm,
1072                              ctx, 0, 0,
1073                              mm_cpumask(mm));
1074
1075local_flush_and_out:
1076        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1077
1078        put_cpu();
1079}
1080
1081struct tlb_pending_info {
1082        unsigned long ctx;
1083        unsigned long nr;
1084        unsigned long *vaddrs;
1085};
1086
1087static void tlb_pending_func(void *info)
1088{
1089        struct tlb_pending_info *t = info;
1090
1091        __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1092}
1093
1094void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1095{
1096        u32 ctx = CTX_HWBITS(mm->context);
1097        struct tlb_pending_info info;
1098        int cpu = get_cpu();
1099
1100        info.ctx = ctx;
1101        info.nr = nr;
1102        info.vaddrs = vaddrs;
1103
1104        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1105                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1106        else
1107                smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1108                                       &info, 1);
1109
1110        __flush_tlb_pending(ctx, nr, vaddrs);
1111
1112        put_cpu();
1113}
1114
1115void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1116{
1117        unsigned long context = CTX_HWBITS(mm->context);
1118        int cpu = get_cpu();
1119
1120        if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1121                cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1122        else
1123                smp_cross_call_masked(&xcall_flush_tlb_page,
1124                                      context, vaddr, 0,
1125                                      mm_cpumask(mm));
1126        __flush_tlb_page(context, vaddr);
1127
1128        put_cpu();
1129}
1130
1131void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1132{
1133        start &= PAGE_MASK;
1134        end    = PAGE_ALIGN(end);
1135        if (start != end) {
1136                smp_cross_call(&xcall_flush_tlb_kernel_range,
1137                               0, start, end);
1138
1139                __flush_tlb_kernel_range(start, end);
1140        }
1141}
1142
1143/* CPU capture. */
1144/* #define CAPTURE_DEBUG */
1145extern unsigned long xcall_capture;
1146
1147static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1148static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1149static unsigned long penguins_are_doing_time;
1150
1151void smp_capture(void)
1152{
1153        int result = atomic_add_ret(1, &smp_capture_depth);
1154
1155        if (result == 1) {
1156                int ncpus = num_online_cpus();
1157
1158#ifdef CAPTURE_DEBUG
1159                printk("CPU[%d]: Sending penguins to jail...",
1160                       smp_processor_id());
1161#endif
1162                penguins_are_doing_time = 1;
1163                atomic_inc(&smp_capture_registry);
1164                smp_cross_call(&xcall_capture, 0, 0, 0);
1165                while (atomic_read(&smp_capture_registry) != ncpus)
1166                        rmb();
1167#ifdef CAPTURE_DEBUG
1168                printk("done\n");
1169#endif
1170        }
1171}
1172
1173void smp_release(void)
1174{
1175        if (atomic_dec_and_test(&smp_capture_depth)) {
1176#ifdef CAPTURE_DEBUG
1177                printk("CPU[%d]: Giving pardon to "
1178                       "imprisoned penguins\n",
1179                       smp_processor_id());
1180#endif
1181                penguins_are_doing_time = 0;
1182                membar_safe("#StoreLoad");
1183                atomic_dec(&smp_capture_registry);
1184        }
1185}
1186
1187/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1188 * set, so they can service tlb flush xcalls...
