linux/arch/tile/include/asm/page.h
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#ifndef _ASM_TILE_PAGE_H
  16#define _ASM_TILE_PAGE_H
  17
  18#include <linux/const.h>
  19#include <hv/hypervisor.h>
  20#include <arch/chip.h>
  21
  22/* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
  23#if defined(CONFIG_PAGE_SIZE_16KB)
  24#define PAGE_SHIFT      14
  25#define CTX_PAGE_FLAG   HV_CTX_PG_SM_16K
  26#elif defined(CONFIG_PAGE_SIZE_64KB)
  27#define PAGE_SHIFT      16
  28#define CTX_PAGE_FLAG   HV_CTX_PG_SM_64K
  29#else
  30#define PAGE_SHIFT      HV_LOG2_DEFAULT_PAGE_SIZE_SMALL
  31#define CTX_PAGE_FLAG   0
  32#endif
  33#define HPAGE_SHIFT     HV_LOG2_DEFAULT_PAGE_SIZE_LARGE
  34
  35#define PAGE_SIZE       (_AC(1, UL) << PAGE_SHIFT)
  36#define HPAGE_SIZE      (_AC(1, UL) << HPAGE_SHIFT)
  37
  38#define PAGE_MASK       (~(PAGE_SIZE - 1))
  39#define HPAGE_MASK      (~(HPAGE_SIZE - 1))
  40
  41/*
  42 * We do define AT_SYSINFO_EHDR to support vDSO,
  43 * but don't use the gate mechanism.
  44 */
  45#define __HAVE_ARCH_GATE_AREA           1
  46
  47/*
  48 * If the Kconfig doesn't specify, set a maximum zone order that
  49 * is enough so that we can create huge pages from small pages given
  50 * the respective sizes of the two page types.  See <linux/mmzone.h>.
  51 */
  52#ifndef CONFIG_FORCE_MAX_ZONEORDER
  53#define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
  54#endif
  55
  56#ifndef __ASSEMBLY__
  57
  58#include <linux/types.h>
  59#include <linux/string.h>
  60
  61struct page;
  62
  63static inline void clear_page(void *page)
  64{
  65        memset(page, 0, PAGE_SIZE);
  66}
  67
  68static inline void copy_page(void *to, void *from)
  69{
  70        memcpy(to, from, PAGE_SIZE);
  71}
  72
  73static inline void clear_user_page(void *page, unsigned long vaddr,
  74                                struct page *pg)
  75{
  76        clear_page(page);
  77}
  78
  79static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
  80                                struct page *topage)
  81{
  82        copy_page(to, from);
  83}
  84
  85/*
  86 * Hypervisor page tables are made of the same basic structure.
  87 */
  88
  89typedef HV_PTE pte_t;
  90typedef HV_PTE pgd_t;
  91typedef HV_PTE pgprot_t;
  92
  93/*
  94 * User L2 page tables are managed as one L2 page table per page,
  95 * because we use the page allocator for them.  This keeps the allocation
  96 * simple, but it's also inefficient, since L2 page tables are much smaller
  97 * than pages (currently 2KB vs 64KB).  So we should revisit this.
