linux/arch/x86/xen/enlighten.c
<<
>>
Prefs
   1/*
   2 * Core of Xen paravirt_ops implementation.
   3 *
   4 * This file contains the xen_paravirt_ops structure itself, and the
   5 * implementations for:
   6 * - privileged instructions
   7 * - interrupt flags
   8 * - segment operations
   9 * - booting and setup
  10 *
  11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12 */
  13
  14#include <linux/cpu.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/smp.h>
  18#include <linux/preempt.h>
  19#include <linux/hardirq.h>
  20#include <linux/percpu.h>
  21#include <linux/delay.h>
  22#include <linux/start_kernel.h>
  23#include <linux/sched.h>
  24#include <linux/kprobes.h>
  25#include <linux/bootmem.h>
  26#include <linux/module.h>
  27#include <linux/mm.h>
  28#include <linux/page-flags.h>
  29#include <linux/highmem.h>
  30#include <linux/console.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/memblock.h>
  34#include <linux/edd.h>
  35
  36#include <xen/xen.h>
  37#include <xen/events.h>
  38#include <xen/interface/xen.h>
  39#include <xen/interface/version.h>
  40#include <xen/interface/physdev.h>
  41#include <xen/interface/vcpu.h>
  42#include <xen/interface/memory.h>
  43#include <xen/interface/xen-mca.h>
  44#include <xen/features.h>
  45#include <xen/page.h>
  46#include <xen/hvm.h>
  47#include <xen/hvc-console.h>
  48#include <xen/acpi.h>
  49
  50#include <asm/paravirt.h>
  51#include <asm/apic.h>
  52#include <asm/page.h>
  53#include <asm/xen/pci.h>
  54#include <asm/xen/hypercall.h>
  55#include <asm/xen/hypervisor.h>
  56#include <asm/fixmap.h>
  57#include <asm/processor.h>
  58#include <asm/proto.h>
  59#include <asm/msr-index.h>
  60#include <asm/traps.h>
  61#include <asm/setup.h>
  62#include <asm/desc.h>
  63#include <asm/pgalloc.h>
  64#include <asm/pgtable.h>
  65#include <asm/tlbflush.h>
  66#include <asm/reboot.h>
  67#include <asm/stackprotector.h>
  68#include <asm/hypervisor.h>
  69#include <asm/mwait.h>
  70#include <asm/pci_x86.h>
  71#include <asm/pat.h>
  72
  73#ifdef CONFIG_ACPI
  74#include <linux/acpi.h>
  75#include <asm/acpi.h>
  76#include <acpi/pdc_intel.h>
  77#include <acpi/processor.h>
  78#include <xen/interface/platform.h>
  79#endif
  80
  81#include "xen-ops.h"
  82#include "mmu.h"
  83#include "smp.h"
  84#include "multicalls.h"
  85
  86EXPORT_SYMBOL_GPL(hypercall_page);
  87
  88/*
  89 * Pointer to the xen_vcpu_info structure or
  90 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
  91 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
  92 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
  93 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
  94 * acknowledge pending events.
  95 * Also more subtly it is used by the patched version of irq enable/disable
  96 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
  97 *
  98 * The desire to be able to do those mask/unmask operations as a single
  99 * instruction by using the per-cpu offset held in %gs is the real reason
 100 * vcpu info is in a per-cpu pointer and the original reason for this
 101 * hypercall.
 102 *
 103 */
 104DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
 105
 106/*
 107 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
 108 * hypercall. This can be used both in PV and PVHVM mode. The structure
 109 * overrides the default per_cpu(xen_vcpu, cpu) value.
 110 */
 111DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
 112
 113enum xen_domain_type xen_domain_type = XEN_NATIVE;
 114EXPORT_SYMBOL_GPL(xen_domain_type);
 115
 116unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
 117EXPORT_SYMBOL(machine_to_phys_mapping);
 118unsigned long  machine_to_phys_nr;
 119EXPORT_SYMBOL(machine_to_phys_nr);
 120
 121struct start_info *xen_start_info;
 122EXPORT_SYMBOL_GPL(xen_start_info);
 123
 124struct shared_info xen_dummy_shared_info;
 125
 126void *xen_initial_gdt;
 127
 128RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
 129__read_mostly int xen_have_vector_callback;
 130EXPORT_SYMBOL_GPL(xen_have_vector_callback);
 131
 132/*
 133 * Point at some empty memory to start with. We map the real shared_info
 134 * page as soon as fixmap is up and running.
 135 */
 136struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
 137
 138/*
 139 * Flag to determine whether vcpu info placement is available on all
 140 * VCPUs.  We assume it is to start with, and then set it to zero on
 141 * the first failure.  This is because it can succeed on some VCPUs
 142 * and not others, since it can involve hypervisor memory allocation,
 143 * or because the guest failed to guarantee all the appropriate
 144 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 145 *
 146 * Note that any particular CPU may be using a placed vcpu structure,
 147 * but we can only optimise if the all are.
 148 *
 149 * 0: not available, 1: available
 150 */
 151static int have_vcpu_info_placement = 1;
 152
 153struct tls_descs {
 154        struct desc_struct desc[3];
 155};
 156
 157/*
 158 * Updating the 3 TLS descriptors in the GDT on every task switch is
 159 * surprisingly expensive so we avoid updating them if they haven't
 160 * changed.  Since Xen writes different descriptors than the one
 161 * passed in the update_descriptor hypercall we keep shadow copies to
 162 * compare against.
 163 */
 164static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 165
 166static void clamp_max_cpus(void)
 167{
 168#ifdef CONFIG_SMP
 169        if (setup_max_cpus > MAX_VIRT_CPUS)
 170                setup_max_cpus = MAX_VIRT_CPUS;
 171#endif
 172}
 173
 174static void xen_vcpu_setup(int cpu)
 175{
 176        struct vcpu_register_vcpu_info info;
 177        int err;
 178        struct vcpu_info *vcpup;
 179
 180        BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 181
 182        /*
 183         * This path is called twice on PVHVM - first during bootup via
 184         * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
 185         * hotplugged: cpu_up -> xen_hvm_cpu_notify.
 186         * As we can only do the VCPUOP_register_vcpu_info once lets
 187         * not over-write its result.
 188         *
 189         * For PV it is called during restore (xen_vcpu_restore) and bootup
 190         * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
 191         * use this function.
