linux/arch/x86/mm/pgtable.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/gfp.h>
   3#include <asm/pgalloc.h>
   4#include <asm/pgtable.h>
   5#include <asm/tlb.h>
   6#include <asm/fixmap.h>
   7
   8#define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
   9
  10#ifdef CONFIG_HIGHPTE
  11#define PGALLOC_USER_GFP __GFP_HIGHMEM
  12#else
  13#define PGALLOC_USER_GFP 0
  14#endif
  15
  16gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
  17
  18pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  19{
  20        return (pte_t *)__get_free_page(PGALLOC_GFP);
  21}
  22
  23pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  24{
  25        struct page *pte;
  26
  27        pte = alloc_pages(__userpte_alloc_gfp, 0);
  28        if (!pte)
  29                return NULL;
  30        if (!pgtable_page_ctor(pte)) {
  31                __free_page(pte);
  32                return NULL;
  33        }
  34        return pte;
  35}
  36
  37static int __init setup_userpte(char *arg)
  38{
  39        if (!arg)
  40                return -EINVAL;
  41
  42        /*
  43         * "userpte=nohigh" disables allocation of user pagetables in
  44         * high memory.
  45         */
  46        if (strcmp(arg, "nohigh") == 0)
  47                __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  48        else
  49                return -EINVAL;
  50        return 0;
  51}
  52early_param("userpte", setup_userpte);
  53
  54void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  55{
  56        pgtable_page_dtor(pte);
  57        paravirt_release_pte(page_to_pfn(pte));
  58        tlb_remove_page(tlb, pte);
  59}
  60
  61#if PAGETABLE_LEVELS > 2
  62void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  63{
  64        struct page *page = virt_to_page(pmd);
  65        paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  66        /*
  67         * NOTE! For PAE, any changes to the top page-directory-pointer-table
  68         * entries need a full cr3 reload to flush.
  69         */
  70#ifdef CONFIG_X86_PAE
  71        tlb->need_flush_all = 1;
  72#endif
  73        pgtable_pmd_page_dtor(page);
  74        tlb_remove_page(tlb, page);
  75}
  76
  77#if PAGETABLE_LEVELS > 3
  78void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  79{
  80        paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  81        tlb_remove_page(tlb, virt_to_page(pud));
  82}
  83#endif  /* PAGETABLE_LEVELS > 3 */
  84#endif  /* PAGETABLE_LEVELS > 2 */
  85
  86static inline void pgd_list_add(pgd_t *pgd)
  87{
  88        struct page *page = virt_to_page(pgd);
  89
  90        list_add(&page->lru, &pgd_list);
  91}
  92
  93static inline void pgd_list_del(pgd_t *pgd)
  94{
  95        struct page *page = virt_to_page(pgd);
  96
  97        list_del(&page->lru);
  98}
  99
 100#define UNSHARED_PTRS_PER_PGD                           \
 101        (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 102
 103
 104static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
 105{
 106        BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
 107        virt_to_page(pgd)->index = (pgoff_t)mm;
 108}
 109
 110struct mm_struct *pgd_page_get_mm(struct page *page)
 111{
 112        return (struct mm_struct *)page->index;
 113}
 114
 115static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
 116{
 117        /* If the pgd points to a shared pagetable level (either the
 118           ptes in non-PAE, or shared PMD in PAE), then just copy the
 119           references from swapper_pg_dir. */
 120        if (PAGETABLE_LEVELS == 2 ||
 121            (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
 122            PAGETABLE_LEVELS == 4) {
 123                clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
 124                                swapper_pg_dir + KERNEL_PGD_BOUNDARY,
 125                                KERNEL_PGD_PTRS);
 126        }
 127
 128        /* list required to sync kernel mapping updates */
 129        if (!SHARED_KERNEL_PMD) {
 130                pgd_set_mm(pgd, mm);
 131                pgd_list_add(pgd);
 132        }
 133}
 134
 135static void pgd_dtor(pgd_t *pgd)
 136{
 137        if (SHARED_KERNEL_PMD)
 138                return;
 139
 140        spin_lock(&pgd_lock);
 141        pgd_list_del(pgd);
 142        spin_unlock(&pgd_lock);
 143}
 144
 145/*
 146 * List of all pgd's needed for non-PAE so it can invalidate entries
 147 * in both cached and uncached pgd's; not needed for PAE since the
 148 * kernel pmd is shared. If PAE were not to share the pmd a similar
 149 * tactic would be needed. This is essentially codepath-based locking
 150 * against pageattr.c; it is the unique case in which a valid change
 151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 152 * vmalloc faults work because attached pagetables are never freed.
