linux/drivers/dma/ste_dma40.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Ericsson AB 2007-2008
   3 * Copyright (C) ST-Ericsson SA 2008-2010
   4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   6 * License terms: GNU General Public License (GPL) version 2
   7 */
   8
   9#include <linux/dma-mapping.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13#include <linux/dmaengine.h>
  14#include <linux/platform_device.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/log2.h>
  18#include <linux/pm.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_dma.h>
  23#include <linux/amba/bus.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/platform_data/dma-ste-dma40.h>
  26
  27#include "dmaengine.h"
  28#include "ste_dma40_ll.h"
  29
  30#define D40_NAME "dma40"
  31
  32#define D40_PHY_CHAN -1
  33
  34/* For masking out/in 2 bit channel positions */
  35#define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37
  38/* Maximum iterations taken before giving up suspending a channel */
  39#define D40_SUSPEND_MAX_IT 500
  40
  41/* Milliseconds */
  42#define DMA40_AUTOSUSPEND_DELAY 100
  43
  44/* Hardware requirement on LCLA alignment */
  45#define LCLA_ALIGNMENT 0x40000
  46
  47/* Max number of links per event group */
  48#define D40_LCLA_LINK_PER_EVENT_GRP 128
  49#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50
  51/* Max number of logical channels per physical channel */
  52#define D40_MAX_LOG_CHAN_PER_PHY 32
  53
  54/* Attempts before giving up to trying to get pages that are aligned */
  55#define MAX_LCLA_ALLOC_ATTEMPTS 256
  56
  57/* Bit markings for allocation map */
  58#define D40_ALLOC_FREE          BIT(31)
  59#define D40_ALLOC_PHY           BIT(30)
  60#define D40_ALLOC_LOG_FREE      0
  61
  62#define D40_MEMCPY_MAX_CHANS    8
  63
  64/* Reserved event lines for memcpy only. */
  65#define DB8500_DMA_MEMCPY_EV_0  51
  66#define DB8500_DMA_MEMCPY_EV_1  56
  67#define DB8500_DMA_MEMCPY_EV_2  57
  68#define DB8500_DMA_MEMCPY_EV_3  58
  69#define DB8500_DMA_MEMCPY_EV_4  59
  70#define DB8500_DMA_MEMCPY_EV_5  60
  71
  72static int dma40_memcpy_channels[] = {
  73        DB8500_DMA_MEMCPY_EV_0,
  74        DB8500_DMA_MEMCPY_EV_1,
  75        DB8500_DMA_MEMCPY_EV_2,
  76        DB8500_DMA_MEMCPY_EV_3,
  77        DB8500_DMA_MEMCPY_EV_4,
  78        DB8500_DMA_MEMCPY_EV_5,
  79};
  80
  81/* Default configuration for physcial memcpy */
  82static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83        .mode = STEDMA40_MODE_PHYSICAL,
  84        .dir = DMA_MEM_TO_MEM,
  85
  86        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87        .src_info.psize = STEDMA40_PSIZE_PHY_1,
  88        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89
  90        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91        .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93};
  94
  95/* Default configuration for logical memcpy */
  96static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97        .mode = STEDMA40_MODE_LOGICAL,
  98        .dir = DMA_MEM_TO_MEM,
  99
 100        .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101        .src_info.psize = STEDMA40_PSIZE_LOG_1,
 102        .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103
 104        .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105        .dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106        .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107};
 108
 109/**
 110 * enum 40_command - The different commands and/or statuses.
 111 *
 112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116 */
 117enum d40_command {
 118        D40_DMA_STOP            = 0,
 119        D40_DMA_RUN             = 1,
 120        D40_DMA_SUSPEND_REQ     = 2,
 121        D40_DMA_SUSPENDED       = 3
 122};
 123
 124/*
 125 * enum d40_events - The different Event Enables for the event lines.
 126 *
 127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130 * @D40_ROUND_EVENTLINE: Status check for event line.
 131 */
 132
 133enum d40_events {
 134        D40_DEACTIVATE_EVENTLINE        = 0,
 135        D40_ACTIVATE_EVENTLINE          = 1,
 136        D40_SUSPEND_REQ_EVENTLINE       = 2,
 137        D40_ROUND_EVENTLINE             = 3
 138};
 139
 140/*
 141 * These are the registers that has to be saved and later restored
 142 * when the DMA hw is powered off.
 143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144 */
 145static u32 d40_backup_regs[] = {
 146        D40_DREG_LCPA,
 147        D40_DREG_LCLA,
 148        D40_DREG_PRMSE,
 149        D40_DREG_PRMSO,
 150        D40_DREG_PRMOE,
 151        D40_DREG_PRMOO,
 152};
 153
 154#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155
 156/*
 157 * since 9540 and 8540 has the same HW revision
 158 * use v4a for 9540 or ealier
 159 * use v4b for 8540 or later
 160 * HW revision:
 161 * DB8500ed has revision 0
 162 * DB8500v1 has revision 2
 163 * DB8500v2 has revision 3
 164 * AP9540v1 has revision 4
 165 * DB8540v1 has revision 4
 166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167 */
 168static u32 d40_backup_regs_v4a[] = {
 169        D40_DREG_PSEG1,
 170        D40_DREG_PSEG2,
 171        D40_DREG_PSEG3,
 172        D40_DREG_PSEG4,
 173        D40_DREG_PCEG1,
 174        D40_DREG_PCEG2,
 175        D40_DREG_PCEG3,
 176        D40_DREG_PCEG4,
 177        D40_DREG_RSEG1,
 178        D40_DREG_RSEG2,
 179        D40_DREG_RSEG3,
 180        D40_DREG_RSEG4,
 181        D40_DREG_RCEG1,
 182        D40_DREG_RCEG2,
 183        D40_DREG_RCEG3,
 184        D40_DREG_RCEG4,
 185};
 186
 187#define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188
 189static u32 d40_backup_regs_v4b[] = {
 190        D40_DREG_CPSEG1,
 191        D40_DREG_CPSEG2,
 192        D40_DREG_CPSEG3,
 193        D40_DREG_CPSEG4,
 194        D40_DREG_CPSEG5,
 195        D40_DREG_CPCEG1,
 196        D40_DREG_CPCEG2,
 197        D40_DREG_CPCEG3,
 198        D40_DREG_CPCEG4,
 199        D40_DREG_CPCEG5,
 200        D40_DREG_CRSEG1,
 201        D40_DREG_CRSEG2,
 202        D40_DREG_CRSEG3,
 203        D40_DREG_CRSEG4,
 204        D40_DREG_CRSEG5,
 205        D40_DREG_CRCEG1,
 206        D40_DREG_CRCEG2,
 207        D40_DREG_CRCEG3,
 208        D40_DREG_CRCEG4,
 209        D40_DREG_CRCEG5,
 210};
 211
 212#define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213
 214static u32 d40_backup_regs_chan[] = {
 215        D40_CHAN_REG_SSCFG,
 216        D40_CHAN_REG_SSELT,
 217        D40_CHAN_REG_SSPTR,
 218        D40_CHAN_REG_SSLNK,
 219        D40_CHAN_REG_SDCFG,
 220        D40_CHAN_REG_SDELT,
 221        D40_CHAN_REG_SDPTR,
 222        D40_CHAN_REG_SDLNK,
 223};
 224
 225#define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226                             BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227
 228/**
 229 * struct d40_interrupt_lookup - lookup table for interrupt handler
 230 *
 231 * @src: Interrupt mask register.
 232 * @clr: Interrupt clear register.
 233 * @is_error: true if this is an error interrupt.
 234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236 */
 237struct d40_interrupt_lookup {
 238        u32 src;
 239        u32 clr;
 240        bool is_error;
 241        int offset;
 242};
 243
 244
 245static struct d40_interrupt_lookup il_v4a[] = {
 246        {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247        {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248        {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249        {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250        {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251        {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252        {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253        {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254        {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255        {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256};
 257
 258static struct d40_interrupt_lookup il_v4b[] = {
 259        {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260        {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261        {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262        {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263        {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264        {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265        {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266        {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267        {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268        {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269        {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270        {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271};
 272
 273/**
 274 * struct d40_reg_val - simple lookup struct
 275 *
 276 * @reg: The register.
 277 * @val: The value that belongs to the register in reg.
 278 */
 279struct d40_reg_val {
 280        unsigned int reg;
 281        unsigned int val;
 282};
 283
 284static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285        /* Clock every part of the DMA block from start */
 286        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287
 288        /* Interrupts on all logical channels */
 289        { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290        { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291        { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292        { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293        { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294        { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295        { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296        { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297        { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298        { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299        { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300        { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301};
 302static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303        /* Clock every part of the DMA block from start */
 304        { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305
 306        /* Interrupts on all logical channels */
 307        { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308        { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309        { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310        { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311        { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312        { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313        { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314        { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315        { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316        { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317        { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318        { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319        { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320        { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321        { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322};
 323
 324/**
 325 * struct d40_lli_pool - Structure for keeping LLIs in memory
 326 *
 327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329 * pre_alloc_lli is used.
 330 * @dma_addr: DMA address, if mapped
 331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333 * one buffer to one buffer.
 334 */
 335struct d40_lli_pool {
 336        void    *base;
 337        int      size;
 338        dma_addr_t      dma_addr;
 339        /* Space for dst and src, plus an extra for padding */
 340        u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341};
 342
 343/**
 344 * struct d40_desc - A descriptor is one DMA job.
 345 *
 346 * @lli_phy: LLI settings for physical channel. Both src and dst=
 347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348 * lli_len equals one.
 349 * @lli_log: Same as above but for logical channels.
 350 * @lli_pool: The pool with two entries pre-allocated.
 351 * @lli_len: Number of llis of current descriptor.
 352 * @lli_current: Number of transferred llis.
 353 * @lcla_alloc: Number of LCLA entries allocated.
 354 * @txd: DMA engine struct. Used for among other things for communication
 355 * during a transfer.
 356 * @node: List entry.
 357 * @is_in_client_list: true if the client owns this descriptor.
 358 * @cyclic: true if this is a cyclic job
 359 *
 360 * This descriptor is used for both logical and physical transfers.
 361 */
 362struct d40_desc {
 363        /* LLI physical */
 364        struct d40_phy_lli_bidir         lli_phy;
 365        /* LLI logical */
 366        struct d40_log_lli_bidir         lli_log;
 367
 368        struct d40_lli_pool              lli_pool;
 369        int                              lli_len;
 370        int                              lli_current;
 371        int                              lcla_alloc;
 372
 373        struct dma_async_tx_descriptor   txd;
 374        struct list_head                 node;
 375
 376        bool                             is_in_client_list;
 377        bool                             cyclic;
 378};
 379
 380/**
 381 * struct d40_lcla_pool - LCLA pool settings and data.
 382 *
 383 * @base: The virtual address of LCLA. 18 bit aligned.
 384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 385 * This pointer is only there for clean-up on error.
 386 * @pages: The number of pages needed for all physical channels.
 387 * Only used later for clean-up on error
 388 * @lock: Lock to protect the content in this struct.
 389 * @alloc_map: big map over which LCLA entry is own by which job.
 390 */
 391struct d40_lcla_pool {
 392        void            *base;
 393        dma_addr_t      dma_addr;
 394        void            *base_unaligned;
 395        int              pages;
 396        spinlock_t       lock;
 397        struct d40_desc **alloc_map;
 398};
 399
 400/**
 401 * struct d40_phy_res - struct for handling eventlines mapped to physical
 402 * channels.
 403 *
 404 * @lock: A lock protection this entity.
 405 * @reserved: True if used by secure world or otherwise.
 406 * @num: The physical channel number of this entity.
 407 * @allocated_src: Bit mapped to show which src event line's are mapped to
 408 * this physical channel. Can also be free or physically allocated.
 409 * @allocated_dst: Same as for src but is dst.
 410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411 * event line number.
 412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413 */
 414struct d40_phy_res {
 415        spinlock_t lock;
 416        bool       reserved;
 417        int        num;
 418        u32        allocated_src;
 419        u32        allocated_dst;
 420        bool       use_soft_lli;
 421};
 422
 423struct d40_base;
 424
 425/**
 426 * struct d40_chan - Struct that describes a channel.
 427 *
 428 * @lock: A spinlock to protect this struct.
 429 * @log_num: The logical number, if any of this channel.
 430 * @pending_tx: The number of pending transfers. Used between interrupt handler
 431 * and tasklet.
 432 * @busy: Set to true when transfer is ongoing on this channel.
 433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434 * point is NULL, then the channel is not allocated.
 435 * @chan: DMA engine handle.
 436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437 * transfer and call client callback.
 438 * @client: Cliented owned descriptor list.
 439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440 * @active: Active descriptor.
 441 * @done: Completed jobs
 442 * @queue: Queued jobs.
 443 * @prepare_queue: Prepared jobs.
 444 * @dma_cfg: The client configuration of this dma channel.
 445 * @configured: whether the dma_cfg configuration is valid
 446 * @base: Pointer to the device instance struct.
 447 * @src_def_cfg: Default cfg register setting for src.
 448 * @dst_def_cfg: Default cfg register setting for dst.
 449 * @log_def: Default logical channel settings.
 450 * @lcpa: Pointer to dst and src lcpa settings.
 451 * @runtime_addr: runtime configured address.
 452 * @runtime_direction: runtime configured direction.
 453 *
 454 * This struct can either "be" a logical or a physical channel.