1189 */
1190extern void prom_world(int);
1191
1192void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1193{
1194        clear_softint(1 << irq);
1195
1196        preempt_disable();
1197
1198        __asm__ __volatile__("flushw");
1199        prom_world(1);
1200        atomic_inc(&smp_capture_registry);
1201        membar_safe("#StoreLoad");
1202        while (penguins_are_doing_time)
1203                rmb();
1204        atomic_dec(&smp_capture_registry);
1205        prom_world(0);
1206
1207        preempt_enable();
1208}
1209
1210/* /proc/profile writes can call this, don't __init it please. */
1211int setup_profiling_timer(unsigned int multiplier)
1212{
1213        return -EINVAL;
1214}
1215
1216void __init smp_prepare_cpus(unsigned int max_cpus)
1217{
1218}
1219
1220void smp_prepare_boot_cpu(void)
1221{
1222}
1223
1224void __init smp_setup_processor_id(void)
1225{
1226        if (tlb_type == spitfire)
1227                xcall_deliver_impl = spitfire_xcall_deliver;
1228        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1229                xcall_deliver_impl = cheetah_xcall_deliver;
1230        else
1231                xcall_deliver_impl = hypervisor_xcall_deliver;
1232}
1233
1234void smp_fill_in_sib_core_maps(void)
1235{
1236        unsigned int i;
1237
1238        for_each_present_cpu(i) {
1239                unsigned int j;
1240
1241                cpumask_clear(&cpu_core_map[i]);
1242                if (cpu_data(i).core_id == 0) {
1243                        cpumask_set_cpu(i, &cpu_core_map[i]);
1244                        continue;
1245                }
1246
1247                for_each_present_cpu(j) {
1248                        if (cpu_data(i).core_id ==
1249                            cpu_data(j).core_id)
1250                                cpumask_set_cpu(j, &cpu_core_map[i]);
1251                }
1252        }
1253
1254        for_each_present_cpu(i) {
1255                unsigned int j;
1256
1257                cpumask_clear(&per_cpu(cpu_sibling_map, i));
1258                if (cpu_data(i).proc_id == -1) {
1259                        cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1260                        continue;
1261                }
1262
1263                for_each_present_cpu(j) {
1264                        if (cpu_data(i).proc_id ==
1265                            cpu_data(j).proc_id)
1266                                cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1267                }
1268        }
1269}
1270
1271int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1272{
1273        int ret = smp_boot_one_cpu(cpu, tidle);
1274
1275        if (!ret) {
1276                cpumask_set_cpu(cpu, &smp_commenced_mask);
1277                while (!cpu_online(cpu))
1278                        mb();
1279                if (!cpu_online(cpu)) {
1280                        ret = -ENODEV;
1281                } else {
1282                        /* On SUN4V, writes to %tick and %stick are
1283                         * not allowed.
1284                         */
1285                        if (tlb_type != hypervisor)
1286                                smp_synchronize_one_tick(cpu);
1287                }
1288        }
1289        return ret;
1290}
1291
1292#ifdef CONFIG_HOTPLUG_CPU
1293void cpu_play_dead(void)
1294{
1295        int cpu = smp_processor_id();
1296        unsigned long pstate;
1297
1298        idle_task_exit();
1299
1300        if (tlb_type == hypervisor) {
1301                struct trap_per_cpu *tb = &trap_block[cpu];
1302
1303                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1304                                tb->cpu_mondo_pa, 0);
1305                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1306                                tb->dev_mondo_pa, 0);
1307                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1308                                tb->resum_mondo_pa, 0);
1309                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1310                                tb->nonresum_mondo_pa, 0);
1311        }
1312
1313        cpumask_clear_cpu(cpu, &smp_commenced_mask);
1314        membar_safe("#Sync");
1315
1316        local_irq_disable();
1317
1318        __asm__ __volatile__(
1319                "rdpr   %%pstate, %0\n\t"
1320                "wrpr   %0, %1, %%pstate"
1321                : "=r" (pstate)
1322                : "i" (PSTATE_IE));
1323
1324        while (1)
1325                barrier();
1326}
1327
1328int __cpu_disable(void)
1329{
1330        int cpu = smp_processor_id();
1331        cpuinfo_sparc *c;
1332        int i;
1333
1334        for_each_cpu(i, &cpu_core_map[cpu])
1335                cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1336        cpumask_clear(&cpu_core_map[cpu]);
1337
1338        for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1339                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1340        cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1341
1342        c = &cpu_data(cpu);
1343
1344        c->core_id = 0;
1345        c->proc_id = -1;
1346
1347        smp_wmb();
1348
1349        /* Make sure no interrupts point to this cpu.  */
1350        fixup_irqs();
1351
1352        local_irq_enable();
1353        mdelay(1);
1354        local_irq_disable();
1355
1356        set_cpu_online(cpu, false);
1357
1358        cpu_map_rebuild();
1359
1360        return 0;
1361}
1362
1363void __cpu_die(unsigned int cpu)
1364{
1365        int i;
1366
1367        for (i = 0; i < 100; i++) {
1368                smp_rmb();
1369                if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1370                        break;
1371                msleep(100);
1372        }
1373        if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1374                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1375        } else {
1376#if defined(CONFIG_SUN_LDOMS)
1377                unsigned long hv_err;
1378                int limit = 100;
1379
1380                do {
1381                        hv_err = sun4v_cpu_stop(cpu);
1382                        if (hv_err == HV_EOK) {
1383                                set_cpu_present(cpu, false);
1384                                break;
1385                        }
1386                } while (--limit > 0);
1387                if (limit <= 0) {
1388                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1389                               hv_err);
1390                }
1391#endif
1392        }
1393}
1394#endif
1395
1396void __init smp_cpus_done(unsigned int max_cpus)
1397{
1398        pcr_arch_init();
1399}
1400
1401void smp_send_reschedule(int cpu)
1402{
1403        if (cpu == smp_processor_id()) {
1404                WARN_ON_ONCE(preemptible());
1405                set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1406        } else {
1407                xcall_deliver((u64) &xcall_receive_signal,
1408                              0, 0, cpumask_of(cpu));
1409        }
1410}
1411
1412void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1413{
1414        clear_softint(1 << irq);
1415        scheduler_ipi();
1416}
1417
1418/* This is a nop because we capture all other cpus
1419 * anyways when making the PROM active.
