linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70                          sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75        struct pool_info *pi = data;
  76        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78        /* allocate a r1bio with room for raid_disks entries in the bios array */
  79        return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84        kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  94
  95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97        struct pool_info *pi = data;
  98        struct r1bio *r1_bio;
  99        struct bio *bio;
 100        int i, j;
 101
 102        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 103        if (!r1_bio)
 104                return NULL;
 105
 106        /*
 107         * Allocate bios : 1 for reading, n-1 for writing
 108         */
 109        for (j = pi->raid_disks ; j-- ; ) {
 110                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 111                if (!bio)
 112                        goto out_free_bio;
 113                r1_bio->bios[j] = bio;
 114        }
 115        /*
 116         * Allocate RESYNC_PAGES data pages and attach them to
 117         * the first bio.
 118         * If this is a user-requested check/repair, allocate
 119         * RESYNC_PAGES for each bio.
 120         */
 121        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 122                j = pi->raid_disks;
 123        else
 124                j = 1;
 125        while(j--) {
 126                bio = r1_bio->bios[j];
 127                bio->bi_vcnt = RESYNC_PAGES;
 128
 129                if (bio_alloc_pages(bio, gfp_flags))
 130                        goto out_free_bio;
 131        }
 132        /* If not user-requests, copy the page pointers to all bios */
 133        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 134                for (i=0; i<RESYNC_PAGES ; i++)
 135                        for (j=1; j<pi->raid_disks; j++)
 136                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 137                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 138        }
 139
 140        r1_bio->master_bio = NULL;
 141
 142        return r1_bio;
 143
 144out_free_bio:
 145        while (++j < pi->raid_disks)
 146                bio_put(r1_bio->bios[j]);
 147        r1bio_pool_free(r1_bio, data);
 148        return NULL;
 149}
 150
 151static void r1buf_pool_free(void *__r1_bio, void *data)
 152{
 153        struct pool_info *pi = data;
 154        int i,j;
 155        struct r1bio *r1bio = __r1_bio;
 156
 157        for (i = 0; i < RESYNC_PAGES; i++)
 158                for (j = pi->raid_disks; j-- ;) {
 159                        if (j == 0 ||
 160                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 161                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 162                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 163                }
 164        for (i=0 ; i < pi->raid_disks; i++)
 165                bio_put(r1bio->bios[i]);
 166
 167        r1bio_pool_free(r1bio, data);
 168}
 169
 170static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 171{
 172        int i;
 173
 174        for (i = 0; i < conf->raid_disks * 2; i++) {
 175                struct bio **bio = r1_bio->bios + i;
 176                if (!BIO_SPECIAL(*bio))
 177                        bio_put(*bio);
 178                *bio = NULL;
 179        }
 180}
 181
 182static void free_r1bio(struct r1bio *r1_bio)
 183{
 184        struct r1conf *conf = r1_bio->mddev->private;
 185
 186        put_all_bios(conf, r1_bio);
 187        mempool_free(r1_bio, conf->r1bio_pool);
 188}
 189
 190static void put_buf(struct r1bio *r1_bio)
 191{
 192        struct r1conf *conf = r1_bio->mddev->private;
 193        int i;
 194
 195        for (i = 0; i < conf->raid_disks * 2; i++) {
 196                struct bio *bio = r1_bio->bios[i];
 197                if (bio->bi_end_io)
 198                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 199        }
 200
 201        mempool_free(r1_bio, conf->r1buf_pool);
 202
 203        lower_barrier(conf);
 204}
 205
 206static void reschedule_retry(struct r1bio *r1_bio)
 207{
 208        unsigned long flags;
 209        struct mddev *mddev = r1_bio->mddev;
 210        struct r1conf *conf = mddev->private;
 211
 212        spin_lock_irqsave(&conf->device_lock, flags);
 213        list_add(&r1_bio->retry_list, &conf->retry_list);
 214        conf->nr_queued ++;
 215        spin_unlock_irqrestore(&conf->device_lock, flags);
 216
 217        wake_up(&conf->wait_barrier);
 218        md_wakeup_thread(mddev->thread);
 219}
 220
 221/*
 222 * raid_end_bio_io() is called when we have finished servicing a mirrored
 223 * operation and are ready to return a success/failure code to the buffer
 224 * cache layer.
 225 */
 226static void call_bio_endio(struct r1bio *r1_bio)
 227{
 228        struct bio *bio = r1_bio->master_bio;
 229        int done;
 230        struct r1conf *conf = r1_bio->mddev->private;
 231        sector_t start_next_window = r1_bio->start_next_window;
 232        sector_t bi_sector = bio->bi_sector;
 233
 234        if (bio->bi_phys_segments) {
 235                unsigned long flags;
 236                spin_lock_irqsave(&conf->device_lock, flags);
 237                bio->bi_phys_segments--;
 238                done = (bio->bi_phys_segments == 0);
 239                spin_unlock_irqrestore(&conf->device_lock, flags);
 240                /*
 241                 * make_request() might be waiting for
 242                 * bi_phys_segments to decrease
 243                 */
 244                wake_up(&conf->wait_barrier);
 245        } else
 246                done = 1;
 247
 248        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 249                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 250        if (done) {
 251                bio_endio(bio, 0);
 252                /*
 253                 * Wake up any possible resync thread that waits for the device
 254                 * to go idle.
 255                 */
 256                allow_barrier(conf, start_next_window, bi_sector);
 257        }
 258}
 259
 260static void raid_end_bio_io(struct r1bio *r1_bio)
 261{
 262        struct bio *bio = r1_bio->master_bio;
 263
 264        /* if nobody has done the final endio yet, do it now */
 265        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 266                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 267                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 268                         (unsigned long long) bio->bi_sector,
 269                         (unsigned long long) bio->bi_sector +
 270                         bio_sectors(bio) - 1);
 271
 272                call_bio_endio(r1_bio);
 273        }
 274        free_r1bio(r1_bio);
 275}
 276
 277/*
 278 * Update disk head position estimator based on IRQ completion info.
 279 */
 280static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 281{
 282        struct r1conf *conf = r1_bio->mddev->private;
 283
 284        conf->mirrors[disk].head_position =
 285                r1_bio->sector + (r1_bio->sectors);
 286}
 287
 288/*
 289 * Find the disk number which triggered given bio
 290 */
 291static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 292{
 293        int mirror;
 294        struct r1conf *conf = r1_bio->mddev->private;
 295        int raid_disks = conf->raid_disks;
 296
 297        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 298                if (r1_bio->bios[mirror] == bio)
 299                        break;
 300
 301        BUG_ON(mirror == raid_disks * 2);
 302        update_head_pos(mirror, r1_bio);
 303
 304        return mirror;
 305}
 306
 307static void raid1_end_read_request(struct bio *bio, int error)
 308{
 309        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 310        struct r1bio *r1_bio = bio->bi_private;
 311        int mirror;
 312        struct r1conf *conf = r1_bio->mddev->private;
 313
 314        mirror = r1_bio->read_disk;
 315        /*
 316         * this branch is our 'one mirror IO has finished' event handler:
 317         */
 318        update_head_pos(mirror, r1_bio);
 319
 320        if (uptodate)
 321                set_bit(R1BIO_Uptodate, &r1_bio->state);
 322        else {
 323                /* If all other devices have failed, we want to return
 324                 * the error upwards rather than fail the last device.