 455 */
 456struct d40_chan {
 457        spinlock_t                       lock;
 458        int                              log_num;
 459        int                              pending_tx;
 460        bool                             busy;
 461        struct d40_phy_res              *phy_chan;
 462        struct dma_chan                  chan;
 463        struct tasklet_struct            tasklet;
 464        struct list_head                 client;
 465        struct list_head                 pending_queue;
 466        struct list_head                 active;
 467        struct list_head                 done;
 468        struct list_head                 queue;
 469        struct list_head                 prepare_queue;
 470        struct stedma40_chan_cfg         dma_cfg;
 471        bool                             configured;
 472        struct d40_base                 *base;
 473        /* Default register configurations */
 474        u32                              src_def_cfg;
 475        u32                              dst_def_cfg;
 476        struct d40_def_lcsp              log_def;
 477        struct d40_log_lli_full         *lcpa;
 478        /* Runtime reconfiguration */
 479        dma_addr_t                      runtime_addr;
 480        enum dma_transfer_direction     runtime_direction;
 481};
 482
 483/**
 484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 485 * controller
 486 *
 487 * @backup: the pointer to the registers address array for backup
 488 * @backup_size: the size of the registers address array for backup
 489 * @realtime_en: the realtime enable register
 490 * @realtime_clear: the realtime clear register
 491 * @high_prio_en: the high priority enable register
 492 * @high_prio_clear: the high priority clear register
 493 * @interrupt_en: the interrupt enable register
 494 * @interrupt_clear: the interrupt clear register
 495 * @il: the pointer to struct d40_interrupt_lookup
 496 * @il_size: the size of d40_interrupt_lookup array
 497 * @init_reg: the pointer to the struct d40_reg_val
 498 * @init_reg_size: the size of d40_reg_val array
 499 */
 500struct d40_gen_dmac {
 501        u32                             *backup;
 502        u32                              backup_size;
 503        u32                              realtime_en;
 504        u32                              realtime_clear;
 505        u32                              high_prio_en;
 506        u32                              high_prio_clear;
 507        u32                              interrupt_en;
 508        u32                              interrupt_clear;
 509        struct d40_interrupt_lookup     *il;
 510        u32                              il_size;
 511        struct d40_reg_val              *init_reg;
 512        u32                              init_reg_size;
 513};
 514
 515/**
 516 * struct d40_base - The big global struct, one for each probe'd instance.
 517 *
 518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 519 * @execmd_lock: Lock for execute command usage since several channels share
 520 * the same physical register.
 521 * @dev: The device structure.
 522 * @virtbase: The virtual base address of the DMA's register.
 523 * @rev: silicon revision detected.
 524 * @clk: Pointer to the DMA clock structure.
 525 * @phy_start: Physical memory start of the DMA registers.
 526 * @phy_size: Size of the DMA register map.
 527 * @irq: The IRQ number.
 528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 529 * transfers).
 530 * @num_phy_chans: The number of physical channels. Read from HW. This
 531 * is the number of available channels for this driver, not counting "Secure
 532 * mode" allocated physical channels.
 533 * @num_log_chans: The number of logical channels. Calculated from
 534 * num_phy_chans.
 535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 536 * @dma_slave: dma_device channels that can do only do slave transfers.
 537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 538 * @phy_chans: Room for all possible physical channels in system.
 539 * @log_chans: Room for all possible logical channels in system.
 540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 541 * to log_chans entries.
 542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 543 * to phy_chans entries.
 544 * @plat_data: Pointer to provided platform_data which is the driver
 545 * configuration.
 546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 547 * @phy_res: Vector containing all physical channels.
 548 * @lcla_pool: lcla pool settings and data.
 549 * @lcpa_base: The virtual mapped address of LCPA.
 550 * @phy_lcpa: The physical address of the LCPA.
 551 * @lcpa_size: The size of the LCPA area.
 552 * @desc_slab: cache for descriptors.
 553 * @reg_val_backup: Here the values of some hardware registers are stored
 554 * before the DMA is powered off. They are restored when the power is back on.
 555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 556 * later
 557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 559 * @initialized: true if the dma has been initialized
 560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
 561 * DMA controller
 562 */
 563struct d40_base {
 564        spinlock_t                       interrupt_lock;
 565        spinlock_t                       execmd_lock;
 566        struct device                    *dev;
 567        void __iomem                     *virtbase;
 568        u8                                rev:4;
 569        struct clk                       *clk;
 570        phys_addr_t                       phy_start;
 571        resource_size_t                   phy_size;
 572        int                               irq;
 573        int                               num_memcpy_chans;
 574        int                               num_phy_chans;
 575        int                               num_log_chans;
 576        struct device_dma_parameters      dma_parms;
 577        struct dma_device                 dma_both;
 578        struct dma_device                 dma_slave;
 579        struct dma_device                 dma_memcpy;
 580        struct d40_chan                  *phy_chans;
 581        struct d40_chan                  *log_chans;
 582        struct d40_chan                 **lookup_log_chans;
 583        struct d40_chan                 **lookup_phy_chans;
 584        struct stedma40_platform_data    *plat_data;
 585        struct regulator                 *lcpa_regulator;
 586        /* Physical half channels */
 587        struct d40_phy_res               *phy_res;
 588        struct d40_lcla_pool              lcla_pool;
 589        void                             *lcpa_base;
 590        dma_addr_t                        phy_lcpa;
 591        resource_size_t                   lcpa_size;
 592        struct kmem_cache                *desc_slab;
 593        u32                               reg_val_backup[BACKUP_REGS_SZ];
 594        u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 595        u32                              *reg_val_backup_chan;
 596        u16                               gcc_pwr_off_mask;
 597        bool                              initialized;
 598        struct d40_gen_dmac               gen_dmac;
 599};
 600
 601static struct device *chan2dev(struct d40_chan *d40c)
 602{
 603        return &d40c->chan.dev->device;
 604}
 605
 606static bool chan_is_physical(struct d40_chan *chan)
 607{
 608        return chan->log_num == D40_PHY_CHAN;
 609}
 610
 611static bool chan_is_logical(struct d40_chan *chan)
 612{
 613        return !chan_is_physical(chan);
 614}
 615
 616static void __iomem *chan_base(struct d40_chan *chan)
 617{
 618        return chan->base->virtbase + D40_DREG_PCBASE +
 619               chan->phy_chan->num * D40_DREG_PCDELTA;
 620}
 621
 622#define d40_err(dev, format, arg...)            \
 623        dev_err(dev, "[%s] " format, __func__, ## arg)
 624
 625#define chan_err(d40c, format, arg...)          \
 626        d40_err(chan2dev(d40c), format, ## arg)
 627
 628static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 629                              int lli_len)
 630{
 631        bool is_log = chan_is_logical(d40c);
 632        u32 align;
 633        void *base;
 634
 635        if (is_log)
 636                align = sizeof(struct d40_log_lli);
 637        else
 638                align = sizeof(struct d40_phy_lli);
 639
 640        if (lli_len == 1) {
 641                base = d40d->lli_pool.pre_alloc_lli;
 642                d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 643                d40d->lli_pool.base = NULL;
 644        } else {
 645                d40d->lli_pool.size = lli_len * 2 * align;
 646
 647                base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 648                d40d->lli_pool.base = base;
 649
 650                if (d40d->lli_pool.base == NULL)
 651                        return -ENOMEM;
 652        }
 653
 654        if (is_log) {
 655                d40d->lli_log.src = PTR_ALIGN(base, align);
 656                d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 657
 658                d40d->lli_pool.dma_addr = 0;
 659        } else {
 660                d40d->lli_phy.src = PTR_ALIGN(base, align);
 661                d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 662
 663                d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 664                                                         d40d->lli_phy.src,
 665                                                         d40d->lli_pool.size,
 666                                                         DMA_TO_DEVICE);
 667
 668                if (dma_mapping_error(d40c->base->dev,
 669                                      d40d->lli_pool.dma_addr)) {
 670                        kfree(d40d->lli_pool.base);
 671                        d40d->lli_pool.base = NULL;
 672                        d40d->lli_pool.dma_addr = 0;
 673                        return -ENOMEM;
 674                }
 675        }
 676
 677        return 0;
 678}
 679
 680static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 681{
 682        if (d40d->lli_pool.dma_addr)
 683                dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 684                                 d40d->lli_pool.size, DMA_TO_DEVICE);
 685
 686        kfree(d40d->lli_pool.base);
 687        d40d->lli_pool.base = NULL;
 688        d40d->lli_pool.size = 0;
 689        d40d->lli_log.src = NULL;
 690        d40d->lli_log.dst = NULL;
 691        d40d->lli_phy.src = NULL;
 692        d40d->lli_phy.dst = NULL;
 693}
 694
 695static int d40_lcla_alloc_one(struct d40_chan *d40c,
 696                              struct d40_desc *d40d)
 697{
 698        unsigned long flags;
 699        int i;
 700        int ret = -EINVAL;
 701
 702        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 703
 704        /*
 705         * Allocate both src and dst at the same time, therefore the half
 706         * start on 1 since 0 can't be used since zero is used as end marker.
 707         */
 708        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 709                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 710
 711                if (!d40c->base->lcla_pool.alloc_map[idx]) {
 712                        d40c->base->lcla_pool.alloc_map[idx] = d40d;
 713                        d40d->lcla_alloc++;
 714                        ret = i;
 715                        break;
 716                }
 717        }
 718
 719        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 720
 721        return ret;
 722}
 723
 724static int d40_lcla_free_all(struct d40_chan *d40c,
 725                             struct d40_desc *d40d)
 726{
 727        unsigned long flags;
 728        int i;
 729        int ret = -EINVAL;
 730
 731        if (chan_is_physical(d40c))
 732                return 0;
 733
 734        spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 735
 736        for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 737                int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 738
 739                if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 740                        d40c->base->lcla_pool.alloc_map[idx] = NULL;
 741                        d40d->lcla_alloc--;
 742                        if (d40d->lcla_alloc == 0) {
 743                                ret = 0;
 744                                break;
 745                        }
 746                }
 747        }
 748
 749        spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 750
 751        return ret;
 752
 753}
 754
 755static void d40_desc_remove(struct d40_desc *d40d)
 756{
 757        list_del(&d40d->node);
 758}
 759
 760static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 761{
 762        struct d40_desc *desc = NULL;
 763
 764        if (!list_empty(&d40c->client)) {
 765                struct d40_desc *d;
 766                struct d40_desc *_d;
 767
 768                list_for_each_entry_safe(d, _d, &d40c->client, node) {
 769                        if (async_tx_test_ack(&d->txd)) {
 770                                d40_desc_remove(d);
 771                                desc = d;
 772                                memset(desc, 0, sizeof(*desc));
 773                                break;
 774                        }
 775                }
 776        }
 777
 778        if (!desc)
 779                desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 780
 781        if (desc)
 782                INIT_LIST_HEAD(&desc->node);
 783
 784        return desc;
 785}
 786
 787static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 788{
 789
 790        d40_pool_lli_free(d40c, d40d);
 791        d40_lcla_free_all(d40c, d40d);
 792        kmem_cache_free(d40c->base->desc_slab, d40d);
 793}
 794
 795static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 796{
 797        list_add_tail(&desc->node, &d40c->active);
 798}
 799
 800static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 801{
 802        struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 803        struct d40_phy_lli *lli_src = desc->lli_phy.src;
 804        void __iomem *base = chan_base(chan);
 805
 806        writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 807        writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 808        writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 809        writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 810
 811        writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 812        writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 813        writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 814        writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 815}
 816
 817static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 818{
 819        list_add_tail(&desc->node, &d40c->done);
 820}
 821
 822static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 823{
 824        struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 825        struct d40_log_lli_bidir *lli = &desc->lli_log;
 826        int lli_current = desc->lli_current;
 827        int lli_len = desc->lli_len;
 828        bool cyclic = desc->cyclic;
 829        int curr_lcla = -EINVAL;
 830        int first_lcla = 0;
 831        bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 832        bool linkback;
 833
 834        /*
 835         * We may have partially running cyclic transfers, in case we did't get
 836         * enough LCLA entries.
 837         */
 838        linkback = cyclic && lli_current == 0;
 839
 840        /*
 841         * For linkback, we need one LCLA even with only one link, because we
 842         * can't link back to the one in LCPA space
 843         */
 844        if (linkback || (lli_len - lli_current > 1)) {
 845                /*
 846                 * If the channel is expected to use only soft_lli don't
 847                 * allocate a lcla. This is to avoid a HW issue that exists
 848                 * in some controller during a peripheral to memory transfer
 849                 * that uses linked lists.
 850                 */
 851                if (!(chan->phy_chan->use_soft_lli &&
 852                        chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 853                        curr_lcla = d40_lcla_alloc_one(chan, desc);
 854
 855                first_lcla = curr_lcla;
 856        }
 857
 858        /*
 859         * For linkback, we normally load the LCPA in the loop since we need to
 860         * link it to the second LCLA and not the first.  However, if we
 861         * couldn't even get a first LCLA, then we have to run in LCPA and
 862         * reload manually.
 863         */
 864        if (!linkback || curr_lcla == -EINVAL) {
 865                unsigned int flags = 0;
 866
 867                if (curr_lcla == -EINVAL)
 868                        flags |= LLI_TERM_INT;
 869
 870                d40_log_lli_lcpa_write(chan->lcpa,
 871                                       &lli->dst[lli_current],
 872                                       &lli->src[lli_current],
 873                                       curr_lcla,
 874                                       flags);
 875                lli_current++;
 876        }
 877
 878        if (curr_lcla < 0)
 879                goto out;
 880
 881        for (; lli_current < lli_len; lli_current++) {
 882                unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 883                                           8 * curr_lcla * 2;
 884                struct d40_log_lli *lcla = pool->base + lcla_offset;
 885                unsigned int flags = 0;
 886                int next_lcla;
 887
 888                if (lli_current + 1 < lli_len)
 889                        next_lcla = d40_lcla_alloc_one(chan, desc);
 890                else
 891                        next_lcla = linkback ? first_lcla : -EINVAL;
 892
 893                if (cyclic || next_lcla == -EINVAL)
 894                        flags |= LLI_TERM_INT;
 895
 896                if (linkback && curr_lcla == first_lcla) {
 897                        /* First link goes in both LCPA and LCLA */
 898                        d40_log_lli_lcpa_write(chan->lcpa,
 899                                               &lli->dst[lli_current],
 900                                               &lli->src[lli_current],
 901                                               next_lcla, flags);
 902                }
 903
 904                /*
 905                 * One unused LCLA in the cyclic case if the very first
 906                 * next_lcla fails...
