linux/arch/x86/mm/pageattr.c
<<
>>
Prefs
   1/*
   2 * Copyright 2002 Andi Kleen, SuSE Labs.
   3 * Thanks to Ben LaHaise for precious feedback.
   4 */
   5#include <linux/highmem.h>
   6#include <linux/bootmem.h>
   7#include <linux/module.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/debugfs.h>
  13#include <linux/pfn.h>
  14#include <linux/percpu.h>
  15#include <linux/gfp.h>
  16#include <linux/pci.h>
  17
  18#include <asm/e820.h>
  19#include <asm/processor.h>
  20#include <asm/tlbflush.h>
  21#include <asm/sections.h>
  22#include <asm/setup.h>
  23#include <asm/uaccess.h>
  24#include <asm/pgalloc.h>
  25#include <asm/proto.h>
  26#include <asm/pat.h>
  27
  28/*
  29 * The current flushing context - we pass it instead of 5 arguments:
  30 */
  31struct cpa_data {
  32        unsigned long   *vaddr;
  33        pgprot_t        mask_set;
  34        pgprot_t        mask_clr;
  35        int             numpages;
  36        int             flags;
  37        unsigned long   pfn;
  38        unsigned        force_split : 1;
  39        int             curpage;
  40        struct page     **pages;
  41};
  42
  43/*
  44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  46 * entries change the page attribute in parallel to some other cpu
  47 * splitting a large page entry along with changing the attribute.
  48 */
  49static DEFINE_SPINLOCK(cpa_lock);
  50
  51#define CPA_FLUSHTLB 1
  52#define CPA_ARRAY 2
  53#define CPA_PAGES_ARRAY 4
  54
  55#ifdef CONFIG_PROC_FS
  56static unsigned long direct_pages_count[PG_LEVEL_NUM];
  57
  58void update_page_count(int level, unsigned long pages)
  59{
  60        /* Protect against CPA */
  61        spin_lock(&pgd_lock);
  62        direct_pages_count[level] += pages;
  63        spin_unlock(&pgd_lock);
  64}
  65
  66static void split_page_count(int level)
  67{
  68        direct_pages_count[level]--;
  69        direct_pages_count[level - 1] += PTRS_PER_PTE;
  70}
  71
  72void arch_report_meminfo(struct seq_file *m)
  73{
  74        seq_printf(m, "DirectMap4k:    %8lu kB\n",
  75                        direct_pages_count[PG_LEVEL_4K] << 2);
  76#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  77        seq_printf(m, "DirectMap2M:    %8lu kB\n",
  78                        direct_pages_count[PG_LEVEL_2M] << 11);
  79#else
  80        seq_printf(m, "DirectMap4M:    %8lu kB\n",
  81                        direct_pages_count[PG_LEVEL_2M] << 12);
  82#endif
  83#ifdef CONFIG_X86_64
  84        if (direct_gbpages)
  85                seq_printf(m, "DirectMap1G:    %8lu kB\n",
  86                        direct_pages_count[PG_LEVEL_1G] << 20);
  87#endif
  88}
  89#else
  90static inline void split_page_count(int level) { }
  91#endif
  92
  93#ifdef CONFIG_X86_64
  94
  95static inline unsigned long highmap_start_pfn(void)
  96{
  97        return __pa_symbol(_text) >> PAGE_SHIFT;
  98}
  99
 100static inline unsigned long highmap_end_pfn(void)
 101{
 102        return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
 103}
 104
 105#endif
 106
 107#ifdef CONFIG_DEBUG_PAGEALLOC
 108# define debug_pagealloc 1
 109#else
 110# define debug_pagealloc 0
 111#endif
 112
 113static inline int
 114within(unsigned long addr, unsigned long start, unsigned long end)
 115{
 116        return addr >= start && addr < end;
 117}
 118
 119/*
 120 * Flushing functions
 121 */
 122
 123/**
 124 * clflush_cache_range - flush a cache range with clflush
 125 * @vaddr:      virtual start address
 126 * @size:       number of bytes to flush
 127 *
 128 * clflush is an unordered instruction which needs fencing with mfence
 129 * to avoid ordering issues.
 130 */
 131void clflush_cache_range(void *vaddr, unsigned int size)
 132{
 133        void *vend = vaddr + size - 1;
 134
 135        mb();
 136
 137        for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
 138                clflush(vaddr);
 139        /*
 140         * Flush any possible final partial cacheline:
 141         */
 142        clflush(vend);
 143
 144        mb();
 145}
 146EXPORT_SYMBOL_GPL(clflush_cache_range);
 147
 148static void __cpa_flush_all(void *arg)
 149{
 150        unsigned long cache = (unsigned long)arg;
 151
 152        /*
 153         * Flush all to work around Errata in early athlons regarding
 154         * large page flushing.
 155         */
 156        __flush_tlb_all();
 157
 158        if (cache && boot_cpu_data.x86 >= 4)
 159                wbinvd();
 160}
 161
 162static void cpa_flush_all(unsigned long cache)
 163{
 164        BUG_ON(irqs_disabled());
 165
 166        on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 167}
 168
 169static void __cpa_flush_range(void *arg)
 170{
 171        /*
 172         * We could optimize that further and do individual per page
 173         * tlb invalidates for a low number of pages. Caveat: we must
 174         * flush the high aliases on 64bit as well.