 192         */
 193        if (xen_hvm_domain()) {
 194                if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
 195                        return;
 196        }
 197        if (cpu < MAX_VIRT_CPUS)
 198                per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
 199
 200        if (!have_vcpu_info_placement) {
 201                if (cpu >= MAX_VIRT_CPUS)
 202                        clamp_max_cpus();
 203                return;
 204        }
 205
 206        vcpup = &per_cpu(xen_vcpu_info, cpu);
 207        info.mfn = arbitrary_virt_to_mfn(vcpup);
 208        info.offset = offset_in_page(vcpup);
 209
 210        /* Check to see if the hypervisor will put the vcpu_info
 211           structure where we want it, which allows direct access via
 212           a percpu-variable.
 213           N.B. This hypercall can _only_ be called once per CPU. Subsequent
 214           calls will error out with -EINVAL. This is due to the fact that
 215           hypervisor has no unregister variant and this hypercall does not
 216           allow to over-write info.mfn and info.offset.
 217         */
 218        err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
 219
 220        if (err) {
 221                printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 222                have_vcpu_info_placement = 0;
 223                clamp_max_cpus();
 224        } else {
 225                /* This cpu is using the registered vcpu info, even if
 226                   later ones fail to. */
 227                per_cpu(xen_vcpu, cpu) = vcpup;
 228        }
 229}
 230
 231/*
 232 * On restore, set the vcpu placement up again.
 233 * If it fails, then we're in a bad state, since
 234 * we can't back out from using it...
 235 */
 236void xen_vcpu_restore(void)
 237{
 238        int cpu;
 239
 240        for_each_possible_cpu(cpu) {
 241                bool other_cpu = (cpu != smp_processor_id());
 242                bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
 243
 244                if (other_cpu && is_up &&
 245                    HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
 246                        BUG();
 247
 248                xen_setup_runstate_info(cpu);
 249
 250                if (have_vcpu_info_placement)
 251                        xen_vcpu_setup(cpu);
 252
 253                if (other_cpu && is_up &&
 254                    HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
 255                        BUG();
 256        }
 257}
 258
 259static void __init xen_banner(void)
 260{
 261        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 262        struct xen_extraversion extra;
 263        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 264
 265        printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
 266               pv_info.name);
 267        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 268               version >> 16, version & 0xffff, extra.extraversion,
 269               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 270}
 271/* Check if running on Xen version (major, minor) or later */
 272bool
 273xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 274{
 275        unsigned int version;
 276
 277        if (!xen_domain())
 278                return false;
 279
 280        version = HYPERVISOR_xen_version(XENVER_version, NULL);
 281        if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 282                ((version >> 16) > major))
 283                return true;
 284        return false;
 285}
 286
 287#define CPUID_THERM_POWER_LEAF 6
 288#define APERFMPERF_PRESENT 0
 289
 290static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 291static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 292
 293static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
 294static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 295static __read_mostly unsigned int cpuid_leaf5_edx_val;
 296
 297static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 298                      unsigned int *cx, unsigned int *dx)
 299{
 300        unsigned maskebx = ~0;
 301        unsigned maskecx = ~0;
 302        unsigned maskedx = ~0;
 303        unsigned setecx = 0;
 304        /*
 305         * Mask out inconvenient features, to try and disable as many
 306         * unsupported kernel subsystems as possible.
 307         */
 308        switch (*ax) {
 309        case 1:
 310                maskecx = cpuid_leaf1_ecx_mask;
 311                setecx = cpuid_leaf1_ecx_set_mask;
 312                maskedx = cpuid_leaf1_edx_mask;
 313                break;
 314
 315        case CPUID_MWAIT_LEAF:
 316                /* Synthesize the values.. */
 317                *ax = 0;
 318                *bx = 0;
 319                *cx = cpuid_leaf5_ecx_val;
 320                *dx = cpuid_leaf5_edx_val;
 321                return;
 322
 323        case CPUID_THERM_POWER_LEAF:
 324                /* Disabling APERFMPERF for kernel usage */
 325                maskecx = ~(1 << APERFMPERF_PRESENT);
 326                break;
 327
 328        case 0xb:
 329                /* Suppress extended topology stuff */
 330                maskebx = 0;
 331                break;
 332        }
 333
 334        asm(XEN_EMULATE_PREFIX "cpuid"
 335                : "=a" (*ax),
 336                  "=b" (*bx),
 337                  "=c" (*cx),
 338                  "=d" (*dx)
 339                : "0" (*ax), "2" (*cx));
 340
 341        *bx &= maskebx;
 342        *cx &= maskecx;
 343        *cx |= setecx;
 344        *dx &= maskedx;
 345
 346}
 347
 348static bool __init xen_check_mwait(void)
 349{
 350#ifdef CONFIG_ACPI
 351        struct xen_platform_op op = {
 352                .cmd                    = XENPF_set_processor_pminfo,
 353                .u.set_pminfo.id        = -1,
 354                .u.set_pminfo.type      = XEN_PM_PDC,
 355        };
 356        uint32_t buf[3];
 357        unsigned int ax, bx, cx, dx;
 358        unsigned int mwait_mask;
 359
 360        /* We need to determine whether it is OK to expose the MWAIT
 361         * capability to the kernel to harvest deeper than C3 states from ACPI
 362         * _CST using the processor_harvest_xen.c module. For this to work, we
 363         * need to gather the MWAIT_LEAF values (which the cstate.c code
 364         * checks against). The hypervisor won't expose the MWAIT flag because
 365         * it would break backwards compatibility; so we will find out directly
 366         * from the hardware and hypercall.
 367         */
 368        if (!xen_initial_domain())
 369                return false;
 370
 371        /*
 372         * When running under platform earlier than Xen4.2, do not expose
 373         * mwait, to avoid the risk of loading native acpi pad driver
 374         */
 375        if (!xen_running_on_version_or_later(4, 2))
 376                return false;
 377
 378        ax = 1;
 379        cx = 0;
 380
 381        native_cpuid(&ax, &bx, &cx, &dx);
 382
 383        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 384                     (1 << (X86_FEATURE_MWAIT % 32));
 385
 386        if ((cx & mwait_mask) != mwait_mask)
 387                return false;
 388
 389        /* We need to emulate the MWAIT_LEAF and for that we need both
 390         * ecx and edx. The hypercall provides only partial information.