 325                 * Here we redefine "uptodate" to mean "Don't want to retry"
 326                 */
 327                unsigned long flags;
 328                spin_lock_irqsave(&conf->device_lock, flags);
 329                if (r1_bio->mddev->degraded == conf->raid_disks ||
 330                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 331                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 332                        uptodate = 1;
 333                spin_unlock_irqrestore(&conf->device_lock, flags);
 334        }
 335
 336        if (uptodate) {
 337                raid_end_bio_io(r1_bio);
 338                rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 339        } else {
 340                /*
 341                 * oops, read error:
 342                 */
 343                char b[BDEVNAME_SIZE];
 344                printk_ratelimited(
 345                        KERN_ERR "md/raid1:%s: %s: "
 346                        "rescheduling sector %llu\n",
 347                        mdname(conf->mddev),
 348                        bdevname(conf->mirrors[mirror].rdev->bdev,
 349                                 b),
 350                        (unsigned long long)r1_bio->sector);
 351                set_bit(R1BIO_ReadError, &r1_bio->state);
 352                reschedule_retry(r1_bio);
 353                /* don't drop the reference on read_disk yet */
 354        }
 355}
 356
 357static void close_write(struct r1bio *r1_bio)
 358{
 359        /* it really is the end of this request */
 360        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 361                /* free extra copy of the data pages */
 362                int i = r1_bio->behind_page_count;
 363                while (i--)
 364                        safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 365                kfree(r1_bio->behind_bvecs);
 366                r1_bio->behind_bvecs = NULL;
 367        }
 368        /* clear the bitmap if all writes complete successfully */
 369        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 370                        r1_bio->sectors,
 371                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 372                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 373        md_write_end(r1_bio->mddev);
 374}
 375
 376static void r1_bio_write_done(struct r1bio *r1_bio)
 377{
 378        if (!atomic_dec_and_test(&r1_bio->remaining))
 379                return;
 380
 381        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 382                reschedule_retry(r1_bio);
 383        else {
 384                close_write(r1_bio);
 385                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 386                        reschedule_retry(r1_bio);
 387                else
 388                        raid_end_bio_io(r1_bio);
 389        }
 390}
 391
 392static void raid1_end_write_request(struct bio *bio, int error)
 393{
 394        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 395        struct r1bio *r1_bio = bio->bi_private;
 396        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 397        struct r1conf *conf = r1_bio->mddev->private;
 398        struct bio *to_put = NULL;
 399
 400        mirror = find_bio_disk(r1_bio, bio);
 401
 402        /*
 403         * 'one mirror IO has finished' event handler:
 404         */
 405        if (!uptodate) {
 406                set_bit(WriteErrorSeen,
 407                        &conf->mirrors[mirror].rdev->flags);
 408                if (!test_and_set_bit(WantReplacement,
 409                                      &conf->mirrors[mirror].rdev->flags))
 410                        set_bit(MD_RECOVERY_NEEDED, &
 411                                conf->mddev->recovery);
 412
 413                set_bit(R1BIO_WriteError, &r1_bio->state);
 414        } else {
 415                /*
 416                 * Set R1BIO_Uptodate in our master bio, so that we
 417                 * will return a good error code for to the higher
 418                 * levels even if IO on some other mirrored buffer
 419                 * fails.
 420                 *
 421                 * The 'master' represents the composite IO operation
 422                 * to user-side. So if something waits for IO, then it
 423                 * will wait for the 'master' bio.
 424                 */
 425                sector_t first_bad;
 426                int bad_sectors;
 427
 428                r1_bio->bios[mirror] = NULL;
 429                to_put = bio;
 430                /*
 431                 * Do not set R1BIO_Uptodate if the current device is
 432                 * rebuilding or Faulty. This is because we cannot use
 433                 * such device for properly reading the data back (we could
 434                 * potentially use it, if the current write would have felt
 435                 * before rdev->recovery_offset, but for simplicity we don't
 436                 * check this here.
 437                 */
 438                if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 439                    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 440                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 441
 442                /* Maybe we can clear some bad blocks. */
 443                if (is_badblock(conf->mirrors[mirror].rdev,
 444                                r1_bio->sector, r1_bio->sectors,
 445                                &first_bad, &bad_sectors)) {
 446                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 447                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 448                }
 449        }
 450
 451        if (behind) {
 452                if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 453                        atomic_dec(&r1_bio->behind_remaining);
 454
 455                /*
 456                 * In behind mode, we ACK the master bio once the I/O
 457                 * has safely reached all non-writemostly
 458                 * disks. Setting the Returned bit ensures that this
 459                 * gets done only once -- we don't ever want to return
 460                 * -EIO here, instead we'll wait
 461                 */
 462                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 463                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 464                        /* Maybe we can return now */
 465                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 466                                struct bio *mbio = r1_bio->master_bio;
 467                                pr_debug("raid1: behind end write sectors"
 468                                         " %llu-%llu\n",
 469                                         (unsigned long long) mbio->bi_sector,
 470                                         (unsigned long long) mbio->bi_sector +
 471                                         bio_sectors(mbio) - 1);
 472                                call_bio_endio(r1_bio);
 473                        }
 474                }
 475        }
 476        if (r1_bio->bios[mirror] == NULL)
 477                rdev_dec_pending(conf->mirrors[mirror].rdev,
 478                                 conf->mddev);
 479
 480        /*
 481         * Let's see if all mirrored write operations have finished
 482         * already.
 483         */
 484        r1_bio_write_done(r1_bio);
 485
 486        if (to_put)
 487                bio_put(to_put);
 488}
 489
 490
 491/*
 492 * This routine returns the disk from which the requested read should
 493 * be done. There is a per-array 'next expected sequential IO' sector
 494 * number - if this matches on the next IO then we use the last disk.
 495 * There is also a per-disk 'last know head position' sector that is
 496 * maintained from IRQ contexts, both the normal and the resync IO
 497 * completion handlers update this position correctly. If there is no
 498 * perfect sequential match then we pick the disk whose head is closest.
 499 *
 500 * If there are 2 mirrors in the same 2 devices, performance degrades
 501 * because position is mirror, not device based.
 502 *
 503 * The rdev for the device selected will have nr_pending incremented.
 504 */
 505static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 506{
 507        const sector_t this_sector = r1_bio->sector;
 508        int sectors;
 509        int best_good_sectors;
 510        int best_disk, best_dist_disk, best_pending_disk;
 511        int has_nonrot_disk;
 512        int disk;
 513        sector_t best_dist;
 514        unsigned int min_pending;
 515        struct md_rdev *rdev;
 516        int choose_first;
 517        int choose_next_idle;
 518
 519        rcu_read_lock();
 520        /*
 521         * Check if we can balance. We can balance on the whole
 522         * device if no resync is going on, or below the resync window.
 523         * We take the first readable disk when above the resync window.
 524         */
 525 retry:
 526        sectors = r1_bio->sectors;
 527        best_disk = -1;
 528        best_dist_disk = -1;
 529        best_dist = MaxSector;
 530        best_pending_disk = -1;
 531        min_pending = UINT_MAX;
 532        best_good_sectors = 0;
 533        has_nonrot_disk = 0;
 534        choose_next_idle = 0;
 535
 536        if (conf->mddev->recovery_cp < MaxSector &&
 537            (this_sector + sectors >= conf->next_resync))
 538                choose_first = 1;
 539        else
 540                choose_first = 0;
 541
 542        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 543                sector_t dist;
 544                sector_t first_bad;
 545                int bad_sectors;
 546                unsigned int pending;
 547                bool nonrot;
 548
 549                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 550                if (r1_bio->bios[disk] == IO_BLOCKED
 551                    || rdev == NULL
 552                    || test_bit(Unmerged, &rdev->flags)
 553                    || test_bit(Faulty, &rdev->flags))
 554                        continue;
 555                if (!test_bit(In_sync, &rdev->flags) &&
 556                    rdev->recovery_offset < this_sector + sectors)
 557                        continue;
 558                if (test_bit(WriteMostly, &rdev->flags)) {
 559                        /* Don't balance among write-mostly, just
 560                         * use the first as a last resort */
 561                        if (best_disk < 0) {
 562                                if (is_badblock(rdev, this_sector, sectors,
 563                                                &first_bad, &bad_sectors)) {
 564                                        if (first_bad < this_sector)
 565                                                /* Cannot use this */
 566                                                continue;
 567                                        best_good_sectors = first_bad - this_sector;
 568                                } else
 569                                        best_good_sectors = sectors;
 570                                best_disk = disk;
 571                        }
 572                        continue;
 573                }
 574                /* This is a reasonable device to use.  It might
 575                 * even be best.
