linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/backing-dev.h>
  22#include <linux/percpu.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <asm/page.h>
  26#include <asm/unaligned.h>
  27#include <crypto/hash.h>
  28#include <crypto/md5.h>
  29#include <crypto/algapi.h>
  30
  31#include <linux/device-mapper.h>
  32
  33#define DM_MSG_PREFIX "crypt"
  34
  35/*
  36 * context holding the current state of a multi-part conversion
  37 */
  38struct convert_context {
  39        struct completion restart;
  40        struct bio *bio_in;
  41        struct bio *bio_out;
  42        unsigned int offset_in;
  43        unsigned int offset_out;
  44        unsigned int idx_in;
  45        unsigned int idx_out;
  46        sector_t cc_sector;
  47        atomic_t cc_pending;
  48};
  49
  50/*
  51 * per bio private data
  52 */
  53struct dm_crypt_io {
  54        struct crypt_config *cc;
  55        struct bio *base_bio;
  56        struct work_struct work;
  57
  58        struct convert_context ctx;
  59
  60        atomic_t io_pending;
  61        int error;
  62        sector_t sector;
  63        struct dm_crypt_io *base_io;
  64};
  65
  66struct dm_crypt_request {
  67        struct convert_context *ctx;
  68        struct scatterlist sg_in;
  69        struct scatterlist sg_out;
  70        sector_t iv_sector;
  71};
  72
  73struct crypt_config;
  74
  75struct crypt_iv_operations {
  76        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  77                   const char *opts);
  78        void (*dtr)(struct crypt_config *cc);
  79        int (*init)(struct crypt_config *cc);
  80        int (*wipe)(struct crypt_config *cc);
  81        int (*generator)(struct crypt_config *cc, u8 *iv,
  82                         struct dm_crypt_request *dmreq);
  83        int (*post)(struct crypt_config *cc, u8 *iv,
  84                    struct dm_crypt_request *dmreq);
  85};
  86
  87struct iv_essiv_private {
  88        struct crypto_hash *hash_tfm;
  89        u8 *salt;
  90};
  91
  92struct iv_benbi_private {
  93        int shift;
  94};
  95
  96#define LMK_SEED_SIZE 64 /* hash + 0 */
  97struct iv_lmk_private {
  98        struct crypto_shash *hash_tfm;
  99        u8 *seed;
 100};
 101
 102#define TCW_WHITENING_SIZE 16
 103struct iv_tcw_private {
 104        struct crypto_shash *crc32_tfm;
 105        u8 *iv_seed;
 106        u8 *whitening;
 107};
 108
 109/*
 110 * Crypt: maps a linear range of a block device
 111 * and encrypts / decrypts at the same time.
 112 */
 113enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
 114
 115/*
 116 * Duplicated per-CPU state for cipher.
 117 */
 118struct crypt_cpu {
 119        struct ablkcipher_request *req;
 120};
 121
 122/*
 123 * The fields in here must be read only after initialization,
 124 * changing state should be in crypt_cpu.
 125 */
 126struct crypt_config {
 127        struct dm_dev *dev;
 128        sector_t start;
 129
 130        /*
 131         * pool for per bio private data, crypto requests and
 132         * encryption requeusts/buffer pages
 133         */
 134        mempool_t *io_pool;
 135        mempool_t *req_pool;
 136        mempool_t *page_pool;
 137        struct bio_set *bs;
 138
 139        struct workqueue_struct *io_queue;
 140        struct workqueue_struct *crypt_queue;
 141
 142        char *cipher;
 143        char *cipher_string;
 144
 145        struct crypt_iv_operations *iv_gen_ops;
 146        union {
 147                struct iv_essiv_private essiv;
 148                struct iv_benbi_private benbi;
 149                struct iv_lmk_private lmk;
 150                struct iv_tcw_private tcw;
 151        } iv_gen_private;
 152        sector_t iv_offset;
 153        unsigned int iv_size;
 154
 155        /*
 156         * Duplicated per cpu state. Access through
 157         * per_cpu_ptr() only.
 158         */
 159        struct crypt_cpu __percpu *cpu;
 160
 161        /* ESSIV: struct crypto_cipher *essiv_tfm */
 162        void *iv_private;
 163        struct crypto_ablkcipher **tfms;
 164        unsigned tfms_count;
 165
 166        /*
 167         * Layout of each crypto request:
 168         *
 169         *   struct ablkcipher_request
 170         *      context
 171         *      padding
 172         *   struct dm_crypt_request
 173         *      padding
 174         *   IV
 175         *
 176         * The padding is added so that dm_crypt_request and the IV are
 177         * correctly aligned.
 178         */
 179        unsigned int dmreq_start;
 180
 181        unsigned long flags;
 182        unsigned int key_size;
 183        unsigned int key_parts;      /* independent parts in key buffer */
 184        unsigned int key_extra_size; /* additional keys length */
 185        u8 key[0];
 186};
 187
 188#define MIN_IOS        16
 189#define MIN_POOL_PAGES 32
 190
 191static struct kmem_cache *_crypt_io_pool;
 192
 193static void clone_init(struct dm_crypt_io *, struct bio *);
 194static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 195static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 196
 197static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
 198{
 199        return this_cpu_ptr(cc->cpu);
 200}
 201
 202/*
 203 * Use this to access cipher attributes that are the same for each CPU.
 204 */
 205static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 206{
 207        return cc->tfms[0];
 208}
 209
 210/*
 211 * Different IV generation algorithms:
 212 *
 213 * plain: the initial vector is the 32-bit little-endian version of the sector
 214 *        number, padded with zeros if necessary.
 215 *
 216 * plain64: the initial vector is the 64-bit little-endian version of the sector
 217 *        number, padded with zeros if necessary.
 218 *
 219 * essiv: "encrypted sector|salt initial vector", the sector number is
 220 *        encrypted with the bulk cipher using a salt as key. The salt
 221 *        should be derived from the bulk cipher's key via hashing.
 222 *
 223 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 224 *        (needed for LRW-32-AES and possible other narrow block modes)
 225 *
 226 * null: the initial vector is always zero.  Provides compatibility with
 227 *       obsolete loop_fish2 devices.  Do not use for new devices.
 228 *
 229 * lmk:  Compatible implementation of the block chaining mode used
 230 *       by the Loop-AES block device encryption system
 231 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 232 *       It operates on full 512 byte sectors and uses CBC
 233 *       with an IV derived from the sector number, the data and
 234 *       optionally extra IV seed.
 235 *       This means that after decryption the first block
 236 *       of sector must be tweaked according to decrypted data.
 237 *       Loop-AES can use three encryption schemes:
 238 *         version 1: is plain aes-cbc mode
 239 *         version 2: uses 64 multikey scheme with lmk IV generator
 240 *         version 3: the same as version 2 with additional IV seed
 241 *                   (it uses 65 keys, last key is used as IV seed)
 242 *
 243 * tcw:  Compatible implementation of the block chaining mode used
 244 *       by the TrueCrypt device encryption system (prior to version 4.1).
 245 *       For more info see: http://www.truecrypt.org
 246 *       It operates on full 512 byte sectors and uses CBC
 247 *       with an IV derived from initial key and the sector number.
