linux/block/blk-core.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *      -  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/block.h>
  38
  39#include "blk.h"
  40#include "blk-cgroup.h"
  41
  42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  43EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  44EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  45EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  46
  47DEFINE_IDA(blk_queue_ida);
  48
  49/*
  50 * For the allocated request tables
  51 */
  52struct kmem_cache *request_cachep = NULL;
  53
  54/*
  55 * For queue allocation
  56 */
  57struct kmem_cache *blk_requestq_cachep;
  58
  59/*
  60 * Controlling structure to kblockd
  61 */
  62static struct workqueue_struct *kblockd_workqueue;
  63
  64void blk_queue_congestion_threshold(struct request_queue *q)
  65{
  66        int nr;
  67
  68        nr = q->nr_requests - (q->nr_requests / 8) + 1;
  69        if (nr > q->nr_requests)
  70                nr = q->nr_requests;
  71        q->nr_congestion_on = nr;
  72
  73        nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  74        if (nr < 1)
  75                nr = 1;
  76        q->nr_congestion_off = nr;
  77}
  78
  79/**
  80 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  81 * @bdev:       device
  82 *
  83 * Locates the passed device's request queue and returns the address of its
  84 * backing_dev_info
  85 *
  86 * Will return NULL if the request queue cannot be located.
  87 */
  88struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  89{
  90        struct backing_dev_info *ret = NULL;
  91        struct request_queue *q = bdev_get_queue(bdev);
  92
  93        if (q)
  94                ret = &q->backing_dev_info;
  95        return ret;
  96}
  97EXPORT_SYMBOL(blk_get_backing_dev_info);
  98
  99void blk_rq_init(struct request_queue *q, struct request *rq)
 100{
 101        memset(rq, 0, sizeof(*rq));
 102
 103        INIT_LIST_HEAD(&rq->queuelist);
 104        INIT_LIST_HEAD(&rq->timeout_list);
 105        rq->cpu = -1;
 106        rq->q = q;
 107        rq->__sector = (sector_t) -1;
 108        INIT_HLIST_NODE(&rq->hash);
 109        RB_CLEAR_NODE(&rq->rb_node);
 110        rq->cmd = rq->__cmd;
 111        rq->cmd_len = BLK_MAX_CDB;
 112        rq->tag = -1;
 113        rq->start_time = jiffies;
 114        set_start_time_ns(rq);
 115        rq->part = NULL;
 116}
 117EXPORT_SYMBOL(blk_rq_init);
 118
 119static void req_bio_endio(struct request *rq, struct bio *bio,
 120                          unsigned int nbytes, int error)
 121{
 122        if (error)
 123                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 124        else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
 125                error = -EIO;
 126
 127        if (unlikely(rq->cmd_flags & REQ_QUIET))
 128                set_bit(BIO_QUIET, &bio->bi_flags);
 129
 130        bio_advance(bio, nbytes);
 131
 132        /* don't actually finish bio if it's part of flush sequence */
 133        if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 134                bio_endio(bio, error);
 135}
 136
 137void blk_dump_rq_flags(struct request *rq, char *msg)
 138{
 139        int bit;
 140
 141        printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
 142                rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 143                (unsigned long long) rq->cmd_flags);
 144
 145        printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 146               (unsigned long long)blk_rq_pos(rq),
 147               blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 148        printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
 149               rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
 150
 151        if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 152                printk(KERN_INFO "  cdb: ");
 153                for (bit = 0; bit < BLK_MAX_CDB; bit++)
 154                        printk("%02x ", rq->cmd[bit]);
 155                printk("\n");
 156        }
 157}
 158EXPORT_SYMBOL(blk_dump_rq_flags);
 159
 160static void blk_delay_work(struct work_struct *work)
 161{
 162        struct request_queue *q;
 163
 164        q = container_of(work, struct request_queue, delay_work.work);
 165        spin_lock_irq(q->queue_lock);
 166        __blk_run_queue(q);
 167        spin_unlock_irq(q->queue_lock);
 168}
 169
 170/**
 171 * blk_delay_queue - restart queueing after defined interval
 172 * @q:          The &struct request_queue in question
 173 * @msecs:      Delay in msecs
 174 *
 175 * Description:
 176 *   Sometimes queueing needs to be postponed for a little while, to allow
 177 *   resources to come back. This function will make sure that queueing is
 178 *   restarted around the specified time. Queue lock must be held.
 179 */
 180void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 181{
 182        if (likely(!blk_queue_dead(q)))
 183                queue_delayed_work(kblockd_workqueue, &q->delay_work,
 184                                   msecs_to_jiffies(msecs));
 185}
 186EXPORT_SYMBOL(blk_delay_queue);
 187
 188/**
 189 * blk_start_queue - restart a previously stopped queue
 190 * @q:    The &struct request_queue in question
 191 *
 192 * Description:
 193 *   blk_start_queue() will clear the stop flag on the queue, and call
 194 *   the request_fn for the queue if it was in a stopped state when
 195 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 196 **/
 197void blk_start_queue(struct request_queue *q)
 198{
 199        WARN_ON(!irqs_disabled());
 200
 201        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 202        __blk_run_queue(q);
 203}
 204EXPORT_SYMBOL(blk_start_queue);
 205
 206/**
 207 * blk_stop_queue - stop a queue
 208 * @q:    The &struct request_queue in question
 209 *
 210 * Description:
 211 *   The Linux block layer assumes that a block driver will consume all
 212 *   entries on the request queue when the request_fn strategy is called.
 213 *   Often this will not happen, because of hardware limitations (queue
 214 *   depth settings). If a device driver gets a 'queue full' response,
 215 *   or if it simply chooses not to queue more I/O at one point, it can
 216 *   call this function to prevent the request_fn from being called until
 217 *   the driver has signalled it's ready to go again. This happens by calling
 218 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 219 **/
 220void blk_stop_queue(struct request_queue *q)
 221{
 222        cancel_delayed_work(&q->delay_work);
 223        queue_flag_set(QUEUE_FLAG_STOPPED, q);
 224}
 225EXPORT_SYMBOL(blk_stop_queue);
 226
 227/**
 228 * blk_sync_queue - cancel any pending callbacks on a queue
 229 * @q: the queue
 230 *
 231 * Description:
 232 *     The block layer may perform asynchronous callback activity
 233 *     on a queue, such as calling the unplug function after a timeout.
 234 *     A block device may call blk_sync_queue to ensure that any
 235 *     such activity is cancelled, thus allowing it to release resources
 236 *     that the callbacks might use. The caller must already have made sure
 237 *     that its ->make_request_fn will not re-add plugging prior to calling
 238 *     this function.
 239 *
 240 *     This function does not cancel any asynchronous activity arising
 241 *     out of elevator or throttling code. That would require elevaotor_exit()
 242 *     and blkcg_exit_queue() to be called with queue lock initialized.
 243 *
 244 */
 245void blk_sync_queue(struct request_queue *q)
 246{
 247        del_timer_sync(&q->timeout);
 248        cancel_delayed_work_sync(&q->delay_work);
 249}
 250EXPORT_SYMBOL(blk_sync_queue);
 251
 252/**
 253 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 254 * @q:  The queue to run
 255 *
 256 * Description:
 257 *    Invoke request handling on a queue if there are any pending requests.
 258 *    May be used to restart request handling after a request has completed.
 259 *    This variant runs the queue whether or not the queue has been
 260 *    stopped. Must be called with the queue lock held and interrupts
 261 *    disabled. See also @blk_run_queue.
 262 */
 263inline void __blk_run_queue_uncond(struct request_queue *q)
 264{
 265        if (unlikely(blk_queue_dead(q)))
 266                return;
 267
 268        /*
 269         * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 270         * the queue lock internally. As a result multiple threads may be
 271         * running such a request function concurrently. Keep track of the
 272         * number of active request_fn invocations such that blk_drain_queue()
 273         * can wait until all these request_fn calls have finished.
 274         */
 275        q->request_fn_active++;
 276        q->request_fn(q);
 277        q->request_fn_active--;
 278}
 279
 280/**
 281 * __blk_run_queue - run a single device queue
 282 * @q:  The queue to run
 283 *
 284 * Description:
 285 *    See @blk_run_queue. This variant must be called with the queue lock
 286 *    held and interrupts disabled.
 287 */
 288void __blk_run_queue(struct request_queue *q)
 289{
 290        if (unlikely(blk_queue_stopped(q)))
 291                return;
 292
 293        __blk_run_queue_uncond(q);
 294}
 295EXPORT_SYMBOL(__blk_run_queue);
 296
 297/**
 298 * blk_run_queue_async - run a single device queue in workqueue context
 299 * @q:  The queue to run
 300 *
 301 * Description:
 302 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 303 *    of us. The caller must hold the queue lock.
 304 */
 305void blk_run_queue_async(struct request_queue *q)
 306{
 307        if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 308                mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 309}
 310EXPORT_SYMBOL(blk_run_queue_async);
 311
 312/**
 313 * blk_run_queue - run a single device queue
 314 * @q: The queue to run
 315 *
 316 * Description:
 317 *    Invoke request handling on this queue, if it has pending work to do.
 318 *    May be used to restart queueing when a request has completed.
 319 */
 320void blk_run_queue(struct request_queue *q)
 321{
 322        unsigned long flags;
 323
 324        spin_lock_irqsave(q->queue_lock, flags);
 325        __blk_run_queue(q);
 326        spin_unlock_irqrestore(q->queue_lock, flags);
 327}
 328EXPORT_SYMBOL(blk_run_queue);
 329
 330void blk_put_queue(struct request_queue *q)
 331{
 332        kobject_put(&q->kobj);
 333}
 334EXPORT_SYMBOL(blk_put_queue);
 335
 336/**
 337 * __blk_drain_queue - drain requests from request_queue
 338 * @q: queue to drain
 339 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 340 *
 341 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 342 * If not, only ELVPRIV requests are drained.  The caller is responsible
 343 * for ensuring that no new requests which need to be drained are queued.
 344 */
 345static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 346        __releases(q->queue_lock)
 347        __acquires(q->queue_lock)
 348{
 349        int i;
 350
 351        lockdep_assert_held(q->queue_lock);
 352
 353        while (true) {
 354                bool drain = false;
 355
 356                /*
 357                 * The caller might be trying to drain @q before its
 358                 * elevator is initialized.
 359                 */
 360                if (q->elevator)
 361                        elv_drain_elevator(q);
 362
 363                blkcg_drain_queue(q);
 364
 365                /*
 366                 * This function might be called on a queue which failed
 367                 * driver init after queue creation or is not yet fully
 368                 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 369                 * in such cases.  Kick queue iff dispatch queue has
 370                 * something on it and @q has request_fn set.
 371                 */
 372                if (!list_empty(&q->queue_head) && q->request_fn)
 373                        __blk_run_queue(q);
 374
 375                drain |= q->nr_rqs_elvpriv;
 376                drain |= q->request_fn_active;
 377
 378                /*
 379                 * Unfortunately, requests are queued at and tracked from
 380                 * multiple places and there's no single counter which can
 381                 * be drained.  Check all the queues and counters.
 382                 */
 383                if (drain_all) {
 384                        drain |= !list_empty(&q->queue_head);
 385                        for (i = 0; i < 2; i++) {
 386                                drain |= q->nr_rqs[i];
 387                                drain |= q->in_flight[i];
 388                                drain |= !list_empty(&q->flush_queue[i]);
 389                        }
 390                }
 391
 392                if (!drain)
 393                        break;
 394
 395                spin_unlock_irq(q->queue_lock);
 396
 397                msleep(10);
 398
 399                spin_lock_irq(q->queue_lock);
 400        }
 401
 402        /*
 403         * With queue marked dead, any woken up waiter will fail the
 404         * allocation path, so the wakeup chaining is lost and we're
 405         * left with hung waiters. We need to wake up those waiters.
 406         */
 407        if (q->request_fn) {
 408                struct request_list *rl;
 409
 410                blk_queue_for_each_rl(rl, q)
 411                        for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 412                                wake_up_all(&rl->wait[i]);
 413        }
 414}
 415
 416/**
 417 * blk_queue_bypass_start - enter queue bypass mode
 418 * @q: queue of interest
 419 *
 420 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 421 * function makes @q enter bypass mode and drains all requests which were
 422 * throttled or issued before.  On return, it's guaranteed that no request
 423 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 424 * inside queue or RCU read lock.
 425 */
 426void blk_queue_bypass_start(struct request_queue *q)
 427{
 428        bool drain;
 429
 430        spin_lock_irq(q->queue_lock);
 431        drain = !q->bypass_depth++;
 432        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 433        spin_unlock_irq(q->queue_lock);
 434
 435        if (drain) {
 436                spin_lock_irq(q->queue_lock);
 437                __blk_drain_queue(q, false);
 438                spin_unlock_irq(q->queue_lock);
 439
 440                /* ensure blk_queue_bypass() is %true inside RCU read lock */
 441                synchronize_rcu();
 442        }
 443}
 444EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 445
 446/**
 447 * blk_queue_bypass_end - leave queue bypass mode
 448 * @q: queue of interest
 449 *
 450 * Leave bypass mode and restore the normal queueing behavior.