 175         */
 176        __flush_tlb_all();
 177}
 178
 179static void cpa_flush_range(unsigned long start, int numpages, int cache)
 180{
 181        unsigned int i, level;
 182        unsigned long addr;
 183
 184        BUG_ON(irqs_disabled());
 185        WARN_ON(PAGE_ALIGN(start) != start);
 186
 187        on_each_cpu(__cpa_flush_range, NULL, 1);
 188
 189        if (!cache)
 190                return;
 191
 192        /*
 193         * We only need to flush on one CPU,
 194         * clflush is a MESI-coherent instruction that
 195         * will cause all other CPUs to flush the same
 196         * cachelines:
 197         */
 198        for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
 199                pte_t *pte = lookup_address(addr, &level);
 200
 201                /*
 202                 * Only flush present addresses:
 203                 */
 204                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 205                        clflush_cache_range((void *) addr, PAGE_SIZE);
 206        }
 207}
 208
 209static void cpa_flush_array(unsigned long *start, int numpages, int cache,
 210                            int in_flags, struct page **pages)
 211{
 212        unsigned int i, level;
 213        unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
 214
 215        BUG_ON(irqs_disabled());
 216
 217        on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
 218
 219        if (!cache || do_wbinvd)
 220                return;
 221
 222        /*
 223         * We only need to flush on one CPU,
 224         * clflush is a MESI-coherent instruction that
 225         * will cause all other CPUs to flush the same
 226         * cachelines:
 227         */
 228        for (i = 0; i < numpages; i++) {
 229                unsigned long addr;
 230                pte_t *pte;
 231
 232                if (in_flags & CPA_PAGES_ARRAY)
 233                        addr = (unsigned long)page_address(pages[i]);
 234                else
 235                        addr = start[i];
 236
 237                pte = lookup_address(addr, &level);
 238
 239                /*
 240                 * Only flush present addresses:
 241                 */
 242                if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 243                        clflush_cache_range((void *)addr, PAGE_SIZE);
 244        }
 245}
 246
 247/*
 248 * Certain areas of memory on x86 require very specific protection flags,
 249 * for example the BIOS area or kernel text. Callers don't always get this
 250 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 251 * checks and fixes these known static required protection bits.
 252 */
 253static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
 254                                   unsigned long pfn)
 255{
 256        pgprot_t forbidden = __pgprot(0);
 257
 258        /*
 259         * The BIOS area between 640k and 1Mb needs to be executable for
 260         * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
 261         */
 262#ifdef CONFIG_PCI_BIOS
 263        if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
 264                pgprot_val(forbidden) |= _PAGE_NX;
 265#endif
 266
 267        /*
 268         * The kernel text needs to be executable for obvious reasons
 269         * Does not cover __inittext since that is gone later on. On
 270         * 64bit we do not enforce !NX on the low mapping
 271         */
 272        if (within(address, (unsigned long)_text, (unsigned long)_etext))
 273                pgprot_val(forbidden) |= _PAGE_NX;
 274
 275        /*
 276         * The .rodata section needs to be read-only. Using the pfn
 277         * catches all aliases.
 278         */
 279        if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
 280                   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
 281                pgprot_val(forbidden) |= _PAGE_RW;
 282
 283#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
 284        /*
 285         * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 286         * kernel text mappings for the large page aligned text, rodata sections
 287         * will be always read-only. For the kernel identity mappings covering
 288         * the holes caused by this alignment can be anything that user asks.
 289         *
 290         * This will preserve the large page mappings for kernel text/data
 291         * at no extra cost.
 292         */
 293        if (kernel_set_to_readonly &&
 294            within(address, (unsigned long)_text,
 295                   (unsigned long)__end_rodata_hpage_align)) {
 296                unsigned int level;
 297
 298                /*
 299                 * Don't enforce the !RW mapping for the kernel text mapping,
 300                 * if the current mapping is already using small page mapping.
 301                 * No need to work hard to preserve large page mappings in this
 302                 * case.
 303                 *
 304                 * This also fixes the Linux Xen paravirt guest boot failure
 305                 * (because of unexpected read-only mappings for kernel identity
 306                 * mappings). In this paravirt guest case, the kernel text
 307                 * mapping and the kernel identity mapping share the same
 308                 * page-table pages. Thus we can't really use different
 309                 * protections for the kernel text and identity mappings. Also,
 310                 * these shared mappings are made of small page mappings.
 311                 * Thus this don't enforce !RW mapping for small page kernel
 312                 * text mapping logic will help Linux Xen parvirt guest boot
 313                 * as well.
 314                 */
 315                if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
 316                        pgprot_val(forbidden) |= _PAGE_RW;
 317        }
 318#endif
 319
 320        prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
 321
 322        return prot;
 323}
 324
 325/*
 326 * Lookup the page table entry for a virtual address. Return a pointer
 327 * to the entry and the level of the mapping.
 328 *
 329 * Note: We return pud and pmd either when the entry is marked large
 330 * or when the present bit is not set. Otherwise we would return a
 331 * pointer to a nonexisting mapping.
 332 */
 333pte_t *lookup_address(unsigned long address, unsigned int *level)
 334{
 335        pgd_t *pgd = pgd_offset_k(address);
 336        pud_t *pud;
 337        pmd_t *pmd;
 338
 339        *level = PG_LEVEL_NONE;
 340
 341        if (pgd_none(*pgd))
 342                return NULL;
 343
 344        pud = pud_offset(pgd, address);
 345        if (pud_none(*pud))
 346                return NULL;
 347
 348        *level = PG_LEVEL_1G;
 349        if (pud_large(*pud) || !pud_present(*pud))
 350                return (pte_t *)pud;
 351
 352        pmd = pmd_offset(pud, address);
 353        if (pmd_none(*pmd))
 354                return NULL;
 355
 356        *level = PG_LEVEL_2M;
 357        if (pmd_large(*pmd) || !pmd_present(*pmd))
 358                return (pte_t *)pmd;
 359
 360        *level = PG_LEVEL_4K;
 361
 362        return pte_offset_kernel(pmd, address);
 363}
 364EXPORT_SYMBOL_GPL(lookup_address);
 365
 366/*
 367 * This is necessary because __pa() does not work on some
 368 * kinds of memory, like vmalloc() or the alloc_remap()
 369 * areas on 32-bit NUMA systems.  The percpu areas can
 370 * end up in this kind of memory, for instance.