 248 *       In addition, whitening value is applied on every sector, whitening
 249 *       is calculated from initial key, sector number and mixed using CRC32.
 250 *       Note that this encryption scheme is vulnerable to watermarking attacks
 251 *       and should be used for old compatible containers access only.
 252 *
 253 * plumb: unimplemented, see:
 254 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 255 */
 256
 257static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 258                              struct dm_crypt_request *dmreq)
 259{
 260        memset(iv, 0, cc->iv_size);
 261        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 262
 263        return 0;
 264}
 265
 266static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 267                                struct dm_crypt_request *dmreq)
 268{
 269        memset(iv, 0, cc->iv_size);
 270        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 271
 272        return 0;
 273}
 274
 275/* Initialise ESSIV - compute salt but no local memory allocations */
 276static int crypt_iv_essiv_init(struct crypt_config *cc)
 277{
 278        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 279        struct hash_desc desc;
 280        struct scatterlist sg;
 281        struct crypto_cipher *essiv_tfm;
 282        int err;
 283
 284        sg_init_one(&sg, cc->key, cc->key_size);
 285        desc.tfm = essiv->hash_tfm;
 286        desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 287
 288        err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 289        if (err)
 290                return err;
 291
 292        essiv_tfm = cc->iv_private;
 293
 294        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 295                            crypto_hash_digestsize(essiv->hash_tfm));
 296        if (err)
 297                return err;
 298
 299        return 0;
 300}
 301
 302/* Wipe salt and reset key derived from volume key */
 303static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 304{
 305        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 306        unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 307        struct crypto_cipher *essiv_tfm;
 308        int r, err = 0;
 309
 310        memset(essiv->salt, 0, salt_size);
 311
 312        essiv_tfm = cc->iv_private;
 313        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 314        if (r)
 315                err = r;
 316
 317        return err;
 318}
 319
 320/* Set up per cpu cipher state */
 321static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 322                                             struct dm_target *ti,
 323                                             u8 *salt, unsigned saltsize)
 324{
 325        struct crypto_cipher *essiv_tfm;
 326        int err;
 327
 328        /* Setup the essiv_tfm with the given salt */
 329        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 330        if (IS_ERR(essiv_tfm)) {
 331                ti->error = "Error allocating crypto tfm for ESSIV";
 332                return essiv_tfm;
 333        }
 334
 335        if (crypto_cipher_blocksize(essiv_tfm) !=
 336            crypto_ablkcipher_ivsize(any_tfm(cc))) {
 337                ti->error = "Block size of ESSIV cipher does "
 338                            "not match IV size of block cipher";
 339                crypto_free_cipher(essiv_tfm);
 340                return ERR_PTR(-EINVAL);
 341        }
 342
 343        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 344        if (err) {
 345                ti->error = "Failed to set key for ESSIV cipher";
 346                crypto_free_cipher(essiv_tfm);
 347                return ERR_PTR(err);
 348        }
 349
 350        return essiv_tfm;
 351}
 352
 353static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 354{
 355        struct crypto_cipher *essiv_tfm;
 356        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 357
 358        crypto_free_hash(essiv->hash_tfm);
 359        essiv->hash_tfm = NULL;
 360
 361        kzfree(essiv->salt);
 362        essiv->salt = NULL;
 363
 364        essiv_tfm = cc->iv_private;
 365
 366        if (essiv_tfm)
 367                crypto_free_cipher(essiv_tfm);
 368
 369        cc->iv_private = NULL;
 370}
 371
 372static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 373                              const char *opts)
 374{
 375        struct crypto_cipher *essiv_tfm = NULL;
 376        struct crypto_hash *hash_tfm = NULL;
 377        u8 *salt = NULL;
 378        int err;
 379
 380        if (!opts) {
 381                ti->error = "Digest algorithm missing for ESSIV mode";
 382                return -EINVAL;
 383        }
 384
 385        /* Allocate hash algorithm */
 386        hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 387        if (IS_ERR(hash_tfm)) {
 388                ti->error = "Error initializing ESSIV hash";
 389                err = PTR_ERR(hash_tfm);
 390                goto bad;
 391        }
 392
 393        salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 394        if (!salt) {
 395                ti->error = "Error kmallocing salt storage in ESSIV";
 396                err = -ENOMEM;
 397                goto bad;
 398        }
 399
 400        cc->iv_gen_private.essiv.salt = salt;
 401        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 402
 403        essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 404                                crypto_hash_digestsize(hash_tfm));
 405        if (IS_ERR(essiv_tfm)) {
 406                crypt_iv_essiv_dtr(cc);
 407                return PTR_ERR(essiv_tfm);
 408        }
 409        cc->iv_private = essiv_tfm;
 410
 411        return 0;
 412
 413bad:
 414        if (hash_tfm && !IS_ERR(hash_tfm))
 415                crypto_free_hash(hash_tfm);
 416        kfree(salt);
 417        return err;
 418}
 419
 420static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 421                              struct dm_crypt_request *dmreq)
 422{
 423        struct crypto_cipher *essiv_tfm = cc->iv_private;
 424
 425        memset(iv, 0, cc->iv_size);
 426        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 427        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 428
 429        return 0;
 430}
 431
 432static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 433                              const char *opts)
 434{
 435        unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 436        int log = ilog2(bs);
 437
 438        /* we need to calculate how far we must shift the sector count
 439         * to get the cipher block count, we use this shift in _gen */
 440
 441        if (1 << log != bs) {
 442                ti->error = "cypher blocksize is not a power of 2";
 443                return -EINVAL;
 444        }
 445
 446        if (log > 9) {
 447                ti->error = "cypher blocksize is > 512";
 448                return -EINVAL;
 449        }
 450
 451        cc->iv_gen_private.benbi.shift = 9 - log;
 452
 453        return 0;
 454}
 455
 456static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 457{
 458}
 459
 460static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 461                              struct dm_crypt_request *dmreq)
 462{
 463        __be64 val;
 464
 465        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 466
 467        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 468        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 469
 470        return 0;
 471}
 472
 473static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 474                             struct dm_crypt_request *dmreq)
 475{
 476        memset(iv, 0, cc->iv_size);
 477
 478        return 0;
 479}
 480
 481static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 482{
 483        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 484
 485        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 486                crypto_free_shash(lmk->hash_tfm);
 487        lmk->hash_tfm = NULL;
 488
 489        kzfree(lmk->seed);
 490        lmk->seed = NULL;
 491}
 492
 493static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 494                            const char *opts)
 495{
 496        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 497
 498        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 499        if (IS_ERR(lmk->hash_tfm)) {
 500                ti->error = "Error initializing LMK hash";
 501                return PTR_ERR(lmk->hash_tfm);
 502        }
 503
 504        /* No seed in LMK version 2 */
 505        if (cc->key_parts == cc->tfms_count) {
 506                lmk->seed = NULL;
 507                return 0;
 508        }
 509
 510        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 511        if (!lmk->seed) {
 512                crypt_iv_lmk_dtr(cc);
 513                ti->error = "Error kmallocing seed storage in LMK";
 514                return -ENOMEM;
 515        }
 516
 517        return 0;
 518}
 519
 520static int crypt_iv_lmk_init(struct crypt_config *cc)
 521{
 522        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 523        int subkey_size = cc->key_size / cc->key_parts;
 524
 525        /* LMK seed is on the position of LMK_KEYS + 1 key */
 526        if (lmk->seed)
 527                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 528                       crypto_shash_digestsize(lmk->hash_tfm));