 391         */
 392
 393        ax = CPUID_MWAIT_LEAF;
 394        bx = 0;
 395        cx = 0;
 396        dx = 0;
 397
 398        native_cpuid(&ax, &bx, &cx, &dx);
 399
 400        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 401         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 402         */
 403        buf[0] = ACPI_PDC_REVISION_ID;
 404        buf[1] = 1;
 405        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 406
 407        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 408
 409        if ((HYPERVISOR_dom0_op(&op) == 0) &&
 410            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 411                cpuid_leaf5_ecx_val = cx;
 412                cpuid_leaf5_edx_val = dx;
 413        }
 414        return true;
 415#else
 416        return false;
 417#endif
 418}
 419static void __init xen_init_cpuid_mask(void)
 420{
 421        unsigned int ax, bx, cx, dx;
 422        unsigned int xsave_mask;
 423
 424        cpuid_leaf1_edx_mask =
 425                ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
 426                  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 427
 428        if (!xen_initial_domain())
 429                cpuid_leaf1_edx_mask &=
 430                        ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
 431
 432        cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
 433
 434        ax = 1;
 435        cx = 0;
 436        xen_cpuid(&ax, &bx, &cx, &dx);
 437
 438        xsave_mask =
 439                (1 << (X86_FEATURE_XSAVE % 32)) |
 440                (1 << (X86_FEATURE_OSXSAVE % 32));
 441
 442        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 443        if ((cx & xsave_mask) != xsave_mask)
 444                cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
 445        if (xen_check_mwait())
 446                cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
 447}
 448
 449static void xen_set_debugreg(int reg, unsigned long val)
 450{
 451        HYPERVISOR_set_debugreg(reg, val);
 452}
 453
 454static unsigned long xen_get_debugreg(int reg)
 455{
 456        return HYPERVISOR_get_debugreg(reg);
 457}
 458
 459static void xen_end_context_switch(struct task_struct *next)
 460{
 461        xen_mc_flush();
 462        paravirt_end_context_switch(next);
 463}
 464
 465static unsigned long xen_store_tr(void)
 466{
 467        return 0;
 468}
 469
 470/*
 471 * Set the page permissions for a particular virtual address.  If the
 472 * address is a vmalloc mapping (or other non-linear mapping), then
 473 * find the linear mapping of the page and also set its protections to
 474 * match.
 475 */
 476static void set_aliased_prot(void *v, pgprot_t prot)
 477{
 478        int level;
 479        pte_t *ptep;
 480        pte_t pte;
 481        unsigned long pfn;
 482        struct page *page;
 483
 484        ptep = lookup_address((unsigned long)v, &level);
 485        BUG_ON(ptep == NULL);
 486
 487        pfn = pte_pfn(*ptep);
 488        page = pfn_to_page(pfn);
 489
 490        pte = pfn_pte(pfn, prot);
 491
 492        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 493                BUG();
 494
 495        if (!PageHighMem(page)) {
 496                void *av = __va(PFN_PHYS(pfn));
 497
 498                if (av != v)
 499                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 500                                BUG();
 501        } else
 502                kmap_flush_unused();
 503}
 504
 505static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 506{
 507        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 508        int i;
 509
 510        for(i = 0; i < entries; i += entries_per_page)
 511                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 512}
 513
 514static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 515{
 516        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 517        int i;
 518
 519        for(i = 0; i < entries; i += entries_per_page)
 520                set_aliased_prot(ldt + i, PAGE_KERNEL);
 521}
 522
 523static void xen_set_ldt(const void *addr, unsigned entries)
 524{
 525        struct mmuext_op *op;
 526        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 527
 528        trace_xen_cpu_set_ldt(addr, entries);
 529
 530        op = mcs.args;
 531        op->cmd = MMUEXT_SET_LDT;
 532        op->arg1.linear_addr = (unsigned long)addr;
 533        op->arg2.nr_ents = entries;
 534
 535        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 536
 537        xen_mc_issue(PARAVIRT_LAZY_CPU);
 538}
 539
 540static void xen_load_gdt(const struct desc_ptr *dtr)
 541{
 542        unsigned long va = dtr->address;
 543        unsigned int size = dtr->size + 1;
 544        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 545        unsigned long frames[pages];
 546        int f;
 547
 548        /*
 549         * A GDT can be up to 64k in size, which corresponds to 8192
 550         * 8-byte entries, or 16 4k pages..
 551         */
 552
 553        BUG_ON(size > 65536);
 554        BUG_ON(va & ~PAGE_MASK);
 555
 556        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 557                int level;
 558                pte_t *ptep;
 559                unsigned long pfn, mfn;
 560                void *virt;
 561
 562                /*
 563                 * The GDT is per-cpu and is in the percpu data area.
 564                 * That can be virtually mapped, so we need to do a
 565                 * page-walk to get the underlying MFN for the
 566                 * hypercall.  The page can also be in the kernel's
 567                 * linear range, so we need to RO that mapping too.
 568                 */
 569                ptep = lookup_address(va, &level);
 570                BUG_ON(ptep == NULL);
 571
 572                pfn = pte_pfn(*ptep);
 573                mfn = pfn_to_mfn(pfn);
 574                virt = __va(PFN_PHYS(pfn));
 575
 576                frames[f] = mfn;
 577
 578                make_lowmem_page_readonly((void *)va);
 579                make_lowmem_page_readonly(virt);
 580        }
 581
 582        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 583                BUG();
 584}
 585
 586/*
 587 * load_gdt for early boot, when the gdt is only mapped once
 588 */
 589static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 590{
 591        unsigned long va = dtr->address;
 592        unsigned int size = dtr->size + 1;
 593        unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
 594        unsigned long frames[pages];
 595        int f;
 596
 597        /*
 598         * A GDT can be up to 64k in size, which corresponds to 8192
 599         * 8-byte entries, or 16 4k pages..
 600         */
 601
 602        BUG_ON(size > 65536);
 603        BUG_ON(va & ~PAGE_MASK);
 604
 605        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 606                pte_t pte;
 607                unsigned long pfn, mfn;
 608
 609                pfn = virt_to_pfn(va);
 610                mfn = pfn_to_mfn(pfn);
 611
 612                pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 613
 614                if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 615                        BUG();
 616
 617                frames[f] = mfn;
 618        }
 619
 620        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 621                BUG();
 622}
 623
 624static inline bool desc_equal(const struct desc_struct *d1,
 625                              const struct desc_struct *d2)
 626{
 627        return d1->a == d2->a && d1->b == d2->b;
 628}
 629
 630static void load_TLS_descriptor(struct thread_struct *t,
 631                                unsigned int cpu, unsigned int i)
 632{
 633        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 634        struct desc_struct *gdt;
 635        xmaddr_t maddr;
 636        struct multicall_space mc;
 637
 638        if (desc_equal(shadow, &t->tls_array[i]))
 639                return;
 640
 641        *shadow = t->tls_array[i];
 642
 643        gdt = get_cpu_gdt_table(cpu);
 644        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 645        mc = __xen_mc_entry(0);
 646
 647        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 648}
 649
 650static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 651{
 652        /*
 653         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 654         * and lazy gs handling is enabled, it means we're in a
 655         * context switch, and %gs has just been saved.  This means we
 656         * can zero it out to prevent faults on exit from the
 657         * hypervisor if the next process has no %gs.  Either way, it
 658         * has been saved, and the new value will get loaded properly.