 371 *
 372 * This could be optimized, but it is only intended to be
 373 * used at inititalization time, and keeping it
 374 * unoptimized should increase the testing coverage for
 375 * the more obscure platforms.
 376 */
 377phys_addr_t slow_virt_to_phys(void *__virt_addr)
 378{
 379        unsigned long virt_addr = (unsigned long)__virt_addr;
 380        phys_addr_t phys_addr;
 381        unsigned long offset;
 382        enum pg_level level;
 383        unsigned long psize;
 384        unsigned long pmask;
 385        pte_t *pte;
 386
 387        pte = lookup_address(virt_addr, &level);
 388        BUG_ON(!pte);
 389        psize = page_level_size(level);
 390        pmask = page_level_mask(level);
 391        offset = virt_addr & ~pmask;
 392        phys_addr = pte_pfn(*pte) << PAGE_SHIFT;
 393        return (phys_addr | offset);
 394}
 395EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 396
 397/*
 398 * Set the new pmd in all the pgds we know about:
 399 */
 400static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 401{
 402        /* change init_mm */
 403        set_pte_atomic(kpte, pte);
 404#ifdef CONFIG_X86_32
 405        if (!SHARED_KERNEL_PMD) {
 406                struct page *page;
 407
 408                list_for_each_entry(page, &pgd_list, lru) {
 409                        pgd_t *pgd;
 410                        pud_t *pud;
 411                        pmd_t *pmd;
 412
 413                        pgd = (pgd_t *)page_address(page) + pgd_index(address);
 414                        pud = pud_offset(pgd, address);
 415                        pmd = pmd_offset(pud, address);
 416                        set_pte_atomic((pte_t *)pmd, pte);
 417                }
 418        }
 419#endif
 420}
 421
 422static int
 423try_preserve_large_page(pte_t *kpte, unsigned long address,
 424                        struct cpa_data *cpa)
 425{
 426        unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
 427        pte_t new_pte, old_pte, *tmp;
 428        pgprot_t old_prot, new_prot, req_prot;
 429        int i, do_split = 1;
 430        enum pg_level level;
 431
 432        if (cpa->force_split)
 433                return 1;
 434
 435        spin_lock(&pgd_lock);
 436        /*
 437         * Check for races, another CPU might have split this page
 438         * up already:
 439         */
 440        tmp = lookup_address(address, &level);
 441        if (tmp != kpte)
 442                goto out_unlock;
 443
 444        switch (level) {
 445        case PG_LEVEL_2M:
 446#ifdef CONFIG_X86_64
 447        case PG_LEVEL_1G:
 448#endif
 449                psize = page_level_size(level);
 450                pmask = page_level_mask(level);
 451                break;
 452        default:
 453                do_split = -EINVAL;
 454                goto out_unlock;
 455        }
 456
 457        /*
 458         * Calculate the number of pages, which fit into this large
 459         * page starting at address:
 460         */
 461        nextpage_addr = (address + psize) & pmask;
 462        numpages = (nextpage_addr - address) >> PAGE_SHIFT;
 463        if (numpages < cpa->numpages)
 464                cpa->numpages = numpages;
 465
 466        /*
 467         * We are safe now. Check whether the new pgprot is the same:
 468         */
 469        old_pte = *kpte;
 470        old_prot = req_prot = pte_pgprot(old_pte);
 471
 472        pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 473        pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 474
 475        /*
 476         * Set the PSE and GLOBAL flags only if the PRESENT flag is
 477         * set otherwise pmd_present/pmd_huge will return true even on
 478         * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
 479         * for the ancient hardware that doesn't support it.
 480         */
 481        if (pgprot_val(req_prot) & _PAGE_PRESENT)
 482                pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
 483        else
 484                pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
 485
 486        req_prot = canon_pgprot(req_prot);
 487
 488        /*
 489         * old_pte points to the large page base address. So we need
 490         * to add the offset of the virtual address:
 491         */
 492        pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
 493        cpa->pfn = pfn;
 494
 495        new_prot = static_protections(req_prot, address, pfn);
 496
 497        /*
 498         * We need to check the full range, whether
 499         * static_protection() requires a different pgprot for one of
 500         * the pages in the range we try to preserve:
 501         */
 502        addr = address & pmask;
 503        pfn = pte_pfn(old_pte);
 504        for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
 505                pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
 506
 507                if (pgprot_val(chk_prot) != pgprot_val(new_prot))
 508                        goto out_unlock;
 509        }
 510
 511        /*
 512         * If there are no changes, return. maxpages has been updated
 513         * above:
 514         */
 515        if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
 516                do_split = 0;
 517                goto out_unlock;
 518        }
 519
 520        /*
 521         * We need to change the attributes. Check, whether we can
 522         * change the large page in one go. We request a split, when
 523         * the address is not aligned and the number of pages is
 524         * smaller than the number of pages in the large page. Note
 525         * that we limited the number of possible pages already to
 526         * the number of pages in the large page.
 527         */
 528        if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
 529                /*
 530                 * The address is aligned and the number of pages
 531                 * covers the full page.
