linux/drivers/iommu/arm-smmu.c
<<
>>
Prefs
   1/*
   2 * IOMMU API for ARM architected SMMU implementations.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public License
  14 * along with this program; if not, write to the Free Software
  15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16 *
  17 * Copyright (C) 2013 ARM Limited
  18 *
  19 * Author: Will Deacon <will.deacon@arm.com>
  20 *
  21 * This driver currently supports:
  22 *      - SMMUv1 and v2 implementations
  23 *      - Stream-matching and stream-indexing
  24 *      - v7/v8 long-descriptor format
  25 *      - Non-secure access to the SMMU
  26 *      - 4k and 64k pages, with contiguous pte hints.
  27 *      - Up to 39-bit addressing
  28 *      - Context fault reporting
  29 */
  30
  31#define pr_fmt(fmt) "arm-smmu: " fmt
  32
  33#include <linux/delay.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/err.h>
  36#include <linux/interrupt.h>
  37#include <linux/io.h>
  38#include <linux/iommu.h>
  39#include <linux/mm.h>
  40#include <linux/module.h>
  41#include <linux/of.h>
  42#include <linux/platform_device.h>
  43#include <linux/slab.h>
  44#include <linux/spinlock.h>
  45
  46#include <linux/amba/bus.h>
  47
  48#include <asm/pgalloc.h>
  49
  50/* Maximum number of stream IDs assigned to a single device */
  51#define MAX_MASTER_STREAMIDS            8
  52
  53/* Maximum number of context banks per SMMU */
  54#define ARM_SMMU_MAX_CBS                128
  55
  56/* Maximum number of mapping groups per SMMU */
  57#define ARM_SMMU_MAX_SMRS               128
  58
  59/* SMMU global address space */
  60#define ARM_SMMU_GR0(smmu)              ((smmu)->base)
  61#define ARM_SMMU_GR1(smmu)              ((smmu)->base + (smmu)->pagesize)
  62
  63/* Page table bits */
  64#define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
  65#define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
  66#define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
  67#define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
  68#define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
  69#define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
  70
  71#if PAGE_SIZE == SZ_4K
  72#define ARM_SMMU_PTE_CONT_ENTRIES       16
  73#elif PAGE_SIZE == SZ_64K
  74#define ARM_SMMU_PTE_CONT_ENTRIES       32
  75#else
  76#define ARM_SMMU_PTE_CONT_ENTRIES       1
  77#endif
  78
  79#define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
  80#define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
  81#define ARM_SMMU_PTE_HWTABLE_SIZE       (PTRS_PER_PTE * sizeof(pte_t))
  82
  83/* Stage-1 PTE */
  84#define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
  85#define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
  86#define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
  87#define ARM_SMMU_PTE_nG                 (((pteval_t)1) << 11)
  88
  89/* Stage-2 PTE */
  90#define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
  91#define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
  92#define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
  93#define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
  94#define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
  95#define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
  96
  97/* Configuration registers */
  98#define ARM_SMMU_GR0_sCR0               0x0
  99#define sCR0_CLIENTPD                   (1 << 0)
 100#define sCR0_GFRE                       (1 << 1)
 101#define sCR0_GFIE                       (1 << 2)
 102#define sCR0_GCFGFRE                    (1 << 4)
 103#define sCR0_GCFGFIE                    (1 << 5)
 104#define sCR0_USFCFG                     (1 << 10)
 105#define sCR0_VMIDPNE                    (1 << 11)
 106#define sCR0_PTM                        (1 << 12)
 107#define sCR0_FB                         (1 << 13)
 108#define sCR0_BSU_SHIFT                  14
 109#define sCR0_BSU_MASK                   0x3
 110
 111/* Identification registers */
 112#define ARM_SMMU_GR0_ID0                0x20
 113#define ARM_SMMU_GR0_ID1                0x24
 114#define ARM_SMMU_GR0_ID2                0x28
 115#define ARM_SMMU_GR0_ID3                0x2c
 116#define ARM_SMMU_GR0_ID4                0x30
 117#define ARM_SMMU_GR0_ID5                0x34
 118#define ARM_SMMU_GR0_ID6                0x38
 119#define ARM_SMMU_GR0_ID7                0x3c
 120#define ARM_SMMU_GR0_sGFSR              0x48
 121#define ARM_SMMU_GR0_sGFSYNR0           0x50
 122#define ARM_SMMU_GR0_sGFSYNR1           0x54
 123#define ARM_SMMU_GR0_sGFSYNR2           0x58
 124#define ARM_SMMU_GR0_PIDR0              0xfe0
 125#define ARM_SMMU_GR0_PIDR1              0xfe4
 126#define ARM_SMMU_GR0_PIDR2              0xfe8
 127
 128#define ID0_S1TS                        (1 << 30)
 129#define ID0_S2TS                        (1 << 29)
 130#define ID0_NTS                         (1 << 28)
 131#define ID0_SMS                         (1 << 27)
 132#define ID0_PTFS_SHIFT                  24
 133#define ID0_PTFS_MASK                   0x2
 134#define ID0_PTFS_V8_ONLY                0x2
 135#define ID0_CTTW                        (1 << 14)
 136#define ID0_NUMIRPT_SHIFT               16
 137#define ID0_NUMIRPT_MASK                0xff
 138#define ID0_NUMSMRG_SHIFT               0
 139#define ID0_NUMSMRG_MASK                0xff
 140
 141#define ID1_PAGESIZE                    (1 << 31)
 142#define ID1_NUMPAGENDXB_SHIFT           28
 143#define ID1_NUMPAGENDXB_MASK            7
 144#define ID1_NUMS2CB_SHIFT               16
 145#define ID1_NUMS2CB_MASK                0xff
 146#define ID1_NUMCB_SHIFT                 0
 147#define ID1_NUMCB_MASK                  0xff
 148
 149#define ID2_OAS_SHIFT                   4
 150#define ID2_OAS_MASK                    0xf
 151#define ID2_IAS_SHIFT                   0
 152#define ID2_IAS_MASK                    0xf
 153#define ID2_UBS_SHIFT                   8
 154#define ID2_UBS_MASK                    0xf
 155#define ID2_PTFS_4K                     (1 << 12)
 156#define ID2_PTFS_16K                    (1 << 13)
 157#define ID2_PTFS_64K                    (1 << 14)
 158
 159#define PIDR2_ARCH_SHIFT                4
 160#define PIDR2_ARCH_MASK                 0xf
 161
 162/* Global TLB invalidation */
 163#define ARM_SMMU_GR0_STLBIALL           0x60
 164#define ARM_SMMU_GR0_TLBIVMID           0x64
 165#define ARM_SMMU_GR0_TLBIALLNSNH        0x68
 166#define ARM_SMMU_GR0_TLBIALLH           0x6c
 167#define ARM_SMMU_GR0_sTLBGSYNC          0x70
 168#define ARM_SMMU_GR0_sTLBGSTATUS        0x74
 169#define sTLBGSTATUS_GSACTIVE            (1 << 0)
 170#define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
 171
 172/* Stream mapping registers */
 173#define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
 174#define SMR_VALID                       (1 << 31)
 175#define SMR_MASK_SHIFT                  16
 176#define SMR_MASK_MASK                   0x7fff
 177#define SMR_ID_SHIFT                    0
 178#define SMR_ID_MASK                     0x7fff
 179
 180#define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
 181#define S2CR_CBNDX_SHIFT                0
 182#define S2CR_CBNDX_MASK                 0xff
 183#define S2CR_TYPE_SHIFT                 16
 184#define S2CR_TYPE_MASK                  0x3
 185#define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
 186#define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
 187#define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
 188
 189/* Context bank attribute registers */
 190#define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
 191#define CBAR_VMID_SHIFT                 0
 192#define CBAR_VMID_MASK                  0xff
 193#define CBAR_S1_MEMATTR_SHIFT           12
 194#define CBAR_S1_MEMATTR_MASK            0xf
 195#define CBAR_S1_MEMATTR_WB              0xf
 196#define CBAR_TYPE_SHIFT                 16
 197#define CBAR_TYPE_MASK                  0x3
 198#define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
