linux/arch/x86/kernel/kvmclock.c
<<
>>
Prefs
   1/*  KVM paravirtual clock driver. A clocksource implementation
   2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
   3
   4    This program is free software; you can redistribute it and/or modify
   5    it under the terms of the GNU General Public License as published by
   6    the Free Software Foundation; either version 2 of the License, or
   7    (at your option) any later version.
   8
   9    This program is distributed in the hope that it will be useful,
  10    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12    GNU General Public License for more details.
  13
  14    You should have received a copy of the GNU General Public License
  15    along with this program; if not, write to the Free Software
  16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17*/
  18
  19#include <linux/clocksource.h>
  20#include <linux/kvm_para.h>
  21#include <asm/pvclock.h>
  22#include <asm/msr.h>
  23#include <asm/apic.h>
  24#include <linux/percpu.h>
  25#include <linux/hardirq.h>
  26#include <linux/memblock.h>
  27
  28#include <asm/x86_init.h>
  29#include <asm/reboot.h>
  30
  31static int kvmclock = 1;
  32static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
  33static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
  34
  35static int parse_no_kvmclock(char *arg)
  36{
  37        kvmclock = 0;
  38        return 0;
  39}
  40early_param("no-kvmclock", parse_no_kvmclock);
  41
  42/* The hypervisor will put information about time periodically here */
  43static struct pvclock_vsyscall_time_info *hv_clock;
  44static struct pvclock_wall_clock wall_clock;
  45
  46/*
  47 * The wallclock is the time of day when we booted. Since then, some time may
  48 * have elapsed since the hypervisor wrote the data. So we try to account for
  49 * that with system time
  50 */
  51static void kvm_get_wallclock(struct timespec *now)
  52{
  53        struct pvclock_vcpu_time_info *vcpu_time;
  54        int low, high;
  55        int cpu;
  56
  57        low = (int)__pa_symbol(&wall_clock);
  58        high = ((u64)__pa_symbol(&wall_clock) >> 32);
  59
  60        native_write_msr(msr_kvm_wall_clock, low, high);
  61
  62        preempt_disable();
  63        cpu = smp_processor_id();
  64
  65        vcpu_time = &hv_clock[cpu].pvti;
  66        pvclock_read_wallclock(&wall_clock, vcpu_time, now);
  67
  68        preempt_enable();
  69}
  70
  71static int kvm_set_wallclock(const struct timespec *now)
  72{
  73        return -1;
  74}
  75
  76static cycle_t kvm_clock_read(void)
  77{
  78        struct pvclock_vcpu_time_info *src;
  79        cycle_t ret;
  80        int cpu;
  81
  82        preempt_disable_notrace();
  83        cpu = smp_processor_id();
  84        src = &hv_clock[cpu].pvti;
  85        ret = pvclock_clocksource_read(src);
  86        preempt_enable_notrace();
  87        return ret;
  88}
  89
  90static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
  91{
  92        return kvm_clock_read();
  93}
  94
  95/*
  96 * If we don't do that, there is the possibility that the guest
  97 * will calibrate under heavy load - thus, getting a lower lpj -
  98 * and execute the delays themselves without load. This is wrong,
  99 * because no delay loop can finish beforehand.
 100 * Any heuristics is subject to fail, because ultimately, a large
 101 * poll of guests can be running and trouble each other. So we preset
 102 * lpj here
 103 */
 104static unsigned long kvm_get_tsc_khz(void)
 105{
 106        struct pvclock_vcpu_time_info *src;
 107        int cpu;
 108        unsigned long tsc_khz;
 109
 110        preempt_disable();
 111        cpu = smp_processor_id();
 112        src = &hv_clock[cpu].pvti;
 113        tsc_khz = pvclock_tsc_khz(src);
 114        preempt_enable();
 115        return tsc_khz;
 116}
 117
 118static void kvm_get_preset_lpj(void)
 119{
 120        unsigned long khz;
 121        u64 lpj;
 122
 123        khz = kvm_get_tsc_khz();
 124
 125        lpj = ((u64)khz * 1000);
 126        do_div(lpj, HZ);
 127        preset_lpj = lpj;
 128}
 129
 130bool kvm_check_and_clear_guest_paused(void)
 131{
 132        bool ret = false;
 133        struct pvclock_vcpu_time_info *src;
 134        int cpu = smp_processor_id();
 135
 136        if (!hv_clock)
 137                return ret;
 138
 139        src = &hv_clock[cpu].pvti;
 140        if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
 141                src->flags &= ~PVCLOCK_GUEST_STOPPED;
 142                pvclock_touch_watchdogs();
 143                ret = true;
 144        }
 145
 146        return ret;
 147}
 148
 149static struct clocksource kvm_clock = {
 150        .name = "kvm-clock",
 151        .read = kvm_clock_get_cycles,
 152        .rating = 400,
 153        .mask = CLOCKSOURCE_MASK(64),
 154        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
 155};
 156
 157int kvm_register_clock(char *txt)
 158{
 159        int cpu = smp_processor_id();
 160        int low, high, ret;
 161        struct pvclock_vcpu_time_info *src;
 162
 163        if (!hv_clock)
 164                return 0;
 165
 166        src = &hv_clock[cpu].pvti;
 167        low = (int)slow_virt_to_phys(src) | 1;
 168        high = ((u64)slow_virt_to_phys(src) >> 32);
 169        ret = native_write_msr_safe(msr_kvm_system_time, low, high);
 170        printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
 171               cpu, high, low, txt);
 172
 173        return ret;
 174}
 175
 176static void kvm_save_sched_clock_state(void)
 177{
 178}
 179
 180static void kvm_restore_sched_clock_state(void)
 181{
 182        kvm_register_clock("primary cpu clock, resume");
 183}
 184
 185#ifdef CONFIG_X86_LOCAL_APIC
 186static void kvm_setup_secondary_clock(void)
 187{
 188        /*
 189         * Now that the first cpu already had this clocksource initialized,
 190         * we shouldn't fail.