 907                 */
 908                d40_log_lli_lcla_write(lcla,
 909                                       &lli->dst[lli_current],
 910                                       &lli->src[lli_current],
 911                                       next_lcla, flags);
 912
 913                /*
 914                 * Cache maintenance is not needed if lcla is
 915                 * mapped in esram
 916                 */
 917                if (!use_esram_lcla) {
 918                        dma_sync_single_range_for_device(chan->base->dev,
 919                                                pool->dma_addr, lcla_offset,
 920                                                2 * sizeof(struct d40_log_lli),
 921                                                DMA_TO_DEVICE);
 922                }
 923                curr_lcla = next_lcla;
 924
 925                if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 926                        lli_current++;
 927                        break;
 928                }
 929        }
 930
 931out:
 932        desc->lli_current = lli_current;
 933}
 934
 935static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 936{
 937        if (chan_is_physical(d40c)) {
 938                d40_phy_lli_load(d40c, d40d);
 939                d40d->lli_current = d40d->lli_len;
 940        } else
 941                d40_log_lli_to_lcxa(d40c, d40d);
 942}
 943
 944static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 945{
 946        struct d40_desc *d;
 947
 948        if (list_empty(&d40c->active))
 949                return NULL;
 950
 951        d = list_first_entry(&d40c->active,
 952                             struct d40_desc,
 953                             node);
 954        return d;
 955}
 956
 957/* remove desc from current queue and add it to the pending_queue */
 958static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 959{
 960        d40_desc_remove(desc);
 961        desc->is_in_client_list = false;
 962        list_add_tail(&desc->node, &d40c->pending_queue);
 963}
 964
 965static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 966{
 967        struct d40_desc *d;
 968
 969        if (list_empty(&d40c->pending_queue))
 970                return NULL;
 971
 972        d = list_first_entry(&d40c->pending_queue,
 973                             struct d40_desc,
 974                             node);
 975        return d;
 976}
 977
 978static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 979{
 980        struct d40_desc *d;
 981
 982        if (list_empty(&d40c->queue))
 983                return NULL;
 984
 985        d = list_first_entry(&d40c->queue,
 986                             struct d40_desc,
 987                             node);
 988        return d;
 989}
 990
 991static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 992{
 993        if (list_empty(&d40c->done))
 994                return NULL;
 995
 996        return list_first_entry(&d40c->done, struct d40_desc, node);
 997}
 998
 999static int d40_psize_2_burst_size(bool is_log, int psize)
1000{
1001        if (is_log) {
1002                if (psize == STEDMA40_PSIZE_LOG_1)
1003                        return 1;
1004        } else {
1005                if (psize == STEDMA40_PSIZE_PHY_1)
1006                        return 1;
1007        }
1008
1009        return 2 << psize;
1010}
1011
1012/*
1013 * The dma only supports transmitting packages up to
1014 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1015 *
1016 * Calculate the total number of dma elements required to send the entire sg list.
1017 */
1018static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1019{
1020        int dmalen;
1021        u32 max_w = max(data_width1, data_width2);
1022        u32 min_w = min(data_width1, data_width2);
1023        u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1024
1025        if (seg_max > STEDMA40_MAX_SEG_SIZE)
1026                seg_max -= max_w;
1027
1028        if (!IS_ALIGNED(size, max_w))
1029                return -EINVAL;
1030
1031        if (size <= seg_max)
1032                dmalen = 1;
1033        else {
1034                dmalen = size / seg_max;
1035                if (dmalen * seg_max < size)
1036                        dmalen++;
1037        }
1038        return dmalen;
1039}
1040
1041static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1042                           u32 data_width1, u32 data_width2)
1043{
1044        struct scatterlist *sg;
1045        int i;
1046        int len = 0;
1047        int ret;
1048
1049        for_each_sg(sgl, sg, sg_len, i) {
1050                ret = d40_size_2_dmalen(sg_dma_len(sg),
1051                                        data_width1, data_width2);
1052                if (ret < 0)
1053                        return ret;
1054                len += ret;
1055        }
1056        return len;
1057}
1058
1059
1060#ifdef CONFIG_PM
1061static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1062                         u32 *regaddr, int num, bool save)
1063{
1064        int i;
1065
1066        for (i = 0; i < num; i++) {
1067                void __iomem *addr = baseaddr + regaddr[i];
1068
1069                if (save)
1070                        backup[i] = readl_relaxed(addr);
1071                else
1072                        writel_relaxed(backup[i], addr);
1073        }
1074}
1075
1076static void d40_save_restore_registers(struct d40_base *base, bool save)
1077{
1078        int i;
1079
1080        /* Save/Restore channel specific registers */
1081        for (i = 0; i < base->num_phy_chans; i++) {
1082                void __iomem *addr;
1083                int idx;
1084
1085                if (base->phy_res[i].reserved)
1086                        continue;
1087
1088                addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1089                idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1090
1091                dma40_backup(addr, &base->reg_val_backup_chan[idx],
1092                             d40_backup_regs_chan,
1093                             ARRAY_SIZE(d40_backup_regs_chan),
1094                             save);
1095        }
1096
1097        /* Save/Restore global registers */
1098        dma40_backup(base->virtbase, base->reg_val_backup,
1099                     d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1100                     save);
1101
1102        /* Save/Restore registers only existing on dma40 v3 and later */
1103        if (base->gen_dmac.backup)
1104                dma40_backup(base->virtbase, base->reg_val_backup_v4,
1105                             base->gen_dmac.backup,
1106                        base->gen_dmac.backup_size,
1107                        save);
1108}
1109#else
1110static void d40_save_restore_registers(struct d40_base *base, bool save)
1111{
1112}
1113#endif
1114
1115static int __d40_execute_command_phy(struct d40_chan *d40c,
1116                                     enum d40_command command)
1117{
1118        u32 status;
1119        int i;
1120        void __iomem *active_reg;
1121        int ret = 0;
1122        unsigned long flags;
1123        u32 wmask;
1124
1125        if (command == D40_DMA_STOP) {
1126                ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1127                if (ret)
1128                        return ret;
1129        }
1130
1131        spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1132
1133        if (d40c->phy_chan->num % 2 == 0)
1134                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1135        else
1136                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1137
1138        if (command == D40_DMA_SUSPEND_REQ) {
1139                status = (readl(active_reg) &
1140                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1141                        D40_CHAN_POS(d40c->phy_chan->num);
1142
1143                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1144                        goto done;
1145        }
1146
1147        wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1148        writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1149               active_reg);
1150
1151        if (command == D40_DMA_SUSPEND_REQ) {
1152
1153                for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1154                        status = (readl(active_reg) &
1155                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1156                                D40_CHAN_POS(d40c->phy_chan->num);
1157
1158                        cpu_relax();
1159                        /*
1160                         * Reduce the number of bus accesses while
1161                         * waiting for the DMA to suspend.
1162                         */
1163                        udelay(3);
1164
1165                        if (status == D40_DMA_STOP ||
1166                            status == D40_DMA_SUSPENDED)
1167                                break;
1168                }
1169
1170                if (i == D40_SUSPEND_MAX_IT) {
1171                        chan_err(d40c,
1172                                "unable to suspend the chl %d (log: %d) status %x\n",
1173                                d40c->phy_chan->num, d40c->log_num,
1174                                status);
1175                        dump_stack();
1176                        ret = -EBUSY;
1177                }
1178
1179        }
1180done:
1181        spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1182        return ret;
1183}
1184
1185static void d40_term_all(struct d40_chan *d40c)
1186{
1187        struct d40_desc *d40d;
1188        struct d40_desc *_d;
1189
1190        /* Release completed descriptors */
1191        while ((d40d = d40_first_done(d40c))) {
1192                d40_desc_remove(d40d);
1193                d40_desc_free(d40c, d40d);
1194        }
1195
1196        /* Release active descriptors */
1197        while ((d40d = d40_first_active_get(d40c))) {
1198                d40_desc_remove(d40d);
1199                d40_desc_free(d40c, d40d);
1200        }
1201
1202        /* Release queued descriptors waiting for transfer */
1203        while ((d40d = d40_first_queued(d40c))) {
1204                d40_desc_remove(d40d);
1205                d40_desc_free(d40c, d40d);
1206        }
1207
1208        /* Release pending descriptors */
1209        while ((d40d = d40_first_pending(d40c))) {
1210                d40_desc_remove(d40d);
1211                d40_desc_free(d40c, d40d);
1212        }
1213
1214        /* Release client owned descriptors */
1215        if (!list_empty(&d40c->client))
1216                list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1217                        d40_desc_remove(d40d);
1218                        d40_desc_free(d40c, d40d);
1219                }
1220
1221        /* Release descriptors in prepare queue */
1222        if (!list_empty(&d40c->prepare_queue))
1223                list_for_each_entry_safe(d40d, _d,
1224                                         &d40c->prepare_queue, node) {
1225                        d40_desc_remove(d40d);
1226                        d40_desc_free(d40c, d40d);
1227                }
1228
1229        d40c->pending_tx = 0;
1230}
1231
1232static void __d40_config_set_event(struct d40_chan *d40c,
1233                                   enum d40_events event_type, u32 event,
1234                                   int reg)
1235{
1236        void __iomem *addr = chan_base(d40c) + reg;
1237        int tries;
1238        u32 status;
1239
1240        switch (event_type) {
1241
1242        case D40_DEACTIVATE_EVENTLINE:
1243
1244                writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1245                       | ~D40_EVENTLINE_MASK(event), addr);
1246                break;
1247
1248        case D40_SUSPEND_REQ_EVENTLINE:
1249                status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1250                          D40_EVENTLINE_POS(event);
1251
1252                if (status == D40_DEACTIVATE_EVENTLINE ||
1253                    status == D40_SUSPEND_REQ_EVENTLINE)
1254                        break;
1255
1256                writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1257                       | ~D40_EVENTLINE_MASK(event), addr);
1258
1259                for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1260
1261                        status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1262                                  D40_EVENTLINE_POS(event);
1263
1264                        cpu_relax();
1265                        /*
1266                         * Reduce the number of bus accesses while
1267                         * waiting for the DMA to suspend.
1268                         */
1269                        udelay(3);
1270
1271                        if (status == D40_DEACTIVATE_EVENTLINE)
1272                                break;
1273                }
1274
1275                if (tries == D40_SUSPEND_MAX_IT) {
1276                        chan_err(d40c,
1277                                "unable to stop the event_line chl %d (log: %d)"
1278                                "status %x\n", d40c->phy_chan->num,
1279                                 d40c->log_num, status);
1280                }
1281                break;
1282
1283        case D40_ACTIVATE_EVENTLINE:
1284        /*
1285         * The hardware sometimes doesn't register the enable when src and dst
1286         * event lines are active on the same logical channel.  Retry to ensure
1287         * it does.  Usually only one retry is sufficient.