 532                 */
 533                new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
 534                __set_pmd_pte(kpte, address, new_pte);
 535                cpa->flags |= CPA_FLUSHTLB;
 536                do_split = 0;
 537        }
 538
 539out_unlock:
 540        spin_unlock(&pgd_lock);
 541
 542        return do_split;
 543}
 544
 545static int
 546__split_large_page(pte_t *kpte, unsigned long address, struct page *base)
 547{
 548        pte_t *pbase = (pte_t *)page_address(base);
 549        unsigned long pfn, pfninc = 1;
 550        unsigned int i, level;
 551        pte_t *tmp;
 552        pgprot_t ref_prot;
 553
 554        spin_lock(&pgd_lock);
 555        /*
 556         * Check for races, another CPU might have split this page
 557         * up for us already:
 558         */
 559        tmp = lookup_address(address, &level);
 560        if (tmp != kpte) {
 561                spin_unlock(&pgd_lock);
 562                return 1;
 563        }
 564
 565        paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 566        ref_prot = pte_pgprot(pte_clrhuge(*kpte));
 567        /*
 568         * If we ever want to utilize the PAT bit, we need to
 569         * update this function to make sure it's converted from
 570         * bit 12 to bit 7 when we cross from the 2MB level to
 571         * the 4K level:
 572         */
 573        WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
 574
 575#ifdef CONFIG_X86_64
 576        if (level == PG_LEVEL_1G) {
 577                pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 578                /*
 579                 * Set the PSE flags only if the PRESENT flag is set
 580                 * otherwise pmd_present/pmd_huge will return true
 581                 * even on a non present pmd.
 582                 */
 583                if (pgprot_val(ref_prot) & _PAGE_PRESENT)
 584                        pgprot_val(ref_prot) |= _PAGE_PSE;
 585                else
 586                        pgprot_val(ref_prot) &= ~_PAGE_PSE;
 587        }
 588#endif
 589
 590        /*
 591         * Set the GLOBAL flags only if the PRESENT flag is set
 592         * otherwise pmd/pte_present will return true even on a non
 593         * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
 594         * for the ancient hardware that doesn't support it.
 595         */
 596        if (pgprot_val(ref_prot) & _PAGE_PRESENT)
 597                pgprot_val(ref_prot) |= _PAGE_GLOBAL;
 598        else
 599                pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
 600
 601        /*
 602         * Get the target pfn from the original entry:
 603         */
 604        pfn = pte_pfn(*kpte);
 605        for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
 606                set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
 607
 608        if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
 609                                PFN_DOWN(__pa(address)) + 1))
 610                split_page_count(level);
 611
 612        /*
 613         * Install the new, split up pagetable.
 614         *
 615         * We use the standard kernel pagetable protections for the new
 616         * pagetable protections, the actual ptes set above control the
 617         * primary protection behavior:
 618         */
 619        __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
 620
 621        /*
 622         * Intel Atom errata AAH41 workaround.
 623         *
 624         * The real fix should be in hw or in a microcode update, but
 625         * we also probabilistically try to reduce the window of having
 626         * a large TLB mixed with 4K TLBs while instruction fetches are
 627         * going on.
 628         */
 629        __flush_tlb_all();
 630        spin_unlock(&pgd_lock);
 631
 632        return 0;
 633}
 634
 635static int split_large_page(pte_t *kpte, unsigned long address)
 636{
 637        struct page *base;
 638
 639        if (!debug_pagealloc)
 640                spin_unlock(&cpa_lock);
 641        base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
 642        if (!debug_pagealloc)
 643                spin_lock(&cpa_lock);
 644        if (!base)
 645                return -ENOMEM;
 646
 647        if (__split_large_page(kpte, address, base))
 648                __free_page(base);
 649
 650        return 0;
 651}
 652
 653static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
 654                               int primary)
 655{
 656        /*
 657         * Ignore all non primary paths.
 658         */
 659        if (!primary)
 660                return 0;
 661
 662        /*
 663         * Ignore the NULL PTE for kernel identity mapping, as it is expected
 664         * to have holes.
 665         * Also set numpages to '1' indicating that we processed cpa req for
 666         * one virtual address page and its pfn. TBD: numpages can be set based
 667         * on the initial value and the level returned by lookup_address().
 668         */
 669        if (within(vaddr, PAGE_OFFSET,
 670                   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
 671                cpa->numpages = 1;
 672                cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
 673                return 0;
 674        } else {
 675                WARN(1, KERN_WARNING "CPA: called for zero pte. "
 676                        "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
 677                        *cpa->vaddr);
 678
 679                return -EFAULT;
 680        }
 681}
 682
 683static int __change_page_attr(struct cpa_data *cpa, int primary)
 684{
 685        unsigned long address;
 686        int do_split, err;
 687        unsigned int level;
 688        pte_t *kpte, old_pte;
 689
 690        if (cpa->flags & CPA_PAGES_ARRAY) {
 691                struct page *page = cpa->pages[cpa->curpage];
 692                if (unlikely(PageHighMem(page)))
 693                        return 0;
 694                address = (unsigned long)page_address(page);
 695        } else if (cpa->flags & CPA_ARRAY)
 696                address = cpa->vaddr[cpa->curpage];
 697        else
 698                address = *cpa->vaddr;
 699repeat:
 700        kpte = lookup_address(address, &level);
 701        if (!kpte)
 702                return __cpa_process_fault(cpa, address, primary);
 703
 704        old_pte = *kpte;
 705        if (!pte_val(old_pte))
 706                return __cpa_process_fault(cpa, address, primary);
 707
 708        if (level == PG_LEVEL_4K) {
 709                pte_t new_pte;
 710                pgprot_t new_prot = pte_pgprot(old_pte);
 711                unsigned long pfn = pte_pfn(old_pte);
 712
 713                pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 714                pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 715
 716                new_prot = static_protections(new_prot, address, pfn);
 717
 718                /*
 719                 * Set the GLOBAL flags only if the PRESENT flag is
 720                 * set otherwise pte_present will return true even on
 721                 * a non present pte. The canon_pgprot will clear
 722                 * _PAGE_GLOBAL for the ancient hardware that doesn't
 723                 * support it.
