linux/arch/x86/platform/uv/uv_time.c
<<
>>
Prefs
   1/*
   2 * SGI RTC clock/timer routines.
   3 *
   4 *  This program is free software; you can redistribute it and/or modify
   5 *  it under the terms of the GNU General Public License as published by
   6 *  the Free Software Foundation; either version 2 of the License, or
   7 *  (at your option) any later version.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 *
  14 *  You should have received a copy of the GNU General Public License
  15 *  along with this program; if not, write to the Free Software
  16 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  17 *
  18 *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
  19 *  Copyright (c) Dimitri Sivanich
  20 */
  21#include <linux/clockchips.h>
  22#include <linux/slab.h>
  23
  24#include <asm/uv/uv_mmrs.h>
  25#include <asm/uv/uv_hub.h>
  26#include <asm/uv/bios.h>
  27#include <asm/uv/uv.h>
  28#include <asm/apic.h>
  29#include <asm/cpu.h>
  30
  31#define RTC_NAME                "sgi_rtc"
  32
  33static cycle_t uv_read_rtc(struct clocksource *cs);
  34static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
  35static void uv_rtc_timer_setup(enum clock_event_mode,
  36                                struct clock_event_device *);
  37
  38static struct clocksource clocksource_uv = {
  39        .name           = RTC_NAME,
  40        .rating         = 299,
  41        .read           = uv_read_rtc,
  42        .mask           = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
  43        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  44};
  45
  46static struct clock_event_device clock_event_device_uv = {
  47        .name           = RTC_NAME,
  48        .features       = CLOCK_EVT_FEAT_ONESHOT,
  49        .shift          = 20,
  50        .rating         = 400,
  51        .irq            = -1,
  52        .set_next_event = uv_rtc_next_event,
  53        .set_mode       = uv_rtc_timer_setup,
  54        .event_handler  = NULL,
  55};
  56
  57static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
  58
  59/* There is one of these allocated per node */
  60struct uv_rtc_timer_head {
  61        spinlock_t      lock;
  62        /* next cpu waiting for timer, local node relative: */
  63        int             next_cpu;
  64        /* number of cpus on this node: */
  65        int             ncpus;
  66        struct {
  67                int     lcpu;           /* systemwide logical cpu number */
  68                u64     expires;        /* next timer expiration for this cpu */
  69        } cpu[1];
  70};
  71
  72/*
  73 * Access to uv_rtc_timer_head via blade id.
  74 */
  75static struct uv_rtc_timer_head         **blade_info __read_mostly;
  76
  77static int                              uv_rtc_evt_enable;
  78
  79/*
  80 * Hardware interface routines
  81 */
  82
  83/* Send IPIs to another node */
  84static void uv_rtc_send_IPI(int cpu)
  85{
  86        unsigned long apicid, val;
  87        int pnode;
  88
  89        apicid = cpu_physical_id(cpu);
  90        pnode = uv_apicid_to_pnode(apicid);
  91        apicid |= uv_apicid_hibits;
  92        val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  93              (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  94              (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
  95
  96        uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  97}
  98
  99/* Check for an RTC interrupt pending */
 100static int uv_intr_pending(int pnode)
 101{
 102        if (is_uv1_hub())
 103                return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
 104                        UV1H_EVENT_OCCURRED0_RTC1_MASK;
 105        else if (is_uvx_hub())
 106                return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) &
 107                        UVXH_EVENT_OCCURRED2_RTC_1_MASK;
 108        return 0;
 109}
 110
 111/* Setup interrupt and return non-zero if early expiration occurred. */
 112static int uv_setup_intr(int cpu, u64 expires)
 113{
 114        u64 val;
 115        unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
 116        int pnode = uv_cpu_to_pnode(cpu);
 117
 118        uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
 119                UVH_RTC1_INT_CONFIG_M_MASK);
 120        uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
 121
 122        if (is_uv1_hub())
 123                uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
 124                                UV1H_EVENT_OCCURRED0_RTC1_MASK);
 125        else
 126                uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS,