 659         * This will go away as soon as Xen has been modified to not
 660         * save/restore %gs for normal hypercalls.
 661         *
 662         * On x86_64, this hack is not used for %gs, because gs points
 663         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 664         * must not zero %gs on x86_64
 665         *
 666         * For x86_64, we need to zero %fs, otherwise we may get an
 667         * exception between the new %fs descriptor being loaded and
 668         * %fs being effectively cleared at __switch_to().
 669         */
 670        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 671#ifdef CONFIG_X86_32
 672                lazy_load_gs(0);
 673#else
 674                loadsegment(fs, 0);
 675#endif
 676        }
 677
 678        xen_mc_batch();
 679
 680        load_TLS_descriptor(t, cpu, 0);
 681        load_TLS_descriptor(t, cpu, 1);
 682        load_TLS_descriptor(t, cpu, 2);
 683
 684        xen_mc_issue(PARAVIRT_LAZY_CPU);
 685}
 686
 687#ifdef CONFIG_X86_64
 688static void xen_load_gs_index(unsigned int idx)
 689{
 690        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 691                BUG();
 692}
 693#endif
 694
 695static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 696                                const void *ptr)
 697{
 698        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 699        u64 entry = *(u64 *)ptr;
 700
 701        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 702
 703        preempt_disable();
 704
 705        xen_mc_flush();
 706        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 707                BUG();
 708
 709        preempt_enable();
 710}
 711
 712static int cvt_gate_to_trap(int vector, const gate_desc *val,
 713                            struct trap_info *info)
 714{
 715        unsigned long addr;
 716
 717        if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 718                return 0;
 719
 720        info->vector = vector;
 721
 722        addr = gate_offset(*val);
 723#ifdef CONFIG_X86_64
 724        /*
 725         * Look for known traps using IST, and substitute them
 726         * appropriately.  The debugger ones are the only ones we care
 727         * about.  Xen will handle faults like double_fault,
 728         * so we should never see them.  Warn if
 729         * there's an unexpected IST-using fault handler.
 730         */
 731        if (addr == (unsigned long)debug)
 732                addr = (unsigned long)xen_debug;
 733        else if (addr == (unsigned long)int3)
 734                addr = (unsigned long)xen_int3;
 735        else if (addr == (unsigned long)stack_segment)
 736                addr = (unsigned long)xen_stack_segment;
 737        else if (addr == (unsigned long)double_fault) {
 738                /* Don't need to handle these */
 739                return 0;
 740#ifdef CONFIG_X86_MCE
 741        } else if (addr == (unsigned long)machine_check) {
 742                /*
 743                 * when xen hypervisor inject vMCE to guest,
 744                 * use native mce handler to handle it
 745                 */
 746                ;
 747#endif
 748        } else if (addr == (unsigned long)nmi)
 749                /*
 750                 * Use the native version as well.
 751                 */
 752                ;
 753        else {
 754                /* Some other trap using IST? */
 755                if (WARN_ON(val->ist != 0))
 756                        return 0;
 757        }
 758#endif  /* CONFIG_X86_64 */
 759        info->address = addr;
 760
 761        info->cs = gate_segment(*val);
 762        info->flags = val->dpl;
 763        /* interrupt gates clear IF */
 764        if (val->type == GATE_INTERRUPT)
 765                info->flags |= 1 << 2;
 766
 767        return 1;
 768}
 769
 770/* Locations of each CPU's IDT */
 771static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 772
 773/* Set an IDT entry.  If the entry is part of the current IDT, then
 774   also update Xen. */
 775static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 776{
 777        unsigned long p = (unsigned long)&dt[entrynum];
 778        unsigned long start, end;
 779
 780        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 781
 782        preempt_disable();
 783
 784        start = __this_cpu_read(idt_desc.address);
 785        end = start + __this_cpu_read(idt_desc.size) + 1;
 786
 787        xen_mc_flush();
 788
 789        native_write_idt_entry(dt, entrynum, g);
 790
 791        if (p >= start && (p + 8) <= end) {
 792                struct trap_info info[2];
 793
 794                info[1].address = 0;
 795
 796                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 797                        if (HYPERVISOR_set_trap_table(info))
 798                                BUG();
 799        }
 800
 801        preempt_enable();
 802}
 803
 804static void xen_convert_trap_info(const struct desc_ptr *desc,
 805                                  struct trap_info *traps)
 806{
 807        unsigned in, out, count;
 808
 809        count = (desc->size+1) / sizeof(gate_desc);
 810        BUG_ON(count > 256);
 811
 812        for (in = out = 0; in < count; in++) {
 813                gate_desc *entry = (gate_desc*)(desc->address) + in;
 814
 815                if (cvt_gate_to_trap(in, entry, &traps[out]))
 816                        out++;
 817        }
 818        traps[out].address = 0;
 819}
 820
 821void xen_copy_trap_info(struct trap_info *traps)
 822{
 823        const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
 824
 825        xen_convert_trap_info(desc, traps);
 826}
 827
 828/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 829   hold a spinlock to protect the static traps[] array (static because
 830   it avoids allocation, and saves stack space). */
 831static void xen_load_idt(const struct desc_ptr *desc)
 832{
 833        static DEFINE_SPINLOCK(lock);
 834        static struct trap_info traps[257];
 835
 836        trace_xen_cpu_load_idt(desc);
 837
 838        spin_lock(&lock);
 839
 840        __get_cpu_var(idt_desc) = *desc;
 841
 842        xen_convert_trap_info(desc, traps);
 843
 844        xen_mc_flush();
 845        if (HYPERVISOR_set_trap_table(traps))
 846                BUG();
 847
 848        spin_unlock(&lock);
 849}
 850
 851/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 852   they're handled differently. */
 853static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 854                                const void *desc, int type)
 855{
 856        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 857
 858        preempt_disable();
 859
 860        switch (type) {
 861        case DESC_LDT:
 862        case DESC_TSS:
 863                /* ignore */
 864                break;
 865
 866        default: {
 867                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 868
 869                xen_mc_flush();
 870                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 871                        BUG();
 872        }
 873
 874        }
 875
 876        preempt_enable();
 877}
 878
 879/*
 880 * Version of write_gdt_entry for use at early boot-time needed to
 881 * update an entry as simply as possible.