 199#define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
 200#define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
 201#define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
 202#define CBAR_IRPTNDX_SHIFT              24
 203#define CBAR_IRPTNDX_MASK               0xff
 204
 205#define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
 206#define CBA2R_RW64_32BIT                (0 << 0)
 207#define CBA2R_RW64_64BIT                (1 << 0)
 208
 209/* Translation context bank */
 210#define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
 211#define ARM_SMMU_CB(smmu, n)            ((n) * (smmu)->pagesize)
 212
 213#define ARM_SMMU_CB_SCTLR               0x0
 214#define ARM_SMMU_CB_RESUME              0x8
 215#define ARM_SMMU_CB_TTBCR2              0x10
 216#define ARM_SMMU_CB_TTBR0_LO            0x20
 217#define ARM_SMMU_CB_TTBR0_HI            0x24
 218#define ARM_SMMU_CB_TTBCR               0x30
 219#define ARM_SMMU_CB_S1_MAIR0            0x38
 220#define ARM_SMMU_CB_FSR                 0x58
 221#define ARM_SMMU_CB_FAR_LO              0x60
 222#define ARM_SMMU_CB_FAR_HI              0x64
 223#define ARM_SMMU_CB_FSYNR0              0x68
 224#define ARM_SMMU_CB_S1_TLBIASID         0x610
 225
 226#define SCTLR_S1_ASIDPNE                (1 << 12)
 227#define SCTLR_CFCFG                     (1 << 7)
 228#define SCTLR_CFIE                      (1 << 6)
 229#define SCTLR_CFRE                      (1 << 5)
 230#define SCTLR_E                         (1 << 4)
 231#define SCTLR_AFE                       (1 << 2)
 232#define SCTLR_TRE                       (1 << 1)
 233#define SCTLR_M                         (1 << 0)
 234#define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
 235
 236#define RESUME_RETRY                    (0 << 0)
 237#define RESUME_TERMINATE                (1 << 0)
 238
 239#define TTBCR_EAE                       (1 << 31)
 240
 241#define TTBCR_PASIZE_SHIFT              16
 242#define TTBCR_PASIZE_MASK               0x7
 243
 244#define TTBCR_TG0_4K                    (0 << 14)
 245#define TTBCR_TG0_64K                   (1 << 14)
 246
 247#define TTBCR_SH0_SHIFT                 12
 248#define TTBCR_SH0_MASK                  0x3
 249#define TTBCR_SH_NS                     0
 250#define TTBCR_SH_OS                     2
 251#define TTBCR_SH_IS                     3
 252
 253#define TTBCR_ORGN0_SHIFT               10
 254#define TTBCR_IRGN0_SHIFT               8
 255#define TTBCR_RGN_MASK                  0x3
 256#define TTBCR_RGN_NC                    0
 257#define TTBCR_RGN_WBWA                  1
 258#define TTBCR_RGN_WT                    2
 259#define TTBCR_RGN_WB                    3
 260
 261#define TTBCR_SL0_SHIFT                 6
 262#define TTBCR_SL0_MASK                  0x3
 263#define TTBCR_SL0_LVL_2                 0
 264#define TTBCR_SL0_LVL_1                 1
 265
 266#define TTBCR_T1SZ_SHIFT                16
 267#define TTBCR_T0SZ_SHIFT                0
 268#define TTBCR_SZ_MASK                   0xf
 269
 270#define TTBCR2_SEP_SHIFT                15
 271#define TTBCR2_SEP_MASK                 0x7
 272
 273#define TTBCR2_PASIZE_SHIFT             0
 274#define TTBCR2_PASIZE_MASK              0x7
 275
 276/* Common definitions for PASize and SEP fields */
 277#define TTBCR2_ADDR_32                  0
 278#define TTBCR2_ADDR_36                  1
 279#define TTBCR2_ADDR_40                  2
 280#define TTBCR2_ADDR_42                  3
 281#define TTBCR2_ADDR_44                  4
 282#define TTBCR2_ADDR_48                  5
 283
 284#define TTBRn_HI_ASID_SHIFT             16
 285
 286#define MAIR_ATTR_SHIFT(n)              ((n) << 3)
 287#define MAIR_ATTR_MASK                  0xff
 288#define MAIR_ATTR_DEVICE                0x04
 289#define MAIR_ATTR_NC                    0x44
 290#define MAIR_ATTR_WBRWA                 0xff
 291#define MAIR_ATTR_IDX_NC                0
 292#define MAIR_ATTR_IDX_CACHE             1
 293#define MAIR_ATTR_IDX_DEV               2
 294
 295#define FSR_MULTI                       (1 << 31)
 296#define FSR_SS                          (1 << 30)
 297#define FSR_UUT                         (1 << 8)
 298#define FSR_ASF                         (1 << 7)
 299#define FSR_TLBLKF                      (1 << 6)
 300#define FSR_TLBMCF                      (1 << 5)
 301#define FSR_EF                          (1 << 4)
 302#define FSR_PF                          (1 << 3)
 303#define FSR_AFF                         (1 << 2)
 304#define FSR_TF                          (1 << 1)
 305
 306#define FSR_IGN                         (FSR_AFF | FSR_ASF | FSR_TLBMCF |       \
 307                                         FSR_TLBLKF)
 308#define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT |         \
 309                                         FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
 310
 311#define FSYNR0_WNR                      (1 << 4)
 312
 313struct arm_smmu_smr {
 314        u8                              idx;
 315        u16                             mask;
 316        u16                             id;
 317};
 318
 319struct arm_smmu_master {
 320        struct device_node              *of_node;
 321
 322        /*
 323         * The following is specific to the master's position in the
 324         * SMMU chain.
 325         */
 326        struct rb_node                  node;
 327        int                             num_streamids;
 328        u16                             streamids[MAX_MASTER_STREAMIDS];
 329
 330        /*
 331         * We only need to allocate these on the root SMMU, as we
 332         * configure unmatched streams to bypass translation.
 333         */
 334        struct arm_smmu_smr             *smrs;
 335};
 336
 337struct arm_smmu_device {
 338        struct device                   *dev;
 339        struct device_node              *parent_of_node;
 340
 341        void __iomem                    *base;
 342        unsigned long                   size;
 343        unsigned long                   pagesize;
 344
 345#define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
 346#define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
 347#define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
 348#define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
 349#define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
 350        u32                             features;
 351        int                             version;
 352
 353        u32                             num_context_banks;
 354        u32                             num_s2_context_banks;
 355        DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
 356        atomic_t                        irptndx;
 357
 358        u32                             num_mapping_groups;
 359        DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
 360
 361        unsigned long                   input_size;
 362        unsigned long                   s1_output_size;
 363        unsigned long                   s2_output_size;
 364
 365        u32                             num_global_irqs;
 366        u32                             num_context_irqs;
 367        unsigned int                    *irqs;
 368
 369        struct list_head                list;
 370        struct rb_root                  masters;
 371};
 372
 373struct arm_smmu_cfg {
 374        struct arm_smmu_device          *smmu;
 375        u8                              cbndx;
 376        u8                              irptndx;
 377        u32                             cbar;
 378        pgd_t                           *pgd;
 379};
 380#define INVALID_IRPTNDX                 0xff
 381
 382#define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
 383#define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
 384
 385struct arm_smmu_domain {
 386        /*
 387         * A domain can span across multiple, chained SMMUs and requires
 388         * all devices within the domain to follow the same translation
 389         * path.