 724                 */
 725                if (pgprot_val(new_prot) & _PAGE_PRESENT)
 726                        pgprot_val(new_prot) |= _PAGE_GLOBAL;
 727                else
 728                        pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
 729
 730                /*
 731                 * We need to keep the pfn from the existing PTE,
 732                 * after all we're only going to change it's attributes
 733                 * not the memory it points to
 734                 */
 735                new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
 736                cpa->pfn = pfn;
 737                /*
 738                 * Do we really change anything ?
 739                 */
 740                if (pte_val(old_pte) != pte_val(new_pte)) {
 741                        set_pte_atomic(kpte, new_pte);
 742                        cpa->flags |= CPA_FLUSHTLB;
 743                }
 744                cpa->numpages = 1;
 745                return 0;
 746        }
 747
 748        /*
 749         * Check, whether we can keep the large page intact
 750         * and just change the pte:
 751         */
 752        do_split = try_preserve_large_page(kpte, address, cpa);
 753        /*
 754         * When the range fits into the existing large page,
 755         * return. cp->numpages and cpa->tlbflush have been updated in
 756         * try_large_page:
 757         */
 758        if (do_split <= 0)
 759                return do_split;
 760
 761        /*
 762         * We have to split the large page:
 763         */
 764        err = split_large_page(kpte, address);
 765        if (!err) {
 766                /*
 767                 * Do a global flush tlb after splitting the large page
 768                 * and before we do the actual change page attribute in the PTE.
 769                 *
 770                 * With out this, we violate the TLB application note, that says
 771                 * "The TLBs may contain both ordinary and large-page
 772                 *  translations for a 4-KByte range of linear addresses. This
 773                 *  may occur if software modifies the paging structures so that
 774                 *  the page size used for the address range changes. If the two
 775                 *  translations differ with respect to page frame or attributes
 776                 *  (e.g., permissions), processor behavior is undefined and may
 777                 *  be implementation-specific."
 778                 *
 779                 * We do this global tlb flush inside the cpa_lock, so that we
 780                 * don't allow any other cpu, with stale tlb entries change the
 781                 * page attribute in parallel, that also falls into the
 782                 * just split large page entry.
 783                 */
 784                flush_tlb_all();
 785                goto repeat;
 786        }
 787
 788        return err;
 789}
 790
 791static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 792
 793static int cpa_process_alias(struct cpa_data *cpa)
 794{
 795        struct cpa_data alias_cpa;
 796        unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
 797        unsigned long vaddr;
 798        int ret;
 799
 800        if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
 801                return 0;
 802
 803        /*
 804         * No need to redo, when the primary call touched the direct
 805         * mapping already:
 806         */
 807        if (cpa->flags & CPA_PAGES_ARRAY) {
 808                struct page *page = cpa->pages[cpa->curpage];
 809                if (unlikely(PageHighMem(page)))
 810                        return 0;
 811                vaddr = (unsigned long)page_address(page);
 812        } else if (cpa->flags & CPA_ARRAY)
 813                vaddr = cpa->vaddr[cpa->curpage];
 814        else
 815                vaddr = *cpa->vaddr;
 816
 817        if (!(within(vaddr, PAGE_OFFSET,
 818                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
 819
 820                alias_cpa = *cpa;
 821                alias_cpa.vaddr = &laddr;
 822                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 823
 824                ret = __change_page_attr_set_clr(&alias_cpa, 0);
 825                if (ret)
 826                        return ret;
 827        }
 828
 829#ifdef CONFIG_X86_64
 830        /*
 831         * If the primary call didn't touch the high mapping already
 832         * and the physical address is inside the kernel map, we need
 833         * to touch the high mapped kernel as well:
 834         */
 835        if (!within(vaddr, (unsigned long)_text, _brk_end) &&
 836            within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
 837                unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
 838                                               __START_KERNEL_map - phys_base;
 839                alias_cpa = *cpa;
 840                alias_cpa.vaddr = &temp_cpa_vaddr;
 841                alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 842
 843                /*
 844                 * The high mapping range is imprecise, so ignore the
 845                 * return value.
 846                 */
 847                __change_page_attr_set_clr(&alias_cpa, 0);
 848        }
 849#endif
 850
 851        return 0;
 852}
 853
 854static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 855{
 856        int ret, numpages = cpa->numpages;
 857
 858        while (numpages) {
 859                /*
 860                 * Store the remaining nr of pages for the large page
 861                 * preservation check.
 862                 */
 863                cpa->numpages = numpages;
 864                /* for array changes, we can't use large page */
 865                if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
 866                        cpa->numpages = 1;
 867
 868                if (!debug_pagealloc)
 869                        spin_lock(&cpa_lock);
 870                ret = __change_page_attr(cpa, checkalias);
 871                if (!debug_pagealloc)
 872                        spin_unlock(&cpa_lock);
 873                if (ret)
 874                        return ret;
 875
 876                if (checkalias) {
 877                        ret = cpa_process_alias(cpa);
 878                        if (ret)
 879                                return ret;
 880                }
 881
 882                /*
 883                 * Adjust the number of pages with the result of the
 884                 * CPA operation. Either a large page has been
 885                 * preserved or a single page update happened.