 882 */
 883static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 884                                            const void *desc, int type)
 885{
 886        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 887
 888        switch (type) {
 889        case DESC_LDT:
 890        case DESC_TSS:
 891                /* ignore */
 892                break;
 893
 894        default: {
 895                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 896
 897                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 898                        dt[entry] = *(struct desc_struct *)desc;
 899        }
 900
 901        }
 902}
 903
 904static void xen_load_sp0(struct tss_struct *tss,
 905                         struct thread_struct *thread)
 906{
 907        struct multicall_space mcs;
 908
 909        mcs = xen_mc_entry(0);
 910        MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 911        xen_mc_issue(PARAVIRT_LAZY_CPU);
 912}
 913
 914static void xen_set_iopl_mask(unsigned mask)
 915{
 916        struct physdev_set_iopl set_iopl;
 917
 918        /* Force the change at ring 0. */
 919        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 920        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 921}
 922
 923static void xen_io_delay(void)
 924{
 925}
 926
 927#ifdef CONFIG_X86_LOCAL_APIC
 928static unsigned long xen_set_apic_id(unsigned int x)
 929{
 930        WARN_ON(1);
 931        return x;
 932}
 933static unsigned int xen_get_apic_id(unsigned long x)
 934{
 935        return ((x)>>24) & 0xFFu;
 936}
 937static u32 xen_apic_read(u32 reg)
 938{
 939        struct xen_platform_op op = {
 940                .cmd = XENPF_get_cpuinfo,
 941                .interface_version = XENPF_INTERFACE_VERSION,
 942                .u.pcpu_info.xen_cpuid = 0,
 943        };
 944        int ret = 0;
 945
 946        /* Shouldn't need this as APIC is turned off for PV, and we only
 947         * get called on the bootup processor. But just in case. */
 948        if (!xen_initial_domain() || smp_processor_id())
 949                return 0;
 950
 951        if (reg == APIC_LVR)
 952                return 0x10;
 953
 954        if (reg != APIC_ID)
 955                return 0;
 956
 957        ret = HYPERVISOR_dom0_op(&op);
 958        if (ret)
 959                return 0;
 960
 961        return op.u.pcpu_info.apic_id << 24;
 962}
 963
 964static void xen_apic_write(u32 reg, u32 val)
 965{
 966        /* Warn to see if there's any stray references */
 967        WARN_ON(1);
 968}
 969
 970static u64 xen_apic_icr_read(void)
 971{
 972        return 0;
 973}
 974
 975static void xen_apic_icr_write(u32 low, u32 id)
 976{
 977        /* Warn to see if there's any stray references */
 978        WARN_ON(1);
 979}
 980
 981static void xen_apic_wait_icr_idle(void)
 982{
 983        return;
 984}
 985
 986static u32 xen_safe_apic_wait_icr_idle(void)
 987{
 988        return 0;
 989}
 990
 991static void set_xen_basic_apic_ops(void)
 992{
 993        apic->read = xen_apic_read;
 994        apic->write = xen_apic_write;
 995        apic->icr_read = xen_apic_icr_read;
 996        apic->icr_write = xen_apic_icr_write;
 997        apic->wait_icr_idle = xen_apic_wait_icr_idle;
 998        apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
 999        apic->set_apic_id = xen_set_apic_id;
1000        apic->get_apic_id = xen_get_apic_id;
1001
1002#ifdef CONFIG_SMP
1003        apic->send_IPI_allbutself = xen_send_IPI_allbutself;
1004        apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
1005        apic->send_IPI_mask = xen_send_IPI_mask;
1006        apic->send_IPI_all = xen_send_IPI_all;
1007        apic->send_IPI_self = xen_send_IPI_self;
1008#endif
1009}
1010
1011#endif
1012
1013static void xen_clts(void)
1014{
1015        struct multicall_space mcs;
1016
1017        mcs = xen_mc_entry(0);
1018
1019        MULTI_fpu_taskswitch(mcs.mc, 0);
1020
1021        xen_mc_issue(PARAVIRT_LAZY_CPU);
1022}
1023
1024static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
1025
1026static unsigned long xen_read_cr0(void)
1027{
1028        unsigned long cr0 = this_cpu_read(xen_cr0_value);
1029
1030        if (unlikely(cr0 == 0)) {
1031                cr0 = native_read_cr0();
1032                this_cpu_write(xen_cr0_value, cr0);
1033        }
1034
1035        return cr0;
1036}
1037
1038static void xen_write_cr0(unsigned long cr0)
1039{
1040        struct multicall_space mcs;
1041
1042        this_cpu_write(xen_cr0_value, cr0);
1043
1044        /* Only pay attention to cr0.TS; everything else is
1045           ignored. */
1046        mcs = xen_mc_entry(0);
1047
1048        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1049
1050        xen_mc_issue(PARAVIRT_LAZY_CPU);
1051}
1052
1053static void xen_write_cr4(unsigned long cr4)
1054{
1055        cr4 &= ~X86_CR4_PGE;
1056        cr4 &= ~X86_CR4_PSE;
1057
1058        native_write_cr4(cr4);
1059}
1060#ifdef CONFIG_X86_64
1061static inline unsigned long xen_read_cr8(void)
1062{
1063        return 0;
1064}
1065static inline void xen_write_cr8(unsigned long val)
1066{
1067        BUG_ON(val);
1068}
1069#endif
1070static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1071{
1072        int ret;
1073
1074        ret = 0;
1075
1076        switch (msr) {
1077#ifdef CONFIG_X86_64
1078                unsigned which;
1079                u64 base;
1080
1081        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1082        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1083        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1084
1085        set:
1086                base = ((u64)high << 32) | low;
1087                if (HYPERVISOR_set_segment_base(which, base) != 0)
1088                        ret = -EIO;
1089                break;
1090#endif
1091
1092        case MSR_STAR:
1093        case MSR_CSTAR:
1094        case MSR_LSTAR:
1095        case MSR_SYSCALL_MASK:
1096        case MSR_IA32_SYSENTER_CS:
1097        case MSR_IA32_SYSENTER_ESP:
1098        case MSR_IA32_SYSENTER_EIP:
1099                /* Fast syscall setup is all done in hypercalls, so
1100                   these are all ignored.  Stub them out here to stop
1101                   Xen console noise. */
1102                break;
1103
1104        case MSR_IA32_CR_PAT:
1105                if (smp_processor_id() == 0)
1106                        xen_set_pat(((u64)high << 32) | low);
1107                break;
1108
1109        default:
1110                ret = native_write_msr_safe(msr, low, high);
1111        }
1112
1113        return ret;
1114}
1115
1116void xen_setup_shared_info(void)
1117{
1118        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1119                set_fixmap(FIX_PARAVIRT_BOOTMAP,
1120                           xen_start_info->shared_info);
1121
1122                HYPERVISOR_shared_info =
1123                        (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1124        } else
1125                HYPERVISOR_shared_info =
1126                        (struct shared_info *)__va(xen_start_info->shared_info);