 390         */
 391        struct arm_smmu_device          *leaf_smmu;
 392        struct arm_smmu_cfg             root_cfg;
 393        phys_addr_t                     output_mask;
 394
 395        struct mutex                    lock;
 396};
 397
 398static DEFINE_SPINLOCK(arm_smmu_devices_lock);
 399static LIST_HEAD(arm_smmu_devices);
 400
 401static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
 402                                                struct device_node *dev_node)
 403{
 404        struct rb_node *node = smmu->masters.rb_node;
 405
 406        while (node) {
 407                struct arm_smmu_master *master;
 408                master = container_of(node, struct arm_smmu_master, node);
 409
 410                if (dev_node < master->of_node)
 411                        node = node->rb_left;
 412                else if (dev_node > master->of_node)
 413                        node = node->rb_right;
 414                else
 415                        return master;
 416        }
 417
 418        return NULL;
 419}
 420
 421static int insert_smmu_master(struct arm_smmu_device *smmu,
 422                              struct arm_smmu_master *master)
 423{
 424        struct rb_node **new, *parent;
 425
 426        new = &smmu->masters.rb_node;
 427        parent = NULL;
 428        while (*new) {
 429                struct arm_smmu_master *this;
 430                this = container_of(*new, struct arm_smmu_master, node);
 431
 432                parent = *new;
 433                if (master->of_node < this->of_node)
 434                        new = &((*new)->rb_left);
 435                else if (master->of_node > this->of_node)
 436                        new = &((*new)->rb_right);
 437                else
 438                        return -EEXIST;
 439        }
 440
 441        rb_link_node(&master->node, parent, new);
 442        rb_insert_color(&master->node, &smmu->masters);
 443        return 0;
 444}
 445
 446static int register_smmu_master(struct arm_smmu_device *smmu,
 447                                struct device *dev,
 448                                struct of_phandle_args *masterspec)
 449{
 450        int i;
 451        struct arm_smmu_master *master;
 452
 453        master = find_smmu_master(smmu, masterspec->np);
 454        if (master) {
 455                dev_err(dev,
 456                        "rejecting multiple registrations for master device %s\n",
 457                        masterspec->np->name);
 458                return -EBUSY;
 459        }
 460
 461        if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
 462                dev_err(dev,
 463                        "reached maximum number (%d) of stream IDs for master device %s\n",
 464                        MAX_MASTER_STREAMIDS, masterspec->np->name);
 465                return -ENOSPC;
 466        }
 467
 468        master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
 469        if (!master)
 470                return -ENOMEM;
 471
 472        master->of_node         = masterspec->np;
 473        master->num_streamids   = masterspec->args_count;
 474
 475        for (i = 0; i < master->num_streamids; ++i)
 476                master->streamids[i] = masterspec->args[i];
 477
 478        return insert_smmu_master(smmu, master);
 479}
 480
 481static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
 482{
 483        struct arm_smmu_device *parent;
 484
 485        if (!smmu->parent_of_node)
 486                return NULL;
 487
 488        spin_lock(&arm_smmu_devices_lock);
 489        list_for_each_entry(parent, &arm_smmu_devices, list)
 490                if (parent->dev->of_node == smmu->parent_of_node)
 491                        goto out_unlock;
 492
 493        parent = NULL;
 494        dev_warn(smmu->dev,
 495                 "Failed to find SMMU parent despite parent in DT\n");
 496out_unlock:
 497        spin_unlock(&arm_smmu_devices_lock);
 498        return parent;
 499}
 500
 501static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
 502{
 503        int idx;
 504
 505        do {
 506                idx = find_next_zero_bit(map, end, start);
 507                if (idx == end)
 508                        return -ENOSPC;
 509        } while (test_and_set_bit(idx, map));
 510
 511        return idx;
 512}
 513
 514static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
 515{
 516        clear_bit(idx, map);
 517}
 518
 519/* Wait for any pending TLB invalidations to complete */
 520static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
 521{
 522        int count = 0;
 523        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
 524
 525        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
 526        while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
 527               & sTLBGSTATUS_GSACTIVE) {
 528                cpu_relax();
 529                if (++count == TLB_LOOP_TIMEOUT) {
 530                        dev_err_ratelimited(smmu->dev,
 531                        "TLB sync timed out -- SMMU may be deadlocked\n");
 532                        return;
 533                }
 534                udelay(1);
 535        }
 536}
 537
 538static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg)
 539{
 540        struct arm_smmu_device *smmu = cfg->smmu;
 541        void __iomem *base = ARM_SMMU_GR0(smmu);
 542        bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
 543
 544        if (stage1) {
 545                base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
 546                writel_relaxed(ARM_SMMU_CB_ASID(cfg),
 547                               base + ARM_SMMU_CB_S1_TLBIASID);
 548        } else {
 549                base = ARM_SMMU_GR0(smmu);
 550                writel_relaxed(ARM_SMMU_CB_VMID(cfg),
 551                               base + ARM_SMMU_GR0_TLBIVMID);
 552        }
 553
 554        arm_smmu_tlb_sync(smmu);
 555}
 556
 557static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
 558{
 559        int flags, ret;
 560        u32 fsr, far, fsynr, resume;
 561        unsigned long iova;
 562        struct iommu_domain *domain = dev;
 563        struct arm_smmu_domain *smmu_domain = domain->priv;
 564        struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
 565        struct arm_smmu_device *smmu = root_cfg->smmu;
 566        void __iomem *cb_base;
 567
 568        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
 569        fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
 570
 571        if (!(fsr & FSR_FAULT))
 572                return IRQ_NONE;
 573
 574        if (fsr & FSR_IGN)
 575                dev_err_ratelimited(smmu->dev,
 576                                    "Unexpected context fault (fsr 0x%u)\n",
 577                                    fsr);
 578
 579        fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
 580        flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 581
 582        far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
 583        iova = far;
 584#ifdef CONFIG_64BIT
 585        far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
 586        iova |= ((unsigned long)far << 32);
 587#endif
 588
 589        if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
 590                ret = IRQ_HANDLED;
 591                resume = RESUME_RETRY;
 592        } else {
 593                dev_err_ratelimited(smmu->dev,
 594                    "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
 595                    iova, fsynr, root_cfg->cbndx);
 596                ret = IRQ_NONE;
 597                resume = RESUME_TERMINATE;
 598        }
 599
 600        /* Clear the faulting FSR */
 601        writel(fsr, cb_base + ARM_SMMU_CB_FSR);
 602
 603        /* Retry or terminate any stalled transactions */
 604        if (fsr & FSR_SS)
 605                writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
 606
 607        return ret;
 608}
 609
 610static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
 611{
 612        u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
 613        struct arm_smmu_device *smmu = dev;
 614        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
 615
 616        gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
 617        if (!gfsr)
 618                return IRQ_NONE;
 619
 620        gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
 621        gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
 622        gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
 623
 624        dev_err_ratelimited(smmu->dev,
 625                "Unexpected global fault, this could be serious\n");
 626        dev_err_ratelimited(smmu->dev,
 627                "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
 628                gfsr, gfsynr0, gfsynr1, gfsynr2);
 629
 630        writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
 631        return IRQ_HANDLED;
 632}
 633
 634static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
 635{
 636        u32 reg;
 637        bool stage1;
 638        struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
 639        struct arm_smmu_device *smmu = root_cfg->smmu;
 640        void __iomem *cb_base, *gr0_base, *gr1_base;
 641
 642        gr0_base = ARM_SMMU_GR0(smmu);
 643        gr1_base = ARM_SMMU_GR1(smmu);
 644        stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
 645        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
 646
 647        /* CBAR */
 648        reg = root_cfg->cbar;
 649        if (smmu->version == 1)
 650              reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
 651
 652        /* Use the weakest memory type, so it is overridden by the pte */
 653        if (stage1)
 654                reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
 655        else
 656                reg |= ARM_SMMU_CB_VMID(root_cfg) << CBAR_VMID_SHIFT;
 657        writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
 658
 659        if (smmu->version > 1) {
 660                /* CBA2R */
 661#ifdef CONFIG_64BIT
 662                reg = CBA2R_RW64_64BIT;
 663#else
 664                reg = CBA2R_RW64_32BIT;
 665#endif
 666                writel_relaxed(reg,
 667                               gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
 668
 669                /* TTBCR2 */
 670                switch (smmu->input_size) {
 671                case 32:
 672                        reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
 673                        break;
 674                case 36:
 675                        reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
 676                        break;
 677                case 39:
 678                        reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
 679                        break;
 680                case 42:
 681                        reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
 682                        break;