 451 */
 452void blk_queue_bypass_end(struct request_queue *q)
 453{
 454        spin_lock_irq(q->queue_lock);
 455        if (!--q->bypass_depth)
 456                queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 457        WARN_ON_ONCE(q->bypass_depth < 0);
 458        spin_unlock_irq(q->queue_lock);
 459}
 460EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 461
 462/**
 463 * blk_cleanup_queue - shutdown a request queue
 464 * @q: request queue to shutdown
 465 *
 466 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 467 * put it.  All future requests will be failed immediately with -ENODEV.
 468 */
 469void blk_cleanup_queue(struct request_queue *q)
 470{
 471        spinlock_t *lock = q->queue_lock;
 472
 473        /* mark @q DYING, no new request or merges will be allowed afterwards */
 474        mutex_lock(&q->sysfs_lock);
 475        queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
 476        spin_lock_irq(lock);
 477
 478        /*
 479         * A dying queue is permanently in bypass mode till released.  Note
 480         * that, unlike blk_queue_bypass_start(), we aren't performing
 481         * synchronize_rcu() after entering bypass mode to avoid the delay
 482         * as some drivers create and destroy a lot of queues while
 483         * probing.  This is still safe because blk_release_queue() will be
 484         * called only after the queue refcnt drops to zero and nothing,
 485         * RCU or not, would be traversing the queue by then.
 486         */
 487        q->bypass_depth++;
 488        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 489
 490        queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 491        queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 492        queue_flag_set(QUEUE_FLAG_DYING, q);
 493        spin_unlock_irq(lock);
 494        mutex_unlock(&q->sysfs_lock);
 495
 496        /*
 497         * Drain all requests queued before DYING marking. Set DEAD flag to
 498         * prevent that q->request_fn() gets invoked after draining finished.
 499         */
 500        spin_lock_irq(lock);
 501        __blk_drain_queue(q, true);
 502        queue_flag_set(QUEUE_FLAG_DEAD, q);
 503        spin_unlock_irq(lock);
 504
 505        /* @q won't process any more request, flush async actions */
 506        del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 507        blk_sync_queue(q);
 508
 509        spin_lock_irq(lock);
 510        if (q->queue_lock != &q->__queue_lock)
 511                q->queue_lock = &q->__queue_lock;
 512        spin_unlock_irq(lock);
 513
 514        /* @q is and will stay empty, shutdown and put */
 515        blk_put_queue(q);
 516}
 517EXPORT_SYMBOL(blk_cleanup_queue);
 518
 519int blk_init_rl(struct request_list *rl, struct request_queue *q,
 520                gfp_t gfp_mask)
 521{
 522        if (unlikely(rl->rq_pool))
 523                return 0;
 524
 525        rl->q = q;
 526        rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 527        rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 528        init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 529        init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 530
 531        rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
 532                                          mempool_free_slab, request_cachep,
 533                                          gfp_mask, q->node);
 534        if (!rl->rq_pool)
 535                return -ENOMEM;
 536
 537        return 0;
 538}
 539
 540void blk_exit_rl(struct request_list *rl)
 541{
 542        if (rl->rq_pool)
 543                mempool_destroy(rl->rq_pool);
 544}
 545
 546struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 547{
 548        return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 549}
 550EXPORT_SYMBOL(blk_alloc_queue);
 551
 552struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 553{
 554        struct request_queue *q;
 555        int err;
 556
 557        q = kmem_cache_alloc_node(blk_requestq_cachep,
 558                                gfp_mask | __GFP_ZERO, node_id);
 559        if (!q)
 560                return NULL;
 561
 562        if (percpu_counter_init(&q->mq_usage_counter, 0))
 563                goto fail_q;
 564
 565        q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 566        if (q->id < 0)
 567                goto fail_c;
 568
 569        q->backing_dev_info.ra_pages =
 570                        (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
 571        q->backing_dev_info.state = 0;
 572        q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
 573        q->backing_dev_info.name = "block";
 574        q->node = node_id;
 575
 576        err = bdi_init(&q->backing_dev_info);
 577        if (err)
 578                goto fail_id;
 579
 580        setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 581                    laptop_mode_timer_fn, (unsigned long) q);
 582        setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 583        INIT_LIST_HEAD(&q->queue_head);
 584        INIT_LIST_HEAD(&q->timeout_list);
 585        INIT_LIST_HEAD(&q->icq_list);
 586#ifdef CONFIG_BLK_CGROUP
 587        INIT_LIST_HEAD(&q->blkg_list);
 588#endif
 589        INIT_LIST_HEAD(&q->flush_queue[0]);
 590        INIT_LIST_HEAD(&q->flush_queue[1]);
 591        INIT_LIST_HEAD(&q->flush_data_in_flight);
 592        INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 593
 594        kobject_init(&q->kobj, &blk_queue_ktype);
 595
 596        mutex_init(&q->sysfs_lock);
 597        spin_lock_init(&q->__queue_lock);
 598
 599        /*
 600         * By default initialize queue_lock to internal lock and driver can
 601         * override it later if need be.
 602         */
 603        q->queue_lock = &q->__queue_lock;
 604
 605        /*
 606         * A queue starts its life with bypass turned on to avoid
 607         * unnecessary bypass on/off overhead and nasty surprises during
 608         * init.  The initial bypass will be finished when the queue is
 609         * registered by blk_register_queue().
 610         */
 611        q->bypass_depth = 1;
 612        __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
 613
 614        init_waitqueue_head(&q->mq_freeze_wq);
 615
 616        if (blkcg_init_queue(q))
 617                goto fail_bdi;
 618
 619        return q;
 620
 621fail_bdi:
 622        bdi_destroy(&q->backing_dev_info);
 623fail_id:
 624        ida_simple_remove(&blk_queue_ida, q->id);
 625fail_c:
 626        percpu_counter_destroy(&q->mq_usage_counter);
 627fail_q:
 628        kmem_cache_free(blk_requestq_cachep, q);
 629        return NULL;
 630}
 631EXPORT_SYMBOL(blk_alloc_queue_node);
 632
 633/**
 634 * blk_init_queue  - prepare a request queue for use with a block device
 635 * @rfn:  The function to be called to process requests that have been
 636 *        placed on the queue.
 637 * @lock: Request queue spin lock
 638 *
 639 * Description:
 640 *    If a block device wishes to use the standard request handling procedures,
 641 *    which sorts requests and coalesces adjacent requests, then it must
 642 *    call blk_init_queue().  The function @rfn will be called when there
 643 *    are requests on the queue that need to be processed.  If the device
 644 *    supports plugging, then @rfn may not be called immediately when requests
 645 *    are available on the queue, but may be called at some time later instead.
 646 *    Plugged queues are generally unplugged when a buffer belonging to one
 647 *    of the requests on the queue is needed, or due to memory pressure.
 648 *
 649 *    @rfn is not required, or even expected, to remove all requests off the
 650 *    queue, but only as many as it can handle at a time.  If it does leave
 651 *    requests on the queue, it is responsible for arranging that the requests
 652 *    get dealt with eventually.
 653 *
 654 *    The queue spin lock must be held while manipulating the requests on the
 655 *    request queue; this lock will be taken also from interrupt context, so irq
 656 *    disabling is needed for it.
 657 *
 658 *    Function returns a pointer to the initialized request queue, or %NULL if
 659 *    it didn't succeed.
 660 *
 661 * Note:
 662 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 663 *    when the block device is deactivated (such as at module unload).
 664 **/
 665
 666struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 667{
 668        return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
 669}
 670EXPORT_SYMBOL(blk_init_queue);
 671
 672struct request_queue *
 673blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 674{
 675        struct request_queue *uninit_q, *q;
 676
 677        uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 678        if (!uninit_q)
 679                return NULL;
 680
 681        q = blk_init_allocated_queue(uninit_q, rfn, lock);
 682        if (!q)
 683                blk_cleanup_queue(uninit_q);
 684
 685        return q;
 686}
 687EXPORT_SYMBOL(blk_init_queue_node);
 688
 689struct request_queue *
 690blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 691                         spinlock_t *lock)
 692{
 693        if (!q)
 694                return NULL;
 695
 696        if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
 697                return NULL;
 698
 699        q->request_fn           = rfn;
 700        q->prep_rq_fn           = NULL;
 701        q->unprep_rq_fn         = NULL;
 702        q->queue_flags          |= QUEUE_FLAG_DEFAULT;
 703
 704        /* Override internal queue lock with supplied lock pointer */
 705        if (lock)
 706                q->queue_lock           = lock;
 707
 708        /*
 709         * This also sets hw/phys segments, boundary and size
 710         */
 711        blk_queue_make_request(q, blk_queue_bio);
 712
 713        q->sg_reserved_size = INT_MAX;
 714
 715        /* Protect q->elevator from elevator_change */
 716        mutex_lock(&q->sysfs_lock);
 717
 718        /* init elevator */
 719        if (elevator_init(q, NULL)) {
 720                mutex_unlock(&q->sysfs_lock);
 721                return NULL;
 722        }
 723
 724        mutex_unlock(&q->sysfs_lock);
 725
 726        return q;
 727}
 728EXPORT_SYMBOL(blk_init_allocated_queue);
 729
 730bool blk_get_queue(struct request_queue *q)
 731{
 732        if (likely(!blk_queue_dying(q))) {
 733                __blk_get_queue(q);
 734                return true;
 735        }
 736
 737        return false;
 738}
 739EXPORT_SYMBOL(blk_get_queue);
 740
 741static inline void blk_free_request(struct request_list *rl, struct request *rq)
 742{
 743        if (rq->cmd_flags & REQ_ELVPRIV) {
 744                elv_put_request(rl->q, rq);
 745                if (rq->elv.icq)
 746                        put_io_context(rq->elv.icq->ioc);
 747        }
 748
 749        mempool_free(rq, rl->rq_pool);
 750}
 751
 752/*
 753 * ioc_batching returns true if the ioc is a valid batching request and
 754 * should be given priority access to a request.
 755 */
 756static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 757{
 758        if (!ioc)
 759                return 0;
 760
 761        /*
 762         * Make sure the process is able to allocate at least 1 request
 763         * even if the batch times out, otherwise we could theoretically
 764         * lose wakeups.
 765         */
 766        return ioc->nr_batch_requests == q->nr_batching ||
 767                (ioc->nr_batch_requests > 0
 768                && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 769}
 770
 771/*
 772 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 773 * will cause the process to be a "batcher" on all queues in the system. This
 774 * is the behaviour we want though - once it gets a wakeup it should be given
 775 * a nice run.
 776 */
 777static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 778{
 779        if (!ioc || ioc_batching(q, ioc))
 780                return;
 781
 782        ioc->nr_batch_requests = q->nr_batching;
 783        ioc->last_waited = jiffies;
 784}
 785
 786static void __freed_request(struct request_list *rl, int sync)
 787{
 788        struct request_queue *q = rl->q;
 789
 790        /*
 791         * bdi isn't aware of blkcg yet.  As all async IOs end up root
 792         * blkcg anyway, just use root blkcg state.
 793         */
 794        if (rl == &q->root_rl &&
 795            rl->count[sync] < queue_congestion_off_threshold(q))
 796                blk_clear_queue_congested(q, sync);
 797
 798        if (rl->count[sync] + 1 <= q->nr_requests) {
 799                if (waitqueue_active(&rl->wait[sync]))
 800                        wake_up(&rl->wait[sync]);
 801
 802                blk_clear_rl_full(rl, sync);
 803        }
 804}
 805
 806/*
 807 * A request has just been released.  Account for it, update the full and
 808 * congestion status, wake up any waiters.   Called under q->queue_lock.
 809 */
 810static void freed_request(struct request_list *rl, unsigned int flags)
 811{
 812        struct request_queue *q = rl->q;
 813        int sync = rw_is_sync(flags);
 814
 815        q->nr_rqs[sync]--;
 816        rl->count[sync]--;
 817        if (flags & REQ_ELVPRIV)
 818                q->nr_rqs_elvpriv--;
 819
 820        __freed_request(rl, sync);
 821
 822        if (unlikely(rl->starved[sync ^ 1]))
 823                __freed_request(rl, sync ^ 1);
 824}
 825
 826/*
 827 * Determine if elevator data should be initialized when allocating the
 828 * request associated with @bio.
 829 */
 830static bool blk_rq_should_init_elevator(struct bio *bio)
 831{
 832        if (!bio)
 833                return true;
 834
 835        /*
 836         * Flush requests do not use the elevator so skip initialization.
 837         * This allows a request to share the flush and elevator data.