 529
 530        return 0;
 531}
 532
 533static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 534{
 535        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 536
 537        if (lmk->seed)
 538                memset(lmk->seed, 0, LMK_SEED_SIZE);
 539
 540        return 0;
 541}
 542
 543static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 544                            struct dm_crypt_request *dmreq,
 545                            u8 *data)
 546{
 547        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 548        struct {
 549                struct shash_desc desc;
 550                char ctx[crypto_shash_descsize(lmk->hash_tfm)];
 551        } sdesc;
 552        struct md5_state md5state;
 553        __le32 buf[4];
 554        int i, r;
 555
 556        sdesc.desc.tfm = lmk->hash_tfm;
 557        sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 558
 559        r = crypto_shash_init(&sdesc.desc);
 560        if (r)
 561                return r;
 562
 563        if (lmk->seed) {
 564                r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
 565                if (r)
 566                        return r;
 567        }
 568
 569        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 570        r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
 571        if (r)
 572                return r;
 573
 574        /* Sector is cropped to 56 bits here */
 575        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 576        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 577        buf[2] = cpu_to_le32(4024);
 578        buf[3] = 0;
 579        r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
 580        if (r)
 581                return r;
 582
 583        /* No MD5 padding here */
 584        r = crypto_shash_export(&sdesc.desc, &md5state);
 585        if (r)
 586                return r;
 587
 588        for (i = 0; i < MD5_HASH_WORDS; i++)
 589                __cpu_to_le32s(&md5state.hash[i]);
 590        memcpy(iv, &md5state.hash, cc->iv_size);
 591
 592        return 0;
 593}
 594
 595static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 596                            struct dm_crypt_request *dmreq)
 597{
 598        u8 *src;
 599        int r = 0;
 600
 601        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 602                src = kmap_atomic(sg_page(&dmreq->sg_in));
 603                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 604                kunmap_atomic(src);
 605        } else
 606                memset(iv, 0, cc->iv_size);
 607
 608        return r;
 609}
 610
 611static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 612                             struct dm_crypt_request *dmreq)
 613{
 614        u8 *dst;
 615        int r;
 616
 617        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 618                return 0;
 619
 620        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 621        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 622
 623        /* Tweak the first block of plaintext sector */
 624        if (!r)
 625                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 626
 627        kunmap_atomic(dst);
 628        return r;
 629}
 630
 631static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 632{
 633        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 634
 635        kzfree(tcw->iv_seed);
 636        tcw->iv_seed = NULL;
 637        kzfree(tcw->whitening);
 638        tcw->whitening = NULL;
 639
 640        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 641                crypto_free_shash(tcw->crc32_tfm);
 642        tcw->crc32_tfm = NULL;
 643}
 644
 645static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 646                            const char *opts)
 647{
 648        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 649
 650        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 651                ti->error = "Wrong key size for TCW";
 652                return -EINVAL;
 653        }
 654
 655        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 656        if (IS_ERR(tcw->crc32_tfm)) {
 657                ti->error = "Error initializing CRC32 in TCW";
 658                return PTR_ERR(tcw->crc32_tfm);
 659        }
 660
 661        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 662        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 663        if (!tcw->iv_seed || !tcw->whitening) {
 664                crypt_iv_tcw_dtr(cc);
 665                ti->error = "Error allocating seed storage in TCW";
 666                return -ENOMEM;
 667        }
 668
 669        return 0;
 670}
 671
 672static int crypt_iv_tcw_init(struct crypt_config *cc)
 673{
 674        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 675        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 676
 677        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 678        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 679               TCW_WHITENING_SIZE);
 680
 681        return 0;
 682}
 683
 684static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 685{
 686        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 687
 688        memset(tcw->iv_seed, 0, cc->iv_size);
 689        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 690
 691        return 0;
 692}
 693
 694static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 695                                  struct dm_crypt_request *dmreq,
 696                                  u8 *data)
 697{
 698        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 699        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 700        u8 buf[TCW_WHITENING_SIZE];
 701        struct {
 702                struct shash_desc desc;
 703                char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
 704        } sdesc;
 705        int i, r;
 706
 707        /* xor whitening with sector number */
 708        memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 709        crypto_xor(buf, (u8 *)&sector, 8);
 710        crypto_xor(&buf[8], (u8 *)&sector, 8);
 711
 712        /* calculate crc32 for every 32bit part and xor it */
 713        sdesc.desc.tfm = tcw->crc32_tfm;
 714        sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 715        for (i = 0; i < 4; i++) {
 716                r = crypto_shash_init(&sdesc.desc);
 717                if (r)
 718                        goto out;
 719                r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
 720                if (r)
 721                        goto out;
 722                r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
 723                if (r)
 724                        goto out;
 725        }
 726        crypto_xor(&buf[0], &buf[12], 4);
 727        crypto_xor(&buf[4], &buf[8], 4);
 728
 729        /* apply whitening (8 bytes) to whole sector */
 730        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 731                crypto_xor(data + i * 8, buf, 8);
 732out:
 733        memset(buf, 0, sizeof(buf));
 734        return r;
 735}
 736
 737static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 738                            struct dm_crypt_request *dmreq)
 739{
 740        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 741        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 742        u8 *src;
 743        int r = 0;
 744
 745        /* Remove whitening from ciphertext */
 746        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 747                src = kmap_atomic(sg_page(&dmreq->sg_in));
 748                r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 749                kunmap_atomic(src);
 750        }
 751
 752        /* Calculate IV */
 753        memcpy(iv, tcw->iv_seed, cc->iv_size);
 754        crypto_xor(iv, (u8 *)&sector, 8);
 755        if (cc->iv_size > 8)
 756                crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 757
 758        return r;
 759}
 760
 761static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 762                             struct dm_crypt_request *dmreq)
 763{
 764        u8 *dst;
 765        int r;
 766
 767        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 768                return 0;
 769
 770        /* Apply whitening on ciphertext */
 771        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 772        r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 773        kunmap_atomic(dst);
 774
 775        return r;
 776}
 777
 778static struct crypt_iv_operations crypt_iv_plain_ops = {
 779        .generator = crypt_iv_plain_gen
 780};
 781
 782static struct crypt_iv_operations crypt_iv_plain64_ops = {
 783        .generator = crypt_iv_plain64_gen
 784};
 785
 786static struct crypt_iv_operations crypt_iv_essiv_ops = {
 787        .ctr       = crypt_iv_essiv_ctr,
 788        .dtr       = crypt_iv_essiv_dtr,
 789        .init      = crypt_iv_essiv_init,
 790        .wipe      = crypt_iv_essiv_wipe,
 791        .generator = crypt_iv_essiv_gen
 792};
 793
 794static struct crypt_iv_operations crypt_iv_benbi_ops = {
 795        .ctr       = crypt_iv_benbi_ctr,
 796        .dtr       = crypt_iv_benbi_dtr,
 797        .generator = crypt_iv_benbi_gen
 798};
 799
 800static struct crypt_iv_operations crypt_iv_null_ops = {
 801        .generator = crypt_iv_null_gen