1288         */
1289                tries = 100;
1290                while (--tries) {
1291                        writel((D40_ACTIVATE_EVENTLINE <<
1292                                D40_EVENTLINE_POS(event)) |
1293                                ~D40_EVENTLINE_MASK(event), addr);
1294
1295                        if (readl(addr) & D40_EVENTLINE_MASK(event))
1296                                break;
1297                }
1298
1299                if (tries != 99)
1300                        dev_dbg(chan2dev(d40c),
1301                                "[%s] workaround enable S%cLNK (%d tries)\n",
1302                                __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1303                                100 - tries);
1304
1305                WARN_ON(!tries);
1306                break;
1307
1308        case D40_ROUND_EVENTLINE:
1309                BUG();
1310                break;
1311
1312        }
1313}
1314
1315static void d40_config_set_event(struct d40_chan *d40c,
1316                                 enum d40_events event_type)
1317{
1318        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1319
1320        /* Enable event line connected to device (or memcpy) */
1321        if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1322            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1323                __d40_config_set_event(d40c, event_type, event,
1324                                       D40_CHAN_REG_SSLNK);
1325
1326        if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1327                __d40_config_set_event(d40c, event_type, event,
1328                                       D40_CHAN_REG_SDLNK);
1329}
1330
1331static u32 d40_chan_has_events(struct d40_chan *d40c)
1332{
1333        void __iomem *chanbase = chan_base(d40c);
1334        u32 val;
1335
1336        val = readl(chanbase + D40_CHAN_REG_SSLNK);
1337        val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1338
1339        return val;
1340}
1341
1342static int
1343__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1344{
1345        unsigned long flags;
1346        int ret = 0;
1347        u32 active_status;
1348        void __iomem *active_reg;
1349
1350        if (d40c->phy_chan->num % 2 == 0)
1351                active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1352        else
1353                active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1354
1355
1356        spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1357
1358        switch (command) {
1359        case D40_DMA_STOP:
1360        case D40_DMA_SUSPEND_REQ:
1361
1362                active_status = (readl(active_reg) &
1363                                 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1364                                 D40_CHAN_POS(d40c->phy_chan->num);
1365
1366                if (active_status == D40_DMA_RUN)
1367                        d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1368                else
1369                        d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1370
1371                if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1372                        ret = __d40_execute_command_phy(d40c, command);
1373
1374                break;
1375
1376        case D40_DMA_RUN:
1377
1378                d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1379                ret = __d40_execute_command_phy(d40c, command);
1380                break;
1381
1382        case D40_DMA_SUSPENDED:
1383                BUG();
1384                break;
1385        }
1386
1387        spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1388        return ret;
1389}
1390
1391static int d40_channel_execute_command(struct d40_chan *d40c,
1392                                       enum d40_command command)
1393{
1394        if (chan_is_logical(d40c))
1395                return __d40_execute_command_log(d40c, command);
1396        else
1397                return __d40_execute_command_phy(d40c, command);
1398}
1399
1400static u32 d40_get_prmo(struct d40_chan *d40c)
1401{
1402        static const unsigned int phy_map[] = {
1403                [STEDMA40_PCHAN_BASIC_MODE]
1404                        = D40_DREG_PRMO_PCHAN_BASIC,
1405                [STEDMA40_PCHAN_MODULO_MODE]
1406                        = D40_DREG_PRMO_PCHAN_MODULO,
1407                [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1408                        = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1409        };
1410        static const unsigned int log_map[] = {
1411                [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1412                        = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1413                [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1414                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1415                [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1416                        = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1417        };
1418
1419        if (chan_is_physical(d40c))
1420                return phy_map[d40c->dma_cfg.mode_opt];
1421        else
1422                return log_map[d40c->dma_cfg.mode_opt];
1423}
1424
1425static void d40_config_write(struct d40_chan *d40c)
1426{
1427        u32 addr_base;
1428        u32 var;
1429
1430        /* Odd addresses are even addresses + 4 */
1431        addr_base = (d40c->phy_chan->num % 2) * 4;
1432        /* Setup channel mode to logical or physical */
1433        var = ((u32)(chan_is_logical(d40c)) + 1) <<
1434                D40_CHAN_POS(d40c->phy_chan->num);
1435        writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1436
1437        /* Setup operational mode option register */
1438        var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1439
1440        writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1441
1442        if (chan_is_logical(d40c)) {
1443                int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1444                           & D40_SREG_ELEM_LOG_LIDX_MASK;
1445                void __iomem *chanbase = chan_base(d40c);
1446
1447                /* Set default config for CFG reg */
1448                writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1449                writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1450
1451                /* Set LIDX for lcla */
1452                writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1453                writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1454
1455                /* Clear LNK which will be used by d40_chan_has_events() */
1456                writel(0, chanbase + D40_CHAN_REG_SSLNK);
1457                writel(0, chanbase + D40_CHAN_REG_SDLNK);
1458        }
1459}
1460
1461static u32 d40_residue(struct d40_chan *d40c)
1462{
1463        u32 num_elt;
1464
1465        if (chan_is_logical(d40c))
1466                num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1467                        >> D40_MEM_LCSP2_ECNT_POS;
1468        else {
1469                u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1470                num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1471                          >> D40_SREG_ELEM_PHY_ECNT_POS;
1472        }
1473
1474        return num_elt * d40c->dma_cfg.dst_info.data_width;
1475}
1476
1477static bool d40_tx_is_linked(struct d40_chan *d40c)
1478{
1479        bool is_link;
1480
1481        if (chan_is_logical(d40c))
1482                is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1483        else
1484                is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1485                          & D40_SREG_LNK_PHYS_LNK_MASK;
1486
1487        return is_link;
1488}
1489
1490static int d40_pause(struct d40_chan *d40c)
1491{
1492        int res = 0;
1493        unsigned long flags;
1494
1495        if (!d40c->busy)
1496                return 0;
1497
1498        pm_runtime_get_sync(d40c->base->dev);
1499        spin_lock_irqsave(&d40c->lock, flags);
1500
1501        res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1502
1503        pm_runtime_mark_last_busy(d40c->base->dev);
1504        pm_runtime_put_autosuspend(d40c->base->dev);
1505        spin_unlock_irqrestore(&d40c->lock, flags);
1506        return res;
1507}
1508
1509static int d40_resume(struct d40_chan *d40c)
1510{
1511        int res = 0;
1512        unsigned long flags;
1513
1514        if (!d40c->busy)
1515                return 0;
1516
1517        spin_lock_irqsave(&d40c->lock, flags);
1518        pm_runtime_get_sync(d40c->base->dev);
1519
1520        /* If bytes left to transfer or linked tx resume job */
1521        if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1522                res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1523
1524        pm_runtime_mark_last_busy(d40c->base->dev);
1525        pm_runtime_put_autosuspend(d40c->base->dev);
1526        spin_unlock_irqrestore(&d40c->lock, flags);
1527        return res;
1528}
1529
1530static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1531{
1532        struct d40_chan *d40c = container_of(tx->chan,
1533                                             struct d40_chan,
1534                                             chan);
1535        struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1536        unsigned long flags;
1537        dma_cookie_t cookie;
1538
1539        spin_lock_irqsave(&d40c->lock, flags);
1540        cookie = dma_cookie_assign(tx);
1541        d40_desc_queue(d40c, d40d);
1542        spin_unlock_irqrestore(&d40c->lock, flags);
1543
1544        return cookie;
1545}
1546
1547static int d40_start(struct d40_chan *d40c)
1548{
1549        return d40_channel_execute_command(d40c, D40_DMA_RUN);
1550}
1551
1552static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1553{
1554        struct d40_desc *d40d;
1555        int err;
1556
1557        /* Start queued jobs, if any */
1558        d40d = d40_first_queued(d40c);
1559
1560        if (d40d != NULL) {
1561                if (!d40c->busy) {
1562                        d40c->busy = true;
1563                        pm_runtime_get_sync(d40c->base->dev);
1564                }
1565
1566                /* Remove from queue */
1567                d40_desc_remove(d40d);
1568
1569                /* Add to active queue */
1570                d40_desc_submit(d40c, d40d);
1571
1572                /* Initiate DMA job */
1573                d40_desc_load(d40c, d40d);
1574
1575                /* Start dma job */
1576                err = d40_start(d40c);
1577
1578                if (err)
1579                        return NULL;
1580        }
1581
1582        return d40d;
1583}
1584
1585/* called from interrupt context */
1586static void dma_tc_handle(struct d40_chan *d40c)
1587{
1588        struct d40_desc *d40d;
1589
1590        /* Get first active entry from list */
1591        d40d = d40_first_active_get(d40c);
1592
1593        if (d40d == NULL)
1594                return;
1595
1596        if (d40d->cyclic) {
1597                /*
1598                 * If this was a paritially loaded list, we need to reloaded
1599                 * it, and only when the list is completed.  We need to check
1600                 * for done because the interrupt will hit for every link, and
1601                 * not just the last one.
1602                 */
1603                if (d40d->lli_current < d40d->lli_len
1604                    && !d40_tx_is_linked(d40c)
1605                    && !d40_residue(d40c)) {
1606                        d40_lcla_free_all(d40c, d40d);
1607                        d40_desc_load(d40c, d40d);
1608                        (void) d40_start(d40c);
1609
1610                        if (d40d->lli_current == d40d->lli_len)
1611                                d40d->lli_current = 0;
1612                }
1613        } else {
1614                d40_lcla_free_all(d40c, d40d);
1615
1616                if (d40d->lli_current < d40d->lli_len) {
1617                        d40_desc_load(d40c, d40d);
1618                        /* Start dma job */
1619                        (void) d40_start(d40c);
1620                        return;
1621                }
1622
1623                if (d40_queue_start(d40c) == NULL) {
1624                        d40c->busy = false;
1625
1626                        pm_runtime_mark_last_busy(d40c->base->dev);
1627                        pm_runtime_put_autosuspend(d40c->base->dev);
1628                }
1629
1630                d40_desc_remove(d40d);
1631                d40_desc_done(d40c, d40d);
1632        }
1633
1634        d40c->pending_tx++;
1635        tasklet_schedule(&d40c->tasklet);
1636
1637}
1638
1639static void dma_tasklet(unsigned long data)
1640{
1641        struct d40_chan *d40c = (struct d40_chan *) data;
1642        struct d40_desc *d40d;
1643        unsigned long flags;
1644        dma_async_tx_callback callback;
1645        void *callback_param;
1646
1647        spin_lock_irqsave(&d40c->lock, flags);
1648
1649        /* Get first entry from the done list */
1650        d40d = d40_first_done(d40c);
1651        if (d40d == NULL) {
1652                /* Check if we have reached here for cyclic job */
1653                d40d = d40_first_active_get(d40c);
1654                if (d40d == NULL || !d40d->cyclic)
1655                        goto err;
1656        }
1657
1658        if (!d40d->cyclic)
1659                dma_cookie_complete(&d40d->txd);
1660
1661        /*
1662         * If terminating a channel pending_tx is set to zero.
1663         * This prevents any finished active jobs to return to the client.
1664         */
1665        if (d40c->pending_tx == 0) {
1666                spin_unlock_irqrestore(&d40c->lock, flags);
1667                return;
1668        }
1669
1670        /* Callback to client */
1671        callback = d40d->txd.callback;
1672        callback_param = d40d->txd.callback_param;
1673
1674        if (!d40d->cyclic) {
1675                if (async_tx_test_ack(&d40d->txd)) {
1676                        d40_desc_remove(d40d);
1677                        d40_desc_free(d40c, d40d);
1678                } else if (!d40d->is_in_client_list) {
1679                        d40_desc_remove(d40d);
1680                        d40_lcla_free_all(d40c, d40d);
1681                        list_add_tail(&d40d->node, &d40c->client);
1682                        d40d->is_in_client_list = true;
1683                }
1684        }
1685
1686        d40c->pending_tx--;
1687
1688        if (d40c->pending_tx)
1689                tasklet_schedule(&d40c->tasklet);
1690
1691        spin_unlock_irqrestore(&d40c->lock, flags);
1692
1693        if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1694                callback(callback_param);
1695
1696        return;
1697
1698err:
1699        /* Rescue manouver if receiving double interrupts */
1700        if (d40c->pending_tx > 0)
1701                d40c->pending_tx--;
1702        spin_unlock_irqrestore(&d40c->lock, flags);
1703}
1704
1705static irqreturn_t d40_handle_interrupt(int irq, void *data)
1706{
1707        int i;
1708        u32 idx;
1709        u32 row;
1710        long chan = -1;
1711        struct d40_chan *d40c;
1712        unsigned long flags;
1713        struct d40_base *base = data;
1714        u32 regs[base->gen_dmac.il_size];
1715        struct d40_interrupt_lookup *il = base->gen_dmac.il;
1716        u32 il_size = base->gen_dmac.il_size;
1717
1718        spin_lock_irqsave(&base->interrupt_lock, flags);
1719
1720        /* Read interrupt status of both logical and physical channels */
1721        for (i = 0; i < il_size; i++)
1722                regs[i] = readl(base->virtbase + il[i].src);
1723
1724        for (;;) {
1725
1726                chan = find_next_bit((unsigned long *)regs,
1727                                     BITS_PER_LONG * il_size, chan + 1);
1728
1729                /* No more set bits found? */
1730                if (chan == BITS_PER_LONG * il_size)
1731                        break;
1732
1733                row = chan / BITS_PER_LONG;
1734                idx = chan & (BITS_PER_LONG - 1);
1735
1736                if (il[row].offset == D40_PHY_CHAN)
1737                        d40c = base->lookup_phy_chans[idx];
1738                else
1739                        d40c = base->lookup_log_chans[il[row].offset + idx];
1740
1741                if (!d40c) {
1742                        /*
1743                         * No error because this can happen if something else
1744                         * in the system is using the channel.
1745                         */
1746                        continue;
1747                }
1748
1749                /* ACK interrupt */
1750                writel(BIT(idx), base->virtbase + il[row].clr);
1751
1752                spin_lock(&d40c->lock);
1753
1754                if (!il[row].is_error)
1755                        dma_tc_handle(d40c);
1756                else
1757                        d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1758                                chan, il[row].offset, idx);
1759
1760                spin_unlock(&d40c->lock);
1761        }
1762
1763        spin_unlock_irqrestore(&base->interrupt_lock, flags);
1764
1765        return IRQ_HANDLED;
1766}
1767
1768static int d40_validate_conf(struct d40_chan *d40c,
1769                             struct stedma40_chan_cfg *conf)
1770{
1771        int res = 0;
1772        bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1773
1774        if (!conf->dir) {
1775                chan_err(d40c, "Invalid direction.\n");
1776                res = -EINVAL;
1777        }
1778
1779        if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1780            (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1781            (conf->dev_type < 0)) {
1782                chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1783                res = -EINVAL;
1784        }
1785
1786        if (conf->dir == DMA_DEV_TO_DEV) {
1787                /*
1788                 * DMAC HW supports it. Will be added to this driver,
1789                 * in case any dma client requires it.