 576                 */
 577                if (is_badblock(rdev, this_sector, sectors,
 578                                &first_bad, &bad_sectors)) {
 579                        if (best_dist < MaxSector)
 580                                /* already have a better device */
 581                                continue;
 582                        if (first_bad <= this_sector) {
 583                                /* cannot read here. If this is the 'primary'
 584                                 * device, then we must not read beyond
 585                                 * bad_sectors from another device..
 586                                 */
 587                                bad_sectors -= (this_sector - first_bad);
 588                                if (choose_first && sectors > bad_sectors)
 589                                        sectors = bad_sectors;
 590                                if (best_good_sectors > sectors)
 591                                        best_good_sectors = sectors;
 592
 593                        } else {
 594                                sector_t good_sectors = first_bad - this_sector;
 595                                if (good_sectors > best_good_sectors) {
 596                                        best_good_sectors = good_sectors;
 597                                        best_disk = disk;
 598                                }
 599                                if (choose_first)
 600                                        break;
 601                        }
 602                        continue;
 603                } else
 604                        best_good_sectors = sectors;
 605
 606                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 607                has_nonrot_disk |= nonrot;
 608                pending = atomic_read(&rdev->nr_pending);
 609                dist = abs(this_sector - conf->mirrors[disk].head_position);
 610                if (choose_first) {
 611                        best_disk = disk;
 612                        break;
 613                }
 614                /* Don't change to another disk for sequential reads */
 615                if (conf->mirrors[disk].next_seq_sect == this_sector
 616                    || dist == 0) {
 617                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 618                        struct raid1_info *mirror = &conf->mirrors[disk];
 619
 620                        best_disk = disk;
 621                        /*
 622                         * If buffered sequential IO size exceeds optimal
 623                         * iosize, check if there is idle disk. If yes, choose
 624                         * the idle disk. read_balance could already choose an
 625                         * idle disk before noticing it's a sequential IO in
 626                         * this disk. This doesn't matter because this disk
 627                         * will idle, next time it will be utilized after the
 628                         * first disk has IO size exceeds optimal iosize. In
 629                         * this way, iosize of the first disk will be optimal
 630                         * iosize at least. iosize of the second disk might be
 631                         * small, but not a big deal since when the second disk
 632                         * starts IO, the first disk is likely still busy.
 633                         */
 634                        if (nonrot && opt_iosize > 0 &&
 635                            mirror->seq_start != MaxSector &&
 636                            mirror->next_seq_sect > opt_iosize &&
 637                            mirror->next_seq_sect - opt_iosize >=
 638                            mirror->seq_start) {
 639                                choose_next_idle = 1;
 640                                continue;
 641                        }
 642                        break;
 643                }
 644                /* If device is idle, use it */
 645                if (pending == 0) {
 646                        best_disk = disk;
 647                        break;
 648                }
 649
 650                if (choose_next_idle)
 651                        continue;
 652
 653                if (min_pending > pending) {
 654                        min_pending = pending;
 655                        best_pending_disk = disk;
 656                }
 657
 658                if (dist < best_dist) {
 659                        best_dist = dist;
 660                        best_dist_disk = disk;
 661                }
 662        }
 663
 664        /*
 665         * If all disks are rotational, choose the closest disk. If any disk is
 666         * non-rotational, choose the disk with less pending request even the
 667         * disk is rotational, which might/might not be optimal for raids with
 668         * mixed ratation/non-rotational disks depending on workload.
 669         */
 670        if (best_disk == -1) {
 671                if (has_nonrot_disk)
 672                        best_disk = best_pending_disk;
 673                else
 674                        best_disk = best_dist_disk;
 675        }
 676
 677        if (best_disk >= 0) {
 678                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 679                if (!rdev)
 680                        goto retry;
 681                atomic_inc(&rdev->nr_pending);
 682                if (test_bit(Faulty, &rdev->flags)) {
 683                        /* cannot risk returning a device that failed
 684                         * before we inc'ed nr_pending
 685                         */
 686                        rdev_dec_pending(rdev, conf->mddev);
 687                        goto retry;
 688                }
 689                sectors = best_good_sectors;
 690
 691                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 692                        conf->mirrors[best_disk].seq_start = this_sector;
 693
 694                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 695        }
 696        rcu_read_unlock();
 697        *max_sectors = sectors;
 698
 699        return best_disk;
 700}
 701
 702static int raid1_mergeable_bvec(struct request_queue *q,
 703                                struct bvec_merge_data *bvm,
 704                                struct bio_vec *biovec)
 705{
 706        struct mddev *mddev = q->queuedata;
 707        struct r1conf *conf = mddev->private;
 708        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 709        int max = biovec->bv_len;
 710
 711        if (mddev->merge_check_needed) {
 712                int disk;
 713                rcu_read_lock();
 714                for (disk = 0; disk < conf->raid_disks * 2; disk++) {
 715                        struct md_rdev *rdev = rcu_dereference(
 716                                conf->mirrors[disk].rdev);
 717                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 718                                struct request_queue *q =
 719                                        bdev_get_queue(rdev->bdev);
 720                                if (q->merge_bvec_fn) {
 721                                        bvm->bi_sector = sector +
 722                                                rdev->data_offset;
 723                                        bvm->bi_bdev = rdev->bdev;
 724                                        max = min(max, q->merge_bvec_fn(
 725                                                          q, bvm, biovec));
 726                                }
 727                        }
 728                }
 729                rcu_read_unlock();
 730        }
 731        return max;
 732
 733}
 734
 735int md_raid1_congested(struct mddev *mddev, int bits)
 736{
 737        struct r1conf *conf = mddev->private;
 738        int i, ret = 0;
 739
 740        if ((bits & (1 << BDI_async_congested)) &&
 741            conf->pending_count >= max_queued_requests)
 742                return 1;
 743
 744        rcu_read_lock();
 745        for (i = 0; i < conf->raid_disks * 2; i++) {
 746                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 747                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 748                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 749
 750                        BUG_ON(!q);
 751
 752                        /* Note the '|| 1' - when read_balance prefers
 753                         * non-congested targets, it can be removed
 754                         */
 755                        if ((bits & (1<<BDI_async_congested)) || 1)
 756                                ret |= bdi_congested(&q->backing_dev_info, bits);
 757                        else
 758                                ret &= bdi_congested(&q->backing_dev_info, bits);
 759                }
 760        }
 761        rcu_read_unlock();
 762        return ret;
 763}
 764EXPORT_SYMBOL_GPL(md_raid1_congested);
 765
 766static int raid1_congested(void *data, int bits)
 767{
 768        struct mddev *mddev = data;
 769
 770        return mddev_congested(mddev, bits) ||
 771                md_raid1_congested(mddev, bits);
 772}
 773
 774static void flush_pending_writes(struct r1conf *conf)
 775{
 776        /* Any writes that have been queued but are awaiting
 777         * bitmap updates get flushed here.
 778         */
 779        spin_lock_irq(&conf->device_lock);
 780
 781        if (conf->pending_bio_list.head) {
 782                struct bio *bio;
 783                bio = bio_list_get(&conf->pending_bio_list);
 784                conf->pending_count = 0;
 785                spin_unlock_irq(&conf->device_lock);
 786                /* flush any pending bitmap writes to
 787                 * disk before proceeding w/ I/O */
 788                bitmap_unplug(conf->mddev->bitmap);
 789                wake_up(&conf->wait_barrier);
 790
 791                while (bio) { /* submit pending writes */
 792                        struct bio *next = bio->bi_next;
 793                        bio->bi_next = NULL;
 794                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 795                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 796                                /* Just ignore it */
 797                                bio_endio(bio, 0);
 798                        else
 799                                generic_make_request(bio);
 800                        bio = next;
 801                }
 802        } else
 803                spin_unlock_irq(&conf->device_lock);
 804}
 805
 806/* Barriers....