 838         */
 839        if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
 840                return false;
 841
 842        return true;
 843}
 844
 845/**
 846 * rq_ioc - determine io_context for request allocation
 847 * @bio: request being allocated is for this bio (can be %NULL)
 848 *
 849 * Determine io_context to use for request allocation for @bio.  May return
 850 * %NULL if %current->io_context doesn't exist.
 851 */
 852static struct io_context *rq_ioc(struct bio *bio)
 853{
 854#ifdef CONFIG_BLK_CGROUP
 855        if (bio && bio->bi_ioc)
 856                return bio->bi_ioc;
 857#endif
 858        return current->io_context;
 859}
 860
 861/**
 862 * __get_request - get a free request
 863 * @rl: request list to allocate from
 864 * @rw_flags: RW and SYNC flags
 865 * @bio: bio to allocate request for (can be %NULL)
 866 * @gfp_mask: allocation mask
 867 *
 868 * Get a free request from @q.  This function may fail under memory
 869 * pressure or if @q is dead.
 870 *
 871 * Must be callled with @q->queue_lock held and,
 872 * Returns %NULL on failure, with @q->queue_lock held.
 873 * Returns !%NULL on success, with @q->queue_lock *not held*.
 874 */
 875static struct request *__get_request(struct request_list *rl, int rw_flags,
 876                                     struct bio *bio, gfp_t gfp_mask)
 877{
 878        struct request_queue *q = rl->q;
 879        struct request *rq;
 880        struct elevator_type *et = q->elevator->type;
 881        struct io_context *ioc = rq_ioc(bio);
 882        struct io_cq *icq = NULL;
 883        const bool is_sync = rw_is_sync(rw_flags) != 0;
 884        int may_queue;
 885
 886        if (unlikely(blk_queue_dying(q)))
 887                return NULL;
 888
 889        may_queue = elv_may_queue(q, rw_flags);
 890        if (may_queue == ELV_MQUEUE_NO)
 891                goto rq_starved;
 892
 893        if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
 894                if (rl->count[is_sync]+1 >= q->nr_requests) {
 895                        /*
 896                         * The queue will fill after this allocation, so set
 897                         * it as full, and mark this process as "batching".
 898                         * This process will be allowed to complete a batch of
 899                         * requests, others will be blocked.
 900                         */
 901                        if (!blk_rl_full(rl, is_sync)) {
 902                                ioc_set_batching(q, ioc);
 903                                blk_set_rl_full(rl, is_sync);
 904                        } else {
 905                                if (may_queue != ELV_MQUEUE_MUST
 906                                                && !ioc_batching(q, ioc)) {
 907                                        /*
 908                                         * The queue is full and the allocating
 909                                         * process is not a "batcher", and not
 910                                         * exempted by the IO scheduler
 911                                         */
 912                                        return NULL;
 913                                }
 914                        }
 915                }
 916                /*
 917                 * bdi isn't aware of blkcg yet.  As all async IOs end up
 918                 * root blkcg anyway, just use root blkcg state.
 919                 */
 920                if (rl == &q->root_rl)
 921                        blk_set_queue_congested(q, is_sync);
 922        }
 923
 924        /*
 925         * Only allow batching queuers to allocate up to 50% over the defined
 926         * limit of requests, otherwise we could have thousands of requests
 927         * allocated with any setting of ->nr_requests
 928         */
 929        if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
 930                return NULL;
 931
 932        q->nr_rqs[is_sync]++;
 933        rl->count[is_sync]++;
 934        rl->starved[is_sync] = 0;
 935
 936        /*
 937         * Decide whether the new request will be managed by elevator.  If
 938         * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
 939         * prevent the current elevator from being destroyed until the new
 940         * request is freed.  This guarantees icq's won't be destroyed and
 941         * makes creating new ones safe.
 942         *
 943         * Also, lookup icq while holding queue_lock.  If it doesn't exist,
 944         * it will be created after releasing queue_lock.
 945         */
 946        if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
 947                rw_flags |= REQ_ELVPRIV;
 948                q->nr_rqs_elvpriv++;
 949                if (et->icq_cache && ioc)
 950                        icq = ioc_lookup_icq(ioc, q);
 951        }
 952
 953        if (blk_queue_io_stat(q))
 954                rw_flags |= REQ_IO_STAT;
 955        spin_unlock_irq(q->queue_lock);
 956
 957        /* allocate and init request */
 958        rq = mempool_alloc(rl->rq_pool, gfp_mask);
 959        if (!rq)
 960                goto fail_alloc;
 961
 962        blk_rq_init(q, rq);
 963        blk_rq_set_rl(rq, rl);
 964        rq->cmd_flags = rw_flags | REQ_ALLOCED;
 965
 966        /* init elvpriv */
 967        if (rw_flags & REQ_ELVPRIV) {
 968                if (unlikely(et->icq_cache && !icq)) {
 969                        if (ioc)
 970                                icq = ioc_create_icq(ioc, q, gfp_mask);
 971                        if (!icq)
 972                                goto fail_elvpriv;
 973                }
 974
 975                rq->elv.icq = icq;
 976                if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
 977                        goto fail_elvpriv;
 978
 979                /* @rq->elv.icq holds io_context until @rq is freed */
 980                if (icq)
 981                        get_io_context(icq->ioc);
 982        }
 983out:
 984        /*
 985         * ioc may be NULL here, and ioc_batching will be false. That's
 986         * OK, if the queue is under the request limit then requests need
 987         * not count toward the nr_batch_requests limit. There will always
 988         * be some limit enforced by BLK_BATCH_TIME.
 989         */
 990        if (ioc_batching(q, ioc))
 991                ioc->nr_batch_requests--;
 992
 993        trace_block_getrq(q, bio, rw_flags & 1);
 994        return rq;
 995
 996fail_elvpriv:
 997        /*
 998         * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
 999         * and may fail indefinitely under memory pressure and thus
1000         * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1001         * disturb iosched and blkcg but weird is bettern than dead.
1002         */
1003        printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1004                           dev_name(q->backing_dev_info.dev));
1005
1006        rq->cmd_flags &= ~REQ_ELVPRIV;
1007        rq->elv.icq = NULL;
1008
1009        spin_lock_irq(q->queue_lock);
1010        q->nr_rqs_elvpriv--;
1011        spin_unlock_irq(q->queue_lock);
1012        goto out;
1013
1014fail_alloc:
1015        /*
1016         * Allocation failed presumably due to memory. Undo anything we
1017         * might have messed up.
1018         *
1019         * Allocating task should really be put onto the front of the wait
1020         * queue, but this is pretty rare.
1021         */
1022        spin_lock_irq(q->queue_lock);
1023        freed_request(rl, rw_flags);
1024
1025        /*
1026         * in the very unlikely event that allocation failed and no
1027         * requests for this direction was pending, mark us starved so that
1028         * freeing of a request in the other direction will notice
1029         * us. another possible fix would be to split the rq mempool into
1030         * READ and WRITE
1031         */
1032rq_starved:
1033        if (unlikely(rl->count[is_sync] == 0))
1034                rl->starved[is_sync] = 1;
1035        return NULL;
1036}
1037
1038/**
1039 * get_request - get a free request
1040 * @q: request_queue to allocate request from
1041 * @rw_flags: RW and SYNC flags
1042 * @bio: bio to allocate request for (can be %NULL)
1043 * @gfp_mask: allocation mask
1044 *
1045 * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1046 * function keeps retrying under memory pressure and fails iff @q is dead.
1047 *
1048 * Must be callled with @q->queue_lock held and,
1049 * Returns %NULL on failure, with @q->queue_lock held.
1050 * Returns !%NULL on success, with @q->queue_lock *not held*.
1051 */
1052static struct request *get_request(struct request_queue *q, int rw_flags,
1053                                   struct bio *bio, gfp_t gfp_mask)
1054{
1055        const bool is_sync = rw_is_sync(rw_flags) != 0;
1056        DEFINE_WAIT(wait);
1057        struct request_list *rl;
1058        struct request *rq;
1059
1060        rl = blk_get_rl(q, bio);        /* transferred to @rq on success */
1061retry:
1062        rq = __get_request(rl, rw_flags, bio, gfp_mask);
1063        if (rq)
1064                return rq;
1065
1066        if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1067                blk_put_rl(rl);
1068                return NULL;
1069        }
1070
1071        /* wait on @rl and retry */
1072        prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1073                                  TASK_UNINTERRUPTIBLE);
1074
1075        trace_block_sleeprq(q, bio, rw_flags & 1);
1076
1077        spin_unlock_irq(q->queue_lock);
1078        io_schedule();
1079
1080        /*
1081         * After sleeping, we become a "batching" process and will be able
1082         * to allocate at least one request, and up to a big batch of them
1083         * for a small period time.  See ioc_batching, ioc_set_batching
1084         */
1085        ioc_set_batching(q, current->io_context);
1086
1087        spin_lock_irq(q->queue_lock);
1088        finish_wait(&rl->wait[is_sync], &wait);
1089
1090        goto retry;
1091}
1092
1093static struct request *blk_old_get_request(struct request_queue *q, int rw,
1094                gfp_t gfp_mask)
1095{
1096        struct request *rq;
1097
1098        BUG_ON(rw != READ && rw != WRITE);
1099
1100        /* create ioc upfront */
1101        create_io_context(gfp_mask, q->node);
1102
1103        spin_lock_irq(q->queue_lock);
1104        rq = get_request(q, rw, NULL, gfp_mask);
1105        if (!rq)
1106                spin_unlock_irq(q->queue_lock);
1107        /* q->queue_lock is unlocked at this point */
1108
1109        return rq;
1110}
1111
1112struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1113{
1114        if (q->mq_ops)
1115                return blk_mq_alloc_request(q, rw, gfp_mask, false);
1116        else
1117                return blk_old_get_request(q, rw, gfp_mask);
1118}
1119EXPORT_SYMBOL(blk_get_request);
1120
1121/**
1122 * blk_make_request - given a bio, allocate a corresponding struct request.
1123 * @q: target request queue
1124 * @bio:  The bio describing the memory mappings that will be submitted for IO.
1125 *        It may be a chained-bio properly constructed by block/bio layer.
1126 * @gfp_mask: gfp flags to be used for memory allocation
1127 *
1128 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1129 * type commands. Where the struct request needs to be farther initialized by
1130 * the caller. It is passed a &struct bio, which describes the memory info of
1131 * the I/O transfer.
1132 *
1133 * The caller of blk_make_request must make sure that bi_io_vec
1134 * are set to describe the memory buffers. That bio_data_dir() will return
1135 * the needed direction of the request. (And all bio's in the passed bio-chain
1136 * are properly set accordingly)
1137 *
1138 * If called under none-sleepable conditions, mapped bio buffers must not
1139 * need bouncing, by calling the appropriate masked or flagged allocator,
1140 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1141 * BUG.
1142 *
1143 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1144 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1145 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1146 * completion of a bio that hasn't been submitted yet, thus resulting in a
1147 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1148 * of bio_alloc(), as that avoids the mempool deadlock.
1149 * If possible a big IO should be split into smaller parts when allocation
1150 * fails. Partial allocation should not be an error, or you risk a live-lock.
1151 */
1152struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1153                                 gfp_t gfp_mask)
1154{
1155        struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1156
1157        if (unlikely(!rq))
1158                return ERR_PTR(-ENOMEM);
1159
1160        for_each_bio(bio) {
1161                struct bio *bounce_bio = bio;
1162                int ret;
1163
1164                blk_queue_bounce(q, &bounce_bio);
1165                ret = blk_rq_append_bio(q, rq, bounce_bio);
1166                if (unlikely(ret)) {
1167                        blk_put_request(rq);
1168                        return ERR_PTR(ret);
1169                }
1170        }
1171
1172        return rq;
1173}
1174EXPORT_SYMBOL(blk_make_request);
1175
1176/**
1177 * blk_requeue_request - put a request back on queue
1178 * @q:          request queue where request should be inserted
1179 * @rq:         request to be inserted
1180 *
1181 * Description:
1182 *    Drivers often keep queueing requests until the hardware cannot accept
1183 *    more, when that condition happens we need to put the request back
1184 *    on the queue. Must be called with queue lock held.
1185 */
1186void blk_requeue_request(struct request_queue *q, struct request *rq)
1187{
1188        blk_delete_timer(rq);
1189        blk_clear_rq_complete(rq);
1190        trace_block_rq_requeue(q, rq);
1191
1192        if (blk_rq_tagged(rq))
1193                blk_queue_end_tag(q, rq);
1194
1195        BUG_ON(blk_queued_rq(rq));
1196
1197        elv_requeue_request(q, rq);
1198}
1199EXPORT_SYMBOL(blk_requeue_request);
1200
1201static void add_acct_request(struct request_queue *q, struct request *rq,
1202                             int where)
1203{
1204        blk_account_io_start(rq, true);
1205        __elv_add_request(q, rq, where);
1206}
1207
1208static void part_round_stats_single(int cpu, struct hd_struct *part,
1209                                    unsigned long now)
1210{
1211        if (now == part->stamp)
1212                return;
1213
1214        if (part_in_flight(part)) {
1215                __part_stat_add(cpu, part, time_in_queue,
1216                                part_in_flight(part) * (now - part->stamp));
1217                __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1218        }
1219        part->stamp = now;
1220}
1221
1222/**
1223 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1224 * @cpu: cpu number for stats access
1225 * @part: target partition
1226 *
1227 * The average IO queue length and utilisation statistics are maintained
1228 * by observing the current state of the queue length and the amount of
1229 * time it has been in this state for.