1790                 */
1791                chan_err(d40c, "periph to periph not supported\n");
1792                res = -EINVAL;
1793        }
1794
1795        if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1796            conf->src_info.data_width !=
1797            d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1798            conf->dst_info.data_width) {
1799                /*
1800                 * The DMAC hardware only supports
1801                 * src (burst x width) == dst (burst x width)
1802                 */
1803
1804                chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1805                res = -EINVAL;
1806        }
1807
1808        return res;
1809}
1810
1811static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1812                               bool is_src, int log_event_line, bool is_log,
1813                               bool *first_user)
1814{
1815        unsigned long flags;
1816        spin_lock_irqsave(&phy->lock, flags);
1817
1818        *first_user = ((phy->allocated_src | phy->allocated_dst)
1819                        == D40_ALLOC_FREE);
1820
1821        if (!is_log) {
1822                /* Physical interrupts are masked per physical full channel */
1823                if (phy->allocated_src == D40_ALLOC_FREE &&
1824                    phy->allocated_dst == D40_ALLOC_FREE) {
1825                        phy->allocated_dst = D40_ALLOC_PHY;
1826                        phy->allocated_src = D40_ALLOC_PHY;
1827                        goto found;
1828                } else
1829                        goto not_found;
1830        }
1831
1832        /* Logical channel */
1833        if (is_src) {
1834                if (phy->allocated_src == D40_ALLOC_PHY)
1835                        goto not_found;
1836
1837                if (phy->allocated_src == D40_ALLOC_FREE)
1838                        phy->allocated_src = D40_ALLOC_LOG_FREE;
1839
1840                if (!(phy->allocated_src & BIT(log_event_line))) {
1841                        phy->allocated_src |= BIT(log_event_line);
1842                        goto found;
1843                } else
1844                        goto not_found;
1845        } else {
1846                if (phy->allocated_dst == D40_ALLOC_PHY)
1847                        goto not_found;
1848
1849                if (phy->allocated_dst == D40_ALLOC_FREE)
1850                        phy->allocated_dst = D40_ALLOC_LOG_FREE;
1851
1852                if (!(phy->allocated_dst & BIT(log_event_line))) {
1853                        phy->allocated_dst |= BIT(log_event_line);
1854                        goto found;
1855                } else
1856                        goto not_found;
1857        }
1858
1859not_found:
1860        spin_unlock_irqrestore(&phy->lock, flags);
1861        return false;
1862found:
1863        spin_unlock_irqrestore(&phy->lock, flags);
1864        return true;
1865}
1866
1867static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1868                               int log_event_line)
1869{
1870        unsigned long flags;
1871        bool is_free = false;
1872
1873        spin_lock_irqsave(&phy->lock, flags);
1874        if (!log_event_line) {
1875                phy->allocated_dst = D40_ALLOC_FREE;
1876                phy->allocated_src = D40_ALLOC_FREE;
1877                is_free = true;
1878                goto out;
1879        }
1880
1881        /* Logical channel */
1882        if (is_src) {
1883                phy->allocated_src &= ~BIT(log_event_line);
1884                if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1885                        phy->allocated_src = D40_ALLOC_FREE;
1886        } else {
1887                phy->allocated_dst &= ~BIT(log_event_line);
1888                if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1889                        phy->allocated_dst = D40_ALLOC_FREE;
1890        }
1891
1892        is_free = ((phy->allocated_src | phy->allocated_dst) ==
1893                   D40_ALLOC_FREE);
1894
1895out:
1896        spin_unlock_irqrestore(&phy->lock, flags);
1897
1898        return is_free;
1899}
1900
1901static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1902{
1903        int dev_type = d40c->dma_cfg.dev_type;
1904        int event_group;
1905        int event_line;
1906        struct d40_phy_res *phys;
1907        int i;
1908        int j;
1909        int log_num;
1910        int num_phy_chans;
1911        bool is_src;
1912        bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1913
1914        phys = d40c->base->phy_res;
1915        num_phy_chans = d40c->base->num_phy_chans;
1916
1917        if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1918                log_num = 2 * dev_type;
1919                is_src = true;
1920        } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1921                   d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1922                /* dst event lines are used for logical memcpy */
1923                log_num = 2 * dev_type + 1;
1924                is_src = false;
1925        } else
1926                return -EINVAL;
1927
1928        event_group = D40_TYPE_TO_GROUP(dev_type);
1929        event_line = D40_TYPE_TO_EVENT(dev_type);
1930
1931        if (!is_log) {
1932                if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1933                        /* Find physical half channel */
1934                        if (d40c->dma_cfg.use_fixed_channel) {
1935                                i = d40c->dma_cfg.phy_channel;
1936                                if (d40_alloc_mask_set(&phys[i], is_src,
1937                                                       0, is_log,
1938                                                       first_phy_user))
1939                                        goto found_phy;
1940                        } else {
1941                                for (i = 0; i < num_phy_chans; i++) {
1942                                        if (d40_alloc_mask_set(&phys[i], is_src,
1943                                                       0, is_log,
1944                                                       first_phy_user))
1945                                                goto found_phy;
1946                                }
1947                        }
1948                } else
1949                        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1950                                int phy_num = j  + event_group * 2;
1951                                for (i = phy_num; i < phy_num + 2; i++) {
1952                                        if (d40_alloc_mask_set(&phys[i],
1953                                                               is_src,
1954                                                               0,
1955                                                               is_log,
1956                                                               first_phy_user))
1957                                                goto found_phy;
1958                                }
1959                        }
1960                return -EINVAL;
1961found_phy:
1962                d40c->phy_chan = &phys[i];
1963                d40c->log_num = D40_PHY_CHAN;
1964                goto out;
1965        }
1966        if (dev_type == -1)
1967                return -EINVAL;
1968
1969        /* Find logical channel */
1970        for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1971                int phy_num = j + event_group * 2;
1972
1973                if (d40c->dma_cfg.use_fixed_channel) {
1974                        i = d40c->dma_cfg.phy_channel;
1975
1976                        if ((i != phy_num) && (i != phy_num + 1)) {
1977                                dev_err(chan2dev(d40c),
1978                                        "invalid fixed phy channel %d\n", i);
1979                                return -EINVAL;
1980                        }
1981
1982                        if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1983                                               is_log, first_phy_user))
1984                                goto found_log;
1985
1986                        dev_err(chan2dev(d40c),
1987                                "could not allocate fixed phy channel %d\n", i);
1988                        return -EINVAL;
1989                }
1990
1991                /*
1992                 * Spread logical channels across all available physical rather
1993                 * than pack every logical channel at the first available phy
1994                 * channels.
1995                 */
1996                if (is_src) {
1997                        for (i = phy_num; i < phy_num + 2; i++) {
1998                                if (d40_alloc_mask_set(&phys[i], is_src,
1999                                                       event_line, is_log,
2000                                                       first_phy_user))
2001                                        goto found_log;
2002                        }
2003                } else {
2004                        for (i = phy_num + 1; i >= phy_num; i--) {
2005                                if (d40_alloc_mask_set(&phys[i], is_src,
2006                                                       event_line, is_log,
2007                                                       first_phy_user))
2008                                        goto found_log;
2009                        }
2010                }
2011        }
2012        return -EINVAL;
2013
2014found_log:
2015        d40c->phy_chan = &phys[i];
2016        d40c->log_num = log_num;
2017out:
2018
2019        if (is_log)
2020                d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2021        else
2022                d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2023
2024        return 0;
2025
2026}
2027
2028static int d40_config_memcpy(struct d40_chan *d40c)
2029{
2030        dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2031
2032        if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2033                d40c->dma_cfg = dma40_memcpy_conf_log;
2034                d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2035
2036                d40_log_cfg(&d40c->dma_cfg,
2037                            &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2038
2039        } else if (dma_has_cap(DMA_MEMCPY, cap) &&
2040                   dma_has_cap(DMA_SLAVE, cap)) {
2041                d40c->dma_cfg = dma40_memcpy_conf_phy;
2042
2043                /* Generate interrrupt at end of transfer or relink. */
2044                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2045
2046                /* Generate interrupt on error. */
2047                d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2048                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2049
2050        } else {
2051                chan_err(d40c, "No memcpy\n");
2052                return -EINVAL;
2053        }
2054
2055        return 0;
2056}
2057
2058static int d40_free_dma(struct d40_chan *d40c)
2059{
2060
2061        int res = 0;
2062        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2063        struct d40_phy_res *phy = d40c->phy_chan;
2064        bool is_src;
2065
2066        /* Terminate all queued and active transfers */
2067        d40_term_all(d40c);
2068
2069        if (phy == NULL) {
2070                chan_err(d40c, "phy == null\n");
2071                return -EINVAL;
2072        }
2073
2074        if (phy->allocated_src == D40_ALLOC_FREE &&
2075            phy->allocated_dst == D40_ALLOC_FREE) {
2076                chan_err(d40c, "channel already free\n");
2077                return -EINVAL;
2078        }
2079
2080        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2081            d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2082                is_src = false;
2083        else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2084                is_src = true;
2085        else {
2086                chan_err(d40c, "Unknown direction\n");
2087                return -EINVAL;
2088        }
2089
2090        pm_runtime_get_sync(d40c->base->dev);
2091        res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2092        if (res) {
2093                chan_err(d40c, "stop failed\n");
2094                goto out;
2095        }
2096
2097        d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2098
2099        if (chan_is_logical(d40c))
2100                d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2101        else
2102                d40c->base->lookup_phy_chans[phy->num] = NULL;
2103
2104        if (d40c->busy) {
2105                pm_runtime_mark_last_busy(d40c->base->dev);
2106                pm_runtime_put_autosuspend(d40c->base->dev);
2107        }
2108
2109        d40c->busy = false;
2110        d40c->phy_chan = NULL;
2111        d40c->configured = false;
2112out:
2113
2114        pm_runtime_mark_last_busy(d40c->base->dev);
2115        pm_runtime_put_autosuspend(d40c->base->dev);
2116        return res;
2117}
2118
2119static bool d40_is_paused(struct d40_chan *d40c)
2120{
2121        void __iomem *chanbase = chan_base(d40c);
2122        bool is_paused = false;
2123        unsigned long flags;
2124        void __iomem *active_reg;
2125        u32 status;
2126        u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2127
2128        spin_lock_irqsave(&d40c->lock, flags);
2129
2130        if (chan_is_physical(d40c)) {
2131                if (d40c->phy_chan->num % 2 == 0)
2132                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2133                else
2134                        active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2135
2136                status = (readl(active_reg) &
2137                          D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2138                        D40_CHAN_POS(d40c->phy_chan->num);
2139                if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2140                        is_paused = true;
2141
2142                goto _exit;
2143        }
2144
2145        if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2146            d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2147                status = readl(chanbase + D40_CHAN_REG_SDLNK);
2148        } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2149                status = readl(chanbase + D40_CHAN_REG_SSLNK);
2150        } else {
2151                chan_err(d40c, "Unknown direction\n");
2152                goto _exit;
2153        }
2154
2155        status = (status & D40_EVENTLINE_MASK(event)) >>
2156                D40_EVENTLINE_POS(event);
2157
2158        if (status != D40_DMA_RUN)
2159                is_paused = true;
2160_exit:
2161        spin_unlock_irqrestore(&d40c->lock, flags);
2162        return is_paused;
2163
2164}
2165
2166static u32 stedma40_residue(struct dma_chan *chan)
2167{
2168        struct d40_chan *d40c =
2169                container_of(chan, struct d40_chan, chan);
2170        u32 bytes_left;
2171        unsigned long flags;
2172
2173        spin_lock_irqsave(&d40c->lock, flags);
2174        bytes_left = d40_residue(d40c);
2175        spin_unlock_irqrestore(&d40c->lock, flags);
2176
2177        return bytes_left;
2178}
2179
2180static int
2181d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2182                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2183                unsigned int sg_len, dma_addr_t src_dev_addr,
2184                dma_addr_t dst_dev_addr)
2185{
2186        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2187        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2188        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2189        int ret;
2190
2191        ret = d40_log_sg_to_lli(sg_src, sg_len,
2192                                src_dev_addr,
2193                                desc->lli_log.src,
2194                                chan->log_def.lcsp1,
2195                                src_info->data_width,
2196                                dst_info->data_width);
2197
2198        ret = d40_log_sg_to_lli(sg_dst, sg_len,
2199                                dst_dev_addr,
2200                                desc->lli_log.dst,
2201                                chan->log_def.lcsp3,
2202                                dst_info->data_width,
2203                                src_info->data_width);
2204
2205        return ret < 0 ? ret : 0;
2206}
2207
2208static int
2209d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2210                struct scatterlist *sg_src, struct scatterlist *sg_dst,
2211                unsigned int sg_len, dma_addr_t src_dev_addr,
2212                dma_addr_t dst_dev_addr)
2213{
2214        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2215        struct stedma40_half_channel_info *src_info = &cfg->src_info;
2216        struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2217        unsigned long flags = 0;
2218        int ret;
2219
2220        if (desc->cyclic)
2221                flags |= LLI_CYCLIC | LLI_TERM_INT;
2222
2223        ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2224                                desc->lli_phy.src,
2225                                virt_to_phys(desc->lli_phy.src),
2226                                chan->src_def_cfg,
2227                                src_info, dst_info, flags);
2228
2229        ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2230                                desc->lli_phy.dst,
2231                                virt_to_phys(desc->lli_phy.dst),
2232                                chan->dst_def_cfg,
2233                                dst_info, src_info, flags);
2234
2235        dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2236                                   desc->lli_pool.size, DMA_TO_DEVICE);
2237
2238        return ret < 0 ? ret : 0;
2239}
2240
2241static struct d40_desc *
2242d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2243              unsigned int sg_len, unsigned long dma_flags)
2244{
2245        struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2246        struct d40_desc *desc;
2247        int ret;
2248
2249        desc = d40_desc_get(chan);
2250        if (!desc)
2251                return NULL;
2252
2253        desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2254                                        cfg->dst_info.data_width);
2255        if (desc->lli_len < 0) {
2256                chan_err(chan, "Unaligned size\n");
2257                goto err;
2258        }
2259
2260        ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2261        if (ret < 0) {
2262                chan_err(chan, "Could not allocate lli\n");
2263                goto err;
2264        }
2265
2266        desc->lli_current = 0;
2267        desc->txd.flags = dma_flags;
2268        desc->txd.tx_submit = d40_tx_submit;
2269
2270        dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2271
2272        return desc;
2273
2274err:
2275        d40_desc_free(chan, desc);
2276        return NULL;
2277}
2278
2279static struct dma_async_tx_descriptor *
2280d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2281            struct scatterlist *sg_dst, unsigned int sg_len,
2282            enum dma_transfer_direction direction, unsigned long dma_flags)
2283{
2284        struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2285        dma_addr_t src_dev_addr = 0;
2286        dma_addr_t dst_dev_addr = 0;
2287        struct d40_desc *desc;
2288        unsigned long flags;
2289        int ret;
2290
2291        if (!chan->phy_chan) {
2292                chan_err(chan, "Cannot prepare unallocated channel\n");
2293                return NULL;
2294        }
2295
2296        spin_lock_irqsave(&chan->lock, flags);
2297
2298        desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2299        if (desc == NULL)
2300                goto err;
2301
2302        if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2303                desc->cyclic = true;
2304
2305        if (direction == DMA_DEV_TO_MEM)
2306                src_dev_addr = chan->runtime_addr;
2307        else if (direction == DMA_MEM_TO_DEV)
2308                dst_dev_addr = chan->runtime_addr;
2309
2310        if (chan_is_logical(chan))
2311                ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2312                                      sg_len, src_dev_addr, dst_dev_addr);
2313        else
2314                ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2315                                      sg_len, src_dev_addr, dst_dev_addr);
2316
2317        if (ret) {
2318                chan_err(chan, "Failed to prepare %s sg job: %d\n",
2319                         chan_is_logical(chan) ? "log" : "phy", ret);
2320                goto err;
2321        }
2322
2323        /*
2324         * add descriptor to the prepare queue in order to be able
2325         * to free them later in terminate_all
2326         */
2327        list_add_tail(&desc->node, &chan->prepare_queue);
2328
2329        spin_unlock_irqrestore(&chan->lock, flags);
2330
2331        return &desc->txd;
2332
2333err:
2334        if (desc)
2335                d40_desc_free(chan, desc);
2336        spin_unlock_irqrestore(&chan->lock, flags);
2337        return NULL;
2338}
2339
2340bool stedma40_filter(struct dma_chan *chan, void *data)
2341{
2342        struct stedma40_chan_cfg *info = data;
2343        struct d40_chan *d40c =
2344                container_of(chan, struct d40_chan, chan);
2345        int err;
2346
2347        if (data) {
2348                err = d40_validate_conf(d40c, info);
2349                if (!err)
2350                        d40c->dma_cfg = *info;
2351        } else
2352                err = d40_config_memcpy(d40c);
2353
2354        if (!err)
2355                d40c->configured = true;
2356
2357        return err == 0;
2358}
2359EXPORT_SYMBOL(stedma40_filter);
2360
2361static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2362{
2363        bool realtime = d40c->dma_cfg.realtime;
2364        bool highprio = d40c->dma_cfg.high_priority;
2365        u32 rtreg;
2366        u32 event = D40_TYPE_TO_EVENT(dev_type);
2367        u32 group = D40_TYPE_TO_GROUP(dev_type);
2368        u32 bit = BIT(event);
2369        u32 prioreg;
2370        struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2371
2372        rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2373        /*
2374         * Due to a hardware bug, in some cases a logical channel triggered by
2375         * a high priority destination event line can generate extra packet
2376         * transactions.