 807 * Sometimes we need to suspend IO while we do something else,
 808 * either some resync/recovery, or reconfigure the array.
 809 * To do this we raise a 'barrier'.
 810 * The 'barrier' is a counter that can be raised multiple times
 811 * to count how many activities are happening which preclude
 812 * normal IO.
 813 * We can only raise the barrier if there is no pending IO.
 814 * i.e. if nr_pending == 0.
 815 * We choose only to raise the barrier if no-one is waiting for the
 816 * barrier to go down.  This means that as soon as an IO request
 817 * is ready, no other operations which require a barrier will start
 818 * until the IO request has had a chance.
 819 *
 820 * So: regular IO calls 'wait_barrier'.  When that returns there
 821 *    is no backgroup IO happening,  It must arrange to call
 822 *    allow_barrier when it has finished its IO.
 823 * backgroup IO calls must call raise_barrier.  Once that returns
 824 *    there is no normal IO happeing.  It must arrange to call
 825 *    lower_barrier when the particular background IO completes.
 826 */
 827static void raise_barrier(struct r1conf *conf)
 828{
 829        spin_lock_irq(&conf->resync_lock);
 830
 831        /* Wait until no block IO is waiting */
 832        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 833                            conf->resync_lock);
 834
 835        /* block any new IO from starting */
 836        conf->barrier++;
 837
 838        /* For these conditions we must wait:
 839         * A: while the array is in frozen state
 840         * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 841         *    the max count which allowed.
 842         * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 843         *    next resync will reach to the window which normal bios are
 844         *    handling.
 845         */
 846        wait_event_lock_irq(conf->wait_barrier,
 847                            !conf->array_frozen &&
 848                            conf->barrier < RESYNC_DEPTH &&
 849                            (conf->start_next_window >=
 850                             conf->next_resync + RESYNC_SECTORS),
 851                            conf->resync_lock);
 852
 853        spin_unlock_irq(&conf->resync_lock);
 854}
 855
 856static void lower_barrier(struct r1conf *conf)
 857{
 858        unsigned long flags;
 859        BUG_ON(conf->barrier <= 0);
 860        spin_lock_irqsave(&conf->resync_lock, flags);
 861        conf->barrier--;
 862        spin_unlock_irqrestore(&conf->resync_lock, flags);
 863        wake_up(&conf->wait_barrier);
 864}
 865
 866static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 867{
 868        bool wait = false;
 869
 870        if (conf->array_frozen || !bio)
 871                wait = true;
 872        else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 873                if (conf->next_resync < RESYNC_WINDOW_SECTORS)
 874                        wait = true;
 875                else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
 876                                >= bio_end_sector(bio)) ||
 877                         (conf->next_resync + NEXT_NORMALIO_DISTANCE
 878                                <= bio->bi_sector))
 879                        wait = false;
 880                else
 881                        wait = true;
 882        }
 883
 884        return wait;
 885}
 886
 887static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 888{
 889        sector_t sector = 0;
 890
 891        spin_lock_irq(&conf->resync_lock);
 892        if (need_to_wait_for_sync(conf, bio)) {
 893                conf->nr_waiting++;
 894                /* Wait for the barrier to drop.
 895                 * However if there are already pending
 896                 * requests (preventing the barrier from
 897                 * rising completely), and the
 898                 * pre-process bio queue isn't empty,
 899                 * then don't wait, as we need to empty
 900                 * that queue to get the nr_pending
 901                 * count down.
 902                 */
 903                wait_event_lock_irq(conf->wait_barrier,
 904                                    !conf->array_frozen &&
 905                                    (!conf->barrier ||
 906                                    ((conf->start_next_window <
 907                                      conf->next_resync + RESYNC_SECTORS) &&
 908                                     current->bio_list &&
 909                                     !bio_list_empty(current->bio_list))),
 910                                    conf->resync_lock);
 911                conf->nr_waiting--;
 912        }
 913
 914        if (bio && bio_data_dir(bio) == WRITE) {
 915                if (conf->next_resync + NEXT_NORMALIO_DISTANCE
 916                    <= bio->bi_sector) {
 917                        if (conf->start_next_window == MaxSector)
 918                                conf->start_next_window =
 919                                        conf->next_resync +
 920                                        NEXT_NORMALIO_DISTANCE;
 921
 922                        if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 923                            <= bio->bi_sector)
 924                                conf->next_window_requests++;
 925                        else
 926                                conf->current_window_requests++;
 927                        sector = conf->start_next_window;
 928                }
 929        }
 930
 931        conf->nr_pending++;
 932        spin_unlock_irq(&conf->resync_lock);
 933        return sector;
 934}
 935
 936static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 937                          sector_t bi_sector)
 938{
 939        unsigned long flags;
 940
 941        spin_lock_irqsave(&conf->resync_lock, flags);
 942        conf->nr_pending--;
 943        if (start_next_window) {
 944                if (start_next_window == conf->start_next_window) {
 945                        if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 946                            <= bi_sector)
 947                                conf->next_window_requests--;
 948                        else
 949                                conf->current_window_requests--;
 950                } else
 951                        conf->current_window_requests--;
 952
 953                if (!conf->current_window_requests) {
 954                        if (conf->next_window_requests) {
 955                                conf->current_window_requests =
 956                                        conf->next_window_requests;
 957                                conf->next_window_requests = 0;
 958                                conf->start_next_window +=
 959                                        NEXT_NORMALIO_DISTANCE;
 960                        } else
 961                                conf->start_next_window = MaxSector;
 962                }
 963        }
 964        spin_unlock_irqrestore(&conf->resync_lock, flags);
 965        wake_up(&conf->wait_barrier);
 966}
 967
 968static void freeze_array(struct r1conf *conf, int extra)
 969{
 970        /* stop syncio and normal IO and wait for everything to
 971         * go quite.
 972         * We wait until nr_pending match nr_queued+extra
 973         * This is called in the context of one normal IO request
 974         * that has failed. Thus any sync request that might be pending
 975         * will be blocked by nr_pending, and we need to wait for
 976         * pending IO requests to complete or be queued for re-try.
 977         * Thus the number queued (nr_queued) plus this request (extra)
 978         * must match the number of pending IOs (nr_pending) before
 979         * we continue.