 886                 */
 887                BUG_ON(cpa->numpages > numpages);
 888                numpages -= cpa->numpages;
 889                if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
 890                        cpa->curpage++;
 891                else
 892                        *cpa->vaddr += cpa->numpages * PAGE_SIZE;
 893
 894        }
 895        return 0;
 896}
 897
 898static inline int cache_attr(pgprot_t attr)
 899{
 900        return pgprot_val(attr) &
 901                (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
 902}
 903
 904static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 905                                    pgprot_t mask_set, pgprot_t mask_clr,
 906                                    int force_split, int in_flag,
 907                                    struct page **pages)
 908{
 909        struct cpa_data cpa;
 910        int ret, cache, checkalias;
 911        unsigned long baddr = 0;
 912
 913        /*
 914         * Check, if we are requested to change a not supported
 915         * feature:
 916         */
 917        mask_set = canon_pgprot(mask_set);
 918        mask_clr = canon_pgprot(mask_clr);
 919        if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
 920                return 0;
 921
 922        /* Ensure we are PAGE_SIZE aligned */
 923        if (in_flag & CPA_ARRAY) {
 924                int i;
 925                for (i = 0; i < numpages; i++) {
 926                        if (addr[i] & ~PAGE_MASK) {
 927                                addr[i] &= PAGE_MASK;
 928                                WARN_ON_ONCE(1);
 929                        }
 930                }
 931        } else if (!(in_flag & CPA_PAGES_ARRAY)) {
 932                /*
 933                 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
 934                 * No need to cehck in that case
 935                 */
 936                if (*addr & ~PAGE_MASK) {
 937                        *addr &= PAGE_MASK;
 938                        /*
 939                         * People should not be passing in unaligned addresses:
 940                         */
 941                        WARN_ON_ONCE(1);
 942                }
 943                /*
 944                 * Save address for cache flush. *addr is modified in the call
 945                 * to __change_page_attr_set_clr() below.
 946                 */
 947                baddr = *addr;
 948        }
 949
 950        /* Must avoid aliasing mappings in the highmem code */
 951        kmap_flush_unused();
 952
 953        vm_unmap_aliases();
 954
 955        cpa.vaddr = addr;
 956        cpa.pages = pages;
 957        cpa.numpages = numpages;
 958        cpa.mask_set = mask_set;
 959        cpa.mask_clr = mask_clr;
 960        cpa.flags = 0;
 961        cpa.curpage = 0;
 962        cpa.force_split = force_split;
 963
 964        if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
 965                cpa.flags |= in_flag;
 966
 967        /* No alias checking for _NX bit modifications */
 968        checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
 969
 970        ret = __change_page_attr_set_clr(&cpa, checkalias);
 971
 972        /*
 973         * Check whether we really changed something:
 974         */
 975        if (!(cpa.flags & CPA_FLUSHTLB))
 976                goto out;
 977
 978        /*
 979         * No need to flush, when we did not set any of the caching
 980         * attributes:
 981         */
 982        cache = cache_attr(mask_set);
 983
 984        /*
 985         * On success we use clflush, when the CPU supports it to
 986         * avoid the wbindv. If the CPU does not support it and in the
 987         * error case we fall back to cpa_flush_all (which uses
 988         * wbindv):
 989         */
 990        if (!ret && cpu_has_clflush) {
 991                if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
 992                        cpa_flush_array(addr, numpages, cache,
 993                                        cpa.flags, pages);
 994                } else
 995                        cpa_flush_range(baddr, numpages, cache);
 996        } else
 997                cpa_flush_all(cache);
 998
 999out:
1000        return ret;
1001}
1002
1003static inline int change_page_attr_set(unsigned long *addr, int numpages,
1004                                       pgprot_t mask, int array)
1005{
1006        return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1007                (array ? CPA_ARRAY : 0), NULL);
1008}
1009
1010static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1011                                         pgprot_t mask, int array)
1012{
1013        return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1014                (array ? CPA_ARRAY : 0), NULL);
1015}
1016
1017static inline int cpa_set_pages_array(struct page **pages, int numpages,
1018                                       pgprot_t mask)
1019{
1020        return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1021                CPA_PAGES_ARRAY, pages);
1022}
1023
1024static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1025                                         pgprot_t mask)
1026{
1027        return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1028                CPA_PAGES_ARRAY, pages);
1029}
1030
1031int _set_memory_uc(unsigned long addr, int numpages)
1032{
1033        /*
1034         * for now UC MINUS. see comments in ioremap_nocache()
1035         */
1036        return change_page_attr_set(&addr, numpages,
1037                                    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1038}
1039
1040int set_memory_uc(unsigned long addr, int numpages)
1041{
1042        int ret;
1043
1044        /*
1045         * for now UC MINUS. see comments in ioremap_nocache()
1046         */
1047        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1048                            _PAGE_CACHE_UC_MINUS, NULL);
1049        if (ret)
1050                goto out_err;
1051
1052        ret = _set_memory_uc(addr, numpages);
1053        if (ret)
1054                goto out_free;
1055
1056        return 0;
1057
1058out_free:
1059        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1060out_err:
1061        return ret;
1062}
1063EXPORT_SYMBOL(set_memory_uc);
1064