 153 * -- nyc
 154 */
 155
 156#ifdef CONFIG_X86_PAE
 157/*
 158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 159 * updating the top-level pagetable entries to guarantee the
 160 * processor notices the update.  Since this is expensive, and
 161 * all 4 top-level entries are used almost immediately in a
 162 * new process's life, we just pre-populate them here.
 163 *
 164 * Also, if we're in a paravirt environment where the kernel pmd is
 165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 166 * and initialize the kernel pmds here.
 167 */
 168#define PREALLOCATED_PMDS       UNSHARED_PTRS_PER_PGD
 169
 170void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
 171{
 172        paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
 173
 174        /* Note: almost everything apart from _PAGE_PRESENT is
 175           reserved at the pmd (PDPT) level. */
 176        set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
 177
 178        /*
 179         * According to Intel App note "TLBs, Paging-Structure Caches,
 180         * and Their Invalidation", April 2007, document 317080-001,
 181         * section 8.1: in PAE mode we explicitly have to flush the
 182         * TLB via cr3 if the top-level pgd is changed...
 183         */
 184        flush_tlb_mm(mm);
 185}
 186#else  /* !CONFIG_X86_PAE */
 187
 188/* No need to prepopulate any pagetable entries in non-PAE modes. */
 189#define PREALLOCATED_PMDS       0
 190
 191#endif  /* CONFIG_X86_PAE */
 192
 193static void free_pmds(pmd_t *pmds[])
 194{
 195        int i;
 196
 197        for(i = 0; i < PREALLOCATED_PMDS; i++)
 198                if (pmds[i]) {
 199                        pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
 200                        free_page((unsigned long)pmds[i]);
 201                }
 202}
 203
 204static int preallocate_pmds(pmd_t *pmds[])
 205{
 206        int i;
 207        bool failed = false;
 208
 209        for(i = 0; i < PREALLOCATED_PMDS; i++) {
 210                pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
 211                if (!pmd)
 212                        failed = true;
 213                if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
 214                        free_page((unsigned long)pmd);
 215                        pmd = NULL;
 216                        failed = true;
 217                }
 218                pmds[i] = pmd;
 219        }
 220
 221        if (failed) {
 222                free_pmds(pmds);
 223                return -ENOMEM;
 224        }
 225
 226        return 0;
 227}
 228
 229/*
 230 * Mop up any pmd pages which may still be attached to the pgd.
 231 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 232 * preallocate which never got a corresponding vma will need to be
 233 * freed manually.
 234 */
 235static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
 236{
 237        int i;
 238
 239        for(i = 0; i < PREALLOCATED_PMDS; i++) {
 240                pgd_t pgd = pgdp[i];
 241
 242                if (pgd_val(pgd) != 0) {
 243                        pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
 244
 245                        pgdp[i] = native_make_pgd(0);
 246
 247                        paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
 248                        pmd_free(mm, pmd);
 249                }
 250        }
 251}
 252
 253static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
 254{
 255        pud_t *pud;
 256        int i;
 257
 258        if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
 259                return;
 260
 261        pud = pud_offset(pgd, 0);
 262
 263        for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
 264                pmd_t *pmd = pmds[i];
 265
 266                if (i >= KERNEL_PGD_BOUNDARY)
 267                        memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
 268                               sizeof(pmd_t) * PTRS_PER_PMD);
 269
 270                pud_populate(mm, pud, pmd);
 271        }
 272}
 273
 274pgd_t *pgd_alloc(struct mm_struct *mm)
 275{
 276        pgd_t *pgd;
 277        pmd_t *pmds[PREALLOCATED_PMDS];
 278
 279        pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
 280
 281        if (pgd == NULL)
 282                goto out;
 283
 284        mm->pgd = pgd;
 285
 286        if (preallocate_pmds(pmds) != 0)
 287                goto out_free_pgd;
 288
 289        if (paravirt_pgd_alloc(mm) != 0)
 290                goto out_free_pmds;
 291
 292        /*
 293         * Make sure that pre-populating the pmds is atomic with
 294         * respect to anything walking the pgd_list, so that they
 295         * never see a partially populated pgd.
 296         */
 297        spin_lock(&pgd_lock);
 298
 299        pgd_ctor(mm, pgd);
 300        pgd_prepopulate_pmd(mm, pgd, pmds);
 301
 302        spin_unlock(&pgd_lock);
 303
 304        return pgd;
 305
 306out_free_pmds:
 307        free_pmds(pmds);
 308out_free_pgd:
 309        free_page((unsigned long)pgd);
 310out:
 311        return NULL;
 312}
 313
 314void pgd_free(struct mm_struct *mm, pgd_t *pgd)
 315{
 316        pgd_mop_up_pmds(mm, pgd);
 317        pgd_dtor(pgd);
 318        paravirt_pgd_free(mm, pgd);
 319        free_page((unsigned long)pgd);
 320}
 321
 322/*
 323 * Used to set accessed or dirty bits in the page table entries
 324 * on other architectures. On x86, the accessed and dirty bits
 325 * are tracked by hardware. However, do_wp_page calls this function
 326 * to also make the pte writeable at the same time the dirty bit is
 327 * set. In that case we do actually need to write the PTE.