 683                case 44:
 684                        reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
 685                        break;
 686                case 48:
 687                        reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
 688                        break;
 689                }
 690
 691                switch (smmu->s1_output_size) {
 692                case 32:
 693                        reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
 694                        break;
 695                case 36:
 696                        reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
 697                        break;
 698                case 39:
 699                        reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
 700                        break;
 701                case 42:
 702                        reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
 703                        break;
 704                case 44:
 705                        reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
 706                        break;
 707                case 48:
 708                        reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
 709                        break;
 710                }
 711
 712                if (stage1)
 713                        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
 714        }
 715
 716        /* TTBR0 */
 717        reg = __pa(root_cfg->pgd);
 718        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
 719        reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
 720        if (stage1)
 721                reg |= ARM_SMMU_CB_ASID(root_cfg) << TTBRn_HI_ASID_SHIFT;
 722        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
 723
 724        /*
 725         * TTBCR
 726         * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
 727         */
 728        if (smmu->version > 1) {
 729                if (PAGE_SIZE == SZ_4K)
 730                        reg = TTBCR_TG0_4K;
 731                else
 732                        reg = TTBCR_TG0_64K;
 733
 734                if (!stage1) {
 735                        switch (smmu->s2_output_size) {
 736                        case 32:
 737                                reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
 738                                break;
 739                        case 36:
 740                                reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
 741                                break;
 742                        case 40:
 743                                reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
 744                                break;
 745                        case 42:
 746                                reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
 747                                break;
 748                        case 44:
 749                                reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
 750                                break;
 751                        case 48:
 752                                reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
 753                                break;
 754                        }
 755                } else {
 756                        reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
 757                }
 758        } else {
 759                reg = 0;
 760        }
 761
 762        reg |= TTBCR_EAE |
 763              (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
 764              (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
 765              (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
 766              (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
 767        writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
 768
 769        /* MAIR0 (stage-1 only) */
 770        if (stage1) {
 771                reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
 772                      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
 773                      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
 774                writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
 775        }
 776
 777        /* SCTLR */
 778        reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
 779        if (stage1)
 780                reg |= SCTLR_S1_ASIDPNE;
 781#ifdef __BIG_ENDIAN
 782        reg |= SCTLR_E;
 783#endif
 784        writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
 785}
 786
 787static int arm_smmu_init_domain_context(struct iommu_domain *domain,
 788                                        struct device *dev)
 789{
 790        int irq, ret, start;
 791        struct arm_smmu_domain *smmu_domain = domain->priv;
 792        struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
 793        struct arm_smmu_device *smmu, *parent;
 794
 795        /*
 796         * Walk the SMMU chain to find the root device for this chain.
 797         * We assume that no masters have translations which terminate
 798         * early, and therefore check that the root SMMU does indeed have
 799         * a StreamID for the master in question.
 800         */
 801        parent = dev->archdata.iommu;
 802        smmu_domain->output_mask = -1;
 803        do {
 804                smmu = parent;
 805                smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
 806        } while ((parent = find_parent_smmu(smmu)));
 807
 808        if (!find_smmu_master(smmu, dev->of_node)) {
 809                dev_err(dev, "unable to find root SMMU for device\n");
 810                return -ENODEV;
 811        }
 812
 813        if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
 814                /*
 815                 * We will likely want to change this if/when KVM gets
 816                 * involved.
 817                 */
 818                root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
 819                start = smmu->num_s2_context_banks;
 820        } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
 821                root_cfg->cbar = CBAR_TYPE_S2_TRANS;
 822                start = 0;
 823        } else {
 824                root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
 825                start = smmu->num_s2_context_banks;
 826        }
 827
 828        ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
 829                                      smmu->num_context_banks);
 830        if (IS_ERR_VALUE(ret))
 831                return ret;
 832
 833        root_cfg->cbndx = ret;
 834        if (smmu->version == 1) {
 835                root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
 836                root_cfg->irptndx %= smmu->num_context_irqs;
 837        } else {
 838                root_cfg->irptndx = root_cfg->cbndx;
 839        }
 840
 841        irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
 842        ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
 843                          "arm-smmu-context-fault", domain);
 844        if (IS_ERR_VALUE(ret)) {
 845                dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
 846                        root_cfg->irptndx, irq);
 847                root_cfg->irptndx = INVALID_IRPTNDX;
 848                goto out_free_context;
 849        }
 850
 851        root_cfg->smmu = smmu;
 852        arm_smmu_init_context_bank(smmu_domain);
 853        return ret;
 854
 855out_free_context:
 856        __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
 857        return ret;
 858}
 859
 860static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
 861{
 862        struct arm_smmu_domain *smmu_domain = domain->priv;
 863        struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
 864        struct arm_smmu_device *smmu = root_cfg->smmu;
 865        void __iomem *cb_base;
 866        int irq;
 867
 868        if (!smmu)
 869                return;
 870
 871        /* Disable the context bank and nuke the TLB before freeing it. */
 872        cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
 873        writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
 874        arm_smmu_tlb_inv_context(root_cfg);
 875
 876        if (root_cfg->irptndx != INVALID_IRPTNDX) {
 877                irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
 878                free_irq(irq, domain);
 879        }
 880
 881        __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
 882}
 883
 884static int arm_smmu_domain_init(struct iommu_domain *domain)
 885{
 886        struct arm_smmu_domain *smmu_domain;
 887        pgd_t *pgd;
 888
 889        /*
 890         * Allocate the domain and initialise some of its data structures.
 891         * We can't really do anything meaningful until we've added a
 892         * master.
 893         */
 894        smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
 895        if (!smmu_domain)
 896                return -ENOMEM;
 897
 898        pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
 899        if (!pgd)
 900                goto out_free_domain;
 901        smmu_domain->root_cfg.pgd = pgd;
 902
 903        mutex_init(&smmu_domain->lock);
 904        domain->priv = smmu_domain;
 905        return 0;
 906
 907out_free_domain:
 908        kfree(smmu_domain);
 909        return -ENOMEM;
 910}
 911
 912static void arm_smmu_free_ptes(pmd_t *pmd)
 913{
 914        pgtable_t table = pmd_pgtable(*pmd);
 915        pgtable_page_dtor(table);
 916        __free_page(table);
 917}
 918
 919static void arm_smmu_free_pmds(pud_t *pud)
 920{
 921        int i;
 922        pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
 923
 924        pmd = pmd_base;
 925        for (i = 0; i < PTRS_PER_PMD; ++i) {
 926                if (pmd_none(*pmd))
 927                        continue;
 928
 929                arm_smmu_free_ptes(pmd);
 930                pmd++;
 931        }
 932
 933        pmd_free(NULL, pmd_base);
 934}
 935
 936static void arm_smmu_free_puds(pgd_t *pgd)
 937{
 938        int i;
 939        pud_t *pud, *pud_base = pud_offset(pgd, 0);
 940
 941        pud = pud_base;
 942        for (i = 0; i < PTRS_PER_PUD; ++i) {
 943                if (pud_none(*pud))
 944                        continue;
 945
 946                arm_smmu_free_pmds(pud);
 947                pud++;
 948        }
 949
 950        pud_free(NULL, pud_base);
 951}
 952
 953static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
 954{
 955        int i;
 956        struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
 957        pgd_t *pgd, *pgd_base = root_cfg->pgd;
 958
 959        /*
 960         * Recursively free the page tables for this domain. We don't
 961         * care about speculative TLB filling, because the TLB will be
 962         * nuked next time this context bank is re-allocated and no devices
 963         * currently map to these tables.