  98 */
  99typedef struct page *pgtable_t;
 100
 101/* Must be a macro since it is used to create constants. */
 102#define __pgprot(val) hv_pte(val)
 103
 104/* Rarely-used initializers, typically with a "zero" value. */
 105#define __pte(x) hv_pte(x)
 106#define __pgd(x) hv_pte(x)
 107
 108static inline u64 pgprot_val(pgprot_t pgprot)
 109{
 110        return hv_pte_val(pgprot);
 111}
 112
 113static inline u64 pte_val(pte_t pte)
 114{
 115        return hv_pte_val(pte);
 116}
 117
 118static inline u64 pgd_val(pgd_t pgd)
 119{
 120        return hv_pte_val(pgd);
 121}
 122
 123#ifdef __tilegx__
 124
 125typedef HV_PTE pmd_t;
 126
 127#define __pmd(x) hv_pte(x)
 128
 129static inline u64 pmd_val(pmd_t pmd)
 130{
 131        return hv_pte_val(pmd);
 132}
 133
 134#endif
 135
 136static inline __attribute_const__ int get_order(unsigned long size)
 137{
 138        return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
 139}
 140
 141#endif /* !__ASSEMBLY__ */
 142
 143#define HUGETLB_PAGE_ORDER      (HPAGE_SHIFT - PAGE_SHIFT)
 144
 145#define HUGE_MAX_HSTATE         6
 146
 147#ifdef CONFIG_HUGETLB_PAGE
 148#define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 149#endif
 150
 151/* Allow overriding how much VA or PA the kernel will use. */
 152#define MAX_PA_WIDTH CHIP_PA_WIDTH()
 153#define MAX_VA_WIDTH CHIP_VA_WIDTH()
 154
 155/* Each memory controller has PAs distinct in their high bits. */
 156#define NR_PA_HIGHBIT_SHIFT (MAX_PA_WIDTH - CHIP_LOG_NUM_MSHIMS())
 157#define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
 158#define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
 159#define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
 160
 161#ifdef __tilegx__
 162
 163/*
 164 * We reserve the lower half of memory for user-space programs, and the
 165 * upper half for system code.  We re-map all of physical memory in the
 166 * upper half, which takes a quarter of our VA space.  Then we have
 167 * the vmalloc regions.  The supervisor code lives at the highest address,
 168 * with the hypervisor above that.
 169 *
 170 * Loadable kernel modules are placed immediately after the static
 171 * supervisor code, with each being allocated a 256MB region of
 172 * address space, so we don't have to worry about the range of "jal"
 173 * and other branch instructions.
 174 *
 175 * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
 176 * Similarly, for now we don't play any struct page mapping games.
 177 */
 178
 179#if MAX_PA_WIDTH + 2 > MAX_VA_WIDTH
 180# error Too much PA to map with the VA available!
 181#endif
 182
 183#define PAGE_OFFSET             (-(_AC(1, UL) << (MAX_VA_WIDTH - 1)))
 184#define KERNEL_HIGH_VADDR       _AC(0xfffffff800000000, UL)  /* high 32GB */
 185#define FIXADDR_BASE            (KERNEL_HIGH_VADDR - 0x300000000) /* 4 GB */
 186#define FIXADDR_TOP             (KERNEL_HIGH_VADDR - 0x200000000) /* 4 GB */
 187#define _VMALLOC_START          FIXADDR_TOP
 188#define MEM_SV_START            (KERNEL_HIGH_VADDR - 0x100000000) /* 256 MB */
 189#define MEM_MODULE_START        (MEM_SV_START + (256*1024*1024)) /* 256 MB */
 190#define MEM_MODULE_END          (MEM_MODULE_START + (256*1024*1024))
 191
 192#else /* !__tilegx__ */
 193
 194/*
 195 * A PAGE_OFFSET of 0xC0000000 means that the kernel has
 196 * a virtual address space of one gigabyte, which limits the
 197 * amount of physical memory you can use to about 768MB.
 198 * If you want more physical memory than this then see the CONFIG_HIGHMEM
 199 * option in the kernel configuration.
 200 *
 201 * The top 16MB chunk in the table below is unavailable to Linux.  Since
 202 * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
 203 * (depending on whether the kernel is at PL2 or Pl1), we map all of the
 204 * bottom of RAM at this address with a huge page table entry to minimize
 205 * its ITLB footprint (as well as at PAGE_OFFSET).  The last architected
 206 * requirement is that user interrupt vectors live at 0xfc000000, so we
 207 * make that range of memory available to user processes.  The remaining
 208 * regions are sized as shown; the first four addresses use the PL 1
 209 * values, and after that, we show "typical" values, since the actual
 210 * addresses depend on kernel #defines.