 980         */
 981        spin_lock_irq(&conf->resync_lock);
 982        conf->array_frozen = 1;
 983        wait_event_lock_irq_cmd(conf->wait_barrier,
 984                                conf->nr_pending == conf->nr_queued+extra,
 985                                conf->resync_lock,
 986                                flush_pending_writes(conf));
 987        spin_unlock_irq(&conf->resync_lock);
 988}
 989static void unfreeze_array(struct r1conf *conf)
 990{
 991        /* reverse the effect of the freeze */
 992        spin_lock_irq(&conf->resync_lock);
 993        conf->array_frozen = 0;
 994        wake_up(&conf->wait_barrier);
 995        spin_unlock_irq(&conf->resync_lock);
 996}
 997
 998
 999/* duplicate the data pages for behind I/O 
1000 */
1001static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1002{
1003        int i;
1004        struct bio_vec *bvec;
1005        struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1006                                        GFP_NOIO);
1007        if (unlikely(!bvecs))
1008                return;
1009
1010        bio_for_each_segment_all(bvec, bio, i) {
1011                bvecs[i] = *bvec;
1012                bvecs[i].bv_page = alloc_page(GFP_NOIO);
1013                if (unlikely(!bvecs[i].bv_page))
1014                        goto do_sync_io;
1015                memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1016                       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1017                kunmap(bvecs[i].bv_page);
1018                kunmap(bvec->bv_page);
1019        }
1020        r1_bio->behind_bvecs = bvecs;
1021        r1_bio->behind_page_count = bio->bi_vcnt;
1022        set_bit(R1BIO_BehindIO, &r1_bio->state);
1023        return;
1024
1025do_sync_io:
1026        for (i = 0; i < bio->bi_vcnt; i++)
1027                if (bvecs[i].bv_page)
1028                        put_page(bvecs[i].bv_page);
1029        kfree(bvecs);
1030        pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
1031}
1032
1033struct raid1_plug_cb {
1034        struct blk_plug_cb      cb;
1035        struct bio_list         pending;
1036        int                     pending_cnt;
1037};
1038
1039static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1040{
1041        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1042                                                  cb);
1043        struct mddev *mddev = plug->cb.data;
1044        struct r1conf *conf = mddev->private;
1045        struct bio *bio;
1046
1047        if (from_schedule || current->bio_list) {
1048                spin_lock_irq(&conf->device_lock);
1049                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1050                conf->pending_count += plug->pending_cnt;
1051                spin_unlock_irq(&conf->device_lock);
1052                wake_up(&conf->wait_barrier);
1053                md_wakeup_thread(mddev->thread);
1054                kfree(plug);
1055                return;
1056        }
1057
1058        /* we aren't scheduling, so we can do the write-out directly. */
1059        bio = bio_list_get(&plug->pending);
1060        bitmap_unplug(mddev->bitmap);
1061        wake_up(&conf->wait_barrier);
1062
1063        while (bio) { /* submit pending writes */
1064                struct bio *next = bio->bi_next;
1065                bio->bi_next = NULL;
1066                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1067                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1068                        /* Just ignore it */
1069                        bio_endio(bio, 0);
1070                else
1071                        generic_make_request(bio);
1072                bio = next;
1073        }
1074        kfree(plug);
1075}
1076
1077static void make_request(struct mddev *mddev, struct bio * bio)
1078{
1079        struct r1conf *conf = mddev->private;
1080        struct raid1_info *mirror;
1081        struct r1bio *r1_bio;
1082        struct bio *read_bio;
1083        int i, disks;
1084        struct bitmap *bitmap;
1085        unsigned long flags;
1086        const int rw = bio_data_dir(bio);
1087        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1088        const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1089        const unsigned long do_discard = (bio->bi_rw
1090                                          & (REQ_DISCARD | REQ_SECURE));
1091        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1092        struct md_rdev *blocked_rdev;
1093        struct blk_plug_cb *cb;
1094        struct raid1_plug_cb *plug = NULL;
1095        int first_clone;
1096        int sectors_handled;
1097        int max_sectors;
1098        sector_t start_next_window;
1099
1100        /*
1101         * Register the new request and wait if the reconstruction
1102         * thread has put up a bar for new requests.
1103         * Continue immediately if no resync is active currently.
1104         */
1105
1106        md_write_start(mddev, bio); /* wait on superblock update early */
1107
1108        if (bio_data_dir(bio) == WRITE &&
1109            bio_end_sector(bio) > mddev->suspend_lo &&
1110            bio->bi_sector < mddev->suspend_hi) {
1111                /* As the suspend_* range is controlled by
1112                 * userspace, we want an interruptible
1113                 * wait.
1114                 */
1115                DEFINE_WAIT(w);
1116                for (;;) {
1117                        flush_signals(current);
1118                        prepare_to_wait(&conf->wait_barrier,
1119                                        &w, TASK_INTERRUPTIBLE);
1120                        if (bio_end_sector(bio) <= mddev->suspend_lo ||
1121                            bio->bi_sector >= mddev->suspend_hi)
1122                                break;
1123                        schedule();
1124                }
1125                finish_wait(&conf->wait_barrier, &w);
1126        }
1127
1128        start_next_window = wait_barrier(conf, bio);
1129
1130        bitmap = mddev->bitmap;
1131
1132        /*
1133         * make_request() can abort the operation when READA is being
1134         * used and no empty request is available.
1135         *
1136         */
1137        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138
1139        r1_bio->master_bio = bio;
1140        r1_bio->sectors = bio_sectors(bio);
1141        r1_bio->state = 0;
1142        r1_bio->mddev = mddev;
1143        r1_bio->sector = bio->bi_sector;
1144
1145        /* We might need to issue multiple reads to different
1146         * devices if there are bad blocks around, so we keep
1147         * track of the number of reads in bio->bi_phys_segments.
1148         * If this is 0, there is only one r1_bio and no locking
1149         * will be needed when requests complete.  If it is
1150         * non-zero, then it is the number of not-completed requests.
1151         */
1152        bio->bi_phys_segments = 0;
1153        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1154
1155        if (rw == READ) {
1156                /*
1157                 * read balancing logic:
1158                 */
1159                int rdisk;
1160
1161read_again:
1162                rdisk = read_balance(conf, r1_bio, &max_sectors);
1163
1164                if (rdisk < 0) {
1165                        /* couldn't find anywhere to read from */
1166                        raid_end_bio_io(r1_bio);
1167                        return;
1168                }
1169                mirror = conf->mirrors + rdisk;
1170
1171                if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1172                    bitmap) {
1173                        /* Reading from a write-mostly device must
1174                         * take care not to over-take any writes
1175                         * that are 'behind'
1176                         */
1177                        wait_event(bitmap->behind_wait,
1178                                   atomic_read(&bitmap->behind_writes) == 0);
1179                }
1180                r1_bio->read_disk = rdisk;
1181
1182                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1183                bio_trim(read_bio, r1_bio->sector - bio->bi_sector,
1184                         max_sectors);
1185
1186                r1_bio->bios[rdisk] = read_bio;
1187
1188                read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1189                read_bio->bi_bdev = mirror->rdev->bdev;
1190                read_bio->bi_end_io = raid1_end_read_request;
1191                read_bio->bi_rw = READ | do_sync;
1192                read_bio->bi_private = r1_bio;
1193
1194                if (max_sectors < r1_bio->sectors) {
1195                        /* could not read all from this device, so we will
1196                         * need another r1_bio.
1197                         */
1198
1199                        sectors_handled = (r1_bio->sector + max_sectors
1200                                           - bio->bi_sector);
1201                        r1_bio->sectors = max_sectors;
1202                        spin_lock_irq(&conf->device_lock);
1203                        if (bio->bi_phys_segments == 0)
1204                                bio->bi_phys_segments = 2;
1205                        else
1206                                bio->bi_phys_segments++;
1207                        spin_unlock_irq(&conf->device_lock);
1208                        /* Cannot call generic_make_request directly
1209                         * as that will be queued in __make_request
1210                         * and subsequent mempool_alloc might block waiting
1211                         * for it.  So hand bio over to raid1d.
1212                         */
1213                        reschedule_retry(r1_bio);
1214
1215                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1216
1217                        r1_bio->master_bio = bio;
1218                        r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1219                        r1_bio->state = 0;
1220                        r1_bio->mddev = mddev;
1221                        r1_bio->sector = bio->bi_sector + sectors_handled;
1222                        goto read_again;
1223                } else
1224                        generic_make_request(read_bio);
1225                return;
1226        }
1227
1228        /*
1229         * WRITE:
1230         */
1231        if (conf->pending_count >= max_queued_requests) {
1232                md_wakeup_thread(mddev->thread);
1233                wait_event(conf->wait_barrier,
1234                           conf->pending_count < max_queued_requests);
1235        }
1236        /* first select target devices under rcu_lock and
1237         * inc refcount on their rdev.  Record them by setting
1238         * bios[x] to bio
1239         * If there are known/acknowledged bad blocks on any device on
1240         * which we have seen a write error, we want to avoid writing those
1241         * blocks.