 964         */
 965        pgd = pgd_base;
 966        for (i = 0; i < PTRS_PER_PGD; ++i) {
 967                if (pgd_none(*pgd))
 968                        continue;
 969                arm_smmu_free_puds(pgd);
 970                pgd++;
 971        }
 972
 973        kfree(pgd_base);
 974}
 975
 976static void arm_smmu_domain_destroy(struct iommu_domain *domain)
 977{
 978        struct arm_smmu_domain *smmu_domain = domain->priv;
 979
 980        /*
 981         * Free the domain resources. We assume that all devices have
 982         * already been detached.
 983         */
 984        arm_smmu_destroy_domain_context(domain);
 985        arm_smmu_free_pgtables(smmu_domain);
 986        kfree(smmu_domain);
 987}
 988
 989static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
 990                                          struct arm_smmu_master *master)
 991{
 992        int i;
 993        struct arm_smmu_smr *smrs;
 994        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
 995
 996        if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
 997                return 0;
 998
 999        if (master->smrs)
1000                return -EEXIST;
1001
1002        smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
1003        if (!smrs) {
1004                dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
1005                        master->num_streamids, master->of_node->name);
1006                return -ENOMEM;
1007        }
1008
1009        /* Allocate the SMRs on the root SMMU */
1010        for (i = 0; i < master->num_streamids; ++i) {
1011                int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1012                                                  smmu->num_mapping_groups);
1013                if (IS_ERR_VALUE(idx)) {
1014                        dev_err(smmu->dev, "failed to allocate free SMR\n");
1015                        goto err_free_smrs;
1016                }
1017
1018                smrs[i] = (struct arm_smmu_smr) {
1019                        .idx    = idx,
1020                        .mask   = 0, /* We don't currently share SMRs */
1021                        .id     = master->streamids[i],
1022                };
1023        }
1024
1025        /* It worked! Now, poke the actual hardware */
1026        for (i = 0; i < master->num_streamids; ++i) {
1027                u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1028                          smrs[i].mask << SMR_MASK_SHIFT;
1029                writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1030        }
1031
1032        master->smrs = smrs;
1033        return 0;
1034
1035err_free_smrs:
1036        while (--i >= 0)
1037                __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1038        kfree(smrs);
1039        return -ENOSPC;
1040}
1041
1042static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1043                                      struct arm_smmu_master *master)
1044{
1045        int i;
1046        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1047        struct arm_smmu_smr *smrs = master->smrs;
1048
1049        /* Invalidate the SMRs before freeing back to the allocator */
1050        for (i = 0; i < master->num_streamids; ++i) {
1051                u8 idx = smrs[i].idx;
1052                writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1053                __arm_smmu_free_bitmap(smmu->smr_map, idx);
1054        }
1055
1056        master->smrs = NULL;
1057        kfree(smrs);
1058}
1059
1060static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1061                                           struct arm_smmu_master *master)
1062{
1063        int i;
1064        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1065
1066        for (i = 0; i < master->num_streamids; ++i) {
1067                u16 sid = master->streamids[i];
1068                writel_relaxed(S2CR_TYPE_BYPASS,
1069                               gr0_base + ARM_SMMU_GR0_S2CR(sid));
1070        }
1071}
1072
1073static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1074                                      struct arm_smmu_master *master)
1075{
1076        int i, ret;
1077        struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1078        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1079
1080        ret = arm_smmu_master_configure_smrs(smmu, master);
1081        if (ret)
1082                return ret;
1083
1084        /* Bypass the leaves */
1085        smmu = smmu_domain->leaf_smmu;
1086        while ((parent = find_parent_smmu(smmu))) {
1087                /*
1088                 * We won't have a StreamID match for anything but the root
1089                 * smmu, so we only need to worry about StreamID indexing,
1090                 * where we must install bypass entries in the S2CRs.
1091                 */
1092                if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1093                        continue;
1094
1095                arm_smmu_bypass_stream_mapping(smmu, master);
1096                smmu = parent;
1097        }
1098
1099        /* Now we're at the root, time to point at our context bank */
1100        for (i = 0; i < master->num_streamids; ++i) {
1101                u32 idx, s2cr;
1102                idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1103                s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
1104                       (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1105                writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1106        }
1107
1108        return 0;
1109}
1110
1111static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1112                                          struct arm_smmu_master *master)
1113{
1114        struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1115
1116        /*
1117         * We *must* clear the S2CR first, because freeing the SMR means
1118         * that it can be re-allocated immediately.
1119         */
1120        arm_smmu_bypass_stream_mapping(smmu, master);
1121        arm_smmu_master_free_smrs(smmu, master);
1122}
1123
1124static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1125{
1126        int ret = -EINVAL;
1127        struct arm_smmu_domain *smmu_domain = domain->priv;
1128        struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1129        struct arm_smmu_master *master;
1130
1131        if (!device_smmu) {
1132                dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1133                return -ENXIO;
1134        }
1135
1136        /*
1137         * Sanity check the domain. We don't currently support domains
1138         * that cross between different SMMU chains.
1139         */
1140        mutex_lock(&smmu_domain->lock);
1141        if (!smmu_domain->leaf_smmu) {
1142                /* Now that we have a master, we can finalise the domain */
1143                ret = arm_smmu_init_domain_context(domain, dev);
1144                if (IS_ERR_VALUE(ret))
1145                        goto err_unlock;
1146
1147                smmu_domain->leaf_smmu = device_smmu;
1148        } else if (smmu_domain->leaf_smmu != device_smmu) {
1149                dev_err(dev,
1150                        "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1151                        dev_name(smmu_domain->leaf_smmu->dev),
1152                        dev_name(device_smmu->dev));
1153                goto err_unlock;
1154        }
1155        mutex_unlock(&smmu_domain->lock);
1156
1157        /* Looks ok, so add the device to the domain */
1158        master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1159        if (!master)
1160                return -ENODEV;
1161
1162        return arm_smmu_domain_add_master(smmu_domain, master);
1163
1164err_unlock:
1165        mutex_unlock(&smmu_domain->lock);
1166        return ret;
1167}
1168
1169static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1170{
1171        struct arm_smmu_domain *smmu_domain = domain->priv;
1172        struct arm_smmu_master *master;
1173
1174        master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1175        if (master)
1176                arm_smmu_domain_remove_master(smmu_domain, master);
1177}
1178
1179static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
1180                                   size_t size)
1181{
1182        unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1183
1184        /*
1185         * If the SMMU can't walk tables in the CPU caches, treat them
1186         * like non-coherent DMA since we need to flush the new entries
1187         * all the way out to memory. There's no possibility of recursion
1188         * here as the SMMU table walker will not be wired through another
1189         * SMMU.