1127
1128#ifndef CONFIG_SMP
1129        /* In UP this is as good a place as any to set up shared info */
1130        xen_setup_vcpu_info_placement();
1131#endif
1132
1133        xen_setup_mfn_list_list();
1134}
1135
1136/* This is called once we have the cpu_possible_mask */
1137void xen_setup_vcpu_info_placement(void)
1138{
1139        int cpu;
1140
1141        for_each_possible_cpu(cpu)
1142                xen_vcpu_setup(cpu);
1143
1144        /* xen_vcpu_setup managed to place the vcpu_info within the
1145           percpu area for all cpus, so make use of it */
1146        if (have_vcpu_info_placement) {
1147                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1148                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1149                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1150                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1151                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1152        }
1153}
1154
1155static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1156                          unsigned long addr, unsigned len)
1157{
1158        char *start, *end, *reloc;
1159        unsigned ret;
1160
1161        start = end = reloc = NULL;
1162
1163#define SITE(op, x)                                                     \
1164        case PARAVIRT_PATCH(op.x):                                      \
1165        if (have_vcpu_info_placement) {                                 \
1166                start = (char *)xen_##x##_direct;                       \
1167                end = xen_##x##_direct_end;                             \
1168                reloc = xen_##x##_direct_reloc;                         \
1169        }                                                               \
1170        goto patch_site
1171
1172        switch (type) {
1173                SITE(pv_irq_ops, irq_enable);
1174                SITE(pv_irq_ops, irq_disable);
1175                SITE(pv_irq_ops, save_fl);
1176                SITE(pv_irq_ops, restore_fl);
1177#undef SITE
1178
1179        patch_site:
1180                if (start == NULL || (end-start) > len)
1181                        goto default_patch;
1182
1183                ret = paravirt_patch_insns(insnbuf, len, start, end);
1184
1185                /* Note: because reloc is assigned from something that
1186                   appears to be an array, gcc assumes it's non-null,
1187                   but doesn't know its relationship with start and
1188                   end. */
1189                if (reloc > start && reloc < end) {
1190                        int reloc_off = reloc - start;
1191                        long *relocp = (long *)(insnbuf + reloc_off);
1192                        long delta = start - (char *)addr;
1193
1194                        *relocp += delta;
1195                }
1196                break;
1197
1198        default_patch:
1199        default:
1200                ret = paravirt_patch_default(type, clobbers, insnbuf,
1201                                             addr, len);
1202                break;
1203        }
1204
1205        return ret;
1206}
1207
1208static const struct pv_info xen_info __initconst = {
1209        .paravirt_enabled = 1,
1210        .shared_kernel_pmd = 0,
1211
1212#ifdef CONFIG_X86_64
1213        .extra_user_64bit_cs = FLAT_USER_CS64,
1214#endif
1215
1216        .name = "Xen",
1217};
1218
1219static const struct pv_init_ops xen_init_ops __initconst = {
1220        .patch = xen_patch,
1221};
1222
1223static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1224        .cpuid = xen_cpuid,
1225
1226        .set_debugreg = xen_set_debugreg,
1227        .get_debugreg = xen_get_debugreg,
1228
1229        .clts = xen_clts,
1230
1231        .read_cr0 = xen_read_cr0,
1232        .write_cr0 = xen_write_cr0,
1233
1234        .read_cr4 = native_read_cr4,
1235        .read_cr4_safe = native_read_cr4_safe,
1236        .write_cr4 = xen_write_cr4,
1237
1238#ifdef CONFIG_X86_64
1239        .read_cr8 = xen_read_cr8,
1240        .write_cr8 = xen_write_cr8,
1241#endif
1242
1243        .wbinvd = native_wbinvd,
1244
1245        .read_msr = native_read_msr_safe,
1246        .write_msr = xen_write_msr_safe,
1247
1248        .read_tsc = native_read_tsc,
1249        .read_pmc = native_read_pmc,
1250
1251        .read_tscp = native_read_tscp,
1252
1253        .iret = xen_iret,
1254        .irq_enable_sysexit = xen_sysexit,
1255#ifdef CONFIG_X86_64
1256        .usergs_sysret32 = xen_sysret32,
1257        .usergs_sysret64 = xen_sysret64,
1258#endif
1259
1260        .load_tr_desc = paravirt_nop,
1261        .set_ldt = xen_set_ldt,
1262        .load_gdt = xen_load_gdt,
1263        .load_idt = xen_load_idt,
1264        .load_tls = xen_load_tls,
1265#ifdef CONFIG_X86_64
1266        .load_gs_index = xen_load_gs_index,
1267#endif
1268
1269        .alloc_ldt = xen_alloc_ldt,
1270        .free_ldt = xen_free_ldt,
1271
1272        .store_idt = native_store_idt,
1273        .store_tr = xen_store_tr,
1274
1275        .write_ldt_entry = xen_write_ldt_entry,
1276        .write_gdt_entry = xen_write_gdt_entry,
1277        .write_idt_entry = xen_write_idt_entry,
1278        .load_sp0 = xen_load_sp0,
1279
1280        .set_iopl_mask = xen_set_iopl_mask,
1281        .io_delay = xen_io_delay,
1282
1283        /* Xen takes care of %gs when switching to usermode for us */
1284        .swapgs = paravirt_nop,
1285
1286        .start_context_switch = paravirt_start_context_switch,
1287        .end_context_switch = xen_end_context_switch,
1288};
1289
1290static const struct pv_apic_ops xen_apic_ops __initconst = {
1291#ifdef CONFIG_X86_LOCAL_APIC
1292        .startup_ipi_hook = paravirt_nop,
1293#endif
1294};
1295
1296static void xen_reboot(int reason)
1297{
1298        struct sched_shutdown r = { .reason = reason };
1299
1300        if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1301                BUG();
1302}
1303
1304static void xen_restart(char *msg)
1305{
1306        xen_reboot(SHUTDOWN_reboot);
1307}
1308
1309static void xen_emergency_restart(void)
1310{
1311        xen_reboot(SHUTDOWN_reboot);
1312}
1313
1314static void xen_machine_halt(void)
1315{
1316        xen_reboot(SHUTDOWN_poweroff);
1317}
1318
1319static void xen_machine_power_off(void)
1320{
1321        if (pm_power_off)
1322                pm_power_off();
1323        xen_reboot(SHUTDOWN_poweroff);
1324}
1325
1326static void xen_crash_shutdown(struct pt_regs *regs)
1327{
1328        xen_reboot(SHUTDOWN_crash);
1329}
1330
1331static int
1332xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1333{
1334        xen_reboot(SHUTDOWN_crash);
1335        return NOTIFY_DONE;
1336}
1337
1338static struct notifier_block xen_panic_block = {
1339        .notifier_call= xen_panic_event,
1340};
1341
1342int xen_panic_handler_init(void)
1343{
1344        atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1345        return 0;
1346}
1347
1348static const struct machine_ops xen_machine_ops __initconst = {
1349        .restart = xen_restart,
1350        .halt = xen_machine_halt,