 191         */
 192        WARN_ON(kvm_register_clock("secondary cpu clock"));
 193}
 194#endif
 195
 196/*
 197 * After the clock is registered, the host will keep writing to the
 198 * registered memory location. If the guest happens to shutdown, this memory
 199 * won't be valid. In cases like kexec, in which you install a new kernel, this
 200 * means a random memory location will be kept being written. So before any
 201 * kind of shutdown from our side, we unregister the clock by writting anything
 202 * that does not have the 'enable' bit set in the msr
 203 */
 204#ifdef CONFIG_KEXEC
 205static void kvm_crash_shutdown(struct pt_regs *regs)
 206{
 207        native_write_msr(msr_kvm_system_time, 0, 0);
 208        kvm_disable_steal_time();
 209        native_machine_crash_shutdown(regs);
 210}
 211#endif
 212
 213static void kvm_shutdown(void)
 214{
 215        native_write_msr(msr_kvm_system_time, 0, 0);
 216        kvm_disable_steal_time();
 217        native_machine_shutdown();
 218}
 219
 220void __init kvmclock_init(void)
 221{
 222        unsigned long mem;
 223        int size;
 224
 225        size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 226
 227        if (!kvm_para_available())
 228                return;
 229
 230        if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
 231                msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
 232                msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
 233        } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
 234                return;
 235
 236        printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
 237                msr_kvm_system_time, msr_kvm_wall_clock);
 238
 239        mem = memblock_alloc(size, PAGE_SIZE);
 240        if (!mem)
 241                return;
 242        hv_clock = __va(mem);
 243        memset(hv_clock, 0, size);
 244
 245        if (kvm_register_clock("boot clock")) {
 246                hv_clock = NULL;
 247                memblock_free(mem, size);
 248                return;
 249        }
 250        pv_time_ops.sched_clock = kvm_clock_read;
 251        x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 252        x86_platform.get_wallclock = kvm_get_wallclock;
 253        x86_platform.set_wallclock = kvm_set_wallclock;
 254#ifdef CONFIG_X86_LOCAL_APIC
 255        x86_cpuinit.early_percpu_clock_init =
 256                kvm_setup_secondary_clock;
 257#endif
 258        x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
 259        x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
 260        machine_ops.shutdown  = kvm_shutdown;
 261#ifdef CONFIG_KEXEC
 262        machine_ops.crash_shutdown  = kvm_crash_shutdown;
 263#endif
 264        kvm_get_preset_lpj();
 265        clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 266        pv_info.paravirt_enabled = 1;
 267        pv_info.name = "KVM";
 268
 269        if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
 270                pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 271}
 272
 273int __init kvm_setup_vsyscall_timeinfo(void)
 274{
 275#ifdef CONFIG_X86_64
 276        int cpu;
 277        int ret;
 278        u8 flags;
 279        struct pvclock_vcpu_time_info *vcpu_time;
 280        unsigned int size;
 281
 282        if (!hv_clock)
 283                return 0;
 284
 285        size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 286
 287        preempt_disable();
 288        cpu = smp_processor_id();
 289
 290        vcpu_time = &hv_clock[cpu].pvti;
 291        flags = pvclock_read_flags(vcpu_time);
 292
 293        if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
 294                preempt_enable();
 295                return 1;
 296        }
 297
 298        if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
 299                preempt_enable();
 300                return ret;
 301        }
 302
 303        preempt_enable();
 304
 305        kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
 306#endif
 307        return 0;
 308}
 309