 802};
 803
 804static struct crypt_iv_operations crypt_iv_lmk_ops = {
 805        .ctr       = crypt_iv_lmk_ctr,
 806        .dtr       = crypt_iv_lmk_dtr,
 807        .init      = crypt_iv_lmk_init,
 808        .wipe      = crypt_iv_lmk_wipe,
 809        .generator = crypt_iv_lmk_gen,
 810        .post      = crypt_iv_lmk_post
 811};
 812
 813static struct crypt_iv_operations crypt_iv_tcw_ops = {
 814        .ctr       = crypt_iv_tcw_ctr,
 815        .dtr       = crypt_iv_tcw_dtr,
 816        .init      = crypt_iv_tcw_init,
 817        .wipe      = crypt_iv_tcw_wipe,
 818        .generator = crypt_iv_tcw_gen,
 819        .post      = crypt_iv_tcw_post
 820};
 821
 822static void crypt_convert_init(struct crypt_config *cc,
 823                               struct convert_context *ctx,
 824                               struct bio *bio_out, struct bio *bio_in,
 825                               sector_t sector)
 826{
 827        ctx->bio_in = bio_in;
 828        ctx->bio_out = bio_out;
 829        ctx->offset_in = 0;
 830        ctx->offset_out = 0;
 831        ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
 832        ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
 833        ctx->cc_sector = sector + cc->iv_offset;
 834        init_completion(&ctx->restart);
 835}
 836
 837static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 838                                             struct ablkcipher_request *req)
 839{
 840        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 841}
 842
 843static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 844                                               struct dm_crypt_request *dmreq)
 845{
 846        return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 847}
 848
 849static u8 *iv_of_dmreq(struct crypt_config *cc,
 850                       struct dm_crypt_request *dmreq)
 851{
 852        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 853                crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 854}
 855
 856static int crypt_convert_block(struct crypt_config *cc,
 857                               struct convert_context *ctx,
 858                               struct ablkcipher_request *req)
 859{
 860        struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
 861        struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
 862        struct dm_crypt_request *dmreq;
 863        u8 *iv;
 864        int r;
 865
 866        dmreq = dmreq_of_req(cc, req);
 867        iv = iv_of_dmreq(cc, dmreq);
 868
 869        dmreq->iv_sector = ctx->cc_sector;
 870        dmreq->ctx = ctx;
 871        sg_init_table(&dmreq->sg_in, 1);
 872        sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
 873                    bv_in->bv_offset + ctx->offset_in);
 874
 875        sg_init_table(&dmreq->sg_out, 1);
 876        sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
 877                    bv_out->bv_offset + ctx->offset_out);
 878
 879        ctx->offset_in += 1 << SECTOR_SHIFT;
 880        if (ctx->offset_in >= bv_in->bv_len) {
 881                ctx->offset_in = 0;
 882                ctx->idx_in++;
 883        }
 884
 885        ctx->offset_out += 1 << SECTOR_SHIFT;
 886        if (ctx->offset_out >= bv_out->bv_len) {
 887                ctx->offset_out = 0;
 888                ctx->idx_out++;
 889        }
 890
 891        if (cc->iv_gen_ops) {
 892                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 893                if (r < 0)
 894                        return r;
 895        }
 896
 897        ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 898                                     1 << SECTOR_SHIFT, iv);
 899
 900        if (bio_data_dir(ctx->bio_in) == WRITE)
 901                r = crypto_ablkcipher_encrypt(req);
 902        else
 903                r = crypto_ablkcipher_decrypt(req);
 904
 905        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 906                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 907
 908        return r;
 909}
 910
 911static void kcryptd_async_done(struct crypto_async_request *async_req,
 912                               int error);
 913
 914static void crypt_alloc_req(struct crypt_config *cc,
 915                            struct convert_context *ctx)
 916{
 917        struct crypt_cpu *this_cc = this_crypt_config(cc);
 918        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 919
 920        if (!this_cc->req)
 921                this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 922
 923        ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
 924        ablkcipher_request_set_callback(this_cc->req,
 925            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 926            kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
 927}
 928
 929/*
 930 * Encrypt / decrypt data from one bio to another one (can be the same one)
 931 */
 932static int crypt_convert(struct crypt_config *cc,
 933                         struct convert_context *ctx)
 934{
 935        struct crypt_cpu *this_cc = this_crypt_config(cc);
 936        int r;
 937
 938        atomic_set(&ctx->cc_pending, 1);
 939
 940        while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
 941              ctx->idx_out < ctx->bio_out->bi_vcnt) {
 942
 943                crypt_alloc_req(cc, ctx);
 944
 945                atomic_inc(&ctx->cc_pending);
 946
 947                r = crypt_convert_block(cc, ctx, this_cc->req);
 948
 949                switch (r) {
 950                /* async */
 951                case -EBUSY:
 952                        wait_for_completion(&ctx->restart);
 953                        reinit_completion(&ctx->restart);
 954                        /* fall through*/
 955                case -EINPROGRESS:
 956                        this_cc->req = NULL;
 957                        ctx->cc_sector++;
 958                        continue;
 959
 960                /* sync */
 961                case 0:
 962                        atomic_dec(&ctx->cc_pending);
 963                        ctx->cc_sector++;
 964                        cond_resched();
 965                        continue;
 966
 967                /* error */
 968                default:
 969                        atomic_dec(&ctx->cc_pending);
 970                        return r;
 971                }
 972        }
 973
 974        return 0;
 975}
 976
 977/*
 978 * Generate a new unfragmented bio with the given size
 979 * This should never violate the device limitations
 980 * May return a smaller bio when running out of pages, indicated by
 981 * *out_of_pages set to 1.
 982 */
 983static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
 984                                      unsigned *out_of_pages)
 985{
 986        struct crypt_config *cc = io->cc;
 987        struct bio *clone;
 988        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 989        gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
 990        unsigned i, len;
 991        struct page *page;
 992
 993        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
 994        if (!clone)
 995                return NULL;
 996
 997        clone_init(io, clone);
 998        *out_of_pages = 0;
 999
1000        for (i = 0; i < nr_iovecs; i++) {
1001                page = mempool_alloc(cc->page_pool, gfp_mask);
1002                if (!page) {
1003                        *out_of_pages = 1;
1004                        break;
1005                }
1006
1007                /*
1008                 * If additional pages cannot be allocated without waiting,
1009                 * return a partially-allocated bio.  The caller will then try
1010                 * to allocate more bios while submitting this partial bio.
1011                 */
1012                gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
1013
1014                len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
1015
1016                if (!bio_add_page(clone, page, len, 0)) {
1017                        mempool_free(page, cc->page_pool);
1018                        break;
1019                }
1020
1021                size -= len;
1022        }
1023
1024        if (!clone->bi_size) {
1025                bio_put(clone);
1026                return NULL;
1027        }
1028
1029        return clone;
1030}
1031
1032static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1033{
1034        unsigned int i;
1035        struct bio_vec *bv;
1036
1037        bio_for_each_segment_all(bv, clone, i) {
1038                BUG_ON(!bv->bv_page);
1039                mempool_free(bv->bv_page, cc->page_pool);
1040                bv->bv_page = NULL;
1041        }
1042}
1043
1044static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
1045                                          struct bio *bio, sector_t sector)
1046{
1047        struct dm_crypt_io *io;
1048
1049        io = mempool_alloc(cc->io_pool, GFP_NOIO);
1050        io->cc = cc;
1051        io->base_bio = bio;
1052        io->sector = sector;
1053        io->error = 0;
1054        io->base_io = NULL;
1055        atomic_set(&io->io_pending, 0);
1056
1057        return io;
1058}
1059
1060static void crypt_inc_pending(struct dm_crypt_io *io)
1061{
1062        atomic_inc(&io->io_pending);
1063}
1064
1065/*
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1068 * If base_io is set, wait for the last fragment to complete.