1065static int _set_memory_array(unsigned long *addr, int addrinarray,
1066                unsigned long new_type)
1067{
1068        int i, j;
1069        int ret;
1070
1071        /*
1072         * for now UC MINUS. see comments in ioremap_nocache()
1073         */
1074        for (i = 0; i < addrinarray; i++) {
1075                ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1076                                        new_type, NULL);
1077                if (ret)
1078                        goto out_free;
1079        }
1080
1081        ret = change_page_attr_set(addr, addrinarray,
1082                                    __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1083
1084        if (!ret && new_type == _PAGE_CACHE_WC)
1085                ret = change_page_attr_set_clr(addr, addrinarray,
1086                                               __pgprot(_PAGE_CACHE_WC),
1087                                               __pgprot(_PAGE_CACHE_MASK),
1088                                               0, CPA_ARRAY, NULL);
1089        if (ret)
1090                goto out_free;
1091
1092        return 0;
1093
1094out_free:
1095        for (j = 0; j < i; j++)
1096                free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1097
1098        return ret;
1099}
1100
1101int set_memory_array_uc(unsigned long *addr, int addrinarray)
1102{
1103        return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1104}
1105EXPORT_SYMBOL(set_memory_array_uc);
1106
1107int set_memory_array_wc(unsigned long *addr, int addrinarray)
1108{
1109        return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1110}
1111EXPORT_SYMBOL(set_memory_array_wc);
1112
1113int _set_memory_wc(unsigned long addr, int numpages)
1114{
1115        int ret;
1116        unsigned long addr_copy = addr;
1117
1118        ret = change_page_attr_set(&addr, numpages,
1119                                    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1120        if (!ret) {
1121                ret = change_page_attr_set_clr(&addr_copy, numpages,
1122                                               __pgprot(_PAGE_CACHE_WC),
1123                                               __pgprot(_PAGE_CACHE_MASK),
1124                                               0, 0, NULL);
1125        }
1126        return ret;
1127}
1128
1129int set_memory_wc(unsigned long addr, int numpages)
1130{
1131        int ret;
1132
1133        if (!pat_enabled)
1134                return set_memory_uc(addr, numpages);
1135
1136        ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1137                _PAGE_CACHE_WC, NULL);
1138        if (ret)
1139                goto out_err;
1140
1141        ret = _set_memory_wc(addr, numpages);
1142        if (ret)
1143                goto out_free;
1144
1145        return 0;
1146
1147out_free:
1148        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1149out_err:
1150        return ret;
1151}
1152EXPORT_SYMBOL(set_memory_wc);
1153
1154int _set_memory_wb(unsigned long addr, int numpages)
1155{
1156        return change_page_attr_clear(&addr, numpages,
1157                                      __pgprot(_PAGE_CACHE_MASK), 0);
1158}
1159
1160int set_memory_wb(unsigned long addr, int numpages)
1161{
1162        int ret;
1163
1164        ret = _set_memory_wb(addr, numpages);
1165        if (ret)
1166                return ret;
1167
1168        free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1169        return 0;
1170}
1171EXPORT_SYMBOL(set_memory_wb);
1172
1173int set_memory_array_wb(unsigned long *addr, int addrinarray)
1174{
1175        int i;
1176        int ret;
1177
1178        ret = change_page_attr_clear(addr, addrinarray,
1179                                      __pgprot(_PAGE_CACHE_MASK), 1);
1180        if (ret)
1181                return ret;
1182
1183        for (i = 0; i < addrinarray; i++)
1184                free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1185
1186        return 0;
1187}
1188EXPORT_SYMBOL(set_memory_array_wb);
1189
1190int set_memory_x(unsigned long addr, int numpages)
1191{
1192        if (!(__supported_pte_mask & _PAGE_NX))
1193                return 0;
1194
1195        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1196}
1197EXPORT_SYMBOL(set_memory_x);
1198
1199int set_memory_nx(unsigned long addr, int numpages)
1200{
1201        if (!(__supported_pte_mask & _PAGE_NX))
1202                return 0;
1203
1204        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1205}
1206EXPORT_SYMBOL(set_memory_nx);
1207
1208int set_memory_ro(unsigned long addr, int numpages)
1209{
1210        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1211}
1212EXPORT_SYMBOL_GPL(set_memory_ro);
1213
1214int set_memory_rw(unsigned long addr, int numpages)
1215{
1216        return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1217}
1218EXPORT_SYMBOL_GPL(set_memory_rw);
1219
1220int set_memory_np(unsigned long addr, int numpages)
1221{
1222        return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1223}
1224
1225int set_memory_4k(unsigned long addr, int numpages)
1226{
1227        return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1228                                        __pgprot(0), 1, 0, NULL);
1229}
1230
1231int set_pages_uc(struct page *page, int numpages)
1232{
1233        unsigned long addr = (unsigned long)page_address(page);
1234
1235        return set_memory_uc(addr, numpages);
1236}
1237EXPORT_SYMBOL(set_pages_uc);
1238
1239static int _set_pages_array(struct page **pages, int addrinarray,
1240                unsigned long new_type)
1241{
1242        unsigned long start;
1243        unsigned long end;
1244        int i;
1245        int free_idx;
1246        int ret;
1247
1248        for (i = 0; i < addrinarray; i++) {
1249                if (PageHighMem(pages[i]))
1250                        continue;
1251                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1252                end = start + PAGE_SIZE;
1253                if (reserve_memtype(start, end, new_type, NULL))
1254                        goto err_out;
1255        }
1256
1257        ret = cpa_set_pages_array(pages, addrinarray,
1258                        __pgprot(_PAGE_CACHE_UC_MINUS));
1259        if (!ret && new_type == _PAGE_CACHE_WC)
1260                ret = change_page_attr_set_clr(NULL, addrinarray,