 211 *
 212 * MEM_HV_START                    0xfe000000
 213 * MEM_SV_START  (kernel code)     0xfd000000
 214 * MEM_USER_INTRPT (user vector)   0xfc000000
 215 * FIX_KMAP_xxx                    0xfa000000 (via NR_CPUS * KM_TYPE_NR)
 216 * PKMAP_BASE                      0xf9000000 (via LAST_PKMAP)
 217 * VMALLOC_START                   0xf7000000 (via VMALLOC_RESERVE)
 218 * mapped LOWMEM                   0xc0000000
 219 */
 220
 221#define MEM_USER_INTRPT         _AC(0xfc000000, UL)
 222#define MEM_SV_START            _AC(0xfd000000, UL)
 223#define MEM_HV_START            _AC(0xfe000000, UL)
 224
 225#define INTRPT_SIZE             0x4000
 226
 227/* Tolerate page size larger than the architecture interrupt region size. */
 228#if PAGE_SIZE > INTRPT_SIZE
 229#undef INTRPT_SIZE
 230#define INTRPT_SIZE PAGE_SIZE
 231#endif
 232
 233#define KERNEL_HIGH_VADDR       MEM_USER_INTRPT
 234#define FIXADDR_TOP             (KERNEL_HIGH_VADDR - PAGE_SIZE)
 235
 236#define PAGE_OFFSET             _AC(CONFIG_PAGE_OFFSET, UL)
 237
 238/* On 32-bit architectures we mix kernel modules in with other vmaps. */
 239#define MEM_MODULE_START        VMALLOC_START
 240#define MEM_MODULE_END          VMALLOC_END
 241
 242#endif /* __tilegx__ */
 243
 244#if !defined(__ASSEMBLY__) && !defined(VDSO_BUILD)
 245
 246#ifdef CONFIG_HIGHMEM
 247
 248/* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
 249extern unsigned long pbase_map[];
 250extern void *vbase_map[];
 251
 252static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
 253{
 254        unsigned long kaddr = (unsigned long)_kaddr;
 255        return pbase_map[kaddr >> HPAGE_SHIFT] +
 256                ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
 257}
 258
 259static inline void *pfn_to_kaddr(unsigned long pfn)
 260{
 261        return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
 262}
 263
 264static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 265{
 266        unsigned long pfn = kaddr_to_pfn(kaddr);
 267        return ((phys_addr_t)pfn << PAGE_SHIFT) +
 268                ((unsigned long)kaddr & (PAGE_SIZE-1));
 269}
 270
 271static inline void *phys_to_virt(phys_addr_t paddr)
 272{
 273        return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
 274}
 275
 276/* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
 277static inline int virt_addr_valid(const volatile void *kaddr)
 278{
 279        extern void *high_memory;  /* copied from <linux/mm.h> */
 280        return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
 281}
 282
 283#else /* !CONFIG_HIGHMEM */
 284
 285static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
 286{
 287        return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
 288}
 289
 290static inline void *pfn_to_kaddr(unsigned long pfn)
 291{
 292        return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
 293}
 294
 295static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 296{
 297        return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
 298}
 299
 300static inline void *phys_to_virt(phys_addr_t paddr)
 301{
 302        return (void *)((unsigned long)paddr + PAGE_OFFSET);
 303}
 304
 305/* Check that the given address is within some mapped range of PAs. */
 306#define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
 307
 308#endif /* !CONFIG_HIGHMEM */
 309
 310/* All callers are not consistent in how they call these functions. */
 311#define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
 312#define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
 313
 314extern int devmem_is_allowed(unsigned long pagenr);
 315
 316#ifdef CONFIG_FLATMEM
 317static inline int pfn_valid(unsigned long pfn)
 318{
 319        return pfn < max_mapnr;
 320}
 321#endif
 322
 323/* Provide as macros since these require some other headers included. */
 324#define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
 325#define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
 326#define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
 327
 328struct mm_struct;
 329extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
 330extern pte_t *virt_to_kpte(unsigned long kaddr);
 331
 332#endif /* !__ASSEMBLY__ */
 333
 334#define VM_DATA_DEFAULT_FLAGS \
 335        (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 336
 337#include <asm-generic/memory_model.h>
 338
 339#endif /* _ASM_TILE_PAGE_H */
 340