1069 */
1070static void crypt_dec_pending(struct dm_crypt_io *io)
1071{
1072        struct crypt_config *cc = io->cc;
1073        struct bio *base_bio = io->base_bio;
1074        struct dm_crypt_io *base_io = io->base_io;
1075        int error = io->error;
1076
1077        if (!atomic_dec_and_test(&io->io_pending))
1078                return;
1079
1080        mempool_free(io, cc->io_pool);
1081
1082        if (likely(!base_io))
1083                bio_endio(base_bio, error);
1084        else {
1085                if (error && !base_io->error)
1086                        base_io->error = error;
1087                crypt_dec_pending(base_io);
1088        }
1089}
1090
1091/*
1092 * kcryptd/kcryptd_io:
1093 *
1094 * Needed because it would be very unwise to do decryption in an
1095 * interrupt context.
1096 *
1097 * kcryptd performs the actual encryption or decryption.
1098 *
1099 * kcryptd_io performs the IO submission.
1100 *
1101 * They must be separated as otherwise the final stages could be
1102 * starved by new requests which can block in the first stages due
1103 * to memory allocation.
1104 *
1105 * The work is done per CPU global for all dm-crypt instances.
1106 * They should not depend on each other and do not block.
1107 */
1108static void crypt_endio(struct bio *clone, int error)
1109{
1110        struct dm_crypt_io *io = clone->bi_private;
1111        struct crypt_config *cc = io->cc;
1112        unsigned rw = bio_data_dir(clone);
1113
1114        if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1115                error = -EIO;
1116
1117        /*
1118         * free the processed pages
1119         */
1120        if (rw == WRITE)
1121                crypt_free_buffer_pages(cc, clone);
1122
1123        bio_put(clone);
1124
1125        if (rw == READ && !error) {
1126                kcryptd_queue_crypt(io);
1127                return;
1128        }
1129
1130        if (unlikely(error))
1131                io->error = error;
1132
1133        crypt_dec_pending(io);
1134}
1135
1136static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1137{
1138        struct crypt_config *cc = io->cc;
1139
1140        clone->bi_private = io;
1141        clone->bi_end_io  = crypt_endio;
1142        clone->bi_bdev    = cc->dev->bdev;
1143        clone->bi_rw      = io->base_bio->bi_rw;
1144}
1145
1146static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1147{
1148        struct crypt_config *cc = io->cc;
1149        struct bio *base_bio = io->base_bio;
1150        struct bio *clone;
1151
1152        /*
1153         * The block layer might modify the bvec array, so always
1154         * copy the required bvecs because we need the original
1155         * one in order to decrypt the whole bio data *afterwards*.
1156         */
1157        clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1158        if (!clone)
1159                return 1;
1160
1161        crypt_inc_pending(io);
1162
1163        clone_init(io, clone);
1164        clone->bi_sector = cc->start + io->sector;
1165
1166        generic_make_request(clone);
1167        return 0;
1168}
1169
1170static void kcryptd_io_write(struct dm_crypt_io *io)
1171{
1172        struct bio *clone = io->ctx.bio_out;
1173        generic_make_request(clone);
1174}
1175
1176static void kcryptd_io(struct work_struct *work)
1177{
1178        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1179
1180        if (bio_data_dir(io->base_bio) == READ) {
1181                crypt_inc_pending(io);
1182                if (kcryptd_io_read(io, GFP_NOIO))
1183                        io->error = -ENOMEM;
1184                crypt_dec_pending(io);
1185        } else
1186                kcryptd_io_write(io);
1187}
1188
1189static void kcryptd_queue_io(struct dm_crypt_io *io)
1190{
1191        struct crypt_config *cc = io->cc;
1192
1193        INIT_WORK(&io->work, kcryptd_io);
1194        queue_work(cc->io_queue, &io->work);
1195}
1196
1197static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1198{
1199        struct bio *clone = io->ctx.bio_out;
1200        struct crypt_config *cc = io->cc;
1201
1202        if (unlikely(io->error < 0)) {
1203                crypt_free_buffer_pages(cc, clone);
1204                bio_put(clone);
1205                crypt_dec_pending(io);
1206                return;
1207        }
1208
1209        /* crypt_convert should have filled the clone bio */
1210        BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1211
1212        clone->bi_sector = cc->start + io->sector;
1213
1214        if (async)
1215                kcryptd_queue_io(io);
1216        else
1217                generic_make_request(clone);
1218}
1219
1220static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1221{
1222        struct crypt_config *cc = io->cc;
1223        struct bio *clone;
1224        struct dm_crypt_io *new_io;
1225        int crypt_finished;
1226        unsigned out_of_pages = 0;
1227        unsigned remaining = io->base_bio->bi_size;
1228        sector_t sector = io->sector;
1229        int r;
1230
1231        /*
1232         * Prevent io from disappearing until this function completes.
1233         */
1234        crypt_inc_pending(io);
1235        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1236
1237        /*
1238         * The allocated buffers can be smaller than the whole bio,
1239         * so repeat the whole process until all the data can be handled.
1240         */
1241        while (remaining) {
1242                clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1243                if (unlikely(!clone)) {
1244                        io->error = -ENOMEM;
1245                        break;
1246                }
1247
1248                io->ctx.bio_out = clone;
1249                io->ctx.idx_out = 0;
1250
1251                remaining -= clone->bi_size;
1252                sector += bio_sectors(clone);
1253
1254                crypt_inc_pending(io);
1255
1256                r = crypt_convert(cc, &io->ctx);
1257                if (r < 0)
1258                        io->error = -EIO;
1259
1260                crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1261
1262                /* Encryption was already finished, submit io now */
1263                if (crypt_finished) {
1264                        kcryptd_crypt_write_io_submit(io, 0);
1265
1266                        /*
1267                         * If there was an error, do not try next fragments.
1268                         * For async, error is processed in async handler.
1269                         */
1270                        if (unlikely(r < 0))
1271                                break;
1272
1273                        io->sector = sector;
1274                }
1275
1276                /*
1277                 * Out of memory -> run queues
1278                 * But don't wait if split was due to the io size restriction
1279                 */
1280                if (unlikely(out_of_pages))
1281                        congestion_wait(BLK_RW_ASYNC, HZ/100);
1282
1283                /*
1284                 * With async crypto it is unsafe to share the crypto context
1285                 * between fragments, so switch to a new dm_crypt_io structure.