1190         */
1191        if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
1192                dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
1193                             DMA_TO_DEVICE);
1194}
1195
1196static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1197                                             unsigned long end)
1198{
1199        return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1200                (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1201}
1202
1203static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1204                                   unsigned long addr, unsigned long end,
1205                                   unsigned long pfn, int flags, int stage)
1206{
1207        pte_t *pte, *start;
1208        pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1209
1210        if (pmd_none(*pmd)) {
1211                /* Allocate a new set of tables */
1212                pgtable_t table = alloc_page(PGALLOC_GFP);
1213                if (!table)
1214                        return -ENOMEM;
1215
1216                arm_smmu_flush_pgtable(smmu, page_address(table),
1217                                       ARM_SMMU_PTE_HWTABLE_SIZE);
1218                if (!pgtable_page_ctor(table)) {
1219                        __free_page(table);
1220                        return -ENOMEM;
1221                }
1222                pmd_populate(NULL, pmd, table);
1223                arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1224        }
1225
1226        if (stage == 1) {
1227                pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1228                if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
1229                        pteval |= ARM_SMMU_PTE_AP_RDONLY;
1230
1231                if (flags & IOMMU_CACHE)
1232                        pteval |= (MAIR_ATTR_IDX_CACHE <<
1233                                   ARM_SMMU_PTE_ATTRINDX_SHIFT);
1234        } else {
1235                pteval |= ARM_SMMU_PTE_HAP_FAULT;
1236                if (flags & IOMMU_READ)
1237                        pteval |= ARM_SMMU_PTE_HAP_READ;
1238                if (flags & IOMMU_WRITE)
1239                        pteval |= ARM_SMMU_PTE_HAP_WRITE;
1240                if (flags & IOMMU_CACHE)
1241                        pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1242                else
1243                        pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1244        }
1245
1246        /* If no access, create a faulting entry to avoid TLB fills */
1247        if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
1248                pteval &= ~ARM_SMMU_PTE_PAGE;
1249
1250        pteval |= ARM_SMMU_PTE_SH_IS;
1251        start = pmd_page_vaddr(*pmd) + pte_index(addr);
1252        pte = start;
1253
1254        /*
1255         * Install the page table entries. This is fairly complicated
1256         * since we attempt to make use of the contiguous hint in the
1257         * ptes where possible. The contiguous hint indicates a series
1258         * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1259         * contiguous region with the following constraints:
1260         *
1261         *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1262         *   - Each pte in the region has the contiguous hint bit set
1263         *
1264         * This complicates unmapping (also handled by this code, when
1265         * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1266         * possible, yet highly unlikely, that a client may unmap only
1267         * part of a contiguous range. This requires clearing of the
1268         * contiguous hint bits in the range before installing the new
1269         * faulting entries.
1270         *
1271         * Note that re-mapping an address range without first unmapping
1272         * it is not supported, so TLB invalidation is not required here
1273         * and is instead performed at unmap and domain-init time.
1274         */
1275        do {
1276                int i = 1;
1277                pteval &= ~ARM_SMMU_PTE_CONT;
1278
1279                if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1280                        i = ARM_SMMU_PTE_CONT_ENTRIES;
1281                        pteval |= ARM_SMMU_PTE_CONT;
1282                } else if (pte_val(*pte) &
1283                           (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1284                        int j;
1285                        pte_t *cont_start;
1286                        unsigned long idx = pte_index(addr);
1287
1288                        idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1289                        cont_start = pmd_page_vaddr(*pmd) + idx;
1290                        for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1291                                pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1292
1293                        arm_smmu_flush_pgtable(smmu, cont_start,
1294                                               sizeof(*pte) *
1295                                               ARM_SMMU_PTE_CONT_ENTRIES);
1296                }
1297
1298                do {
1299                        *pte = pfn_pte(pfn, __pgprot(pteval));
1300                } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1301        } while (addr != end);
1302
1303        arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1304        return 0;
1305}
1306
1307static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1308                                   unsigned long addr, unsigned long end,
1309                                   phys_addr_t phys, int flags, int stage)
1310{
1311        int ret;
1312        pmd_t *pmd;
1313        unsigned long next, pfn = __phys_to_pfn(phys);
1314
1315#ifndef __PAGETABLE_PMD_FOLDED
1316        if (pud_none(*pud)) {
1317                pmd = pmd_alloc_one(NULL, addr);
1318                if (!pmd)
1319                        return -ENOMEM;
1320        } else
1321#endif
1322                pmd = pmd_offset(pud, addr);
1323
1324        do {
1325                next = pmd_addr_end(addr, end);
1326                ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
1327                                              flags, stage);
1328                pud_populate(NULL, pud, pmd);
1329                arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1330                phys += next - addr;
1331        } while (pmd++, addr = next, addr < end);
1332
1333        return ret;
1334}
1335
1336static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1337                                   unsigned long addr, unsigned long end,
1338                                   phys_addr_t phys, int flags, int stage)
1339{
1340        int ret = 0;
1341        pud_t *pud;
1342        unsigned long next;
1343
1344#ifndef __PAGETABLE_PUD_FOLDED
1345        if (pgd_none(*pgd)) {
1346                pud = pud_alloc_one(NULL, addr);
1347                if (!pud)
1348                        return -ENOMEM;
1349        } else
1350#endif
1351                pud = pud_offset(pgd, addr);
1352
1353        do {
1354                next = pud_addr_end(addr, end);
1355                ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1356                                              flags, stage);
1357                pgd_populate(NULL, pud, pgd);
1358                arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1359                phys += next - addr;
1360        } while (pud++, addr = next, addr < end);
1361
1362        return ret;
1363}
1364
1365static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1366                                   unsigned long iova, phys_addr_t paddr,
1367                                   size_t size, int flags)
1368{
1369        int ret, stage;
1370        unsigned long end;
1371        phys_addr_t input_mask, output_mask;
1372        struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1373        pgd_t *pgd = root_cfg->pgd;
1374        struct arm_smmu_device *smmu = root_cfg->smmu;
1375
1376        if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1377                stage = 2;
1378                output_mask = (1ULL << smmu->s2_output_size) - 1;
1379        } else {
1380                stage = 1;
1381                output_mask = (1ULL << smmu->s1_output_size) - 1;
1382        }
1383
1384        if (!pgd)
1385                return -EINVAL;
1386
1387        if (size & ~PAGE_MASK)
1388                return -EINVAL;
1389
1390        input_mask = (1ULL << smmu->input_size) - 1;
1391        if ((phys_addr_t)iova & ~input_mask)
1392                return -ERANGE;
1393
1394        if (paddr & ~output_mask)
1395                return -ERANGE;
1396
1397        mutex_lock(&smmu_domain->lock);
1398        pgd += pgd_index(iova);
1399        end = iova + size;
1400        do {
1401                unsigned long next = pgd_addr_end(iova, end);
1402
1403                ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1404                                              flags, stage);
1405                if (ret)
1406                        goto out_unlock;
1407
1408                paddr += next - iova;
1409                iova = next;
1410        } while (pgd++, iova != end);
1411
1412out_unlock:
1413        mutex_unlock(&smmu_domain->lock);
1414
1415        /* Ensure new page tables are visible to the hardware walker */
1416        if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1417                dsb();
1418
1419        return ret;
1420}
1421
1422static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1423                        phys_addr_t paddr, size_t size, int flags)
1424{
1425        struct arm_smmu_domain *smmu_domain = domain->priv;
1426
1427        if (!smmu_domain)
1428                return -ENODEV;
1429
1430        /* Check for silent address truncation up the SMMU chain. */
1431        if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1432                return -ERANGE;
1433
1434        return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
1435}
1436
1437static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1438                             size_t size)
1439{
1440        int ret;
1441        struct arm_smmu_domain *smmu_domain = domain->priv;
1442
1443        ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1444        arm_smmu_tlb_inv_context(&smmu_domain->root_cfg);
1445        return ret ? ret : size;
1446}
1447
1448static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1449                                         dma_addr_t iova)
1450{
1451        pgd_t *pgdp, pgd;
1452        pud_t pud;
1453        pmd_t pmd;
1454        pte_t pte;
1455        struct arm_smmu_domain *smmu_domain = domain->priv;