 127                                UVXH_EVENT_OCCURRED2_RTC_1_MASK);
 128
 129        val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
 130                ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
 131
 132        /* Set configuration */
 133        uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
 134        /* Initialize comparator value */
 135        uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
 136
 137        if (uv_read_rtc(NULL) <= expires)
 138                return 0;
 139
 140        return !uv_intr_pending(pnode);
 141}
 142
 143/*
 144 * Per-cpu timer tracking routines
 145 */
 146
 147static __init void uv_rtc_deallocate_timers(void)
 148{
 149        int bid;
 150
 151        for_each_possible_blade(bid) {
 152                kfree(blade_info[bid]);
 153        }
 154        kfree(blade_info);
 155}
 156
 157/* Allocate per-node list of cpu timer expiration times. */
 158static __init int uv_rtc_allocate_timers(void)
 159{
 160        int cpu;
 161
 162        blade_info = kzalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
 163        if (!blade_info)
 164                return -ENOMEM;
 165
 166        for_each_present_cpu(cpu) {
 167                int nid = cpu_to_node(cpu);
 168                int bid = uv_cpu_to_blade_id(cpu);
 169                int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
 170                struct uv_rtc_timer_head *head = blade_info[bid];
 171
 172                if (!head) {
 173                        head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
 174                                (uv_blade_nr_possible_cpus(bid) *
 175                                        2 * sizeof(u64)),
 176                                GFP_KERNEL, nid);
 177                        if (!head) {
 178                                uv_rtc_deallocate_timers();
 179                                return -ENOMEM;
 180                        }
 181                        spin_lock_init(&head->lock);
 182                        head->ncpus = uv_blade_nr_possible_cpus(bid);
 183                        head->next_cpu = -1;
 184                        blade_info[bid] = head;
 185                }
 186
 187                head->cpu[bcpu].lcpu = cpu;
 188                head->cpu[bcpu].expires = ULLONG_MAX;
 189        }
 190
 191        return 0;
 192}
 193
 194/* Find and set the next expiring timer.  */
 195static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
 196{
 197        u64 lowest = ULLONG_MAX;
 198        int c, bcpu = -1;
 199
 200        head->next_cpu = -1;
 201        for (c = 0; c < head->ncpus; c++) {
 202                u64 exp = head->cpu[c].expires;
 203                if (exp < lowest) {
 204                        bcpu = c;
 205                        lowest = exp;
 206                }
 207        }
 208        if (bcpu >= 0) {
 209                head->next_cpu = bcpu;
 210                c = head->cpu[bcpu].lcpu;
 211                if (uv_setup_intr(c, lowest))
 212                        /* If we didn't set it up in time, trigger */
 213                        uv_rtc_send_IPI(c);
 214        } else {
 215                uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
 216                        UVH_RTC1_INT_CONFIG_M_MASK);
 217        }
 218}
 219
 220/*
 221 * Set expiration time for current cpu.
 222 *
 223 * Returns 1 if we missed the expiration time.
 224 */
 225static int uv_rtc_set_timer(int cpu, u64 expires)
 226{
 227        int pnode = uv_cpu_to_pnode(cpu);
 228        int bid = uv_cpu_to_blade_id(cpu);
 229        struct uv_rtc_timer_head *head = blade_info[bid];
 230        int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
 231        u64 *t = &head->cpu[bcpu].expires;
 232        unsigned long flags;
 233        int next_cpu;
 234
 235        spin_lock_irqsave(&head->lock, flags);
 236
 237        next_cpu = head->next_cpu;
 238        *t = expires;
 239
 240        /* Will this one be next to go off? */
 241        if (next_cpu < 0 || bcpu == next_cpu ||
 242                        expires < head->cpu[next_cpu].expires) {
 243                head->next_cpu = bcpu;
 244                if (uv_setup_intr(cpu, expires)) {
 245                        *t = ULLONG_MAX;
 246                        uv_rtc_find_next_timer(head, pnode);
 247                        spin_unlock_irqrestore(&head->lock, flags);
 248                        return -ETIME;
 249                }
 250        }
 251
 252        spin_unlock_irqrestore(&head->lock, flags);
 253        return 0;
 254}
 255
 256/*
 257 * Unset expiration time for current cpu.
 258 *
 259 * Returns 1 if this timer was pending.