2377         *
2378         * The workaround is to not set the high priority level for the
2379         * destination event lines that trigger logical channels.
2380         */
2381        if (!src && chan_is_logical(d40c))
2382                highprio = false;
2383
2384        prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2385
2386        /* Destination event lines are stored in the upper halfword */
2387        if (!src)
2388                bit <<= 16;
2389
2390        writel(bit, d40c->base->virtbase + prioreg + group * 4);
2391        writel(bit, d40c->base->virtbase + rtreg + group * 4);
2392}
2393
2394static void d40_set_prio_realtime(struct d40_chan *d40c)
2395{
2396        if (d40c->base->rev < 3)
2397                return;
2398
2399        if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2400            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2401                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2402
2403        if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2404            (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2405                __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2406}
2407
2408#define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2409#define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2410#define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2411#define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2412
2413static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2414                                  struct of_dma *ofdma)
2415{
2416        struct stedma40_chan_cfg cfg;
2417        dma_cap_mask_t cap;
2418        u32 flags;
2419
2420        memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2421
2422        dma_cap_zero(cap);
2423        dma_cap_set(DMA_SLAVE, cap);
2424
2425        cfg.dev_type = dma_spec->args[0];
2426        flags = dma_spec->args[2];
2427
2428        switch (D40_DT_FLAGS_MODE(flags)) {
2429        case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2430        case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2431        }
2432
2433        switch (D40_DT_FLAGS_DIR(flags)) {
2434        case 0:
2435                cfg.dir = DMA_MEM_TO_DEV;
2436                cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2437                break;
2438        case 1:
2439                cfg.dir = DMA_DEV_TO_MEM;
2440                cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2441                break;
2442        }
2443
2444        if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2445                cfg.phy_channel = dma_spec->args[1];
2446                cfg.use_fixed_channel = true;
2447        }
2448
2449        return dma_request_channel(cap, stedma40_filter, &cfg);
2450}
2451
2452/* DMA ENGINE functions */
2453static int d40_alloc_chan_resources(struct dma_chan *chan)
2454{
2455        int err;
2456        unsigned long flags;
2457        struct d40_chan *d40c =
2458                container_of(chan, struct d40_chan, chan);
2459        bool is_free_phy;
2460        spin_lock_irqsave(&d40c->lock, flags);
2461
2462        dma_cookie_init(chan);
2463
2464        /* If no dma configuration is set use default configuration (memcpy) */
2465        if (!d40c->configured) {
2466                err = d40_config_memcpy(d40c);
2467                if (err) {
2468                        chan_err(d40c, "Failed to configure memcpy channel\n");
2469                        goto fail;
2470                }
2471        }
2472
2473        err = d40_allocate_channel(d40c, &is_free_phy);
2474        if (err) {
2475                chan_err(d40c, "Failed to allocate channel\n");
2476                d40c->configured = false;
2477                goto fail;
2478        }
2479
2480        pm_runtime_get_sync(d40c->base->dev);
2481
2482        d40_set_prio_realtime(d40c);
2483
2484        if (chan_is_logical(d40c)) {
2485                if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2486                        d40c->lcpa = d40c->base->lcpa_base +
2487                                d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2488                else
2489                        d40c->lcpa = d40c->base->lcpa_base +
2490                                d40c->dma_cfg.dev_type *
2491                                D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2492
2493                /* Unmask the Global Interrupt Mask. */
2494                d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2495                d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2496        }
2497
2498        dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2499                 chan_is_logical(d40c) ? "logical" : "physical",
2500                 d40c->phy_chan->num,
2501                 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2502
2503
2504        /*
2505         * Only write channel configuration to the DMA if the physical
2506         * resource is free. In case of multiple logical channels
2507         * on the same physical resource, only the first write is necessary.
2508         */
2509        if (is_free_phy)
2510                d40_config_write(d40c);
2511fail:
2512        pm_runtime_mark_last_busy(d40c->base->dev);
2513        pm_runtime_put_autosuspend(d40c->base->dev);
2514        spin_unlock_irqrestore(&d40c->lock, flags);
2515        return err;
2516}
2517
2518static void d40_free_chan_resources(struct dma_chan *chan)
2519{
2520        struct d40_chan *d40c =
2521                container_of(chan, struct d40_chan, chan);
2522        int err;
2523        unsigned long flags;
2524
2525        if (d40c->phy_chan == NULL) {
2526                chan_err(d40c, "Cannot free unallocated channel\n");
2527                return;
2528        }
2529
2530        spin_lock_irqsave(&d40c->lock, flags);
2531
2532        err = d40_free_dma(d40c);
2533
2534        if (err)
2535                chan_err(d40c, "Failed to free channel\n");
2536        spin_unlock_irqrestore(&d40c->lock, flags);
2537}
2538
2539static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2540                                                       dma_addr_t dst,
2541                                                       dma_addr_t src,
2542                                                       size_t size,
2543                                                       unsigned long dma_flags)
2544{
2545        struct scatterlist dst_sg;
2546        struct scatterlist src_sg;
2547
2548        sg_init_table(&dst_sg, 1);
2549        sg_init_table(&src_sg, 1);
2550
2551        sg_dma_address(&dst_sg) = dst;
2552        sg_dma_address(&src_sg) = src;
2553
2554        sg_dma_len(&dst_sg) = size;
2555        sg_dma_len(&src_sg) = size;
2556
2557        return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2558}
2559
2560static struct dma_async_tx_descriptor *
2561d40_prep_memcpy_sg(struct dma_chan *chan,
2562                   struct scatterlist *dst_sg, unsigned int dst_nents,
2563                   struct scatterlist *src_sg, unsigned int src_nents,
2564                   unsigned long dma_flags)
2565{
2566        if (dst_nents != src_nents)
2567                return NULL;
2568
2569        return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2570}
2571
2572static struct dma_async_tx_descriptor *
2573d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2574                  unsigned int sg_len, enum dma_transfer_direction direction,
2575                  unsigned long dma_flags, void *context)
2576{
2577        if (!is_slave_direction(direction))
2578                return NULL;
2579
2580        return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2581}
2582
2583static struct dma_async_tx_descriptor *
2584dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2585                     size_t buf_len, size_t period_len,
2586                     enum dma_transfer_direction direction, unsigned long flags,
2587                     void *context)
2588{
2589        unsigned int periods = buf_len / period_len;
2590        struct dma_async_tx_descriptor *txd;
2591        struct scatterlist *sg;
2592        int i;
2593
2594        sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2595        if (!sg)
2596                return NULL;
2597
2598        for (i = 0; i < periods; i++) {
2599                sg_dma_address(&sg[i]) = dma_addr;
2600                sg_dma_len(&sg[i]) = period_len;
2601                dma_addr += period_len;
2602        }
2603
2604        sg[periods].offset = 0;
2605        sg_dma_len(&sg[periods]) = 0;
2606        sg[periods].page_link =
2607                ((unsigned long)sg | 0x01) & ~0x02;
2608
2609        txd = d40_prep_sg(chan, sg, sg, periods, direction,
2610                          DMA_PREP_INTERRUPT);
2611
2612        kfree(sg);
2613
2614        return txd;
2615}
2616
2617static enum dma_status d40_tx_status(struct dma_chan *chan,
2618                                     dma_cookie_t cookie,
2619                                     struct dma_tx_state *txstate)
2620{
2621        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2622        enum dma_status ret;
2623
2624        if (d40c->phy_chan == NULL) {
2625                chan_err(d40c, "Cannot read status of unallocated channel\n");
2626                return -EINVAL;
2627        }
2628
2629        ret = dma_cookie_status(chan, cookie, txstate);
2630        if (ret != DMA_COMPLETE)
2631                dma_set_residue(txstate, stedma40_residue(chan));
2632
2633        if (d40_is_paused(d40c))
2634                ret = DMA_PAUSED;
2635
2636        return ret;
2637}
2638
2639static void d40_issue_pending(struct dma_chan *chan)
2640{
2641        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2642        unsigned long flags;
2643
2644        if (d40c->phy_chan == NULL) {
2645                chan_err(d40c, "Channel is not allocated!\n");
2646                return;
2647        }
2648
2649        spin_lock_irqsave(&d40c->lock, flags);
2650
2651        list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2652
2653        /* Busy means that queued jobs are already being processed */
2654        if (!d40c->busy)
2655                (void) d40_queue_start(d40c);
2656
2657        spin_unlock_irqrestore(&d40c->lock, flags);
2658}
2659
2660static void d40_terminate_all(struct dma_chan *chan)
2661{
2662        unsigned long flags;
2663        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2664        int ret;
2665
2666        spin_lock_irqsave(&d40c->lock, flags);
2667
2668        pm_runtime_get_sync(d40c->base->dev);
2669        ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2670        if (ret)
2671                chan_err(d40c, "Failed to stop channel\n");
2672
2673        d40_term_all(d40c);
2674        pm_runtime_mark_last_busy(d40c->base->dev);
2675        pm_runtime_put_autosuspend(d40c->base->dev);
2676        if (d40c->busy) {
2677                pm_runtime_mark_last_busy(d40c->base->dev);
2678                pm_runtime_put_autosuspend(d40c->base->dev);
2679        }
2680        d40c->busy = false;
2681
2682        spin_unlock_irqrestore(&d40c->lock, flags);
2683}
2684
2685static int
2686dma40_config_to_halfchannel(struct d40_chan *d40c,
2687                            struct stedma40_half_channel_info *info,
2688                            u32 maxburst)
2689{
2690        int psize;
2691
2692        if (chan_is_logical(d40c)) {
2693                if (maxburst >= 16)
2694                        psize = STEDMA40_PSIZE_LOG_16;
2695                else if (maxburst >= 8)
2696                        psize = STEDMA40_PSIZE_LOG_8;
2697                else if (maxburst >= 4)
2698                        psize = STEDMA40_PSIZE_LOG_4;
2699                else
2700                        psize = STEDMA40_PSIZE_LOG_1;
2701        } else {
2702                if (maxburst >= 16)
2703                        psize = STEDMA40_PSIZE_PHY_16;
2704                else if (maxburst >= 8)
2705                        psize = STEDMA40_PSIZE_PHY_8;
2706                else if (maxburst >= 4)
2707                        psize = STEDMA40_PSIZE_PHY_4;
2708                else
2709                        psize = STEDMA40_PSIZE_PHY_1;
2710        }
2711
2712        info->psize = psize;
2713        info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2714
2715        return 0;
2716}
2717
2718/* Runtime reconfiguration extension */
2719static int d40_set_runtime_config(struct dma_chan *chan,
2720                                  struct dma_slave_config *config)
2721{
2722        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2723        struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2724        enum dma_slave_buswidth src_addr_width, dst_addr_width;
2725        dma_addr_t config_addr;
2726        u32 src_maxburst, dst_maxburst;
2727        int ret;
2728
2729        src_addr_width = config->src_addr_width;
2730        src_maxburst = config->src_maxburst;
2731        dst_addr_width = config->dst_addr_width;
2732        dst_maxburst = config->dst_maxburst;
2733
2734        if (config->direction == DMA_DEV_TO_MEM) {
2735                config_addr = config->src_addr;
2736
2737                if (cfg->dir != DMA_DEV_TO_MEM)
2738                        dev_dbg(d40c->base->dev,
2739                                "channel was not configured for peripheral "
2740                                "to memory transfer (%d) overriding\n",
2741                                cfg->dir);
2742                cfg->dir = DMA_DEV_TO_MEM;
2743
2744                /* Configure the memory side */
2745                if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2746                        dst_addr_width = src_addr_width;
2747                if (dst_maxburst == 0)
2748                        dst_maxburst = src_maxburst;
2749
2750        } else if (config->direction == DMA_MEM_TO_DEV) {
2751                config_addr = config->dst_addr;
2752
2753                if (cfg->dir != DMA_MEM_TO_DEV)
2754                        dev_dbg(d40c->base->dev,
2755                                "channel was not configured for memory "
2756                                "to peripheral transfer (%d) overriding\n",
2757                                cfg->dir);
2758                cfg->dir = DMA_MEM_TO_DEV;
2759
2760                /* Configure the memory side */
2761                if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2762                        src_addr_width = dst_addr_width;
2763                if (src_maxburst == 0)
2764                        src_maxburst = dst_maxburst;
2765        } else {
2766                dev_err(d40c->base->dev,
2767                        "unrecognized channel direction %d\n",
2768                        config->direction);
2769                return -EINVAL;
2770        }
2771
2772        if (config_addr <= 0) {
2773                dev_err(d40c->base->dev, "no address supplied\n");
2774                return -EINVAL;
2775        }
2776
2777        if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2778                dev_err(d40c->base->dev,
2779                        "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2780                        src_maxburst,
2781                        src_addr_width,
2782                        dst_maxburst,
2783                        dst_addr_width);
2784                return -EINVAL;
2785        }
2786
2787        if (src_maxburst > 16) {
2788                src_maxburst = 16;
2789                dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2790        } else if (dst_maxburst > 16) {
2791                dst_maxburst = 16;
2792                src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2793        }
2794
2795        /* Only valid widths are; 1, 2, 4 and 8. */
2796        if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2797            src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2798            dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2799            dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2800            !is_power_of_2(src_addr_width) ||
2801            !is_power_of_2(dst_addr_width))
2802                return -EINVAL;
2803
2804        cfg->src_info.data_width = src_addr_width;
2805        cfg->dst_info.data_width = dst_addr_width;
2806
2807        ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2808                                          src_maxburst);
2809        if (ret)
2810                return ret;
2811
2812        ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2813                                          dst_maxburst);
2814        if (ret)
2815                return ret;
2816
2817        /* Fill in register values */
2818        if (chan_is_logical(d40c))
2819                d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2820        else
2821                d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2822
2823        /* These settings will take precedence later */
2824        d40c->runtime_addr = config_addr;
2825        d40c->runtime_direction = config->direction;
2826        dev_dbg(d40c->base->dev,
2827                "configured channel %s for %s, data width %d/%d, "
2828                "maxburst %d/%d elements, LE, no flow control\n",
2829                dma_chan_name(chan),
2830                (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2831                src_addr_width, dst_addr_width,
2832                src_maxburst, dst_maxburst);
2833
2834        return 0;
2835}
2836
2837static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2838                       unsigned long arg)
2839{
2840        struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2841
2842        if (d40c->phy_chan == NULL) {
2843                chan_err(d40c, "Channel is not allocated!\n");
2844                return -EINVAL;
2845        }
2846
2847        switch (cmd) {
2848        case DMA_TERMINATE_ALL:
2849                d40_terminate_all(chan);
2850                return 0;
2851        case DMA_PAUSE:
2852                return d40_pause(d40c);
2853        case DMA_RESUME:
2854                return d40_resume(d40c);
2855        case DMA_SLAVE_CONFIG:
2856                return d40_set_runtime_config(chan,
2857                        (struct dma_slave_config *) arg);
2858        default:
2859                break;
2860        }
2861
2862        /* Other commands are unimplemented */
2863        return -ENXIO;
2864}
2865
2866/* Initialization functions */
2867
2868static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2869                                 struct d40_chan *chans, int offset,
2870                                 int num_chans)
2871{
2872        int i = 0;
2873        struct d40_chan *d40c;
2874
2875        INIT_LIST_HEAD(&dma->channels);
2876
2877        for (i = offset; i < offset + num_chans; i++) {
2878                d40c = &chans[i];
2879                d40c->base = base;
2880                d40c->chan.device = dma;
2881
2882                spin_lock_init(&d40c->lock);
2883
2884                d40c->log_num = D40_PHY_CHAN;
2885
2886                INIT_LIST_HEAD(&d40c->done);
2887                INIT_LIST_HEAD(&d40c->active);
2888                INIT_LIST_HEAD(&d40c->queue);
2889                INIT_LIST_HEAD(&d40c->pending_queue);
2890                INIT_LIST_HEAD(&d40c->client);
2891                INIT_LIST_HEAD(&d40c->prepare_queue);
2892
2893                tasklet_init(&d40c->tasklet, dma_tasklet,
2894                             (unsigned long) d40c);
2895
2896                list_add_tail(&d40c->chan.device_node,
2897                              &dma->channels);
2898        }
2899}
2900
2901static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2902{
2903        if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2904                dev->device_prep_slave_sg = d40_prep_slave_sg;
2905
2906        if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2907                dev->device_prep_dma_memcpy = d40_prep_memcpy;
2908
2909                /*
2910                 * This controller can only access address at even
2911                 * 32bit boundaries, i.e. 2^2