1242         * This potentially requires several writes to write around
1243         * the bad blocks.  Each set of writes gets it's own r1bio
1244         * with a set of bios attached.
1245         */
1246
1247        disks = conf->raid_disks * 2;
1248 retry_write:
1249        r1_bio->start_next_window = start_next_window;
1250        blocked_rdev = NULL;
1251        rcu_read_lock();
1252        max_sectors = r1_bio->sectors;
1253        for (i = 0;  i < disks; i++) {
1254                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1255                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1256                        atomic_inc(&rdev->nr_pending);
1257                        blocked_rdev = rdev;
1258                        break;
1259                }
1260                r1_bio->bios[i] = NULL;
1261                if (!rdev || test_bit(Faulty, &rdev->flags)
1262                    || test_bit(Unmerged, &rdev->flags)) {
1263                        if (i < conf->raid_disks)
1264                                set_bit(R1BIO_Degraded, &r1_bio->state);
1265                        continue;
1266                }
1267
1268                atomic_inc(&rdev->nr_pending);
1269                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1270                        sector_t first_bad;
1271                        int bad_sectors;
1272                        int is_bad;
1273
1274                        is_bad = is_badblock(rdev, r1_bio->sector,
1275                                             max_sectors,
1276                                             &first_bad, &bad_sectors);
1277                        if (is_bad < 0) {
1278                                /* mustn't write here until the bad block is
1279                                 * acknowledged*/
1280                                set_bit(BlockedBadBlocks, &rdev->flags);
1281                                blocked_rdev = rdev;
1282                                break;
1283                        }
1284                        if (is_bad && first_bad <= r1_bio->sector) {
1285                                /* Cannot write here at all */
1286                                bad_sectors -= (r1_bio->sector - first_bad);
1287                                if (bad_sectors < max_sectors)
1288                                        /* mustn't write more than bad_sectors
1289                                         * to other devices yet
1290                                         */
1291                                        max_sectors = bad_sectors;
1292                                rdev_dec_pending(rdev, mddev);
1293                                /* We don't set R1BIO_Degraded as that
1294                                 * only applies if the disk is
1295                                 * missing, so it might be re-added,
1296                                 * and we want to know to recover this
1297                                 * chunk.
1298                                 * In this case the device is here,
1299                                 * and the fact that this chunk is not
1300                                 * in-sync is recorded in the bad
1301                                 * block log
1302                                 */
1303                                continue;
1304                        }
1305                        if (is_bad) {
1306                                int good_sectors = first_bad - r1_bio->sector;
1307                                if (good_sectors < max_sectors)
1308                                        max_sectors = good_sectors;
1309                        }
1310                }
1311                r1_bio->bios[i] = bio;
1312        }
1313        rcu_read_unlock();
1314
1315        if (unlikely(blocked_rdev)) {
1316                /* Wait for this device to become unblocked */
1317                int j;
1318                sector_t old = start_next_window;
1319
1320                for (j = 0; j < i; j++)
1321                        if (r1_bio->bios[j])
1322                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1323                r1_bio->state = 0;
1324                allow_barrier(conf, start_next_window, bio->bi_sector);
1325                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1326                start_next_window = wait_barrier(conf, bio);
1327                /*
1328                 * We must make sure the multi r1bios of bio have
1329                 * the same value of bi_phys_segments
1330                 */
1331                if (bio->bi_phys_segments && old &&
1332                    old != start_next_window)
1333                        /* Wait for the former r1bio(s) to complete */
1334                        wait_event(conf->wait_barrier,
1335                                   bio->bi_phys_segments == 1);
1336                goto retry_write;
1337        }
1338
1339        if (max_sectors < r1_bio->sectors) {
1340                /* We are splitting this write into multiple parts, so
1341                 * we need to prepare for allocating another r1_bio.
1342                 */
1343                r1_bio->sectors = max_sectors;
1344                spin_lock_irq(&conf->device_lock);
1345                if (bio->bi_phys_segments == 0)
1346                        bio->bi_phys_segments = 2;
1347                else
1348                        bio->bi_phys_segments++;
1349                spin_unlock_irq(&conf->device_lock);
1350        }
1351        sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1352
1353        atomic_set(&r1_bio->remaining, 1);
1354        atomic_set(&r1_bio->behind_remaining, 0);
1355
1356        first_clone = 1;
1357        for (i = 0; i < disks; i++) {
1358                struct bio *mbio;
1359                if (!r1_bio->bios[i])
1360                        continue;
1361
1362                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1363                bio_trim(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1364
1365                if (first_clone) {
1366                        /* do behind I/O ?
1367                         * Not if there are too many, or cannot
1368                         * allocate memory, or a reader on WriteMostly
1369                         * is waiting for behind writes to flush */
1370                        if (bitmap &&
1371                            (atomic_read(&bitmap->behind_writes)
1372                             < mddev->bitmap_info.max_write_behind) &&
1373                            !waitqueue_active(&bitmap->behind_wait))
1374                                alloc_behind_pages(mbio, r1_bio);
1375
1376                        bitmap_startwrite(bitmap, r1_bio->sector,
1377                                          r1_bio->sectors,
1378                                          test_bit(R1BIO_BehindIO,
1379                                                   &r1_bio->state));
1380                        first_clone = 0;
1381                }
1382                if (r1_bio->behind_bvecs) {
1383                        struct bio_vec *bvec;
1384                        int j;
1385
1386                        /*
1387                         * We trimmed the bio, so _all is legit
1388                         */
1389                        bio_for_each_segment_all(bvec, mbio, j)
1390                                bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1391                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1392                                atomic_inc(&r1_bio->behind_remaining);
1393                }
1394
1395                r1_bio->bios[i] = mbio;
1396
1397                mbio->bi_sector = (r1_bio->sector +
1398                                   conf->mirrors[i].rdev->data_offset);
1399                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1400                mbio->bi_end_io = raid1_end_write_request;
1401                mbio->bi_rw =
1402                        WRITE | do_flush_fua | do_sync | do_discard | do_same;
1403                mbio->bi_private = r1_bio;
1404
1405                atomic_inc(&r1_bio->remaining);
1406
1407                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1408                if (cb)
1409                        plug = container_of(cb, struct raid1_plug_cb, cb);
1410                else
1411                        plug = NULL;
1412                spin_lock_irqsave(&conf->device_lock, flags);
1413                if (plug) {
1414                        bio_list_add(&plug->pending, mbio);
1415                        plug->pending_cnt++;
1416                } else {
1417                        bio_list_add(&conf->pending_bio_list, mbio);
1418                        conf->pending_count++;
1419                }
1420                spin_unlock_irqrestore(&conf->device_lock, flags);
1421                if (!plug)
1422                        md_wakeup_thread(mddev->thread);
1423        }
1424        /* Mustn't call r1_bio_write_done before this next test,
1425         * as it could result in the bio being freed.
1426         */
1427        if (sectors_handled < bio_sectors(bio)) {
1428                r1_bio_write_done(r1_bio);
1429                /* We need another r1_bio.  It has already been counted
1430                 * in bio->bi_phys_segments
1431                 */
1432                r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1433                r1_bio->master_bio = bio;
1434                r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1435                r1_bio->state = 0;
1436                r1_bio->mddev = mddev;
1437                r1_bio->sector = bio->bi_sector + sectors_handled;
1438                goto retry_write;
1439        }
1440
1441        r1_bio_write_done(r1_bio);
1442
1443        /* In case raid1d snuck in to freeze_array */
1444        wake_up(&conf->wait_barrier);
1445}
1446
1447static void status(struct seq_file *seq, struct mddev *mddev)
1448{
1449        struct r1conf *conf = mddev->private;
1450        int i;
1451
1452        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1453                   conf->raid_disks - mddev->degraded);
1454        rcu_read_lock();
1455        for (i = 0; i < conf->raid_disks; i++) {
1456                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1457                seq_printf(seq, "%s",
1458                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1459        }
1460        rcu_read_unlock();
1461        seq_printf(seq, "]");
1462}
1463
1464
1465static void error(struct mddev *mddev, struct md_rdev *rdev)
1466{
1467        char b[BDEVNAME_SIZE];
1468        struct r1conf *conf = mddev->private;
1469
1470        /*
1471         * If it is not operational, then we have already marked it as dead
1472         * else if it is the last working disks, ignore the error, let the
1473         * next level up know.