1230 *
1231 * Normally, that accounting is done on IO completion, but that can result
1232 * in more than a second's worth of IO being accounted for within any one
1233 * second, leading to >100% utilisation.  To deal with that, we call this
1234 * function to do a round-off before returning the results when reading
1235 * /proc/diskstats.  This accounts immediately for all queue usage up to
1236 * the current jiffies and restarts the counters again.
1237 */
1238void part_round_stats(int cpu, struct hd_struct *part)
1239{
1240        unsigned long now = jiffies;
1241
1242        if (part->partno)
1243                part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1244        part_round_stats_single(cpu, part, now);
1245}
1246EXPORT_SYMBOL_GPL(part_round_stats);
1247
1248#ifdef CONFIG_PM_RUNTIME
1249static void blk_pm_put_request(struct request *rq)
1250{
1251        if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1252                pm_runtime_mark_last_busy(rq->q->dev);
1253}
1254#else
1255static inline void blk_pm_put_request(struct request *rq) {}
1256#endif
1257
1258/*
1259 * queue lock must be held
1260 */
1261void __blk_put_request(struct request_queue *q, struct request *req)
1262{
1263        if (unlikely(!q))
1264                return;
1265
1266        blk_pm_put_request(req);
1267
1268        elv_completed_request(q, req);
1269
1270        /* this is a bio leak */
1271        WARN_ON(req->bio != NULL);
1272
1273        /*
1274         * Request may not have originated from ll_rw_blk. if not,
1275         * it didn't come out of our reserved rq pools
1276         */
1277        if (req->cmd_flags & REQ_ALLOCED) {
1278                unsigned int flags = req->cmd_flags;
1279                struct request_list *rl = blk_rq_rl(req);
1280
1281                BUG_ON(!list_empty(&req->queuelist));
1282                BUG_ON(!hlist_unhashed(&req->hash));
1283
1284                blk_free_request(rl, req);
1285                freed_request(rl, flags);
1286                blk_put_rl(rl);
1287        }
1288}
1289EXPORT_SYMBOL_GPL(__blk_put_request);
1290
1291void blk_put_request(struct request *req)
1292{
1293        struct request_queue *q = req->q;
1294
1295        if (q->mq_ops)
1296                blk_mq_free_request(req);
1297        else {
1298                unsigned long flags;
1299
1300                spin_lock_irqsave(q->queue_lock, flags);
1301                __blk_put_request(q, req);
1302                spin_unlock_irqrestore(q->queue_lock, flags);
1303        }
1304}
1305EXPORT_SYMBOL(blk_put_request);
1306
1307/**
1308 * blk_add_request_payload - add a payload to a request
1309 * @rq: request to update
1310 * @page: page backing the payload
1311 * @len: length of the payload.
1312 *
1313 * This allows to later add a payload to an already submitted request by
1314 * a block driver.  The driver needs to take care of freeing the payload
1315 * itself.
1316 *
1317 * Note that this is a quite horrible hack and nothing but handling of
1318 * discard requests should ever use it.
1319 */
1320void blk_add_request_payload(struct request *rq, struct page *page,
1321                unsigned int len)
1322{
1323        struct bio *bio = rq->bio;
1324
1325        bio->bi_io_vec->bv_page = page;
1326        bio->bi_io_vec->bv_offset = 0;
1327        bio->bi_io_vec->bv_len = len;
1328
1329        bio->bi_size = len;
1330        bio->bi_vcnt = 1;
1331        bio->bi_phys_segments = 1;
1332
1333        rq->__data_len = rq->resid_len = len;
1334        rq->nr_phys_segments = 1;
1335        rq->buffer = bio_data(bio);
1336}
1337EXPORT_SYMBOL_GPL(blk_add_request_payload);
1338
1339bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1340                            struct bio *bio)
1341{
1342        const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1343
1344        if (!ll_back_merge_fn(q, req, bio))
1345                return false;
1346
1347        trace_block_bio_backmerge(q, req, bio);
1348
1349        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1350                blk_rq_set_mixed_merge(req);
1351
1352        req->biotail->bi_next = bio;
1353        req->biotail = bio;
1354        req->__data_len += bio->bi_size;
1355        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1356
1357        blk_account_io_start(req, false);
1358        return true;
1359}
1360
1361bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1362                             struct bio *bio)
1363{
1364        const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1365
1366        if (!ll_front_merge_fn(q, req, bio))
1367                return false;
1368
1369        trace_block_bio_frontmerge(q, req, bio);
1370
1371        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1372                blk_rq_set_mixed_merge(req);
1373
1374        bio->bi_next = req->bio;
1375        req->bio = bio;
1376
1377        /*
1378         * may not be valid. if the low level driver said
1379         * it didn't need a bounce buffer then it better
1380         * not touch req->buffer either...
1381         */
1382        req->buffer = bio_data(bio);
1383        req->__sector = bio->bi_sector;
1384        req->__data_len += bio->bi_size;
1385        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1386
1387        blk_account_io_start(req, false);
1388        return true;
1389}
1390
1391/**
1392 * blk_attempt_plug_merge - try to merge with %current's plugged list
1393 * @q: request_queue new bio is being queued at
1394 * @bio: new bio being queued
1395 * @request_count: out parameter for number of traversed plugged requests
1396 *
1397 * Determine whether @bio being queued on @q can be merged with a request
1398 * on %current's plugged list.  Returns %true if merge was successful,
1399 * otherwise %false.
1400 *
1401 * Plugging coalesces IOs from the same issuer for the same purpose without
1402 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1403 * than scheduling, and the request, while may have elvpriv data, is not
1404 * added on the elevator at this point.  In addition, we don't have
1405 * reliable access to the elevator outside queue lock.  Only check basic
1406 * merging parameters without querying the elevator.
1407 */
1408bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1409                            unsigned int *request_count)
1410{
1411        struct blk_plug *plug;
1412        struct request *rq;
1413        bool ret = false;
1414        struct list_head *plug_list;
1415
1416        if (blk_queue_nomerges(q))
1417                goto out;
1418
1419        plug = current->plug;
1420        if (!plug)
1421                goto out;
1422        *request_count = 0;
1423
1424        if (q->mq_ops)
1425                plug_list = &plug->mq_list;
1426        else
1427                plug_list = &plug->list;
1428
1429        list_for_each_entry_reverse(rq, plug_list, queuelist) {
1430                int el_ret;
1431
1432                if (rq->q == q)
1433                        (*request_count)++;
1434
1435                if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1436                        continue;
1437
1438                el_ret = blk_try_merge(rq, bio);
1439                if (el_ret == ELEVATOR_BACK_MERGE) {
1440                        ret = bio_attempt_back_merge(q, rq, bio);
1441                        if (ret)
1442                                break;
1443                } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1444                        ret = bio_attempt_front_merge(q, rq, bio);
1445                        if (ret)
1446                                break;
1447                }
1448        }
1449out:
1450        return ret;
1451}
1452
1453void init_request_from_bio(struct request *req, struct bio *bio)
1454{
1455        req->cmd_type = REQ_TYPE_FS;
1456
1457        req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1458        if (bio->bi_rw & REQ_RAHEAD)
1459                req->cmd_flags |= REQ_FAILFAST_MASK;
1460
1461        req->errors = 0;
1462        req->__sector = bio->bi_sector;
1463        req->ioprio = bio_prio(bio);
1464        blk_rq_bio_prep(req->q, req, bio);
1465}
1466
1467void blk_queue_bio(struct request_queue *q, struct bio *bio)
1468{
1469        const bool sync = !!(bio->bi_rw & REQ_SYNC);
1470        struct blk_plug *plug;
1471        int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1472        struct request *req;
1473        unsigned int request_count = 0;
1474
1475        /*
1476         * low level driver can indicate that it wants pages above a
1477         * certain limit bounced to low memory (ie for highmem, or even
1478         * ISA dma in theory)
1479         */
1480        blk_queue_bounce(q, &bio);
1481
1482        if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1483                bio_endio(bio, -EIO);
1484                return;
1485        }
1486
1487        if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1488                spin_lock_irq(q->queue_lock);
1489                where = ELEVATOR_INSERT_FLUSH;
1490                goto get_rq;
1491        }
1492
1493        /*
1494         * Check if we can merge with the plugged list before grabbing
1495         * any locks.
1496         */
1497        if (blk_attempt_plug_merge(q, bio, &request_count))
1498                return;
1499
1500        spin_lock_irq(q->queue_lock);
1501
1502        el_ret = elv_merge(q, &req, bio);
1503        if (el_ret == ELEVATOR_BACK_MERGE) {
1504                if (bio_attempt_back_merge(q, req, bio)) {
1505                        elv_bio_merged(q, req, bio);
1506                        if (!attempt_back_merge(q, req))
1507                                elv_merged_request(q, req, el_ret);
1508                        goto out_unlock;
1509                }
1510        } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1511                if (bio_attempt_front_merge(q, req, bio)) {
1512                        elv_bio_merged(q, req, bio);
1513                        if (!attempt_front_merge(q, req))
1514                                elv_merged_request(q, req, el_ret);
1515                        goto out_unlock;
1516                }
1517        }
1518
1519get_rq:
1520        /*
1521         * This sync check and mask will be re-done in init_request_from_bio(),
1522         * but we need to set it earlier to expose the sync flag to the
1523         * rq allocator and io schedulers.
1524         */
1525        rw_flags = bio_data_dir(bio);
1526        if (sync)
1527                rw_flags |= REQ_SYNC;
1528
1529        /*
1530         * Grab a free request. This is might sleep but can not fail.
1531         * Returns with the queue unlocked.
1532         */
1533        req = get_request(q, rw_flags, bio, GFP_NOIO);
1534        if (unlikely(!req)) {
1535                bio_endio(bio, -ENODEV);        /* @q is dead */
1536                goto out_unlock;
1537        }
1538
1539        /*
1540         * After dropping the lock and possibly sleeping here, our request
1541         * may now be mergeable after it had proven unmergeable (above).
1542         * We don't worry about that case for efficiency. It won't happen
1543         * often, and the elevators are able to handle it.
1544         */
1545        init_request_from_bio(req, bio);
1546
1547        if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1548                req->cpu = raw_smp_processor_id();
1549
1550        plug = current->plug;
1551        if (plug) {
1552                /*
1553                 * If this is the first request added after a plug, fire
1554                 * of a plug trace.
1555                 */
1556                if (!request_count)
1557                        trace_block_plug(q);
1558                else {
1559                        if (request_count >= BLK_MAX_REQUEST_COUNT) {
1560                                blk_flush_plug_list(plug, false);
1561                                trace_block_plug(q);
1562                        }
1563                }
1564                list_add_tail(&req->queuelist, &plug->list);
1565                blk_account_io_start(req, true);
1566        } else {
1567                spin_lock_irq(q->queue_lock);
1568                add_acct_request(q, req, where);
1569                __blk_run_queue(q);
1570out_unlock:
1571                spin_unlock_irq(q->queue_lock);
1572        }
1573}
1574EXPORT_SYMBOL_GPL(blk_queue_bio);       /* for device mapper only */
1575
1576/*
1577 * If bio->bi_dev is a partition, remap the location
1578 */
1579static inline void blk_partition_remap(struct bio *bio)
1580{
1581        struct block_device *bdev = bio->bi_bdev;
1582
1583        if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1584                struct hd_struct *p = bdev->bd_part;
1585
1586                bio->bi_sector += p->start_sect;
1587                bio->bi_bdev = bdev->bd_contains;
1588
1589                trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1590                                      bdev->bd_dev,
1591                                      bio->bi_sector - p->start_sect);
1592        }
1593}
1594
1595static void handle_bad_sector(struct bio *bio)
1596{
1597        char b[BDEVNAME_SIZE];
1598
1599        printk(KERN_INFO "attempt to access beyond end of device\n");
1600        printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1601                        bdevname(bio->bi_bdev, b),
1602                        bio->bi_rw,
1603                        (unsigned long long)bio_end_sector(bio),
1604                        (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1605
1606        set_bit(BIO_EOF, &bio->bi_flags);
1607}
1608
1609#ifdef CONFIG_FAIL_MAKE_REQUEST
1610
1611static DECLARE_FAULT_ATTR(fail_make_request);
1612
1613static int __init setup_fail_make_request(char *str)
1614{
1615        return setup_fault_attr(&fail_make_request, str);
1616}
1617__setup("fail_make_request=", setup_fail_make_request);
1618
1619static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1620{
1621        return part->make_it_fail && should_fail(&fail_make_request, bytes);
1622}
1623
1624static int __init fail_make_request_debugfs(void)
1625{
1626        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1627                                                NULL, &fail_make_request);
1628
1629        return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1630}
1631
1632late_initcall(fail_make_request_debugfs);
1633
1634#else /* CONFIG_FAIL_MAKE_REQUEST */
1635
1636static inline bool should_fail_request(struct hd_struct *part,
1637                                        unsigned int bytes)
1638{
1639        return false;
1640}
1641
1642#endif /* CONFIG_FAIL_MAKE_REQUEST */
1643
1644/*
1645 * Check whether this bio extends beyond the end of the device.