 328 */
 329int ptep_set_access_flags(struct vm_area_struct *vma,
 330                          unsigned long address, pte_t *ptep,
 331                          pte_t entry, int dirty)
 332{
 333        int changed = !pte_same(*ptep, entry);
 334
 335        if (changed && dirty) {
 336                *ptep = entry;
 337                pte_update_defer(vma->vm_mm, address, ptep);
 338        }
 339
 340        return changed;
 341}
 342
 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 344int pmdp_set_access_flags(struct vm_area_struct *vma,
 345                          unsigned long address, pmd_t *pmdp,
 346                          pmd_t entry, int dirty)
 347{
 348        int changed = !pmd_same(*pmdp, entry);
 349
 350        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 351
 352        if (changed && dirty) {
 353                *pmdp = entry;
 354                pmd_update_defer(vma->vm_mm, address, pmdp);
 355                /*
 356                 * We had a write-protection fault here and changed the pmd
 357                 * to to more permissive. No need to flush the TLB for that,
 358                 * #PF is architecturally guaranteed to do that and in the
 359                 * worst-case we'll generate a spurious fault.
 360                 */
 361        }
 362
 363        return changed;
 364}
 365#endif
 366
 367int ptep_test_and_clear_young(struct vm_area_struct *vma,
 368                              unsigned long addr, pte_t *ptep)
 369{
 370        int ret = 0;
 371
 372        if (pte_young(*ptep))
 373                ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
 374                                         (unsigned long *) &ptep->pte);
 375
 376        if (ret)
 377                pte_update(vma->vm_mm, addr, ptep);
 378
 379        return ret;
 380}
 381
 382#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 383int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 384                              unsigned long addr, pmd_t *pmdp)
 385{
 386        int ret = 0;
 387
 388        if (pmd_young(*pmdp))
 389                ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
 390                                         (unsigned long *)pmdp);
 391
 392        if (ret)
 393                pmd_update(vma->vm_mm, addr, pmdp);
 394
 395        return ret;
 396}
 397#endif
 398
 399int ptep_clear_flush_young(struct vm_area_struct *vma,
 400                           unsigned long address, pte_t *ptep)
 401{
 402        int young;
 403
 404        young = ptep_test_and_clear_young(vma, address, ptep);
 405        if (young)
 406                flush_tlb_page(vma, address);
 407
 408        return young;
 409}
 410
 411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 412int pmdp_clear_flush_young(struct vm_area_struct *vma,
 413                           unsigned long address, pmd_t *pmdp)
 414{
 415        int young;
 416
 417        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 418
 419        young = pmdp_test_and_clear_young(vma, address, pmdp);
 420        if (young)
 421                flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 422
 423        return young;
 424}
 425
 426void pmdp_splitting_flush(struct vm_area_struct *vma,
 427                          unsigned long address, pmd_t *pmdp)
 428{
 429        int set;
 430        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 431        set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
 432                                (unsigned long *)pmdp);
 433        if (set) {
 434                pmd_update(vma->vm_mm, address, pmdp);
 435                /* need tlb flush only to serialize against gup-fast */
 436                flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 437        }
 438}
 439#endif
 440
 441/**
 442 * reserve_top_address - reserves a hole in the top of kernel address space
 443 * @reserve - size of hole to reserve
 444 *
 445 * Can be used to relocate the fixmap area and poke a hole in the top
 446 * of kernel address space to make room for a hypervisor.
 447 */
 448void __init reserve_top_address(unsigned long reserve)
 449{
 450#ifdef CONFIG_X86_32
 451        BUG_ON(fixmaps_set > 0);
 452        printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
 453               (int)-reserve);
 454        __FIXADDR_TOP = -reserve - PAGE_SIZE;
 455#endif
 456}
 457
 458int fixmaps_set;
 459
 460void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
 461{
 462        unsigned long address = __fix_to_virt(idx);
 463
 464        if (idx >= __end_of_fixed_addresses) {
 465                BUG();
 466                return;
 467        }
 468        set_pte_vaddr(address, pte);
 469        fixmaps_set++;
 470}
 471
 472void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
 473                       pgprot_t flags)
 474{
 475        __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
 476}
 477