1420 */
1421void smp_send_stop(void)
1422{
1423}
1424
1425/**
1426 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1427 * @cpu: cpu to allocate for
1428 * @size: size allocation in bytes
1429 * @align: alignment
1430 *
1431 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1432 * does the right thing for NUMA regardless of the current
1433 * configuration.
1434 *
1435 * RETURNS:
1436 * Pointer to the allocated area on success, NULL on failure.
1437 */
1438static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1439                                        size_t align)
1440{
1441        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1442#ifdef CONFIG_NEED_MULTIPLE_NODES
1443        int node = cpu_to_node(cpu);
1444        void *ptr;
1445
1446        if (!node_online(node) || !NODE_DATA(node)) {
1447                ptr = __alloc_bootmem(size, align, goal);
1448                pr_info("cpu %d has no node %d or node-local memory\n",
1449                        cpu, node);
1450                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1451                         cpu, size, __pa(ptr));
1452        } else {
1453                ptr = __alloc_bootmem_node(NODE_DATA(node),
1454                                           size, align, goal);
1455                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1456                         "%016lx\n", cpu, size, node, __pa(ptr));
1457        }
1458        return ptr;
1459#else
1460        return __alloc_bootmem(size, align, goal);
1461#endif
1462}
1463
1464static void __init pcpu_free_bootmem(void *ptr, size_t size)
1465{
1466        free_bootmem(__pa(ptr), size);
1467}
1468
1469static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1470{
1471        if (cpu_to_node(from) == cpu_to_node(to))
1472                return LOCAL_DISTANCE;
1473        else
1474                return REMOTE_DISTANCE;
1475}
1476
1477static void __init pcpu_populate_pte(unsigned long addr)
1478{
1479        pgd_t *pgd = pgd_offset_k(addr);
1480        pud_t *pud;
1481        pmd_t *pmd;
1482
1483        pud = pud_offset(pgd, addr);
1484        if (pud_none(*pud)) {
1485                pmd_t *new;
1486
1487                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1488                pud_populate(&init_mm, pud, new);
1489        }
1490
1491        pmd = pmd_offset(pud, addr);
1492        if (!pmd_present(*pmd)) {
1493                pte_t *new;
1494
1495                new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1496                pmd_populate_kernel(&init_mm, pmd, new);
1497        }
1498}
1499
1500void __init setup_per_cpu_areas(void)
1501{
1502        unsigned long delta;
1503        unsigned int cpu;
1504        int rc = -EINVAL;
1505
1506        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1507                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1508                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1509                                            pcpu_cpu_distance,
1510                                            pcpu_alloc_bootmem,
1511                                            pcpu_free_bootmem);
1512                if (rc)
1513                        pr_warning("PERCPU: %s allocator failed (%d), "
1514                                   "falling back to page size\n",
1515                                   pcpu_fc_names[pcpu_chosen_fc], rc);
1516        }
1517        if (rc < 0)
1518                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1519                                           pcpu_alloc_bootmem,
1520                                           pcpu_free_bootmem,
1521                                           pcpu_populate_pte);
1522        if (rc < 0)
1523                panic("cannot initialize percpu area (err=%d)", rc);
1524
1525        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1526        for_each_possible_cpu(cpu)
1527                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1528
1529        /* Setup %g5 for the boot cpu.  */
1530        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1531
1532        of_fill_in_cpu_data();
1533        if (tlb_type == hypervisor)
1534                mdesc_fill_in_cpu_data(cpu_all_mask);
1535}
1536