1261                                               __pgprot(_PAGE_CACHE_WC),
1262                                               __pgprot(_PAGE_CACHE_MASK),
1263                                               0, CPA_PAGES_ARRAY, pages);
1264        if (ret)
1265                goto err_out;
1266        return 0; /* Success */
1267err_out:
1268        free_idx = i;
1269        for (i = 0; i < free_idx; i++) {
1270                if (PageHighMem(pages[i]))
1271                        continue;
1272                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1273                end = start + PAGE_SIZE;
1274                free_memtype(start, end);
1275        }
1276        return -EINVAL;
1277}
1278
1279int set_pages_array_uc(struct page **pages, int addrinarray)
1280{
1281        return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1282}
1283EXPORT_SYMBOL(set_pages_array_uc);
1284
1285int set_pages_array_wc(struct page **pages, int addrinarray)
1286{
1287        return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1288}
1289EXPORT_SYMBOL(set_pages_array_wc);
1290
1291int set_pages_wb(struct page *page, int numpages)
1292{
1293        unsigned long addr = (unsigned long)page_address(page);
1294
1295        return set_memory_wb(addr, numpages);
1296}
1297EXPORT_SYMBOL(set_pages_wb);
1298
1299int set_pages_array_wb(struct page **pages, int addrinarray)
1300{
1301        int retval;
1302        unsigned long start;
1303        unsigned long end;
1304        int i;
1305
1306        retval = cpa_clear_pages_array(pages, addrinarray,
1307                        __pgprot(_PAGE_CACHE_MASK));
1308        if (retval)
1309                return retval;
1310
1311        for (i = 0; i < addrinarray; i++) {
1312                if (PageHighMem(pages[i]))
1313                        continue;
1314                start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1315                end = start + PAGE_SIZE;
1316                free_memtype(start, end);
1317        }
1318
1319        return 0;
1320}
1321EXPORT_SYMBOL(set_pages_array_wb);
1322
1323int set_pages_x(struct page *page, int numpages)
1324{
1325        unsigned long addr = (unsigned long)page_address(page);
1326
1327        return set_memory_x(addr, numpages);
1328}
1329EXPORT_SYMBOL(set_pages_x);
1330
1331int set_pages_nx(struct page *page, int numpages)
1332{
1333        unsigned long addr = (unsigned long)page_address(page);
1334
1335        return set_memory_nx(addr, numpages);
1336}
1337EXPORT_SYMBOL(set_pages_nx);
1338
1339int set_pages_ro(struct page *page, int numpages)
1340{
1341        unsigned long addr = (unsigned long)page_address(page);
1342
1343        return set_memory_ro(addr, numpages);
1344}
1345
1346int set_pages_rw(struct page *page, int numpages)
1347{
1348        unsigned long addr = (unsigned long)page_address(page);
1349
1350        return set_memory_rw(addr, numpages);
1351}
1352
1353#ifdef CONFIG_DEBUG_PAGEALLOC
1354
1355static int __set_pages_p(struct page *page, int numpages)
1356{
1357        unsigned long tempaddr = (unsigned long) page_address(page);
1358        struct cpa_data cpa = { .vaddr = &tempaddr,
1359                                .numpages = numpages,
1360                                .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1361                                .mask_clr = __pgprot(0),
1362                                .flags = 0};
1363
1364        /*
1365         * No alias checking needed for setting present flag. otherwise,
1366         * we may need to break large pages for 64-bit kernel text
1367         * mappings (this adds to complexity if we want to do this from
1368         * atomic context especially). Let's keep it simple!
1369         */
1370        return __change_page_attr_set_clr(&cpa, 0);
1371}
1372
1373static int __set_pages_np(struct page *page, int numpages)
1374{
1375        unsigned long tempaddr = (unsigned long) page_address(page);
1376        struct cpa_data cpa = { .vaddr = &tempaddr,
1377                                .numpages = numpages,
1378                                .mask_set = __pgprot(0),
1379                                .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1380                                .flags = 0};
1381
1382        /*
1383         * No alias checking needed for setting not present flag. otherwise,
1384         * we may need to break large pages for 64-bit kernel text
1385         * mappings (this adds to complexity if we want to do this from
1386         * atomic context especially). Let's keep it simple!
1387         */
1388        return __change_page_attr_set_clr(&cpa, 0);
1389}
1390
1391void kernel_map_pages(struct page *page, int numpages, int enable)
1392{
1393        if (PageHighMem(page))
1394                return;
1395        if (!enable) {
1396                debug_check_no_locks_freed(page_address(page),
1397                                           numpages * PAGE_SIZE);
1398        }
1399
1400        /*
1401         * The return value is ignored as the calls cannot fail.
1402         * Large pages for identity mappings are not used at boot time
1403         * and hence no memory allocations during large page split.
1404         */
1405        if (enable)
1406                __set_pages_p(page, numpages);
1407        else
1408                __set_pages_np(page, numpages);
1409
1410        /*
1411         * We should perform an IPI and flush all tlbs,
1412         * but that can deadlock->flush only current cpu:
1413         */
1414        __flush_tlb_all();
1415
1416        arch_flush_lazy_mmu_mode();
1417}
1418
1419#ifdef CONFIG_HIBERNATION
1420
1421bool kernel_page_present(struct page *page)
1422{
1423        unsigned int level;
1424        pte_t *pte;
1425
1426        if (PageHighMem(page))
1427                return false;
1428
1429        pte = lookup_address((unsigned long)page_address(page), &level);
1430        return (pte_val(*pte) & _PAGE_PRESENT);
1431}
1432
1433#endif /* CONFIG_HIBERNATION */
1434
1435#endif /* CONFIG_DEBUG_PAGEALLOC */
1436
1437/*
1438 * The testcases use internal knowledge of the implementation that shouldn't
1439 * be exposed to the rest of the kernel. Include these directly here.
1440 */
1441#ifdef CONFIG_CPA_DEBUG
1442#include "pageattr-test.c"
1443#endif
1444