 260 */
 261static int uv_rtc_unset_timer(int cpu, int force)
 262{
 263        int pnode = uv_cpu_to_pnode(cpu);
 264        int bid = uv_cpu_to_blade_id(cpu);
 265        struct uv_rtc_timer_head *head = blade_info[bid];
 266        int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
 267        u64 *t = &head->cpu[bcpu].expires;
 268        unsigned long flags;
 269        int rc = 0;
 270
 271        spin_lock_irqsave(&head->lock, flags);
 272
 273        if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
 274                rc = 1;
 275
 276        if (rc) {
 277                *t = ULLONG_MAX;
 278                /* Was the hardware setup for this timer? */
 279                if (head->next_cpu == bcpu)
 280                        uv_rtc_find_next_timer(head, pnode);
 281        }
 282
 283        spin_unlock_irqrestore(&head->lock, flags);
 284
 285        return rc;
 286}
 287
 288
 289/*
 290 * Kernel interface routines.
 291 */
 292
 293/*
 294 * Read the RTC.
 295 *
 296 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
 297 * cachelines of it's own page.  This allows faster simultaneous reads
 298 * from a given socket.
 299 */
 300static cycle_t uv_read_rtc(struct clocksource *cs)
 301{
 302        unsigned long offset;
 303
 304        if (uv_get_min_hub_revision_id() == 1)
 305                offset = 0;
 306        else
 307                offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
 308
 309        return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
 310}
 311
 312/*
 313 * Program the next event, relative to now
 314 */
 315static int uv_rtc_next_event(unsigned long delta,
 316                             struct clock_event_device *ced)
 317{
 318        int ced_cpu = cpumask_first(ced->cpumask);
 319
 320        return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
 321}
 322
 323/*
 324 * Setup the RTC timer in oneshot mode
 325 */
 326static void uv_rtc_timer_setup(enum clock_event_mode mode,
 327                               struct clock_event_device *evt)
 328{
 329        int ced_cpu = cpumask_first(evt->cpumask);
 330
 331        switch (mode) {
 332        case CLOCK_EVT_MODE_PERIODIC:
 333        case CLOCK_EVT_MODE_ONESHOT:
 334        case CLOCK_EVT_MODE_RESUME:
 335                /* Nothing to do here yet */
 336                break;
 337        case CLOCK_EVT_MODE_UNUSED:
 338        case CLOCK_EVT_MODE_SHUTDOWN:
 339                uv_rtc_unset_timer(ced_cpu, 1);
 340                break;
 341        }
 342}
 343
 344static void uv_rtc_interrupt(void)
 345{
 346        int cpu = smp_processor_id();
 347        struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
 348
 349        if (!ced || !ced->event_handler)
 350                return;
 351
 352        if (uv_rtc_unset_timer(cpu, 0) != 1)
 353                return;
 354
 355        ced->event_handler(ced);
 356}
 357
 358static int __init uv_enable_evt_rtc(char *str)
 359{
 360        uv_rtc_evt_enable = 1;
 361
 362        return 1;
 363}
 364__setup("uvrtcevt", uv_enable_evt_rtc);
 365
 366static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
 367{
 368        struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
 369
 370        *ced = clock_event_device_uv;
 371        ced->cpumask = cpumask_of(smp_processor_id());
 372        clockevents_register_device(ced);
 373}
 374
 375static __init int uv_rtc_setup_clock(void)
 376{
 377        int rc;
 378
 379        if (!is_uv_system())
 380                return -ENODEV;
 381
 382        rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
 383        if (rc)
 384                printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
 385        else
 386                printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
 387                        sn_rtc_cycles_per_second/(unsigned long)1E6);
 388
 389        if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
 390                return rc;
 391
 392        /* Setup and register clockevents */
 393        rc = uv_rtc_allocate_timers();
 394        if (rc)
 395                goto error;
 396
 397        x86_platform_ipi_callback = uv_rtc_interrupt;
 398
 399        clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
 400                                NSEC_PER_SEC, clock_event_device_uv.shift);
 401
 402        clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
 403                                                sn_rtc_cycles_per_second;
 404
 405        clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
 406                                (NSEC_PER_SEC / sn_rtc_cycles_per_second);
 407
 408        rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
 409        if (rc) {
 410                x86_platform_ipi_callback = NULL;
 411                uv_rtc_deallocate_timers();
 412                goto error;
 413        }
 414
 415        printk(KERN_INFO "UV RTC clockevents registered\n");
 416
 417        return 0;
 418
 419error:
 420        clocksource_unregister(&clocksource_uv);
 421        printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
 422
 423        return rc;
 424}
 425arch_initcall(uv_rtc_setup_clock);
 426