1646 */
1647static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1648{
1649        sector_t maxsector;
1650
1651        if (!nr_sectors)
1652                return 0;
1653
1654        /* Test device or partition size, when known. */
1655        maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1656        if (maxsector) {
1657                sector_t sector = bio->bi_sector;
1658
1659                if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1660                        /*
1661                         * This may well happen - the kernel calls bread()
1662                         * without checking the size of the device, e.g., when
1663                         * mounting a device.
1664                         */
1665                        handle_bad_sector(bio);
1666                        return 1;
1667                }
1668        }
1669
1670        return 0;
1671}
1672
1673static noinline_for_stack bool
1674generic_make_request_checks(struct bio *bio)
1675{
1676        struct request_queue *q;
1677        int nr_sectors = bio_sectors(bio);
1678        int err = -EIO;
1679        char b[BDEVNAME_SIZE];
1680        struct hd_struct *part;
1681
1682        might_sleep();
1683
1684        if (bio_check_eod(bio, nr_sectors))
1685                goto end_io;
1686
1687        q = bdev_get_queue(bio->bi_bdev);
1688        if (unlikely(!q)) {
1689                printk(KERN_ERR
1690                       "generic_make_request: Trying to access "
1691                        "nonexistent block-device %s (%Lu)\n",
1692                        bdevname(bio->bi_bdev, b),
1693                        (long long) bio->bi_sector);
1694                goto end_io;
1695        }
1696
1697        if (likely(bio_is_rw(bio) &&
1698                   nr_sectors > queue_max_hw_sectors(q))) {
1699                printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1700                       bdevname(bio->bi_bdev, b),
1701                       bio_sectors(bio),
1702                       queue_max_hw_sectors(q));
1703                goto end_io;
1704        }
1705
1706        part = bio->bi_bdev->bd_part;
1707        if (should_fail_request(part, bio->bi_size) ||
1708            should_fail_request(&part_to_disk(part)->part0,
1709                                bio->bi_size))
1710                goto end_io;
1711
1712        /*
1713         * If this device has partitions, remap block n
1714         * of partition p to block n+start(p) of the disk.
1715         */
1716        blk_partition_remap(bio);
1717
1718        if (bio_check_eod(bio, nr_sectors))
1719                goto end_io;
1720
1721        /*
1722         * Filter flush bio's early so that make_request based
1723         * drivers without flush support don't have to worry
1724         * about them.
1725         */
1726        if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1727                bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1728                if (!nr_sectors) {
1729                        err = 0;
1730                        goto end_io;
1731                }
1732        }
1733
1734        if ((bio->bi_rw & REQ_DISCARD) &&
1735            (!blk_queue_discard(q) ||
1736             ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1737                err = -EOPNOTSUPP;
1738                goto end_io;
1739        }
1740
1741        if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1742                err = -EOPNOTSUPP;
1743                goto end_io;
1744        }
1745
1746        /*
1747         * Various block parts want %current->io_context and lazy ioc
1748         * allocation ends up trading a lot of pain for a small amount of
1749         * memory.  Just allocate it upfront.  This may fail and block
1750         * layer knows how to live with it.
1751         */
1752        create_io_context(GFP_ATOMIC, q->node);
1753
1754        if (blk_throtl_bio(q, bio))
1755                return false;   /* throttled, will be resubmitted later */
1756
1757        trace_block_bio_queue(q, bio);
1758        return true;
1759
1760end_io:
1761        bio_endio(bio, err);
1762        return false;
1763}
1764
1765/**
1766 * generic_make_request - hand a buffer to its device driver for I/O
1767 * @bio:  The bio describing the location in memory and on the device.
1768 *
1769 * generic_make_request() is used to make I/O requests of block
1770 * devices. It is passed a &struct bio, which describes the I/O that needs
1771 * to be done.
1772 *
1773 * generic_make_request() does not return any status.  The
1774 * success/failure status of the request, along with notification of
1775 * completion, is delivered asynchronously through the bio->bi_end_io
1776 * function described (one day) else where.
1777 *
1778 * The caller of generic_make_request must make sure that bi_io_vec
1779 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1780 * set to describe the device address, and the
1781 * bi_end_io and optionally bi_private are set to describe how
1782 * completion notification should be signaled.
1783 *
1784 * generic_make_request and the drivers it calls may use bi_next if this
1785 * bio happens to be merged with someone else, and may resubmit the bio to
1786 * a lower device by calling into generic_make_request recursively, which
1787 * means the bio should NOT be touched after the call to ->make_request_fn.
1788 */
1789void generic_make_request(struct bio *bio)
1790{
1791        struct bio_list bio_list_on_stack;
1792
1793        if (!generic_make_request_checks(bio))
1794                return;
1795
1796        /*
1797         * We only want one ->make_request_fn to be active at a time, else
1798         * stack usage with stacked devices could be a problem.  So use
1799         * current->bio_list to keep a list of requests submited by a
1800         * make_request_fn function.  current->bio_list is also used as a
1801         * flag to say if generic_make_request is currently active in this
1802         * task or not.  If it is NULL, then no make_request is active.  If
1803         * it is non-NULL, then a make_request is active, and new requests
1804         * should be added at the tail
1805         */
1806        if (current->bio_list) {
1807                bio_list_add(current->bio_list, bio);
1808                return;
1809        }
1810
1811        /* following loop may be a bit non-obvious, and so deserves some
1812         * explanation.
1813         * Before entering the loop, bio->bi_next is NULL (as all callers
1814         * ensure that) so we have a list with a single bio.
1815         * We pretend that we have just taken it off a longer list, so
1816         * we assign bio_list to a pointer to the bio_list_on_stack,
1817         * thus initialising the bio_list of new bios to be
1818         * added.  ->make_request() may indeed add some more bios
1819         * through a recursive call to generic_make_request.  If it
1820         * did, we find a non-NULL value in bio_list and re-enter the loop
1821         * from the top.  In this case we really did just take the bio
1822         * of the top of the list (no pretending) and so remove it from
1823         * bio_list, and call into ->make_request() again.
1824         */
1825        BUG_ON(bio->bi_next);
1826        bio_list_init(&bio_list_on_stack);
1827        current->bio_list = &bio_list_on_stack;
1828        do {
1829                struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1830
1831                q->make_request_fn(q, bio);
1832
1833                bio = bio_list_pop(current->bio_list);
1834        } while (bio);
1835        current->bio_list = NULL; /* deactivate */
1836}
1837EXPORT_SYMBOL(generic_make_request);
1838
1839/**
1840 * submit_bio - submit a bio to the block device layer for I/O
1841 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1842 * @bio: The &struct bio which describes the I/O
1843 *
1844 * submit_bio() is very similar in purpose to generic_make_request(), and
1845 * uses that function to do most of the work. Both are fairly rough
1846 * interfaces; @bio must be presetup and ready for I/O.
1847 *
1848 */
1849void submit_bio(int rw, struct bio *bio)
1850{
1851        bio->bi_rw |= rw;
1852
1853        /*
1854         * If it's a regular read/write or a barrier with data attached,
1855         * go through the normal accounting stuff before submission.
1856         */
1857        if (bio_has_data(bio)) {
1858                unsigned int count;
1859
1860                if (unlikely(rw & REQ_WRITE_SAME))
1861                        count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1862                else
1863                        count = bio_sectors(bio);
1864
1865                if (rw & WRITE) {
1866                        count_vm_events(PGPGOUT, count);
1867                } else {
1868                        task_io_account_read(bio->bi_size);
1869                        count_vm_events(PGPGIN, count);
1870                }
1871
1872                if (unlikely(block_dump)) {
1873                        char b[BDEVNAME_SIZE];
1874                        printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1875                        current->comm, task_pid_nr(current),
1876                                (rw & WRITE) ? "WRITE" : "READ",
1877                                (unsigned long long)bio->bi_sector,
1878                                bdevname(bio->bi_bdev, b),
1879                                count);
1880                }
1881        }
1882
1883        generic_make_request(bio);
1884}
1885EXPORT_SYMBOL(submit_bio);
1886
1887/**
1888 * blk_rq_check_limits - Helper function to check a request for the queue limit
1889 * @q:  the queue
1890 * @rq: the request being checked
1891 *
1892 * Description:
1893 *    @rq may have been made based on weaker limitations of upper-level queues
1894 *    in request stacking drivers, and it may violate the limitation of @q.
1895 *    Since the block layer and the underlying device driver trust @rq
1896 *    after it is inserted to @q, it should be checked against @q before
1897 *    the insertion using this generic function.
1898 *
1899 *    This function should also be useful for request stacking drivers
1900 *    in some cases below, so export this function.
1901 *    Request stacking drivers like request-based dm may change the queue
1902 *    limits while requests are in the queue (e.g. dm's table swapping).
1903 *    Such request stacking drivers should check those requests agaist
1904 *    the new queue limits again when they dispatch those requests,
1905 *    although such checkings are also done against the old queue limits
1906 *    when submitting requests.
1907 */
1908int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1909{
1910        if (!rq_mergeable(rq))
1911                return 0;
1912
1913        if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1914                printk(KERN_ERR "%s: over max size limit.\n", __func__);
1915                return -EIO;
1916        }
1917
1918        /*
1919         * queue's settings related to segment counting like q->bounce_pfn
1920         * may differ from that of other stacking queues.
1921         * Recalculate it to check the request correctly on this queue's
1922         * limitation.
1923         */
1924        blk_recalc_rq_segments(rq);
1925        if (rq->nr_phys_segments > queue_max_segments(q)) {
1926                printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1927                return -EIO;
1928        }
1929
1930        return 0;
1931}
1932EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1933
1934/**
1935 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1936 * @q:  the queue to submit the request
1937 * @rq: the request being queued
1938 */
1939int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1940{
1941        unsigned long flags;
1942        int where = ELEVATOR_INSERT_BACK;
1943
1944        if (blk_rq_check_limits(q, rq))
1945                return -EIO;
1946
1947        if (rq->rq_disk &&
1948            should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1949                return -EIO;
1950
1951        spin_lock_irqsave(q->queue_lock, flags);
1952        if (unlikely(blk_queue_dying(q))) {
1953                spin_unlock_irqrestore(q->queue_lock, flags);
1954                return -ENODEV;
1955        }
1956
1957        /*
1958         * Submitting request must be dequeued before calling this function
1959         * because it will be linked to another request_queue
1960         */
1961        BUG_ON(blk_queued_rq(rq));
1962
1963        if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1964                where = ELEVATOR_INSERT_FLUSH;
1965
1966        add_acct_request(q, rq, where);
1967        if (where == ELEVATOR_INSERT_FLUSH)
1968                __blk_run_queue(q);
1969        spin_unlock_irqrestore(q->queue_lock, flags);
1970
1971        return 0;
1972}
1973EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1974
1975/**
1976 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1977 * @rq: request to examine
1978 *
1979 * Description:
1980 *     A request could be merge of IOs which require different failure
1981 *     handling.  This function determines the number of bytes which
1982 *     can be failed from the beginning of the request without
1983 *     crossing into area which need to be retried further.
1984 *
1985 * Return:
1986 *     The number of bytes to fail.
1987 *
1988 * Context:
1989 *     queue_lock must be held.
1990 */
1991unsigned int blk_rq_err_bytes(const struct request *rq)
1992{
1993        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1994        unsigned int bytes = 0;
1995        struct bio *bio;
1996
1997        if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1998                return blk_rq_bytes(rq);
1999
2000        /*
2001         * Currently the only 'mixing' which can happen is between
2002         * different fastfail types.  We can safely fail portions
2003         * which have all the failfast bits that the first one has -
2004         * the ones which are at least as eager to fail as the first
2005         * one.