2912                 */
2913                dev->copy_align = 2;
2914        }
2915
2916        if (dma_has_cap(DMA_SG, dev->cap_mask))
2917                dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2918
2919        if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2920                dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2921
2922        dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2923        dev->device_free_chan_resources = d40_free_chan_resources;
2924        dev->device_issue_pending = d40_issue_pending;
2925        dev->device_tx_status = d40_tx_status;
2926        dev->device_control = d40_control;
2927        dev->dev = base->dev;
2928}
2929
2930static int __init d40_dmaengine_init(struct d40_base *base,
2931                                     int num_reserved_chans)
2932{
2933        int err ;
2934
2935        d40_chan_init(base, &base->dma_slave, base->log_chans,
2936                      0, base->num_log_chans);
2937
2938        dma_cap_zero(base->dma_slave.cap_mask);
2939        dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2940        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2941
2942        d40_ops_init(base, &base->dma_slave);
2943
2944        err = dma_async_device_register(&base->dma_slave);
2945
2946        if (err) {
2947                d40_err(base->dev, "Failed to register slave channels\n");
2948                goto failure1;
2949        }
2950
2951        d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2952                      base->num_log_chans, base->num_memcpy_chans);
2953
2954        dma_cap_zero(base->dma_memcpy.cap_mask);
2955        dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2956        dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2957
2958        d40_ops_init(base, &base->dma_memcpy);
2959
2960        err = dma_async_device_register(&base->dma_memcpy);
2961
2962        if (err) {
2963                d40_err(base->dev,
2964                        "Failed to regsiter memcpy only channels\n");
2965                goto failure2;
2966        }
2967
2968        d40_chan_init(base, &base->dma_both, base->phy_chans,
2969                      0, num_reserved_chans);
2970
2971        dma_cap_zero(base->dma_both.cap_mask);
2972        dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2973        dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2974        dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2975        dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2976
2977        d40_ops_init(base, &base->dma_both);
2978        err = dma_async_device_register(&base->dma_both);
2979
2980        if (err) {
2981                d40_err(base->dev,
2982                        "Failed to register logical and physical capable channels\n");
2983                goto failure3;
2984        }
2985        return 0;
2986failure3:
2987        dma_async_device_unregister(&base->dma_memcpy);
2988failure2:
2989        dma_async_device_unregister(&base->dma_slave);
2990failure1:
2991        return err;
2992}
2993
2994/* Suspend resume functionality */
2995#ifdef CONFIG_PM
2996static int dma40_pm_suspend(struct device *dev)
2997{
2998        struct platform_device *pdev = to_platform_device(dev);
2999        struct d40_base *base = platform_get_drvdata(pdev);
3000        int ret = 0;
3001
3002        if (base->lcpa_regulator)
3003                ret = regulator_disable(base->lcpa_regulator);
3004        return ret;
3005}
3006
3007static int dma40_runtime_suspend(struct device *dev)
3008{
3009        struct platform_device *pdev = to_platform_device(dev);
3010        struct d40_base *base = platform_get_drvdata(pdev);
3011
3012        d40_save_restore_registers(base, true);
3013
3014        /* Don't disable/enable clocks for v1 due to HW bugs */
3015        if (base->rev != 1)
3016                writel_relaxed(base->gcc_pwr_off_mask,
3017                               base->virtbase + D40_DREG_GCC);
3018
3019        return 0;
3020}
3021
3022static int dma40_runtime_resume(struct device *dev)
3023{
3024        struct platform_device *pdev = to_platform_device(dev);
3025        struct d40_base *base = platform_get_drvdata(pdev);
3026
3027        if (base->initialized)
3028                d40_save_restore_registers(base, false);
3029
3030        writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3031                       base->virtbase + D40_DREG_GCC);
3032        return 0;
3033}
3034
3035static int dma40_resume(struct device *dev)
3036{
3037        struct platform_device *pdev = to_platform_device(dev);
3038        struct d40_base *base = platform_get_drvdata(pdev);
3039        int ret = 0;
3040
3041        if (base->lcpa_regulator)
3042                ret = regulator_enable(base->lcpa_regulator);
3043
3044        return ret;
3045}
3046
3047static const struct dev_pm_ops dma40_pm_ops = {
3048        .suspend                = dma40_pm_suspend,
3049        .runtime_suspend        = dma40_runtime_suspend,
3050        .runtime_resume         = dma40_runtime_resume,
3051        .resume                 = dma40_resume,
3052};
3053#define DMA40_PM_OPS    (&dma40_pm_ops)
3054#else
3055#define DMA40_PM_OPS    NULL
3056#endif
3057
3058/* Initialization functions. */
3059
3060static int __init d40_phy_res_init(struct d40_base *base)
3061{
3062        int i;
3063        int num_phy_chans_avail = 0;
3064        u32 val[2];
3065        int odd_even_bit = -2;
3066        int gcc = D40_DREG_GCC_ENA;
3067
3068        val[0] = readl(base->virtbase + D40_DREG_PRSME);
3069        val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3070
3071        for (i = 0; i < base->num_phy_chans; i++) {
3072                base->phy_res[i].num = i;
3073                odd_even_bit += 2 * ((i % 2) == 0);
3074                if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3075                        /* Mark security only channels as occupied */
3076                        base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3077                        base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3078                        base->phy_res[i].reserved = true;
3079                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3080                                                       D40_DREG_GCC_SRC);
3081                        gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3082                                                       D40_DREG_GCC_DST);
3083
3084
3085                } else {
3086                        base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3087                        base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3088                        base->phy_res[i].reserved = false;
3089                        num_phy_chans_avail++;
3090                }
3091                spin_lock_init(&base->phy_res[i].lock);
3092        }
3093
3094        /* Mark disabled channels as occupied */
3095        for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3096                int chan = base->plat_data->disabled_channels[i];
3097
3098                base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3099                base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3100                base->phy_res[chan].reserved = true;
3101                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3102                                               D40_DREG_GCC_SRC);
3103                gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3104                                               D40_DREG_GCC_DST);
3105                num_phy_chans_avail--;
3106        }
3107
3108        /* Mark soft_lli channels */
3109        for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3110                int chan = base->plat_data->soft_lli_chans[i];
3111
3112                base->phy_res[chan].use_soft_lli = true;
3113        }
3114
3115        dev_info(base->dev, "%d of %d physical DMA channels available\n",
3116                 num_phy_chans_avail, base->num_phy_chans);
3117
3118        /* Verify settings extended vs standard */
3119        val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3120
3121        for (i = 0; i < base->num_phy_chans; i++) {
3122
3123                if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3124                    (val[0] & 0x3) != 1)
3125                        dev_info(base->dev,
3126                                 "[%s] INFO: channel %d is misconfigured (%d)\n",
3127                                 __func__, i, val[0] & 0x3);
3128
3129                val[0] = val[0] >> 2;
3130        }
3131
3132        /*
3133         * To keep things simple, Enable all clocks initially.
3134         * The clocks will get managed later post channel allocation.
3135         * The clocks for the event lines on which reserved channels exists
3136         * are not managed here.
3137         */
3138        writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3139        base->gcc_pwr_off_mask = gcc;
3140
3141        return num_phy_chans_avail;
3142}
3143
3144static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3145{
3146        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3147        struct clk *clk = NULL;
3148        void __iomem *virtbase = NULL;
3149        struct resource *res = NULL;
3150        struct d40_base *base = NULL;
3151        int num_log_chans = 0;
3152        int num_phy_chans;
3153        int num_memcpy_chans;
3154        int clk_ret = -EINVAL;
3155        int i;
3156        u32 pid;
3157        u32 cid;
3158        u8 rev;
3159
3160        clk = clk_get(&pdev->dev, NULL);
3161        if (IS_ERR(clk)) {
3162                d40_err(&pdev->dev, "No matching clock found\n");
3163                goto failure;
3164        }
3165
3166        clk_ret = clk_prepare_enable(clk);
3167        if (clk_ret) {
3168                d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3169                goto failure;
3170        }
3171
3172        /* Get IO for DMAC base address */
3173        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3174        if (!res)
3175                goto failure;
3176
3177        if (request_mem_region(res->start, resource_size(res),
3178                               D40_NAME " I/O base") == NULL)
3179                goto failure;
3180
3181        virtbase = ioremap(res->start, resource_size(res));
3182        if (!virtbase)
3183                goto failure;
3184
3185        /* This is just a regular AMBA PrimeCell ID actually */
3186        for (pid = 0, i = 0; i < 4; i++)
3187                pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3188                        & 255) << (i * 8);
3189        for (cid = 0, i = 0; i < 4; i++)
3190                cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3191                        & 255) << (i * 8);
3192
3193        if (cid != AMBA_CID) {
3194                d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3195                goto failure;
3196        }
3197        if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3198                d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3199                        AMBA_MANF_BITS(pid),
3200                        AMBA_VENDOR_ST);
3201                goto failure;
3202        }
3203        /*
3204         * HW revision:
3205         * DB8500ed has revision 0
3206         * ? has revision 1
3207         * DB8500v1 has revision 2
3208         * DB8500v2 has revision 3
3209         * AP9540v1 has revision 4
3210         * DB8540v1 has revision 4
3211         */
3212        rev = AMBA_REV_BITS(pid);
3213        if (rev < 2) {
3214                d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3215                goto failure;
3216        }
3217
3218        /* The number of physical channels on this HW */
3219        if (plat_data->num_of_phy_chans)
3220                num_phy_chans = plat_data->num_of_phy_chans;
3221        else
3222                num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3223
3224        /* The number of channels used for memcpy */
3225        if (plat_data->num_of_memcpy_chans)
3226                num_memcpy_chans = plat_data->num_of_memcpy_chans;
3227        else
3228                num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3229
3230        num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3231
3232        dev_info(&pdev->dev,
3233                 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3234                 rev, &res->start, num_phy_chans, num_log_chans);
3235
3236        base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3237                       (num_phy_chans + num_log_chans + num_memcpy_chans) *
3238                       sizeof(struct d40_chan), GFP_KERNEL);
3239
3240        if (base == NULL) {
3241                d40_err(&pdev->dev, "Out of memory\n");
3242                goto failure;
3243        }
3244
3245        base->rev = rev;
3246        base->clk = clk;
3247        base->num_memcpy_chans = num_memcpy_chans;
3248        base->num_phy_chans = num_phy_chans;
3249        base->num_log_chans = num_log_chans;
3250        base->phy_start = res->start;
3251        base->phy_size = resource_size(res);
3252        base->virtbase = virtbase;
3253        base->plat_data = plat_data;
3254        base->dev = &pdev->dev;
3255        base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3256        base->log_chans = &base->phy_chans[num_phy_chans];
3257
3258        if (base->plat_data->num_of_phy_chans == 14) {
3259                base->gen_dmac.backup = d40_backup_regs_v4b;
3260                base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3261                base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3262                base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3263                base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3264                base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3265                base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3266                base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3267                base->gen_dmac.il = il_v4b;
3268                base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3269                base->gen_dmac.init_reg = dma_init_reg_v4b;
3270                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3271        } else {
3272                if (base->rev >= 3) {
3273                        base->gen_dmac.backup = d40_backup_regs_v4a;
3274                        base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3275                }
3276                base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3277                base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3278                base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3279                base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3280                base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3281                base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3282                base->gen_dmac.il = il_v4a;
3283                base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3284                base->gen_dmac.init_reg = dma_init_reg_v4a;
3285                base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3286        }
3287
3288        base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3289                                GFP_KERNEL);
3290        if (!base->phy_res)
3291                goto failure;
3292
3293        base->lookup_phy_chans = kzalloc(num_phy_chans *
3294                                         sizeof(struct d40_chan *),
3295                                         GFP_KERNEL);
3296        if (!base->lookup_phy_chans)
3297                goto failure;
3298
3299        base->lookup_log_chans = kzalloc(num_log_chans *
3300                                         sizeof(struct d40_chan *),
3301                                         GFP_KERNEL);
3302        if (!base->lookup_log_chans)
3303                goto failure;
3304
3305        base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3306                                            sizeof(d40_backup_regs_chan),
3307                                            GFP_KERNEL);
3308        if (!base->reg_val_backup_chan)
3309                goto failure;
3310
3311        base->lcla_pool.alloc_map =
3312                kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3313                        * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3314        if (!base->lcla_pool.alloc_map)
3315                goto failure;
3316
3317        base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3318                                            0, SLAB_HWCACHE_ALIGN,
3319                                            NULL);
3320        if (base->desc_slab == NULL)
3321                goto failure;
3322
3323        return base;
3324
3325failure:
3326        if (!clk_ret)
3327                clk_disable_unprepare(clk);
3328        if (!IS_ERR(clk))
3329                clk_put(clk);
3330        if (virtbase)
3331                iounmap(virtbase);
3332        if (res)
3333                release_mem_region(res->start,
3334                                   resource_size(res));
3335        if (virtbase)
3336                iounmap(virtbase);
3337
3338        if (base) {
3339                kfree(base->lcla_pool.alloc_map);
3340                kfree(base->reg_val_backup_chan);
3341                kfree(base->lookup_log_chans);
3342                kfree(base->lookup_phy_chans);
3343                kfree(base->phy_res);
3344                kfree(base);
3345        }
3346
3347        return NULL;
3348}
3349
3350static void __init d40_hw_init(struct d40_base *base)
3351{
3352
3353        int i;
3354        u32 prmseo[2] = {0, 0};
3355        u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3356        u32 pcmis = 0;
3357        u32 pcicr = 0;
3358        struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3359        u32 reg_size = base->gen_dmac.init_reg_size;
3360
3361        for (i = 0; i < reg_size; i++)
3362                writel(dma_init_reg[i].val,
3363                       base->virtbase + dma_init_reg[i].reg);
3364
3365        /* Configure all our dma channels to default settings */
3366        for (i = 0; i < base->num_phy_chans; i++) {
3367
3368                activeo[i % 2] = activeo[i % 2] << 2;
3369
3370                if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3371                    == D40_ALLOC_PHY) {
3372                        activeo[i % 2] |= 3;
3373                        continue;
3374                }
3375
3376                /* Enable interrupt # */
3377                pcmis = (pcmis << 1) | 1;
3378
3379                /* Clear interrupt # */
3380                pcicr = (pcicr << 1) | 1;
3381
3382                /* Set channel to physical mode */
3383                prmseo[i % 2] = prmseo[i % 2] << 2;
3384                prmseo[i % 2] |= 1;
3385
3386        }
3387
3388        writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3389        writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3390        writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3391        writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3392
3393        /* Write which interrupt to enable */
3394        writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3395
3396        /* Write which interrupt to clear */
3397        writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3398
3399        /* These are __initdata and cannot be accessed after init */
3400        base->gen_dmac.init_reg = NULL;
3401        base->gen_dmac.init_reg_size = 0;
3402}
3403
3404static int __init d40_lcla_allocate(struct d40_base *base)
3405{
3406        struct d40_lcla_pool *pool = &base->lcla_pool;
3407        unsigned long *page_list;
3408        int i, j;
3409        int ret = 0;
3410
3411        /*
3412         * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3413         * To full fill this hardware requirement without wasting 256 kb
3414         * we allocate pages until we get an aligned one.