1456        struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1457
1458        pgdp = root_cfg->pgd;
1459        if (!pgdp)
1460                return 0;
1461
1462        pgd = *(pgdp + pgd_index(iova));
1463        if (pgd_none(pgd))
1464                return 0;
1465
1466        pud = *pud_offset(&pgd, iova);
1467        if (pud_none(pud))
1468                return 0;
1469
1470        pmd = *pmd_offset(&pud, iova);
1471        if (pmd_none(pmd))
1472                return 0;
1473
1474        pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1475        if (pte_none(pte))
1476                return 0;
1477
1478        return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1479}
1480
1481static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1482                                   unsigned long cap)
1483{
1484        unsigned long caps = 0;
1485        struct arm_smmu_domain *smmu_domain = domain->priv;
1486
1487        if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1488                caps |= IOMMU_CAP_CACHE_COHERENCY;
1489
1490        return !!(cap & caps);
1491}
1492
1493static int arm_smmu_add_device(struct device *dev)
1494{
1495        struct arm_smmu_device *child, *parent, *smmu;
1496        struct arm_smmu_master *master = NULL;
1497
1498        spin_lock(&arm_smmu_devices_lock);
1499        list_for_each_entry(parent, &arm_smmu_devices, list) {
1500                smmu = parent;
1501
1502                /* Try to find a child of the current SMMU. */
1503                list_for_each_entry(child, &arm_smmu_devices, list) {
1504                        if (child->parent_of_node == parent->dev->of_node) {
1505                                /* Does the child sit above our master? */
1506                                master = find_smmu_master(child, dev->of_node);
1507                                if (master) {
1508                                        smmu = NULL;
1509                                        break;
1510                                }
1511                        }
1512                }
1513
1514                /* We found some children, so keep searching. */
1515                if (!smmu) {
1516                        master = NULL;
1517                        continue;
1518                }
1519
1520                master = find_smmu_master(smmu, dev->of_node);
1521                if (master)
1522                        break;
1523        }
1524        spin_unlock(&arm_smmu_devices_lock);
1525
1526        if (!master)
1527                return -ENODEV;
1528
1529        dev->archdata.iommu = smmu;
1530        return 0;
1531}
1532
1533static void arm_smmu_remove_device(struct device *dev)
1534{
1535        dev->archdata.iommu = NULL;
1536}
1537
1538static struct iommu_ops arm_smmu_ops = {
1539        .domain_init    = arm_smmu_domain_init,
1540        .domain_destroy = arm_smmu_domain_destroy,
1541        .attach_dev     = arm_smmu_attach_dev,
1542        .detach_dev     = arm_smmu_detach_dev,
1543        .map            = arm_smmu_map,
1544        .unmap          = arm_smmu_unmap,
1545        .iova_to_phys   = arm_smmu_iova_to_phys,
1546        .domain_has_cap = arm_smmu_domain_has_cap,
1547        .add_device     = arm_smmu_add_device,
1548        .remove_device  = arm_smmu_remove_device,
1549        .pgsize_bitmap  = (SECTION_SIZE |
1550                           ARM_SMMU_PTE_CONT_SIZE |
1551                           PAGE_SIZE),
1552};
1553
1554static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1555{
1556        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1557        void __iomem *cb_base;
1558        int i = 0;
1559        u32 reg;
1560
1561        /* Clear Global FSR */
1562        reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
1563        writel(reg, gr0_base + ARM_SMMU_GR0_sGFSR);
1564
1565        /* Mark all SMRn as invalid and all S2CRn as bypass */
1566        for (i = 0; i < smmu->num_mapping_groups; ++i) {
1567                writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1568                writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1569        }
1570
1571        /* Make sure all context banks are disabled and clear CB_FSR  */
1572        for (i = 0; i < smmu->num_context_banks; ++i) {
1573                cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1574                writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1575                writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1576        }
1577
1578        /* Invalidate the TLB, just in case */
1579        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1580        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1581        writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1582
1583        reg = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);
1584
1585        /* Enable fault reporting */
1586        reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1587
1588        /* Disable TLB broadcasting. */
1589        reg |= (sCR0_VMIDPNE | sCR0_PTM);
1590
1591        /* Enable client access, but bypass when no mapping is found */
1592        reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1593
1594        /* Disable forced broadcasting */
1595        reg &= ~sCR0_FB;
1596
1597        /* Don't upgrade barriers */
1598        reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1599
1600        /* Push the button */
1601        arm_smmu_tlb_sync(smmu);
1602        writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_sCR0);
1603}
1604
1605static int arm_smmu_id_size_to_bits(int size)
1606{
1607        switch (size) {
1608        case 0:
1609                return 32;
1610        case 1:
1611                return 36;
1612        case 2:
1613                return 40;
1614        case 3:
1615                return 42;
1616        case 4:
1617                return 44;
1618        case 5:
1619        default:
1620                return 48;
1621        }
1622}
1623
1624static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1625{
1626        unsigned long size;
1627        void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1628        u32 id;
1629
1630        dev_notice(smmu->dev, "probing hardware configuration...\n");
1631
1632        /* Primecell ID */
1633        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1634        smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1635        dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1636
1637        /* ID0 */
1638        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1639#ifndef CONFIG_64BIT
1640        if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1641                dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1642                return -ENODEV;
1643        }
1644#endif
1645        if (id & ID0_S1TS) {
1646                smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1647                dev_notice(smmu->dev, "\tstage 1 translation\n");
1648        }
1649
1650        if (id & ID0_S2TS) {
1651                smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1652                dev_notice(smmu->dev, "\tstage 2 translation\n");
1653        }
1654
1655        if (id & ID0_NTS) {
1656                smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1657                dev_notice(smmu->dev, "\tnested translation\n");
1658        }
1659
1660        if (!(smmu->features &
1661                (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1662                 ARM_SMMU_FEAT_TRANS_NESTED))) {
1663                dev_err(smmu->dev, "\tno translation support!\n");
1664                return -ENODEV;
1665        }
1666
1667        if (id & ID0_CTTW) {
1668                smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1669                dev_notice(smmu->dev, "\tcoherent table walk\n");
1670        }
1671
1672        if (id & ID0_SMS) {
1673                u32 smr, sid, mask;
1674
1675                smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1676                smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1677                                           ID0_NUMSMRG_MASK;
1678                if (smmu->num_mapping_groups == 0) {
1679                        dev_err(smmu->dev,
1680                                "stream-matching supported, but no SMRs present!\n");
1681                        return -ENODEV;
1682                }
1683
1684                smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1685                smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1686                writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1687                smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1688
1689                mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1690                sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1691                if ((mask & sid) != sid) {
1692                        dev_err(smmu->dev,
1693                                "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1694                                mask, sid);
1695                        return -ENODEV;
1696                }
1697
1698                dev_notice(smmu->dev,
1699                           "\tstream matching with %u register groups, mask 0x%x",
1700                           smmu->num_mapping_groups, mask);
1701        }
1702
1703        /* ID1 */
1704        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1705        smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1706
1707        /* Check for size mismatch of SMMU address space from mapped region */
1708        size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1709        size *= (smmu->pagesize << 1);
1710        if (smmu->size != size)
1711                dev_warn(smmu->dev, "SMMU address space size (0x%lx) differs "
1712                        "from mapped region size (0x%lx)!\n", size, smmu->size);
1713
1714        smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1715                                      ID1_NUMS2CB_MASK;
1716        smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1717        if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1718                dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1719                return -ENODEV;
1720        }
1721        dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1722                   smmu->num_context_banks, smmu->num_s2_context_banks);
1723
1724        /* ID2 */
1725        id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1726        size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1727
1728        /*
1729         * Stage-1 output limited by stage-2 input size due to pgd
1730         * allocation (PTRS_PER_PGD).