2006         */
2007        for (bio = rq->bio; bio; bio = bio->bi_next) {
2008                if ((bio->bi_rw & ff) != ff)
2009                        break;
2010                bytes += bio->bi_size;
2011        }
2012
2013        /* this could lead to infinite loop */
2014        BUG_ON(blk_rq_bytes(rq) && !bytes);
2015        return bytes;
2016}
2017EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2018
2019void blk_account_io_completion(struct request *req, unsigned int bytes)
2020{
2021        if (blk_do_io_stat(req)) {
2022                const int rw = rq_data_dir(req);
2023                struct hd_struct *part;
2024                int cpu;
2025
2026                cpu = part_stat_lock();
2027                part = req->part;
2028                part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2029                part_stat_unlock();
2030        }
2031}
2032
2033void blk_account_io_done(struct request *req)
2034{
2035        /*
2036         * Account IO completion.  flush_rq isn't accounted as a
2037         * normal IO on queueing nor completion.  Accounting the
2038         * containing request is enough.
2039         */
2040        if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2041                unsigned long duration = jiffies - req->start_time;
2042                const int rw = rq_data_dir(req);
2043                struct hd_struct *part;
2044                int cpu;
2045
2046                cpu = part_stat_lock();
2047                part = req->part;
2048
2049                part_stat_inc(cpu, part, ios[rw]);
2050                part_stat_add(cpu, part, ticks[rw], duration);
2051                part_round_stats(cpu, part);
2052                part_dec_in_flight(part, rw);
2053
2054                hd_struct_put(part);
2055                part_stat_unlock();
2056        }
2057}
2058
2059#ifdef CONFIG_PM_RUNTIME
2060/*
2061 * Don't process normal requests when queue is suspended
2062 * or in the process of suspending/resuming
2063 */
2064static struct request *blk_pm_peek_request(struct request_queue *q,
2065                                           struct request *rq)
2066{
2067        if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2068            (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2069                return NULL;
2070        else
2071                return rq;
2072}
2073#else
2074static inline struct request *blk_pm_peek_request(struct request_queue *q,
2075                                                  struct request *rq)
2076{
2077        return rq;
2078}
2079#endif
2080
2081void blk_account_io_start(struct request *rq, bool new_io)
2082{
2083        struct hd_struct *part;
2084        int rw = rq_data_dir(rq);
2085        int cpu;
2086
2087        if (!blk_do_io_stat(rq))
2088                return;
2089
2090        cpu = part_stat_lock();
2091
2092        if (!new_io) {
2093                part = rq->part;
2094                part_stat_inc(cpu, part, merges[rw]);
2095        } else {
2096                part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2097                if (!hd_struct_try_get(part)) {
2098                        /*
2099                         * The partition is already being removed,
2100                         * the request will be accounted on the disk only
2101                         *
2102                         * We take a reference on disk->part0 although that
2103                         * partition will never be deleted, so we can treat
2104                         * it as any other partition.
2105                         */
2106                        part = &rq->rq_disk->part0;
2107                        hd_struct_get(part);
2108                }
2109                part_round_stats(cpu, part);
2110                part_inc_in_flight(part, rw);
2111                rq->part = part;
2112        }
2113
2114        part_stat_unlock();
2115}
2116
2117/**
2118 * blk_peek_request - peek at the top of a request queue
2119 * @q: request queue to peek at
2120 *
2121 * Description:
2122 *     Return the request at the top of @q.  The returned request
2123 *     should be started using blk_start_request() before LLD starts
2124 *     processing it.
2125 *
2126 * Return:
2127 *     Pointer to the request at the top of @q if available.  Null
2128 *     otherwise.
2129 *
2130 * Context:
2131 *     queue_lock must be held.
2132 */
2133struct request *blk_peek_request(struct request_queue *q)
2134{
2135        struct request *rq;
2136        int ret;
2137
2138        while ((rq = __elv_next_request(q)) != NULL) {
2139
2140                rq = blk_pm_peek_request(q, rq);
2141                if (!rq)
2142                        break;
2143
2144                if (!(rq->cmd_flags & REQ_STARTED)) {
2145                        /*
2146                         * This is the first time the device driver
2147                         * sees this request (possibly after
2148                         * requeueing).  Notify IO scheduler.
2149                         */
2150                        if (rq->cmd_flags & REQ_SORTED)
2151                                elv_activate_rq(q, rq);
2152
2153                        /*
2154                         * just mark as started even if we don't start
2155                         * it, a request that has been delayed should
2156                         * not be passed by new incoming requests
2157                         */
2158                        rq->cmd_flags |= REQ_STARTED;
2159                        trace_block_rq_issue(q, rq);
2160                }
2161
2162                if (!q->boundary_rq || q->boundary_rq == rq) {
2163                        q->end_sector = rq_end_sector(rq);
2164                        q->boundary_rq = NULL;
2165                }
2166
2167                if (rq->cmd_flags & REQ_DONTPREP)
2168                        break;
2169
2170                if (q->dma_drain_size && blk_rq_bytes(rq)) {
2171                        /*
2172                         * make sure space for the drain appears we
2173                         * know we can do this because max_hw_segments
2174                         * has been adjusted to be one fewer than the
2175                         * device can handle
2176                         */
2177                        rq->nr_phys_segments++;
2178                }
2179
2180                if (!q->prep_rq_fn)
2181                        break;
2182
2183                ret = q->prep_rq_fn(q, rq);
2184                if (ret == BLKPREP_OK) {
2185                        break;
2186                } else if (ret == BLKPREP_DEFER) {
2187                        /*
2188                         * the request may have been (partially) prepped.
2189                         * we need to keep this request in the front to
2190                         * avoid resource deadlock.  REQ_STARTED will
2191                         * prevent other fs requests from passing this one.
2192                         */
2193                        if (q->dma_drain_size && blk_rq_bytes(rq) &&
2194                            !(rq->cmd_flags & REQ_DONTPREP)) {
2195                                /*
2196                                 * remove the space for the drain we added
2197                                 * so that we don't add it again
2198                                 */
2199                                --rq->nr_phys_segments;
2200                        }
2201
2202                        rq = NULL;
2203                        break;
2204                } else if (ret == BLKPREP_KILL) {
2205                        rq->cmd_flags |= REQ_QUIET;
2206                        /*
2207                         * Mark this request as started so we don't trigger
2208                         * any debug logic in the end I/O path.
2209                         */
2210                        blk_start_request(rq);
2211                        __blk_end_request_all(rq, -EIO);
2212                } else {
2213                        printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2214                        break;
2215                }
2216        }
2217
2218        return rq;
2219}
2220EXPORT_SYMBOL(blk_peek_request);
2221
2222void blk_dequeue_request(struct request *rq)
2223{
2224        struct request_queue *q = rq->q;
2225
2226        BUG_ON(list_empty(&rq->queuelist));
2227        BUG_ON(ELV_ON_HASH(rq));
2228
2229        list_del_init(&rq->queuelist);
2230
2231        /*
2232         * the time frame between a request being removed from the lists
2233         * and to it is freed is accounted as io that is in progress at
2234         * the driver side.
2235         */
2236        if (blk_account_rq(rq)) {
2237                q->in_flight[rq_is_sync(rq)]++;
2238                set_io_start_time_ns(rq);
2239        }
2240}
2241
2242/**
2243 * blk_start_request - start request processing on the driver
2244 * @req: request to dequeue
2245 *
2246 * Description:
2247 *     Dequeue @req and start timeout timer on it.  This hands off the
2248 *     request to the driver.
2249 *
2250 *     Block internal functions which don't want to start timer should
2251 *     call blk_dequeue_request().
2252 *
2253 * Context:
2254 *     queue_lock must be held.
2255 */
2256void blk_start_request(struct request *req)
2257{
2258        blk_dequeue_request(req);
2259
2260        /*
2261         * We are now handing the request to the hardware, initialize
2262         * resid_len to full count and add the timeout handler.
2263         */
2264        req->resid_len = blk_rq_bytes(req);
2265        if (unlikely(blk_bidi_rq(req)))
2266                req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2267
2268        BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2269        blk_add_timer(req);
2270}
2271EXPORT_SYMBOL(blk_start_request);
2272
2273/**
2274 * blk_fetch_request - fetch a request from a request queue
2275 * @q: request queue to fetch a request from
2276 *
2277 * Description:
2278 *     Return the request at the top of @q.  The request is started on
2279 *     return and LLD can start processing it immediately.
2280 *
2281 * Return:
2282 *     Pointer to the request at the top of @q if available.  Null
2283 *     otherwise.
2284 *
2285 * Context:
2286 *     queue_lock must be held.
2287 */
2288struct request *blk_fetch_request(struct request_queue *q)
2289{
2290        struct request *rq;
2291
2292        rq = blk_peek_request(q);
2293        if (rq)
2294                blk_start_request(rq);
2295        return rq;
2296}
2297EXPORT_SYMBOL(blk_fetch_request);
2298
2299/**
2300 * blk_update_request - Special helper function for request stacking drivers
2301 * @req:      the request being processed
2302 * @error:    %0 for success, < %0 for error
2303 * @nr_bytes: number of bytes to complete @req
2304 *
2305 * Description:
2306 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2307 *     the request structure even if @req doesn't have leftover.
2308 *     If @req has leftover, sets it up for the next range of segments.
2309 *
2310 *     This special helper function is only for request stacking drivers
2311 *     (e.g. request-based dm) so that they can handle partial completion.
2312 *     Actual device drivers should use blk_end_request instead.
2313 *
2314 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2315 *     %false return from this function.
2316 *
2317 * Return:
2318 *     %false - this request doesn't have any more data
2319 *     %true  - this request has more data
2320 **/
2321bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2322{
2323        int total_bytes;
2324
2325        if (!req->bio)
2326                return false;
2327
2328        trace_block_rq_complete(req->q, req);
2329
2330        /*
2331         * For fs requests, rq is just carrier of independent bio's
2332         * and each partial completion should be handled separately.
2333         * Reset per-request error on each partial completion.
2334         *
2335         * TODO: tj: This is too subtle.  It would be better to let
2336         * low level drivers do what they see fit.
2337         */
2338        if (req->cmd_type == REQ_TYPE_FS)
2339                req->errors = 0;
2340
2341        if (error && req->cmd_type == REQ_TYPE_FS &&
2342            !(req->cmd_flags & REQ_QUIET)) {
2343                char *error_type;
2344
2345                switch (error) {
2346                case -ENOLINK:
2347                        error_type = "recoverable transport";
2348                        break;
2349                case -EREMOTEIO:
2350                        error_type = "critical target";
2351                        break;
2352                case -EBADE:
2353                        error_type = "critical nexus";
2354                        break;
2355                case -ETIMEDOUT:
2356                        error_type = "timeout";
2357                        break;
2358                case -ENOSPC:
2359                        error_type = "critical space allocation";
2360                        break;
2361                case -ENODATA:
2362                        error_type = "critical medium";
2363                        break;
2364                case -EIO:
2365                default:
2366                        error_type = "I/O";
2367                        break;
2368                }
2369                printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2370                                   error_type, req->rq_disk ?
2371                                   req->rq_disk->disk_name : "?",
2372                                   (unsigned long long)blk_rq_pos(req));
2373
2374        }
2375
2376        blk_account_io_completion(req, nr_bytes);
2377
2378        total_bytes = 0;
2379        while (req->bio) {
2380                struct bio *bio = req->bio;
2381                unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2382
2383                if (bio_bytes == bio->bi_size)
2384                        req->bio = bio->bi_next;
2385
2386                req_bio_endio(req, bio, bio_bytes, error);
2387
2388                total_bytes += bio_bytes;
2389                nr_bytes -= bio_bytes;
2390
2391                if (!nr_bytes)
2392                        break;
2393        }
2394
2395        /*
2396         * completely done
2397         */
2398        if (!req->bio) {
2399                /*
2400                 * Reset counters so that the request stacking driver
2401                 * can find how many bytes remain in the request
2402                 * later.
2403                 */
2404                req->__data_len = 0;
2405                return false;
2406        }
2407
2408        req->__data_len -= total_bytes;
2409        req->buffer = bio_data(req->bio);
2410
2411        /* update sector only for requests with clear definition of sector */
2412        if (req->cmd_type == REQ_TYPE_FS)
2413                req->__sector += total_bytes >> 9;
2414
2415        /* mixed attributes always follow the first bio */
2416        if (req->cmd_flags & REQ_MIXED_MERGE) {
2417                req->cmd_flags &= ~REQ_FAILFAST_MASK;
2418                req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2419        }
2420
2421        /*
2422         * If total number of sectors is less than the first segment
2423         * size, something has gone terribly wrong.