1286                 */
1287                if (unlikely(!crypt_finished && remaining)) {
1288                        new_io = crypt_io_alloc(io->cc, io->base_bio,
1289                                                sector);
1290                        crypt_inc_pending(new_io);
1291                        crypt_convert_init(cc, &new_io->ctx, NULL,
1292                                           io->base_bio, sector);
1293                        new_io->ctx.idx_in = io->ctx.idx_in;
1294                        new_io->ctx.offset_in = io->ctx.offset_in;
1295
1296                        /*
1297                         * Fragments after the first use the base_io
1298                         * pending count.
1299                         */
1300                        if (!io->base_io)
1301                                new_io->base_io = io;
1302                        else {
1303                                new_io->base_io = io->base_io;
1304                                crypt_inc_pending(io->base_io);
1305                                crypt_dec_pending(io);
1306                        }
1307
1308                        io = new_io;
1309                }
1310        }
1311
1312        crypt_dec_pending(io);
1313}
1314
1315static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1316{
1317        crypt_dec_pending(io);
1318}
1319
1320static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1321{
1322        struct crypt_config *cc = io->cc;
1323        int r = 0;
1324
1325        crypt_inc_pending(io);
1326
1327        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1328                           io->sector);
1329
1330        r = crypt_convert(cc, &io->ctx);
1331        if (r < 0)
1332                io->error = -EIO;
1333
1334        if (atomic_dec_and_test(&io->ctx.cc_pending))
1335                kcryptd_crypt_read_done(io);
1336
1337        crypt_dec_pending(io);
1338}
1339
1340static void kcryptd_async_done(struct crypto_async_request *async_req,
1341                               int error)
1342{
1343        struct dm_crypt_request *dmreq = async_req->data;
1344        struct convert_context *ctx = dmreq->ctx;
1345        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1346        struct crypt_config *cc = io->cc;
1347
1348        if (error == -EINPROGRESS) {
1349                complete(&ctx->restart);
1350                return;
1351        }
1352
1353        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1354                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1355
1356        if (error < 0)
1357                io->error = -EIO;
1358
1359        mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1360
1361        if (!atomic_dec_and_test(&ctx->cc_pending))
1362                return;
1363
1364        if (bio_data_dir(io->base_bio) == READ)
1365                kcryptd_crypt_read_done(io);
1366        else
1367                kcryptd_crypt_write_io_submit(io, 1);
1368}
1369
1370static void kcryptd_crypt(struct work_struct *work)
1371{
1372        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1373
1374        if (bio_data_dir(io->base_bio) == READ)
1375                kcryptd_crypt_read_convert(io);
1376        else
1377                kcryptd_crypt_write_convert(io);
1378}
1379
1380static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1381{
1382        struct crypt_config *cc = io->cc;
1383
1384        INIT_WORK(&io->work, kcryptd_crypt);
1385        queue_work(cc->crypt_queue, &io->work);
1386}
1387
1388/*
1389 * Decode key from its hex representation
1390 */
1391static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1392{
1393        char buffer[3];
1394        unsigned int i;
1395
1396        buffer[2] = '\0';
1397
1398        for (i = 0; i < size; i++) {
1399                buffer[0] = *hex++;
1400                buffer[1] = *hex++;
1401
1402                if (kstrtou8(buffer, 16, &key[i]))
1403                        return -EINVAL;
1404        }
1405
1406        if (*hex != '\0')
1407                return -EINVAL;
1408
1409        return 0;
1410}
1411
1412static void crypt_free_tfms(struct crypt_config *cc)
1413{
1414        unsigned i;
1415
1416        if (!cc->tfms)
1417                return;
1418
1419        for (i = 0; i < cc->tfms_count; i++)
1420                if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1421                        crypto_free_ablkcipher(cc->tfms[i]);
1422                        cc->tfms[i] = NULL;
1423                }
1424
1425        kfree(cc->tfms);
1426        cc->tfms = NULL;
1427}
1428
1429static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1430{
1431        unsigned i;
1432        int err;
1433
1434        cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1435                           GFP_KERNEL);
1436        if (!cc->tfms)
1437                return -ENOMEM;
1438
1439        for (i = 0; i < cc->tfms_count; i++) {
1440                cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1441                if (IS_ERR(cc->tfms[i])) {
1442                        err = PTR_ERR(cc->tfms[i]);
1443                        crypt_free_tfms(cc);
1444                        return err;
1445                }
1446        }
1447
1448        return 0;
1449}
1450
1451static int crypt_setkey_allcpus(struct crypt_config *cc)
1452{
1453        unsigned subkey_size;
1454        int err = 0, i, r;
1455
1456        /* Ignore extra keys (which are used for IV etc) */
1457        subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1458
1459        for (i = 0; i < cc->tfms_count; i++) {
1460                r = crypto_ablkcipher_setkey(cc->tfms[i],
1461                                             cc->key + (i * subkey_size),
1462                                             subkey_size);
1463                if (r)
1464                        err = r;
1465        }
1466
1467        return err;
1468}
1469
1470static int crypt_set_key(struct crypt_config *cc, char *key)
1471{
1472        int r = -EINVAL;
1473        int key_string_len = strlen(key);
1474
1475        /* The key size may not be changed. */
1476        if (cc->key_size != (key_string_len >> 1))
1477                goto out;
1478
1479        /* Hyphen (which gives a key_size of zero) means there is no key. */
1480        if (!cc->key_size && strcmp(key, "-"))
1481                goto out;
1482
1483        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1484                goto out;
1485
1486        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1487
1488        r = crypt_setkey_allcpus(cc);
1489
1490out:
1491        /* Hex key string not needed after here, so wipe it. */
1492        memset(key, '0', key_string_len);
1493
1494        return r;
1495}
1496
1497static int crypt_wipe_key(struct crypt_config *cc)
1498{
1499        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1500        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1501
1502        return crypt_setkey_allcpus(cc);
1503}
1504
1505static void crypt_dtr(struct dm_target *ti)
1506{
1507        struct crypt_config *cc = ti->private;
1508        struct crypt_cpu *cpu_cc;
1509        int cpu;
1510
1511        ti->private = NULL;
1512
1513        if (!cc)
1514                return;
1515
1516        if (cc->io_queue)
1517                destroy_workqueue(cc->io_queue);
1518        if (cc->crypt_queue)
1519                destroy_workqueue(cc->crypt_queue);
1520
1521        if (cc->cpu)
1522                for_each_possible_cpu(cpu) {
1523                        cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1524                        if (cpu_cc->req)
1525                                mempool_free(cpu_cc->req, cc->req_pool);
1526                }
1527
1528        crypt_free_tfms(cc);
1529
1530        if (cc->bs)
1531                bioset_free(cc->bs);
1532
1533        if (cc->page_pool)
1534                mempool_destroy(cc->page_pool);
1535        if (cc->req_pool)
1536                mempool_destroy(cc->req_pool);
1537        if (cc->io_pool)
1538                mempool_destroy(cc->io_pool);
1539
1540        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1541                cc->iv_gen_ops->dtr(cc);
1542
1543        if (cc->dev)
1544                dm_put_device(ti, cc->dev);
1545
1546        if (cc->cpu)
1547                free_percpu(cc->cpu);
1548
1549        kzfree(cc->cipher);
1550        kzfree(cc->cipher_string);
1551
1552        /* Must zero key material before freeing */
1553        kzfree(cc);
1554}
1555
1556static int crypt_ctr_cipher(struct dm_target *ti,
1557                            char *cipher_in, char *key)
1558{
1559        struct crypt_config *cc = ti->private;
1560        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1561        char *cipher_api = NULL;
1562        int ret = -EINVAL;
1563        char dummy;
1564
1565        /* Convert to crypto api definition? */
1566        if (strchr(cipher_in, '(')) {
1567                ti->error = "Bad cipher specification";
1568                return -EINVAL;
1569        }
1570
1571        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1572        if (!cc->cipher_string)
1573                goto bad_mem;
1574
1575        /*
1576         * Legacy dm-crypt cipher specification
1577         * cipher[:keycount]-mode-iv:ivopts
1578         */
1579        tmp = cipher_in;
1580        keycount = strsep(&tmp, "-");
1581        cipher = strsep(&keycount, ":");
1582
1583        if (!keycount)
1584                cc->tfms_count = 1;
1585        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1586                 !is_power_of_2(cc->tfms_count)) {
1587                ti->error = "Bad cipher key count specification";
1588                return -EINVAL;
1589        }
1590        cc->key_parts = cc->tfms_count;
1591        cc->key_extra_size = 0;
1592
1593        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1594        if (!cc->cipher)
1595                goto bad_mem;
1596
1597        chainmode = strsep(&tmp, "-");
1598        ivopts = strsep(&tmp, "-");
1599        ivmode = strsep(&ivopts, ":");
1600
1601        if (tmp)
1602                DMWARN("Ignoring unexpected additional cipher options");
1603
1604        cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1605                                 __alignof__(struct crypt_cpu));
1606        if (!cc->cpu) {
1607                ti->error = "Cannot allocate per cpu state";
1608                goto bad_mem;
1609        }
1610
1611        /*
1612         * For compatibility with the original dm-crypt mapping format, if
1613         * only the cipher name is supplied, use cbc-plain.