1474         * else mark the drive as failed
1475         */
1476        if (test_bit(In_sync, &rdev->flags)
1477            && (conf->raid_disks - mddev->degraded) == 1) {
1478                /*
1479                 * Don't fail the drive, act as though we were just a
1480                 * normal single drive.
1481                 * However don't try a recovery from this drive as
1482                 * it is very likely to fail.
1483                 */
1484                conf->recovery_disabled = mddev->recovery_disabled;
1485                return;
1486        }
1487        set_bit(Blocked, &rdev->flags);
1488        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1489                unsigned long flags;
1490                spin_lock_irqsave(&conf->device_lock, flags);
1491                mddev->degraded++;
1492                set_bit(Faulty, &rdev->flags);
1493                spin_unlock_irqrestore(&conf->device_lock, flags);
1494                /*
1495                 * if recovery is running, make sure it aborts.
1496                 */
1497                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1498        } else
1499                set_bit(Faulty, &rdev->flags);
1500        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1501        printk(KERN_ALERT
1502               "md/raid1:%s: Disk failure on %s, disabling device.\n"
1503               "md/raid1:%s: Operation continuing on %d devices.\n",
1504               mdname(mddev), bdevname(rdev->bdev, b),
1505               mdname(mddev), conf->raid_disks - mddev->degraded);
1506}
1507
1508static void print_conf(struct r1conf *conf)
1509{
1510        int i;
1511
1512        printk(KERN_DEBUG "RAID1 conf printout:\n");
1513        if (!conf) {
1514                printk(KERN_DEBUG "(!conf)\n");
1515                return;
1516        }
1517        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1518                conf->raid_disks);
1519
1520        rcu_read_lock();
1521        for (i = 0; i < conf->raid_disks; i++) {
1522                char b[BDEVNAME_SIZE];
1523                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1524                if (rdev)
1525                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1526                               i, !test_bit(In_sync, &rdev->flags),
1527                               !test_bit(Faulty, &rdev->flags),
1528                               bdevname(rdev->bdev,b));
1529        }
1530        rcu_read_unlock();
1531}
1532
1533static void close_sync(struct r1conf *conf)
1534{
1535        wait_barrier(conf, NULL);
1536        allow_barrier(conf, 0, 0);
1537
1538        mempool_destroy(conf->r1buf_pool);
1539        conf->r1buf_pool = NULL;
1540
1541        conf->next_resync = 0;
1542        conf->start_next_window = MaxSector;
1543}
1544
1545static int raid1_spare_active(struct mddev *mddev)
1546{
1547        int i;
1548        struct r1conf *conf = mddev->private;
1549        int count = 0;
1550        unsigned long flags;
1551
1552        /*
1553         * Find all failed disks within the RAID1 configuration 
1554         * and mark them readable.
1555         * Called under mddev lock, so rcu protection not needed.
1556         */
1557        for (i = 0; i < conf->raid_disks; i++) {
1558                struct md_rdev *rdev = conf->mirrors[i].rdev;
1559                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1560                if (repl
1561                    && repl->recovery_offset == MaxSector
1562                    && !test_bit(Faulty, &repl->flags)
1563                    && !test_and_set_bit(In_sync, &repl->flags)) {
1564                        /* replacement has just become active */
1565                        if (!rdev ||
1566                            !test_and_clear_bit(In_sync, &rdev->flags))
1567                                count++;
1568                        if (rdev) {
1569                                /* Replaced device not technically
1570                                 * faulty, but we need to be sure
1571                                 * it gets removed and never re-added
1572                                 */
1573                                set_bit(Faulty, &rdev->flags);
1574                                sysfs_notify_dirent_safe(
1575                                        rdev->sysfs_state);
1576                        }
1577                }
1578                if (rdev
1579                    && rdev->recovery_offset == MaxSector
1580                    && !test_bit(Faulty, &rdev->flags)
1581                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1582                        count++;
1583                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1584                }
1585        }
1586        spin_lock_irqsave(&conf->device_lock, flags);
1587        mddev->degraded -= count;
1588        spin_unlock_irqrestore(&conf->device_lock, flags);
1589
1590        print_conf(conf);
1591        return count;
1592}
1593
1594
1595static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1596{
1597        struct r1conf *conf = mddev->private;
1598        int err = -EEXIST;
1599        int mirror = 0;
1600        struct raid1_info *p;
1601        int first = 0;
1602        int last = conf->raid_disks - 1;
1603        struct request_queue *q = bdev_get_queue(rdev->bdev);
1604
1605        if (mddev->recovery_disabled == conf->recovery_disabled)
1606                return -EBUSY;
1607
1608        if (rdev->raid_disk >= 0)
1609                first = last = rdev->raid_disk;
1610
1611        if (q->merge_bvec_fn) {
1612                set_bit(Unmerged, &rdev->flags);
1613                mddev->merge_check_needed = 1;
1614        }
1615
1616        for (mirror = first; mirror <= last; mirror++) {
1617                p = conf->mirrors+mirror;
1618                if (!p->rdev) {
1619
1620                        if (mddev->gendisk)
1621                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1622                                                  rdev->data_offset << 9);
1623
1624                        p->head_position = 0;
1625                        rdev->raid_disk = mirror;
1626                        err = 0;
1627                        /* As all devices are equivalent, we don't need a full recovery
1628                         * if this was recently any drive of the array
1629                         */
1630                        if (rdev->saved_raid_disk < 0)
1631                                conf->fullsync = 1;
1632                        rcu_assign_pointer(p->rdev, rdev);
1633                        break;
1634                }
1635                if (test_bit(WantReplacement, &p->rdev->flags) &&
1636                    p[conf->raid_disks].rdev == NULL) {
1637                        /* Add this device as a replacement */
1638                        clear_bit(In_sync, &rdev->flags);
1639                        set_bit(Replacement, &rdev->flags);
1640                        rdev->raid_disk = mirror;
1641                        err = 0;
1642                        conf->fullsync = 1;
1643                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1644                        break;
1645                }
1646        }
1647        if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1648                /* Some requests might not have seen this new
1649                 * merge_bvec_fn.  We must wait for them to complete
1650                 * before merging the device fully.
1651                 * First we make sure any code which has tested
1652                 * our function has submitted the request, then
1653                 * we wait for all outstanding requests to complete.
1654                 */
1655                synchronize_sched();
1656                freeze_array(conf, 0);
1657                unfreeze_array(conf);
1658                clear_bit(Unmerged, &rdev->flags);
1659        }
1660        md_integrity_add_rdev(rdev, mddev);
1661        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1662                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1663        print_conf(conf);
1664        return err;
1665}
1666
1667static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1668{
1669        struct r1conf *conf = mddev->private;
1670        int err = 0;
1671        int number = rdev->raid_disk;
1672        struct raid1_info *p = conf->mirrors + number;
1673
1674        if (rdev != p->rdev)
1675                p = conf->mirrors + conf->raid_disks + number;
1676
1677        print_conf(conf);
1678        if (rdev == p->rdev) {
1679                if (test_bit(In_sync, &rdev->flags) ||
1680                    atomic_read(&rdev->nr_pending)) {
1681                        err = -EBUSY;
1682                        goto abort;
1683                }
1684                /* Only remove non-faulty devices if recovery
1685                 * is not possible.