2424         */
2425        if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2426                blk_dump_rq_flags(req, "request botched");
2427                req->__data_len = blk_rq_cur_bytes(req);
2428        }
2429
2430        /* recalculate the number of segments */
2431        blk_recalc_rq_segments(req);
2432
2433        return true;
2434}
2435EXPORT_SYMBOL_GPL(blk_update_request);
2436
2437static bool blk_update_bidi_request(struct request *rq, int error,
2438                                    unsigned int nr_bytes,
2439                                    unsigned int bidi_bytes)
2440{
2441        if (blk_update_request(rq, error, nr_bytes))
2442                return true;
2443
2444        /* Bidi request must be completed as a whole */
2445        if (unlikely(blk_bidi_rq(rq)) &&
2446            blk_update_request(rq->next_rq, error, bidi_bytes))
2447                return true;
2448
2449        if (blk_queue_add_random(rq->q))
2450                add_disk_randomness(rq->rq_disk);
2451
2452        return false;
2453}
2454
2455/**
2456 * blk_unprep_request - unprepare a request
2457 * @req:        the request
2458 *
2459 * This function makes a request ready for complete resubmission (or
2460 * completion).  It happens only after all error handling is complete,
2461 * so represents the appropriate moment to deallocate any resources
2462 * that were allocated to the request in the prep_rq_fn.  The queue
2463 * lock is held when calling this.
2464 */
2465void blk_unprep_request(struct request *req)
2466{
2467        struct request_queue *q = req->q;
2468
2469        req->cmd_flags &= ~REQ_DONTPREP;
2470        if (q->unprep_rq_fn)
2471                q->unprep_rq_fn(q, req);
2472}
2473EXPORT_SYMBOL_GPL(blk_unprep_request);
2474
2475/*
2476 * queue lock must be held
2477 */
2478static void blk_finish_request(struct request *req, int error)
2479{
2480        if (blk_rq_tagged(req))
2481                blk_queue_end_tag(req->q, req);
2482
2483        BUG_ON(blk_queued_rq(req));
2484
2485        if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2486                laptop_io_completion(&req->q->backing_dev_info);
2487
2488        blk_delete_timer(req);
2489
2490        if (req->cmd_flags & REQ_DONTPREP)
2491                blk_unprep_request(req);
2492
2493        blk_account_io_done(req);
2494
2495        if (req->end_io)
2496                req->end_io(req, error);
2497        else {
2498                if (blk_bidi_rq(req))
2499                        __blk_put_request(req->next_rq->q, req->next_rq);
2500
2501                __blk_put_request(req->q, req);
2502        }
2503}
2504
2505/**
2506 * blk_end_bidi_request - Complete a bidi request
2507 * @rq:         the request to complete
2508 * @error:      %0 for success, < %0 for error
2509 * @nr_bytes:   number of bytes to complete @rq
2510 * @bidi_bytes: number of bytes to complete @rq->next_rq
2511 *
2512 * Description:
2513 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2514 *     Drivers that supports bidi can safely call this member for any
2515 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2516 *     just ignored.
2517 *
2518 * Return:
2519 *     %false - we are done with this request
2520 *     %true  - still buffers pending for this request
2521 **/
2522static bool blk_end_bidi_request(struct request *rq, int error,
2523                                 unsigned int nr_bytes, unsigned int bidi_bytes)
2524{
2525        struct request_queue *q = rq->q;
2526        unsigned long flags;
2527
2528        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2529                return true;
2530
2531        spin_lock_irqsave(q->queue_lock, flags);
2532        blk_finish_request(rq, error);
2533        spin_unlock_irqrestore(q->queue_lock, flags);
2534
2535        return false;
2536}
2537
2538/**
2539 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2540 * @rq:         the request to complete
2541 * @error:      %0 for success, < %0 for error
2542 * @nr_bytes:   number of bytes to complete @rq
2543 * @bidi_bytes: number of bytes to complete @rq->next_rq
2544 *
2545 * Description:
2546 *     Identical to blk_end_bidi_request() except that queue lock is
2547 *     assumed to be locked on entry and remains so on return.
2548 *
2549 * Return:
2550 *     %false - we are done with this request
2551 *     %true  - still buffers pending for this request
2552 **/
2553bool __blk_end_bidi_request(struct request *rq, int error,
2554                                   unsigned int nr_bytes, unsigned int bidi_bytes)
2555{
2556        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2557                return true;
2558
2559        blk_finish_request(rq, error);
2560
2561        return false;
2562}
2563
2564/**
2565 * blk_end_request - Helper function for drivers to complete the request.
2566 * @rq:       the request being processed
2567 * @error:    %0 for success, < %0 for error
2568 * @nr_bytes: number of bytes to complete
2569 *
2570 * Description:
2571 *     Ends I/O on a number of bytes attached to @rq.
2572 *     If @rq has leftover, sets it up for the next range of segments.
2573 *
2574 * Return:
2575 *     %false - we are done with this request
2576 *     %true  - still buffers pending for this request
2577 **/
2578bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2579{
2580        return blk_end_bidi_request(rq, error, nr_bytes, 0);
2581}
2582EXPORT_SYMBOL(blk_end_request);
2583
2584/**
2585 * blk_end_request_all - Helper function for drives to finish the request.
2586 * @rq: the request to finish
2587 * @error: %0 for success, < %0 for error
2588 *
2589 * Description:
2590 *     Completely finish @rq.
2591 */
2592void blk_end_request_all(struct request *rq, int error)
2593{
2594        bool pending;
2595        unsigned int bidi_bytes = 0;
2596
2597        if (unlikely(blk_bidi_rq(rq)))
2598                bidi_bytes = blk_rq_bytes(rq->next_rq);
2599
2600        pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2601        BUG_ON(pending);
2602}
2603EXPORT_SYMBOL(blk_end_request_all);
2604
2605/**
2606 * blk_end_request_cur - Helper function to finish the current request chunk.
2607 * @rq: the request to finish the current chunk for
2608 * @error: %0 for success, < %0 for error
2609 *
2610 * Description:
2611 *     Complete the current consecutively mapped chunk from @rq.
2612 *
2613 * Return:
2614 *     %false - we are done with this request
2615 *     %true  - still buffers pending for this request
2616 */
2617bool blk_end_request_cur(struct request *rq, int error)
2618{
2619        return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2620}
2621EXPORT_SYMBOL(blk_end_request_cur);
2622
2623/**
2624 * blk_end_request_err - Finish a request till the next failure boundary.
2625 * @rq: the request to finish till the next failure boundary for
2626 * @error: must be negative errno
2627 *
2628 * Description:
2629 *     Complete @rq till the next failure boundary.
2630 *
2631 * Return:
2632 *     %false - we are done with this request
2633 *     %true  - still buffers pending for this request
2634 */
2635bool blk_end_request_err(struct request *rq, int error)
2636{
2637        WARN_ON(error >= 0);
2638        return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2639}
2640EXPORT_SYMBOL_GPL(blk_end_request_err);
2641
2642/**
2643 * __blk_end_request - Helper function for drivers to complete the request.
2644 * @rq:       the request being processed
2645 * @error:    %0 for success, < %0 for error
2646 * @nr_bytes: number of bytes to complete
2647 *
2648 * Description:
2649 *     Must be called with queue lock held unlike blk_end_request().
2650 *
2651 * Return:
2652 *     %false - we are done with this request
2653 *     %true  - still buffers pending for this request
2654 **/
2655bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2656{
2657        return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2658}
2659EXPORT_SYMBOL(__blk_end_request);
2660
2661/**
2662 * __blk_end_request_all - Helper function for drives to finish the request.
2663 * @rq: the request to finish
2664 * @error: %0 for success, < %0 for error
2665 *
2666 * Description:
2667 *     Completely finish @rq.  Must be called with queue lock held.
2668 */
2669void __blk_end_request_all(struct request *rq, int error)
2670{
2671        bool pending;
2672        unsigned int bidi_bytes = 0;
2673
2674        if (unlikely(blk_bidi_rq(rq)))
2675                bidi_bytes = blk_rq_bytes(rq->next_rq);
2676
2677        pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2678        BUG_ON(pending);
2679}
2680EXPORT_SYMBOL(__blk_end_request_all);
2681
2682/**
2683 * __blk_end_request_cur - Helper function to finish the current request chunk.
2684 * @rq: the request to finish the current chunk for
2685 * @error: %0 for success, < %0 for error
2686 *
2687 * Description:
2688 *     Complete the current consecutively mapped chunk from @rq.  Must
2689 *     be called with queue lock held.
2690 *
2691 * Return:
2692 *     %false - we are done with this request
2693 *     %true  - still buffers pending for this request
2694 */
2695bool __blk_end_request_cur(struct request *rq, int error)
2696{
2697        return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2698}
2699EXPORT_SYMBOL(__blk_end_request_cur);
2700
2701/**
2702 * __blk_end_request_err - Finish a request till the next failure boundary.
2703 * @rq: the request to finish till the next failure boundary for
2704 * @error: must be negative errno
2705 *
2706 * Description:
2707 *     Complete @rq till the next failure boundary.  Must be called
2708 *     with queue lock held.
2709 *
2710 * Return:
2711 *     %false - we are done with this request
2712 *     %true  - still buffers pending for this request
2713 */
2714bool __blk_end_request_err(struct request *rq, int error)
2715{
2716        WARN_ON(error >= 0);
2717        return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2718}
2719EXPORT_SYMBOL_GPL(__blk_end_request_err);
2720
2721void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2722                     struct bio *bio)
2723{
2724        /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2725        rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2726
2727        if (bio_has_data(bio)) {
2728                rq->nr_phys_segments = bio_phys_segments(q, bio);
2729                rq->buffer = bio_data(bio);
2730        }
2731        rq->__data_len = bio->bi_size;
2732        rq->bio = rq->biotail = bio;
2733
2734        if (bio->bi_bdev)
2735                rq->rq_disk = bio->bi_bdev->bd_disk;
2736}
2737
2738#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2739/**
2740 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2741 * @rq: the request to be flushed
2742 *
2743 * Description:
2744 *     Flush all pages in @rq.
2745 */
2746void rq_flush_dcache_pages(struct request *rq)
2747{
2748        struct req_iterator iter;
2749        struct bio_vec *bvec;
2750
2751        rq_for_each_segment(bvec, rq, iter)
2752                flush_dcache_page(bvec->bv_page);
2753}
2754EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2755#endif
2756
2757/**
2758 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2759 * @q : the queue of the device being checked
2760 *
2761 * Description:
2762 *    Check if underlying low-level drivers of a device are busy.
2763 *    If the drivers want to export their busy state, they must set own
2764 *    exporting function using blk_queue_lld_busy() first.
2765 *
2766 *    Basically, this function is used only by request stacking drivers
2767 *    to stop dispatching requests to underlying devices when underlying
2768 *    devices are busy.  This behavior helps more I/O merging on the queue
2769 *    of the request stacking driver and prevents I/O throughput regression
2770 *    on burst I/O load.
2771 *
2772 * Return:
2773 *    0 - Not busy (The request stacking driver should dispatch request)
2774 *    1 - Busy (The request stacking driver should stop dispatching request)
2775 */
2776int blk_lld_busy(struct request_queue *q)
2777{
2778        if (q->lld_busy_fn)
2779                return q->lld_busy_fn(q);
2780
2781        return 0;
2782}
2783EXPORT_SYMBOL_GPL(blk_lld_busy);
2784
2785/**
2786 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2787 * @rq: the clone request to be cleaned up
2788 *
2789 * Description:
2790 *     Free all bios in @rq for a cloned request.
2791 */
2792void blk_rq_unprep_clone(struct request *rq)
2793{
2794        struct bio *bio;
2795
2796        while ((bio = rq->bio) != NULL) {
2797                rq->bio = bio->bi_next;
2798
2799                bio_put(bio);
2800        }
2801}
2802EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2803
2804/*
2805 * Copy attributes of the original request to the clone request.
2806 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2807 */
2808static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2809{
2810        dst->cpu = src->cpu;
2811        dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2812        dst->cmd_type = src->cmd_type;
2813        dst->__sector = blk_rq_pos(src);
2814        dst->__data_len = blk_rq_bytes(src);
2815        dst->nr_phys_segments = src->nr_phys_segments;
2816        dst->ioprio = src->ioprio;
2817        dst->extra_len = src->extra_len;
2818}
2819
2820/**
2821 * blk_rq_prep_clone - Helper function to setup clone request
2822 * @rq: the request to be setup
2823 * @rq_src: original request to be cloned
2824 * @bs: bio_set that bios for clone are allocated from
2825 * @gfp_mask: memory allocation mask for bio
2826 * @bio_ctr: setup function to be called for each clone bio.
2827 *           Returns %0 for success, non %0 for failure.
2828 * @data: private data to be passed to @bio_ctr
2829 *
2830 * Description:
2831 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2832 *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2833 *     are not copied, and copying such parts is the caller's responsibility.
2834 *     Also, pages which the original bios are pointing to are not copied
2835 *     and the cloned bios just point same pages.
2836 *     So cloned bios must be completed before original bios, which means
2837 *     the caller must complete @rq before @rq_src.