1614         */
1615        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1616                chainmode = "cbc";
1617                ivmode = "plain";
1618        }
1619
1620        if (strcmp(chainmode, "ecb") && !ivmode) {
1621                ti->error = "IV mechanism required";
1622                return -EINVAL;
1623        }
1624
1625        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1626        if (!cipher_api)
1627                goto bad_mem;
1628
1629        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1630                       "%s(%s)", chainmode, cipher);
1631        if (ret < 0) {
1632                kfree(cipher_api);
1633                goto bad_mem;
1634        }
1635
1636        /* Allocate cipher */
1637        ret = crypt_alloc_tfms(cc, cipher_api);
1638        if (ret < 0) {
1639                ti->error = "Error allocating crypto tfm";
1640                goto bad;
1641        }
1642
1643        /* Initialize IV */
1644        cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1645        if (cc->iv_size)
1646                /* at least a 64 bit sector number should fit in our buffer */
1647                cc->iv_size = max(cc->iv_size,
1648                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1649        else if (ivmode) {
1650                DMWARN("Selected cipher does not support IVs");
1651                ivmode = NULL;
1652        }
1653
1654        /* Choose ivmode, see comments at iv code. */
1655        if (ivmode == NULL)
1656                cc->iv_gen_ops = NULL;
1657        else if (strcmp(ivmode, "plain") == 0)
1658                cc->iv_gen_ops = &crypt_iv_plain_ops;
1659        else if (strcmp(ivmode, "plain64") == 0)
1660                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1661        else if (strcmp(ivmode, "essiv") == 0)
1662                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1663        else if (strcmp(ivmode, "benbi") == 0)
1664                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1665        else if (strcmp(ivmode, "null") == 0)
1666                cc->iv_gen_ops = &crypt_iv_null_ops;
1667        else if (strcmp(ivmode, "lmk") == 0) {
1668                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1669                /*
1670                 * Version 2 and 3 is recognised according
1671                 * to length of provided multi-key string.
1672                 * If present (version 3), last key is used as IV seed.
1673                 * All keys (including IV seed) are always the same size.
1674                 */
1675                if (cc->key_size % cc->key_parts) {
1676                        cc->key_parts++;
1677                        cc->key_extra_size = cc->key_size / cc->key_parts;
1678                }
1679        } else if (strcmp(ivmode, "tcw") == 0) {
1680                cc->iv_gen_ops = &crypt_iv_tcw_ops;
1681                cc->key_parts += 2; /* IV + whitening */
1682                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1683        } else {
1684                ret = -EINVAL;
1685                ti->error = "Invalid IV mode";
1686                goto bad;
1687        }
1688
1689        /* Initialize and set key */
1690        ret = crypt_set_key(cc, key);
1691        if (ret < 0) {
1692                ti->error = "Error decoding and setting key";
1693                goto bad;
1694        }
1695
1696        /* Allocate IV */
1697        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1698                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1699                if (ret < 0) {
1700                        ti->error = "Error creating IV";
1701                        goto bad;
1702                }
1703        }
1704
1705        /* Initialize IV (set keys for ESSIV etc) */
1706        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1707                ret = cc->iv_gen_ops->init(cc);
1708                if (ret < 0) {
1709                        ti->error = "Error initialising IV";
1710                        goto bad;
1711                }
1712        }
1713
1714        ret = 0;
1715bad:
1716        kfree(cipher_api);
1717        return ret;
1718
1719bad_mem:
1720        ti->error = "Cannot allocate cipher strings";
1721        return -ENOMEM;
1722}
1723
1724/*
1725 * Construct an encryption mapping:
1726 * <cipher> <key> <iv_offset> <dev_path> <start>
1727 */
1728static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1729{
1730        struct crypt_config *cc;
1731        unsigned int key_size, opt_params;
1732        unsigned long long tmpll;
1733        int ret;
1734        struct dm_arg_set as;
1735        const char *opt_string;
1736        char dummy;
1737
1738        static struct dm_arg _args[] = {
1739                {0, 1, "Invalid number of feature args"},
1740        };
1741
1742        if (argc < 5) {
1743                ti->error = "Not enough arguments";
1744                return -EINVAL;
1745        }
1746
1747        key_size = strlen(argv[1]) >> 1;
1748
1749        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1750        if (!cc) {
1751                ti->error = "Cannot allocate encryption context";
1752                return -ENOMEM;
1753        }
1754        cc->key_size = key_size;
1755
1756        ti->private = cc;
1757        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1758        if (ret < 0)
1759                goto bad;
1760
1761        ret = -ENOMEM;
1762        cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1763        if (!cc->io_pool) {
1764                ti->error = "Cannot allocate crypt io mempool";
1765                goto bad;
1766        }
1767
1768        cc->dmreq_start = sizeof(struct ablkcipher_request);
1769        cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1770        cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1771        cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1772                           ~(crypto_tfm_ctx_alignment() - 1);
1773
1774        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1775                        sizeof(struct dm_crypt_request) + cc->iv_size);
1776        if (!cc->req_pool) {
1777                ti->error = "Cannot allocate crypt request mempool";
1778                goto bad;
1779        }
1780
1781        cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1782        if (!cc->page_pool) {
1783                ti->error = "Cannot allocate page mempool";
1784                goto bad;
1785        }
1786
1787        cc->bs = bioset_create(MIN_IOS, 0);
1788        if (!cc->bs) {
1789                ti->error = "Cannot allocate crypt bioset";
1790                goto bad;
1791        }
1792
1793        ret = -EINVAL;
1794        if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1795                ti->error = "Invalid iv_offset sector";
1796                goto bad;
1797        }
1798        cc->iv_offset = tmpll;
1799
1800        if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1801                ti->error = "Device lookup failed";
1802                goto bad;
1803        }
1804
1805        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1806                ti->error = "Invalid device sector";
1807                goto bad;
1808        }
1809        cc->start = tmpll;
1810
1811        argv += 5;
1812        argc -= 5;
1813
1814        /* Optional parameters */
1815        if (argc) {
1816                as.argc = argc;
1817                as.argv = argv;
1818
1819                ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1820                if (ret)
1821                        goto bad;
1822
1823                opt_string = dm_shift_arg(&as);