1731         */
1732#ifdef CONFIG_64BIT
1733        /* Current maximum output size of 39 bits */
1734        smmu->s1_output_size = min(39UL, size);
1735#else
1736        smmu->s1_output_size = min(32UL, size);
1737#endif
1738
1739        /* The stage-2 output mask is also applied for bypass */
1740        size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1741        smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1742
1743        if (smmu->version == 1) {
1744                smmu->input_size = 32;
1745        } else {
1746#ifdef CONFIG_64BIT
1747                size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1748                size = min(39, arm_smmu_id_size_to_bits(size));
1749#else
1750                size = 32;
1751#endif
1752                smmu->input_size = size;
1753
1754                if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1755                    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1756                    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1757                        dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1758                                PAGE_SIZE);
1759                        return -ENODEV;
1760                }
1761        }
1762
1763        dev_notice(smmu->dev,
1764                   "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1765                   smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1766        return 0;
1767}
1768
1769static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1770{
1771        struct resource *res;
1772        struct arm_smmu_device *smmu;
1773        struct device_node *dev_node;
1774        struct device *dev = &pdev->dev;
1775        struct rb_node *node;
1776        struct of_phandle_args masterspec;
1777        int num_irqs, i, err;
1778
1779        smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1780        if (!smmu) {
1781                dev_err(dev, "failed to allocate arm_smmu_device\n");
1782                return -ENOMEM;
1783        }
1784        smmu->dev = dev;
1785
1786        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1787        smmu->base = devm_ioremap_resource(dev, res);
1788        if (IS_ERR(smmu->base))
1789                return PTR_ERR(smmu->base);
1790        smmu->size = resource_size(res);
1791
1792        if (of_property_read_u32(dev->of_node, "#global-interrupts",
1793                                 &smmu->num_global_irqs)) {
1794                dev_err(dev, "missing #global-interrupts property\n");
1795                return -ENODEV;
1796        }
1797
1798        num_irqs = 0;
1799        while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1800                num_irqs++;
1801                if (num_irqs > smmu->num_global_irqs)
1802                        smmu->num_context_irqs++;
1803        }
1804
1805        if (!smmu->num_context_irqs) {
1806                dev_err(dev, "found %d interrupts but expected at least %d\n",
1807                        num_irqs, smmu->num_global_irqs + 1);
1808                return -ENODEV;
1809        }
1810
1811        smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1812                                  GFP_KERNEL);
1813        if (!smmu->irqs) {
1814                dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1815                return -ENOMEM;
1816        }
1817
1818        for (i = 0; i < num_irqs; ++i) {
1819                int irq = platform_get_irq(pdev, i);
1820                if (irq < 0) {
1821                        dev_err(dev, "failed to get irq index %d\n", i);
1822                        return -ENODEV;
1823                }
1824                smmu->irqs[i] = irq;
1825        }
1826
1827        i = 0;
1828        smmu->masters = RB_ROOT;
1829        while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1830                                           "#stream-id-cells", i,
1831                                           &masterspec)) {
1832                err = register_smmu_master(smmu, dev, &masterspec);
1833                if (err) {
1834                        dev_err(dev, "failed to add master %s\n",
1835                                masterspec.np->name);
1836                        goto out_put_masters;
1837                }
1838
1839                i++;
1840        }
1841        dev_notice(dev, "registered %d master devices\n", i);
1842
1843        if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1844                smmu->parent_of_node = dev_node;
1845
1846        err = arm_smmu_device_cfg_probe(smmu);
1847        if (err)
1848                goto out_put_parent;
1849
1850        if (smmu->version > 1 &&
1851            smmu->num_context_banks != smmu->num_context_irqs) {
1852                dev_err(dev,
1853                        "found only %d context interrupt(s) but %d required\n",
1854                        smmu->num_context_irqs, smmu->num_context_banks);
1855                err = -ENODEV;
1856                goto out_put_parent;
1857        }
1858
1859        for (i = 0; i < smmu->num_global_irqs; ++i) {
1860                err = request_irq(smmu->irqs[i],
1861                                  arm_smmu_global_fault,
1862                                  IRQF_SHARED,
1863                                  "arm-smmu global fault",
1864                                  smmu);
1865                if (err) {
1866                        dev_err(dev, "failed to request global IRQ %d (%u)\n",
1867                                i, smmu->irqs[i]);
1868                        goto out_free_irqs;
1869                }
1870        }
1871
1872        INIT_LIST_HEAD(&smmu->list);
1873        spin_lock(&arm_smmu_devices_lock);
1874        list_add(&smmu->list, &arm_smmu_devices);
1875        spin_unlock(&arm_smmu_devices_lock);
1876
1877        arm_smmu_device_reset(smmu);
1878        return 0;
1879
1880out_free_irqs:
1881        while (i--)
1882                free_irq(smmu->irqs[i], smmu);
1883
1884out_put_parent:
1885        if (smmu->parent_of_node)
1886                of_node_put(smmu->parent_of_node);
1887
1888out_put_masters:
1889        for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1890                struct arm_smmu_master *master;
1891                master = container_of(node, struct arm_smmu_master, node);
1892                of_node_put(master->of_node);
1893        }
1894
1895        return err;
1896}
1897
1898static int arm_smmu_device_remove(struct platform_device *pdev)
1899{
1900        int i;
1901        struct device *dev = &pdev->dev;
1902        struct arm_smmu_device *curr, *smmu = NULL;
1903        struct rb_node *node;
1904
1905        spin_lock(&arm_smmu_devices_lock);
1906        list_for_each_entry(curr, &arm_smmu_devices, list) {
1907                if (curr->dev == dev) {
1908                        smmu = curr;
1909                        list_del(&smmu->list);
1910                        break;
1911                }
1912        }
1913        spin_unlock(&arm_smmu_devices_lock);
1914
1915        if (!smmu)
1916                return -ENODEV;
1917
1918        if (smmu->parent_of_node)
1919                of_node_put(smmu->parent_of_node);
1920
1921        for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1922                struct arm_smmu_master *master;
1923                master = container_of(node, struct arm_smmu_master, node);
1924                of_node_put(master->of_node);
1925        }
1926
1927        if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1928                dev_err(dev, "removing device with active domains!\n");
1929
1930        for (i = 0; i < smmu->num_global_irqs; ++i)
1931                free_irq(smmu->irqs[i], smmu);
1932
1933        /* Turn the thing off */
1934        writel_relaxed(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
1935        return 0;
1936}
1937
1938#ifdef CONFIG_OF
1939static struct of_device_id arm_smmu_of_match[] = {
1940        { .compatible = "arm,smmu-v1", },
1941        { .compatible = "arm,smmu-v2", },
1942        { .compatible = "arm,mmu-400", },
1943        { .compatible = "arm,mmu-500", },
1944        { },
1945};
1946MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1947#endif
1948
1949static struct platform_driver arm_smmu_driver = {
1950        .driver = {
1951                .owner          = THIS_MODULE,
1952                .name           = "arm-smmu",
1953                .of_match_table = of_match_ptr(arm_smmu_of_match),
1954        },
1955        .probe  = arm_smmu_device_dt_probe,
1956        .remove = arm_smmu_device_remove,
1957};
1958
1959static int __init arm_smmu_init(void)
1960{
1961        int ret;
1962
1963        ret = platform_driver_register(&arm_smmu_driver);
1964        if (ret)
1965                return ret;
1966
1967        /* Oh, for a proper bus abstraction */
1968        if (!iommu_present(&platform_bus_type))
1969                bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1970
1971        if (!iommu_present(&amba_bustype))
1972                bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1973
1974        return 0;
1975}
1976
1977static void __exit arm_smmu_exit(void)
1978{
1979        return platform_driver_unregister(&arm_smmu_driver);
1980}
1981
1982subsys_initcall(arm_smmu_init);
1983module_exit(arm_smmu_exit);
1984
1985MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1986MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1987MODULE_LICENSE("GPL v2");
1988