2838 */
2839int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2840                      struct bio_set *bs, gfp_t gfp_mask,
2841                      int (*bio_ctr)(struct bio *, struct bio *, void *),
2842                      void *data)
2843{
2844        struct bio *bio, *bio_src;
2845
2846        if (!bs)
2847                bs = fs_bio_set;
2848
2849        blk_rq_init(NULL, rq);
2850
2851        __rq_for_each_bio(bio_src, rq_src) {
2852                bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2853                if (!bio)
2854                        goto free_and_out;
2855
2856                if (bio_ctr && bio_ctr(bio, bio_src, data))
2857                        goto free_and_out;
2858
2859                if (rq->bio) {
2860                        rq->biotail->bi_next = bio;
2861                        rq->biotail = bio;
2862                } else
2863                        rq->bio = rq->biotail = bio;
2864        }
2865
2866        __blk_rq_prep_clone(rq, rq_src);
2867
2868        return 0;
2869
2870free_and_out:
2871        if (bio)
2872                bio_put(bio);
2873        blk_rq_unprep_clone(rq);
2874
2875        return -ENOMEM;
2876}
2877EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2878
2879int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2880{
2881        return queue_work(kblockd_workqueue, work);
2882}
2883EXPORT_SYMBOL(kblockd_schedule_work);
2884
2885int kblockd_schedule_delayed_work(struct request_queue *q,
2886                        struct delayed_work *dwork, unsigned long delay)
2887{
2888        return queue_delayed_work(kblockd_workqueue, dwork, delay);
2889}
2890EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2891
2892#define PLUG_MAGIC      0x91827364
2893
2894/**
2895 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2896 * @plug:       The &struct blk_plug that needs to be initialized
2897 *
2898 * Description:
2899 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2900 *   pending I/O should the task end up blocking between blk_start_plug() and
2901 *   blk_finish_plug(). This is important from a performance perspective, but
2902 *   also ensures that we don't deadlock. For instance, if the task is blocking
2903 *   for a memory allocation, memory reclaim could end up wanting to free a
2904 *   page belonging to that request that is currently residing in our private
2905 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2906 *   this kind of deadlock.
2907 */
2908void blk_start_plug(struct blk_plug *plug)
2909{
2910        struct task_struct *tsk = current;
2911
2912        plug->magic = PLUG_MAGIC;
2913        INIT_LIST_HEAD(&plug->list);
2914        INIT_LIST_HEAD(&plug->mq_list);
2915        INIT_LIST_HEAD(&plug->cb_list);
2916
2917        /*
2918         * If this is a nested plug, don't actually assign it. It will be
2919         * flushed on its own.
2920         */
2921        if (!tsk->plug) {
2922                /*
2923                 * Store ordering should not be needed here, since a potential
2924                 * preempt will imply a full memory barrier
2925                 */
2926                tsk->plug = plug;
2927        }
2928}
2929EXPORT_SYMBOL(blk_start_plug);
2930
2931static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2932{
2933        struct request *rqa = container_of(a, struct request, queuelist);
2934        struct request *rqb = container_of(b, struct request, queuelist);
2935
2936        return !(rqa->q < rqb->q ||
2937                (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2938}
2939
2940/*
2941 * If 'from_schedule' is true, then postpone the dispatch of requests
2942 * until a safe kblockd context. We due this to avoid accidental big
2943 * additional stack usage in driver dispatch, in places where the originally
2944 * plugger did not intend it.
2945 */
2946static void queue_unplugged(struct request_queue *q, unsigned int depth,
2947                            bool from_schedule)
2948        __releases(q->queue_lock)
2949{
2950        trace_block_unplug(q, depth, !from_schedule);
2951
2952        if (from_schedule)
2953                blk_run_queue_async(q);
2954        else
2955                __blk_run_queue(q);
2956        spin_unlock(q->queue_lock);
2957}
2958
2959static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2960{
2961        LIST_HEAD(callbacks);
2962
2963        while (!list_empty(&plug->cb_list)) {
2964                list_splice_init(&plug->cb_list, &callbacks);
2965
2966                while (!list_empty(&callbacks)) {
2967                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
2968                                                          struct blk_plug_cb,
2969                                                          list);
2970                        list_del(&cb->list);
2971                        cb->callback(cb, from_schedule);
2972                }
2973        }
2974}
2975
2976struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2977                                      int size)
2978{
2979        struct blk_plug *plug = current->plug;
2980        struct blk_plug_cb *cb;
2981
2982        if (!plug)
2983                return NULL;
2984
2985        list_for_each_entry(cb, &plug->cb_list, list)
2986                if (cb->callback == unplug && cb->data == data)
2987                        return cb;
2988
2989        /* Not currently on the callback list */
2990        BUG_ON(size < sizeof(*cb));
2991        cb = kzalloc(size, GFP_ATOMIC);
2992        if (cb) {
2993                cb->data = data;
2994                cb->callback = unplug;
2995                list_add(&cb->list, &plug->cb_list);
2996        }
2997        return cb;
2998}
2999EXPORT_SYMBOL(blk_check_plugged);
3000
3001void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3002{
3003        struct request_queue *q;
3004        unsigned long flags;
3005        struct request *rq;
3006        LIST_HEAD(list);
3007        unsigned int depth;
3008
3009        BUG_ON(plug->magic != PLUG_MAGIC);
3010
3011        flush_plug_callbacks(plug, from_schedule);
3012
3013        if (!list_empty(&plug->mq_list))
3014                blk_mq_flush_plug_list(plug, from_schedule);
3015
3016        if (list_empty(&plug->list))
3017                return;
3018
3019        list_splice_init(&plug->list, &list);
3020
3021        list_sort(NULL, &list, plug_rq_cmp);
3022
3023        q = NULL;
3024        depth = 0;
3025
3026        /*
3027         * Save and disable interrupts here, to avoid doing it for every
3028         * queue lock we have to take.
3029         */
3030        local_irq_save(flags);
3031        while (!list_empty(&list)) {
3032                rq = list_entry_rq(list.next);
3033                list_del_init(&rq->queuelist);
3034                BUG_ON(!rq->q);
3035                if (rq->q != q) {
3036                        /*
3037                         * This drops the queue lock
3038                         */
3039                        if (q)
3040                                queue_unplugged(q, depth, from_schedule);
3041                        q = rq->q;
3042                        depth = 0;
3043                        spin_lock(q->queue_lock);
3044                }
3045
3046                /*
3047                 * Short-circuit if @q is dead
3048                 */
3049                if (unlikely(blk_queue_dying(q))) {
3050                        __blk_end_request_all(rq, -ENODEV);
3051                        continue;
3052                }
3053
3054                /*
3055                 * rq is already accounted, so use raw insert
3056                 */
3057                if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3058                        __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3059                else
3060                        __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3061
3062                depth++;
3063        }
3064
3065        /*
3066         * This drops the queue lock
3067         */
3068        if (q)
3069                queue_unplugged(q, depth, from_schedule);
3070
3071        local_irq_restore(flags);
3072}
3073
3074void blk_finish_plug(struct blk_plug *plug)
3075{
3076        blk_flush_plug_list(plug, false);
3077
3078        if (plug == current->plug)
3079                current->plug = NULL;
3080}
3081EXPORT_SYMBOL(blk_finish_plug);
3082
3083#ifdef CONFIG_PM_RUNTIME
3084/**
3085 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3086 * @q: the queue of the device
3087 * @dev: the device the queue belongs to
3088 *
3089 * Description:
3090 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3091 *    @dev. Drivers that want to take advantage of request-based runtime PM
3092 *    should call this function after @dev has been initialized, and its
3093 *    request queue @q has been allocated, and runtime PM for it can not happen
3094 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3095 *    cases, driver should call this function before any I/O has taken place.
3096 *
3097 *    This function takes care of setting up using auto suspend for the device,
3098 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3099 *    until an updated value is either set by user or by driver. Drivers do
3100 *    not need to touch other autosuspend settings.
3101 *
3102 *    The block layer runtime PM is request based, so only works for drivers
3103 *    that use request as their IO unit instead of those directly use bio's.
3104 */
3105void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3106{
3107        q->dev = dev;
3108        q->rpm_status = RPM_ACTIVE;
3109        pm_runtime_set_autosuspend_delay(q->dev, -1);
3110        pm_runtime_use_autosuspend(q->dev);
3111}
3112EXPORT_SYMBOL(blk_pm_runtime_init);
3113
3114/**
3115 * blk_pre_runtime_suspend - Pre runtime suspend check
3116 * @q: the queue of the device
3117 *
3118 * Description:
3119 *    This function will check if runtime suspend is allowed for the device
3120 *    by examining if there are any requests pending in the queue. If there
3121 *    are requests pending, the device can not be runtime suspended; otherwise,
3122 *    the queue's status will be updated to SUSPENDING and the driver can
3123 *    proceed to suspend the device.
3124 *
3125 *    For the not allowed case, we mark last busy for the device so that
3126 *    runtime PM core will try to autosuspend it some time later.
3127 *
3128 *    This function should be called near the start of the device's
3129 *    runtime_suspend callback.
3130 *
3131 * Return:
3132 *    0         - OK to runtime suspend the device
3133 *    -EBUSY    - Device should not be runtime suspended
3134 */
3135int blk_pre_runtime_suspend(struct request_queue *q)
3136{
3137        int ret = 0;
3138
3139        spin_lock_irq(q->queue_lock);
3140        if (q->nr_pending) {
3141                ret = -EBUSY;
3142                pm_runtime_mark_last_busy(q->dev);
3143        } else {
3144                q->rpm_status = RPM_SUSPENDING;
3145        }
3146        spin_unlock_irq(q->queue_lock);
3147        return ret;
3148}
3149EXPORT_SYMBOL(blk_pre_runtime_suspend);
3150
3151/**
3152 * blk_post_runtime_suspend - Post runtime suspend processing
3153 * @q: the queue of the device
3154 * @err: return value of the device's runtime_suspend function
3155 *
3156 * Description:
3157 *    Update the queue's runtime status according to the return value of the
3158 *    device's runtime suspend function and mark last busy for the device so
3159 *    that PM core will try to auto suspend the device at a later time.
3160 *
3161 *    This function should be called near the end of the device's
3162 *    runtime_suspend callback.
3163 */
3164void blk_post_runtime_suspend(struct request_queue *q, int err)
3165{
3166        spin_lock_irq(q->queue_lock);
3167        if (!err) {
3168                q->rpm_status = RPM_SUSPENDED;
3169        } else {
3170                q->rpm_status = RPM_ACTIVE;
3171                pm_runtime_mark_last_busy(q->dev);
3172        }
3173        spin_unlock_irq(q->queue_lock);
3174}
3175EXPORT_SYMBOL(blk_post_runtime_suspend);
3176
3177/**
3178 * blk_pre_runtime_resume - Pre runtime resume processing
3179 * @q: the queue of the device
3180 *
3181 * Description:
3182 *    Update the queue's runtime status to RESUMING in preparation for the
3183 *    runtime resume of the device.
3184 *
3185 *    This function should be called near the start of the device's
3186 *    runtime_resume callback.
3187 */
3188void blk_pre_runtime_resume(struct request_queue *q)
3189{
3190        spin_lock_irq(q->queue_lock);
3191        q->rpm_status = RPM_RESUMING;
3192        spin_unlock_irq(q->queue_lock);
3193}
3194EXPORT_SYMBOL(blk_pre_runtime_resume);
3195
3196/**
3197 * blk_post_runtime_resume - Post runtime resume processing
3198 * @q: the queue of the device
3199 * @err: return value of the device's runtime_resume function
3200 *
3201 * Description:
3202 *    Update the queue's runtime status according to the return value of the
3203 *    device's runtime_resume function. If it is successfully resumed, process
3204 *    the requests that are queued into the device's queue when it is resuming
3205 *    and then mark last busy and initiate autosuspend for it.
3206 *
3207 *    This function should be called near the end of the device's
3208 *    runtime_resume callback.
3209 */
3210void blk_post_runtime_resume(struct request_queue *q, int err)
3211{
3212        spin_lock_irq(q->queue_lock);
3213        if (!err) {
3214                q->rpm_status = RPM_ACTIVE;
3215                __blk_run_queue(q);
3216                pm_runtime_mark_last_busy(q->dev);
3217                pm_request_autosuspend(q->dev);
3218        } else {
3219                q->rpm_status = RPM_SUSPENDED;
3220        }
3221        spin_unlock_irq(q->queue_lock);
3222}
3223EXPORT_SYMBOL(blk_post_runtime_resume);
3224#endif
3225
3226int __init blk_dev_init(void)
3227{
3228        BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3229                        sizeof(((struct request *)0)->cmd_flags));
3230
3231        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3232        kblockd_workqueue = alloc_workqueue("kblockd",
3233                                            WQ_MEM_RECLAIM | WQ_HIGHPRI |
3234                                            WQ_POWER_EFFICIENT, 0);
3235        if (!kblockd_workqueue)
3236                panic("Failed to create kblockd\n");
3237
3238        request_cachep = kmem_cache_create("blkdev_requests",
3239                        sizeof(struct request), 0, SLAB_PANIC, NULL);
3240
3241        blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3242                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3243
3244        return 0;
3245}
3246