1824
1825                if (opt_params == 1 && opt_string &&
1826                    !strcasecmp(opt_string, "allow_discards"))
1827                        ti->num_discard_bios = 1;
1828                else if (opt_params) {
1829                        ret = -EINVAL;
1830                        ti->error = "Invalid feature arguments";
1831                        goto bad;
1832                }
1833        }
1834
1835        ret = -ENOMEM;
1836        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1837        if (!cc->io_queue) {
1838                ti->error = "Couldn't create kcryptd io queue";
1839                goto bad;
1840        }
1841
1842        cc->crypt_queue = alloc_workqueue("kcryptd",
1843                                          WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1844        if (!cc->crypt_queue) {
1845                ti->error = "Couldn't create kcryptd queue";
1846                goto bad;
1847        }
1848
1849        ti->num_flush_bios = 1;
1850        ti->discard_zeroes_data_unsupported = true;
1851
1852        return 0;
1853
1854bad:
1855        crypt_dtr(ti);
1856        return ret;
1857}
1858
1859static int crypt_map(struct dm_target *ti, struct bio *bio)
1860{
1861        struct dm_crypt_io *io;
1862        struct crypt_config *cc = ti->private;
1863
1864        /*
1865         * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1866         * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1867         * - for REQ_DISCARD caller must use flush if IO ordering matters
1868         */
1869        if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1870                bio->bi_bdev = cc->dev->bdev;
1871                if (bio_sectors(bio))
1872                        bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1873                return DM_MAPIO_REMAPPED;
1874        }
1875
1876        io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_sector));
1877
1878        if (bio_data_dir(io->base_bio) == READ) {
1879                if (kcryptd_io_read(io, GFP_NOWAIT))
1880                        kcryptd_queue_io(io);
1881        } else
1882                kcryptd_queue_crypt(io);
1883
1884        return DM_MAPIO_SUBMITTED;
1885}
1886
1887static void crypt_status(struct dm_target *ti, status_type_t type,
1888                         unsigned status_flags, char *result, unsigned maxlen)
1889{
1890        struct crypt_config *cc = ti->private;
1891        unsigned i, sz = 0;
1892
1893        switch (type) {
1894        case STATUSTYPE_INFO:
1895                result[0] = '\0';
1896                break;
1897
1898        case STATUSTYPE_TABLE:
1899                DMEMIT("%s ", cc->cipher_string);
1900
1901                if (cc->key_size > 0)
1902                        for (i = 0; i < cc->key_size; i++)
1903                                DMEMIT("%02x", cc->key[i]);
1904                else
1905                        DMEMIT("-");
1906
1907                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1908                                cc->dev->name, (unsigned long long)cc->start);
1909
1910                if (ti->num_discard_bios)
1911                        DMEMIT(" 1 allow_discards");
1912
1913                break;
1914        }
1915}
1916
1917static void crypt_postsuspend(struct dm_target *ti)
1918{
1919        struct crypt_config *cc = ti->private;
1920
1921        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1922}
1923
1924static int crypt_preresume(struct dm_target *ti)
1925{
1926        struct crypt_config *cc = ti->private;
1927
1928        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1929                DMERR("aborting resume - crypt key is not set.");
1930                return -EAGAIN;
1931        }
1932
1933        return 0;
1934}
1935
1936static void crypt_resume(struct dm_target *ti)
1937{
1938        struct crypt_config *cc = ti->private;
1939
1940        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1941}
1942
1943/* Message interface
1944 *      key set <key>
1945 *      key wipe
1946 */
1947static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1948{
1949        struct crypt_config *cc = ti->private;
1950        int ret = -EINVAL;
1951
1952        if (argc < 2)
1953                goto error;
1954
1955        if (!strcasecmp(argv[0], "key")) {
1956                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1957                        DMWARN("not suspended during key manipulation.");
1958                        return -EINVAL;
1959                }
1960                if (argc == 3 && !strcasecmp(argv[1], "set")) {
1961                        ret = crypt_set_key(cc, argv[2]);
1962                        if (ret)
1963                                return ret;
1964                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1965                                ret = cc->iv_gen_ops->init(cc);
1966                        return ret;
1967                }
1968                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1969                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1970                                ret = cc->iv_gen_ops->wipe(cc);
1971                                if (ret)
1972                                        return ret;
1973                        }
1974                        return crypt_wipe_key(cc);
1975                }
1976        }
1977
1978error:
1979        DMWARN("unrecognised message received.");
1980        return -EINVAL;
1981}
1982
1983static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1984                       struct bio_vec *biovec, int max_size)
1985{
1986        struct crypt_config *cc = ti->private;
1987        struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1988
1989        if (!q->merge_bvec_fn)
1990                return max_size;
1991
1992        bvm->bi_bdev = cc->dev->bdev;
1993        bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1994
1995        return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1996}
1997
1998static int crypt_iterate_devices(struct dm_target *ti,
1999                                 iterate_devices_callout_fn fn, void *data)
2000{
2001        struct crypt_config *cc = ti->private;
2002
2003        return fn(ti, cc->dev, cc->start, ti->len, data);
2004}
2005
2006static struct target_type crypt_target = {
2007        .name   = "crypt",
2008        .version = {1, 13, 0},
2009        .module = THIS_MODULE,
2010        .ctr    = crypt_ctr,
2011        .dtr    = crypt_dtr,
2012        .map    = crypt_map,
2013        .status = crypt_status,
2014        .postsuspend = crypt_postsuspend,
2015        .preresume = crypt_preresume,
2016        .resume = crypt_resume,
2017        .message = crypt_message,
2018        .merge  = crypt_merge,
2019        .iterate_devices = crypt_iterate_devices,
2020};
2021
2022static int __init dm_crypt_init(void)
2023{
2024        int r;
2025
2026        _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
2027        if (!_crypt_io_pool)
2028                return -ENOMEM;
2029
2030        r = dm_register_target(&crypt_target);
2031        if (r < 0) {
2032                DMERR("register failed %d", r);
2033                kmem_cache_destroy(_crypt_io_pool);
2034        }
2035
2036        return r;
2037}
2038
2039static void __exit dm_crypt_exit(void)
2040{
2041        dm_unregister_target(&crypt_target);
2042        kmem_cache_destroy(_crypt_io_pool);
2043}
2044
2045module_init(dm_crypt_init);
2046module_exit(dm_crypt_exit);
2047
2048MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2049MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2050MODULE_LICENSE("GPL");
2051