3415         */
3416        page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3417                            GFP_KERNEL);
3418
3419        if (!page_list) {
3420                ret = -ENOMEM;
3421                goto failure;
3422        }
3423
3424        /* Calculating how many pages that are required */
3425        base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3426
3427        for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3428                page_list[i] = __get_free_pages(GFP_KERNEL,
3429                                                base->lcla_pool.pages);
3430                if (!page_list[i]) {
3431
3432                        d40_err(base->dev, "Failed to allocate %d pages.\n",
3433                                base->lcla_pool.pages);
3434
3435                        for (j = 0; j < i; j++)
3436                                free_pages(page_list[j], base->lcla_pool.pages);
3437                        goto failure;
3438                }
3439
3440                if ((virt_to_phys((void *)page_list[i]) &
3441                     (LCLA_ALIGNMENT - 1)) == 0)
3442                        break;
3443        }
3444
3445        for (j = 0; j < i; j++)
3446                free_pages(page_list[j], base->lcla_pool.pages);
3447
3448        if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3449                base->lcla_pool.base = (void *)page_list[i];
3450        } else {
3451                /*
3452                 * After many attempts and no succees with finding the correct
3453                 * alignment, try with allocating a big buffer.
3454                 */
3455                dev_warn(base->dev,
3456                         "[%s] Failed to get %d pages @ 18 bit align.\n",
3457                         __func__, base->lcla_pool.pages);
3458                base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3459                                                         base->num_phy_chans +
3460                                                         LCLA_ALIGNMENT,
3461                                                         GFP_KERNEL);
3462                if (!base->lcla_pool.base_unaligned) {
3463                        ret = -ENOMEM;
3464                        goto failure;
3465                }
3466
3467                base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3468                                                 LCLA_ALIGNMENT);
3469        }
3470
3471        pool->dma_addr = dma_map_single(base->dev, pool->base,
3472                                        SZ_1K * base->num_phy_chans,
3473                                        DMA_TO_DEVICE);
3474        if (dma_mapping_error(base->dev, pool->dma_addr)) {
3475                pool->dma_addr = 0;
3476                ret = -ENOMEM;
3477                goto failure;
3478        }
3479
3480        writel(virt_to_phys(base->lcla_pool.base),
3481               base->virtbase + D40_DREG_LCLA);
3482failure:
3483        kfree(page_list);
3484        return ret;
3485}
3486
3487static int __init d40_of_probe(struct platform_device *pdev,
3488                               struct device_node *np)
3489{
3490        struct stedma40_platform_data *pdata;
3491        int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3492        const __be32 *list;
3493
3494        pdata = devm_kzalloc(&pdev->dev,
3495                             sizeof(struct stedma40_platform_data),
3496                             GFP_KERNEL);
3497        if (!pdata)
3498                return -ENOMEM;
3499
3500        /* If absent this value will be obtained from h/w. */
3501        of_property_read_u32(np, "dma-channels", &num_phy);
3502        if (num_phy > 0)
3503                pdata->num_of_phy_chans = num_phy;
3504
3505        list = of_get_property(np, "memcpy-channels", &num_memcpy);
3506        num_memcpy /= sizeof(*list);
3507
3508        if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3509                d40_err(&pdev->dev,
3510                        "Invalid number of memcpy channels specified (%d)\n",
3511                        num_memcpy);
3512                return -EINVAL;
3513        }
3514        pdata->num_of_memcpy_chans = num_memcpy;
3515
3516        of_property_read_u32_array(np, "memcpy-channels",
3517                                   dma40_memcpy_channels,
3518                                   num_memcpy);
3519
3520        list = of_get_property(np, "disabled-channels", &num_disabled);
3521        num_disabled /= sizeof(*list);
3522
3523        if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3524                d40_err(&pdev->dev,
3525                        "Invalid number of disabled channels specified (%d)\n",
3526                        num_disabled);
3527                return -EINVAL;
3528        }
3529
3530        of_property_read_u32_array(np, "disabled-channels",
3531                                   pdata->disabled_channels,
3532                                   num_disabled);
3533        pdata->disabled_channels[num_disabled] = -1;
3534
3535        pdev->dev.platform_data = pdata;
3536
3537        return 0;
3538}
3539
3540static int __init d40_probe(struct platform_device *pdev)
3541{
3542        struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3543        struct device_node *np = pdev->dev.of_node;
3544        int ret = -ENOENT;
3545        struct d40_base *base = NULL;
3546        struct resource *res = NULL;
3547        int num_reserved_chans;
3548        u32 val;
3549
3550        if (!plat_data) {
3551                if (np) {
3552                        if(d40_of_probe(pdev, np)) {
3553                                ret = -ENOMEM;
3554                                goto failure;
3555                        }
3556                } else {
3557                        d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3558                        goto failure;
3559                }
3560        }
3561
3562        base = d40_hw_detect_init(pdev);
3563        if (!base)
3564                goto failure;
3565
3566        num_reserved_chans = d40_phy_res_init(base);
3567
3568        platform_set_drvdata(pdev, base);
3569
3570        spin_lock_init(&base->interrupt_lock);
3571        spin_lock_init(&base->execmd_lock);
3572
3573        /* Get IO for logical channel parameter address */
3574        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3575        if (!res) {
3576                ret = -ENOENT;
3577                d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3578                goto failure;
3579        }
3580        base->lcpa_size = resource_size(res);
3581        base->phy_lcpa = res->start;
3582
3583        if (request_mem_region(res->start, resource_size(res),
3584                               D40_NAME " I/O lcpa") == NULL) {
3585                ret = -EBUSY;
3586                d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3587                goto failure;
3588        }
3589
3590        /* We make use of ESRAM memory for this. */
3591        val = readl(base->virtbase + D40_DREG_LCPA);
3592        if (res->start != val && val != 0) {
3593                dev_warn(&pdev->dev,
3594                         "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3595                         __func__, val, &res->start);
3596        } else
3597                writel(res->start, base->virtbase + D40_DREG_LCPA);
3598
3599        base->lcpa_base = ioremap(res->start, resource_size(res));
3600        if (!base->lcpa_base) {
3601                ret = -ENOMEM;
3602                d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3603                goto failure;
3604        }
3605        /* If lcla has to be located in ESRAM we don't need to allocate */
3606        if (base->plat_data->use_esram_lcla) {
3607                res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3608                                                        "lcla_esram");
3609                if (!res) {
3610                        ret = -ENOENT;
3611                        d40_err(&pdev->dev,
3612                                "No \"lcla_esram\" memory resource\n");
3613                        goto failure;
3614                }
3615                base->lcla_pool.base = ioremap(res->start,
3616                                                resource_size(res));
3617                if (!base->lcla_pool.base) {
3618                        ret = -ENOMEM;
3619                        d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3620                        goto failure;
3621                }
3622                writel(res->start, base->virtbase + D40_DREG_LCLA);
3623
3624        } else {
3625                ret = d40_lcla_allocate(base);
3626                if (ret) {
3627                        d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3628                        goto failure;
3629                }
3630        }
3631
3632        spin_lock_init(&base->lcla_pool.lock);
3633
3634        base->irq = platform_get_irq(pdev, 0);
3635
3636        ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3637        if (ret) {
3638                d40_err(&pdev->dev, "No IRQ defined\n");
3639                goto failure;
3640        }
3641
3642        pm_runtime_irq_safe(base->dev);
3643        pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3644        pm_runtime_use_autosuspend(base->dev);
3645        pm_runtime_enable(base->dev);
3646        pm_runtime_resume(base->dev);
3647
3648        if (base->plat_data->use_esram_lcla) {
3649
3650                base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3651                if (IS_ERR(base->lcpa_regulator)) {
3652                        d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3653                        ret = PTR_ERR(base->lcpa_regulator);
3654                        base->lcpa_regulator = NULL;
3655                        goto failure;
3656                }
3657
3658                ret = regulator_enable(base->lcpa_regulator);
3659                if (ret) {
3660                        d40_err(&pdev->dev,
3661                                "Failed to enable lcpa_regulator\n");
3662                        regulator_put(base->lcpa_regulator);
3663                        base->lcpa_regulator = NULL;
3664                        goto failure;
3665                }
3666        }
3667
3668        base->initialized = true;
3669        ret = d40_dmaengine_init(base, num_reserved_chans);
3670        if (ret)
3671                goto failure;
3672
3673        base->dev->dma_parms = &base->dma_parms;
3674        ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3675        if (ret) {
3676                d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3677                goto failure;
3678        }
3679
3680        d40_hw_init(base);
3681
3682        if (np) {
3683                ret = of_dma_controller_register(np, d40_xlate, NULL);
3684                if (ret)
3685                        dev_err(&pdev->dev,
3686                                "could not register of_dma_controller\n");
3687        }
3688
3689        dev_info(base->dev, "initialized\n");
3690        return 0;
3691
3692failure:
3693        if (base) {
3694                if (base->desc_slab)
3695                        kmem_cache_destroy(base->desc_slab);
3696                if (base->virtbase)
3697                        iounmap(base->virtbase);
3698
3699                if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3700                        iounmap(base->lcla_pool.base);
3701                        base->lcla_pool.base = NULL;
3702                }
3703
3704                if (base->lcla_pool.dma_addr)
3705                        dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3706                                         SZ_1K * base->num_phy_chans,
3707                                         DMA_TO_DEVICE);
3708
3709                if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3710                        free_pages((unsigned long)base->lcla_pool.base,
3711                                   base->lcla_pool.pages);
3712
3713                kfree(base->lcla_pool.base_unaligned);
3714
3715                if (base->phy_lcpa)
3716                        release_mem_region(base->phy_lcpa,
3717                                           base->lcpa_size);
3718                if (base->phy_start)
3719                        release_mem_region(base->phy_start,
3720                                           base->phy_size);
3721                if (base->clk) {
3722                        clk_disable_unprepare(base->clk);
3723                        clk_put(base->clk);
3724                }
3725
3726                if (base->lcpa_regulator) {
3727                        regulator_disable(base->lcpa_regulator);
3728                        regulator_put(base->lcpa_regulator);
3729                }
3730
3731                kfree(base->lcla_pool.alloc_map);
3732                kfree(base->lookup_log_chans);
3733                kfree(base->lookup_phy_chans);
3734                kfree(base->phy_res);
3735                kfree(base);
3736        }
3737
3738        d40_err(&pdev->dev, "probe failed\n");
3739        return ret;
3740}
3741
3742static const struct of_device_id d40_match[] = {
3743        { .compatible = "stericsson,dma40", },
3744        {}
3745};
3746
3747static struct platform_driver d40_driver = {
3748        .driver = {
3749                .owner = THIS_MODULE,
3750                .name  = D40_NAME,
3751                .pm = DMA40_PM_OPS,
3752                .of_match_table = d40_match,
3753        },
3754};
3755
3756static int __init stedma40_init(void)
3757{
3758        return platform_driver_probe(&d40_driver, d40_probe);
3759}
3760subsys_initcall(stedma40_init);
3761