1351        .power_off = xen_machine_power_off,
1352        .shutdown = xen_machine_halt,
1353        .crash_shutdown = xen_crash_shutdown,
1354        .emergency_restart = xen_emergency_restart,
1355};
1356
1357static void __init xen_boot_params_init_edd(void)
1358{
1359#if IS_ENABLED(CONFIG_EDD)
1360        struct xen_platform_op op;
1361        struct edd_info *edd_info;
1362        u32 *mbr_signature;
1363        unsigned nr;
1364        int ret;
1365
1366        edd_info = boot_params.eddbuf;
1367        mbr_signature = boot_params.edd_mbr_sig_buffer;
1368
1369        op.cmd = XENPF_firmware_info;
1370
1371        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1372        for (nr = 0; nr < EDDMAXNR; nr++) {
1373                struct edd_info *info = edd_info + nr;
1374
1375                op.u.firmware_info.index = nr;
1376                info->params.length = sizeof(info->params);
1377                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1378                                     &info->params);
1379                ret = HYPERVISOR_dom0_op(&op);
1380                if (ret)
1381                        break;
1382
1383#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1384                C(device);
1385                C(version);
1386                C(interface_support);
1387                C(legacy_max_cylinder);
1388                C(legacy_max_head);
1389                C(legacy_sectors_per_track);
1390#undef C
1391        }
1392        boot_params.eddbuf_entries = nr;
1393
1394        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1395        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1396                op.u.firmware_info.index = nr;
1397                ret = HYPERVISOR_dom0_op(&op);
1398                if (ret)
1399                        break;
1400                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1401        }
1402        boot_params.edd_mbr_sig_buf_entries = nr;
1403#endif
1404}
1405
1406/*
1407 * Set up the GDT and segment registers for -fstack-protector.  Until
1408 * we do this, we have to be careful not to call any stack-protected
1409 * function, which is most of the kernel.
1410 */
1411static void __init xen_setup_stackprotector(void)
1412{
1413        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1414        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1415
1416        setup_stack_canary_segment(0);
1417        switch_to_new_gdt(0);
1418
1419        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1420        pv_cpu_ops.load_gdt = xen_load_gdt;
1421}
1422
1423/* First C function to be called on Xen boot */
1424asmlinkage void __init xen_start_kernel(void)
1425{
1426        struct physdev_set_iopl set_iopl;
1427        int rc;
1428
1429        if (!xen_start_info)
1430                return;
1431
1432        xen_domain_type = XEN_PV_DOMAIN;
1433
1434        xen_setup_machphys_mapping();
1435
1436        /* Install Xen paravirt ops */
1437        pv_info = xen_info;
1438        pv_init_ops = xen_init_ops;
1439        pv_cpu_ops = xen_cpu_ops;
1440        pv_apic_ops = xen_apic_ops;
1441
1442        x86_init.resources.memory_setup = xen_memory_setup;
1443        x86_init.oem.arch_setup = xen_arch_setup;
1444        x86_init.oem.banner = xen_banner;
1445
1446        xen_init_time_ops();
1447
1448        /*
1449         * Set up some pagetable state before starting to set any ptes.
1450         */
1451
1452        xen_init_mmu_ops();
1453
1454        /* Prevent unwanted bits from being set in PTEs. */
1455        __supported_pte_mask &= ~_PAGE_GLOBAL;
1456#if 0
1457        if (!xen_initial_domain())
1458#endif
1459                __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1460
1461        __supported_pte_mask |= _PAGE_IOMAP;
1462
1463        /*
1464         * Prevent page tables from being allocated in highmem, even
1465         * if CONFIG_HIGHPTE is enabled.
1466         */
1467        __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1468
1469        /* Work out if we support NX */
1470        x86_configure_nx();
1471
1472        xen_setup_features();
1473
1474        /* Get mfn list */
1475        if (!xen_feature(XENFEAT_auto_translated_physmap))
1476                xen_build_dynamic_phys_to_machine();
1477
1478        /*
1479         * Set up kernel GDT and segment registers, mainly so that
1480         * -fstack-protector code can be executed.
1481         */
1482        xen_setup_stackprotector();
1483
1484        xen_init_irq_ops();
1485        xen_init_cpuid_mask();
1486
1487#ifdef CONFIG_X86_LOCAL_APIC
1488        /*
1489         * set up the basic apic ops.
1490         */
1491        set_xen_basic_apic_ops();
1492#endif
1493
1494        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1495                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1496                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1497        }
1498
1499        machine_ops = xen_machine_ops;
1500
1501        /*
1502         * The only reliable way to retain the initial address of the
1503         * percpu gdt_page is to remember it here, so we can go and
1504         * mark it RW later, when the initial percpu area is freed.
1505         */
1506        xen_initial_gdt = &per_cpu(gdt_page, 0);
1507
1508        xen_smp_init();
1509
1510#ifdef CONFIG_ACPI_NUMA
1511        /*
1512         * The pages we from Xen are not related to machine pages, so
1513         * any NUMA information the kernel tries to get from ACPI will
1514         * be meaningless.  Prevent it from trying.
1515         */
1516        acpi_numa = -1;
1517#endif
1518#ifdef CONFIG_X86_PAT
1519        /*
1520         * For right now disable the PAT. We should remove this once
1521         * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1522         * (xen/pat: Disable PAT support for now) is reverted.
1523         */
1524        pat_enabled = 0;
1525#endif
1526        /* Don't do the full vcpu_info placement stuff until we have a
1527           possible map and a non-dummy shared_info. */
1528        per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1529
1530        local_irq_disable();
1531        early_boot_irqs_disabled = true;
1532
1533        xen_raw_console_write("mapping kernel into physical memory\n");
1534        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1535
1536        /* Allocate and initialize top and mid mfn levels for p2m structure */
1537        xen_build_mfn_list_list();
1538
1539        /* keep using Xen gdt for now; no urgent need to change it */
1540
1541#ifdef CONFIG_X86_32
1542        pv_info.kernel_rpl = 1;
1543        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1544                pv_info.kernel_rpl = 0;
1545#else
1546        pv_info.kernel_rpl = 0;
1547#endif
1548        /* set the limit of our address space */
1549        xen_reserve_top();
1550
1551        /* We used to do this in xen_arch_setup, but that is too late on AMD
1552         * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1553         * which pokes 0xcf8 port.
1554         */
1555        set_iopl.iopl = 1;
1556        rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1557        if (rc != 0)
1558                xen_raw_printk("physdev_op failed %d\n", rc);
1559
1560#ifdef CONFIG_X86_32
1561        /* set up basic CPUID stuff */
1562        cpu_detect(&new_cpu_data);
1563        set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1564        new_cpu_data.wp_works_ok = 1;
1565        new_cpu_data.x86_capability[0] = cpuid_edx(1);
1566#endif
1567
1568        /* Poke various useful things into boot_params */
1569        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1570        boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1571                ? __pa(xen_start_info->mod_start) : 0;
1572        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1573        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1574
1575        if (!xen_initial_domain()) {
1576                add_preferred_console("xenboot", 0, NULL);
1577                add_preferred_console("tty", 0, NULL);
1578                add_preferred_console("hvc", 0, NULL);
1579                if (pci_xen)
1580                        x86_init.pci.arch_init = pci_xen_init;
1581        } else {
1582                const struct dom0_vga_console_info *info =
1583                        (void *)((char *)xen_start_info +
1584                                 xen_start_info->console.dom0.info_off);
1585                struct xen_platform_op op = {
1586                        .cmd = XENPF_firmware_info,
1587                        .interface_version = XENPF_INTERFACE_VERSION,
1588                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1589                };
1590
1591                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1592                xen_start_info->console.domU.mfn = 0;
1593                xen_start_info->console.domU.evtchn = 0;
1594
1595                if (HYPERVISOR_dom0_op(&op) == 0)
1596                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1597
1598                xen_init_apic();
1599
1600                /* Make sure ACS will be enabled */
1601                pci_request_acs();
1602
1603                xen_acpi_sleep_register();
1604
1605                /* Avoid searching for BIOS MP tables */
1606                x86_init.mpparse.find_smp_config = x86_init_noop;
1607                x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1608
1609                xen_boot_params_init_edd();
1610        }
1611#ifdef CONFIG_PCI
1612        /* PCI BIOS service won't work from a PV guest. */
1613        pci_probe &= ~PCI_PROBE_BIOS;
1614#endif
1615        xen_raw_console_write("about to get started...\n");
1616
1617        xen_setup_runstate_info(0);
1618
1619        /* Start the world */
1620#ifdef CONFIG_X86_32
1621        i386_start_kernel();
1622#else
1623        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1624#endif
1625}
1626
1627void __ref xen_hvm_init_shared_info(void)
1628{
1629        int cpu;
1630        struct xen_add_to_physmap xatp;
1631        static struct shared_info *shared_info_page = 0;
1632
1633        if (!shared_info_page)
1634                shared_info_page = (struct shared_info *)
1635                        extend_brk(PAGE_SIZE, PAGE_SIZE);
1636        xatp.domid = DOMID_SELF;
1637        xatp.idx = 0;
1638        xatp.space = XENMAPSPACE_shared_info;
1639        xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1640        if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1641                BUG();
1642
1643        HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1644
1645        /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1646         * page, we use it in the event channel upcall and in some pvclock
1647         * related functions. We don't need the vcpu_info placement
1648         * optimizations because we don't use any pv_mmu or pv_irq op on
1649         * HVM.
1650         * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1651         * online but xen_hvm_init_shared_info is run at resume time too and
1652         * in that case multiple vcpus might be online. */
1653        for_each_online_cpu(cpu) {
1654                /* Leave it to be NULL. */
1655                if (cpu >= MAX_VIRT_CPUS)
1656                        continue;
1657                per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1658        }
1659}
1660
1661#ifdef CONFIG_XEN_PVHVM
1662static void __init init_hvm_pv_info(void)
1663{
1664        int major, minor;
1665        uint32_t eax, ebx, ecx, edx, pages, msr, base;
1666        u64 pfn;
1667
1668        base = xen_cpuid_base();
1669        cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1670
1671        major = eax >> 16;
1672        minor = eax & 0xffff;
1673        printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1674
1675        cpuid(base + 2, &pages, &msr, &ecx, &edx);
1676
1677        pfn = __pa(hypercall_page);
1678        wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1679
1680        xen_setup_features();
1681
1682        pv_info.name = "Xen HVM";
1683
1684        xen_domain_type = XEN_HVM_DOMAIN;
1685}
1686
1687static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1688                              void *hcpu)
1689{
1690        int cpu = (long)hcpu;
1691        switch (action) {
1692        case CPU_UP_PREPARE:
1693                xen_vcpu_setup(cpu);
1694                if (xen_have_vector_callback) {
1695                        if (xen_feature(XENFEAT_hvm_safe_pvclock))
1696                                xen_setup_timer(cpu);
1697                }
1698                break;
1699        default:
1700                break;
1701        }
1702        return NOTIFY_OK;
1703}
1704
1705static struct notifier_block xen_hvm_cpu_notifier = {
1706        .notifier_call  = xen_hvm_cpu_notify,
1707};
1708
1709static void __init xen_hvm_guest_init(void)
1710{
1711        init_hvm_pv_info();
1712
1713        xen_hvm_init_shared_info();
1714
1715        xen_panic_handler_init();
1716
1717        if (xen_feature(XENFEAT_hvm_callback_vector))
1718                xen_have_vector_callback = 1;
1719        xen_hvm_smp_init();
1720        register_cpu_notifier(&xen_hvm_cpu_notifier);
1721        xen_unplug_emulated_devices();
1722        x86_init.irqs.intr_init = xen_init_IRQ;
1723        xen_hvm_init_time_ops();
1724        xen_hvm_init_mmu_ops();
1725}
1726
1727static uint32_t __init xen_hvm_platform(void)
1728{
1729        if (xen_pv_domain())
1730                return 0;
1731
1732        return xen_cpuid_base();
1733}
1734
1735bool xen_hvm_need_lapic(void)
1736{
1737        if (xen_pv_domain())
1738                return false;
1739        if (!xen_hvm_domain())
1740                return false;
1741        if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1742                return false;
1743        return true;
1744}
1745EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1746
1747const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1748        .name                   = "Xen HVM",
1749        .detect                 = xen_hvm_platform,
1750        .init_platform          = xen_hvm_guest_init,
1751        .x2apic_available       = xen_x2apic_para_available,
1752};
1753EXPORT_SYMBOL(x86_hyper_xen_hvm);
1754#endif
1755