1686                 */
1687                if (!test_bit(Faulty, &rdev->flags) &&
1688                    mddev->recovery_disabled != conf->recovery_disabled &&
1689                    mddev->degraded < conf->raid_disks) {
1690                        err = -EBUSY;
1691                        goto abort;
1692                }
1693                p->rdev = NULL;
1694                synchronize_rcu();
1695                if (atomic_read(&rdev->nr_pending)) {
1696                        /* lost the race, try later */
1697                        err = -EBUSY;
1698                        p->rdev = rdev;
1699                        goto abort;
1700                } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1701                        /* We just removed a device that is being replaced.
1702                         * Move down the replacement.  We drain all IO before
1703                         * doing this to avoid confusion.
1704                         */
1705                        struct md_rdev *repl =
1706                                conf->mirrors[conf->raid_disks + number].rdev;
1707                        freeze_array(conf, 0);
1708                        clear_bit(Replacement, &repl->flags);
1709                        p->rdev = repl;
1710                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1711                        unfreeze_array(conf);
1712                        clear_bit(WantReplacement, &rdev->flags);
1713                } else
1714                        clear_bit(WantReplacement, &rdev->flags);
1715                err = md_integrity_register(mddev);
1716        }
1717abort:
1718
1719        print_conf(conf);
1720        return err;
1721}
1722
1723
1724static void end_sync_read(struct bio *bio, int error)
1725{
1726        struct r1bio *r1_bio = bio->bi_private;
1727
1728        update_head_pos(r1_bio->read_disk, r1_bio);
1729
1730        /*
1731         * we have read a block, now it needs to be re-written,
1732         * or re-read if the read failed.
1733         * We don't do much here, just schedule handling by raid1d
1734         */
1735        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1736                set_bit(R1BIO_Uptodate, &r1_bio->state);
1737
1738        if (atomic_dec_and_test(&r1_bio->remaining))
1739                reschedule_retry(r1_bio);
1740}
1741
1742static void end_sync_write(struct bio *bio, int error)
1743{
1744        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1745        struct r1bio *r1_bio = bio->bi_private;
1746        struct mddev *mddev = r1_bio->mddev;
1747        struct r1conf *conf = mddev->private;
1748        int mirror=0;
1749        sector_t first_bad;
1750        int bad_sectors;
1751
1752        mirror = find_bio_disk(r1_bio, bio);
1753
1754        if (!uptodate) {
1755                sector_t sync_blocks = 0;
1756                sector_t s = r1_bio->sector;
1757                long sectors_to_go = r1_bio->sectors;
1758                /* make sure these bits doesn't get cleared. */
1759                do {
1760                        bitmap_end_sync(mddev->bitmap, s,
1761                                        &sync_blocks, 1);
1762                        s += sync_blocks;
1763                        sectors_to_go -= sync_blocks;
1764                } while (sectors_to_go > 0);
1765                set_bit(WriteErrorSeen,
1766                        &conf->mirrors[mirror].rdev->flags);
1767                if (!test_and_set_bit(WantReplacement,
1768                                      &conf->mirrors[mirror].rdev->flags))
1769                        set_bit(MD_RECOVERY_NEEDED, &
1770                                mddev->recovery);
1771                set_bit(R1BIO_WriteError, &r1_bio->state);
1772        } else if (is_badblock(conf->mirrors[mirror].rdev,
1773                               r1_bio->sector,
1774                               r1_bio->sectors,
1775                               &first_bad, &bad_sectors) &&
1776                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1777                                r1_bio->sector,
1778                                r1_bio->sectors,
1779                                &first_bad, &bad_sectors)
1780                )
1781                set_bit(R1BIO_MadeGood, &r1_bio->state);
1782
1783        if (atomic_dec_and_test(&r1_bio->remaining)) {
1784                int s = r1_bio->sectors;
1785                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1786                    test_bit(R1BIO_WriteError, &r1_bio->state))
1787                        reschedule_retry(r1_bio);
1788                else {
1789                        put_buf(r1_bio);
1790                        md_done_sync(mddev, s, uptodate);
1791                }
1792        }
1793}
1794
1795static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1796                            int sectors, struct page *page, int rw)
1797{
1798        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1799                /* success */
1800                return 1;
1801        if (rw == WRITE) {
1802                set_bit(WriteErrorSeen, &rdev->flags);
1803                if (!test_and_set_bit(WantReplacement,
1804                                      &rdev->flags))
1805                        set_bit(MD_RECOVERY_NEEDED, &
1806                                rdev->mddev->recovery);
1807        }
1808        /* need to record an error - either for the block or the device */
1809        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1810                md_error(rdev->mddev, rdev);
1811        return 0;
1812}
1813
1814static int fix_sync_read_error(struct r1bio *r1_bio)
1815{
1816        /* Try some synchronous reads of other devices to get
1817         * good data, much like with normal read errors.  Only
1818         * read into the pages we already have so we don't
1819         * need to re-issue the read request.
1820         * We don't need to freeze the array, because being in an
1821         * active sync request, there is no normal IO, and
1822         * no overlapping syncs.
1823         * We don't need to check is_badblock() again as we
1824         * made sure that anything with a bad block in range
1825         * will have bi_end_io clear.
1826         */
1827        struct mddev *mddev = r1_bio->mddev;
1828        struct r1conf *conf = mddev->private;
1829        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1830        sector_t sect = r1_bio->sector;
1831        int sectors = r1_bio->sectors;
1832        int idx = 0;
1833
1834        while(sectors) {
1835                int s = sectors;
1836                int d = r1_bio->read_disk;
1837                int success = 0;
1838                struct md_rdev *rdev;
1839                int start;
1840
1841                if (s > (PAGE_SIZE>>9))
1842                        s = PAGE_SIZE >> 9;
1843                do {
1844                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1845                                /* No rcu protection needed here devices
1846                                 * can only be removed when no resync is
1847                                 * active, and resync is currently active
1848                                 */
1849                                rdev = conf->mirrors[d].rdev;
1850                                if (sync_page_io(rdev, sect, s<<9,
1851                                                 bio->bi_io_vec[idx].bv_page,
1852                                                 READ, false)) {
1853                                        success = 1;
1854                                        break;
1855                                }
1856                        }
1857                        d++;
1858                        if (d == conf->raid_disks * 2)
1859                                d = 0;
1860                } while (!success && d != r1_bio->read_disk);
1861
1862                if (!success) {
1863                        char b[BDEVNAME_SIZE];
1864                        int abort = 0;
1865                        /* Cannot read from anywhere, this block is lost.
1866                         * Record a bad block on each device.  If that doesn't
1867                         * work just disable and interrupt the recovery.
1868                         * Don't fail devices as that won't really help.
1869                         */
1870                        printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1871                               " for block %llu\n",
1872                               mdname(mddev),
1873                               bdevname(bio->bi_bdev, b),
1874                               (unsigned long long)r1_bio->sector);
1875                        for (d = 0; d < conf->raid_disks * 2; d++) {
1876                                rdev = conf->mirrors[d].rdev;
1877                                if (!rdev || test_bit(Faulty, &rdev->flags))
1878                                        continue;
1879                                if (!rdev_set_badblocks(rdev, sect, s, 0))
1880                                        abort = 1;
1881                        }
1882                        if (abort) {
1883                                conf->recovery_disabled =
1884                                        mddev->recovery_disabled;
1885                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1886                                md_done_sync(mddev, r1_bio->sectors, 0);
1887                                put_buf(r1_bio);
1888                                return 0;
1889                        }
1890                        /* Try next page */
1891                        sectors -= s;
1892                        sect += s;
1893                        idx++;
1894                        continue;
1895                }
1896
1897                start = d;
1898                /* write it back and re-read */
1899                while (d != r1_bio->read_disk) {
1900                        if (d == 0)
1901                                d = conf->raid_disks * 2;
1902                        d--;
1903                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1904                                continue;
1905                        rdev = conf->mirrors[d].rdev;
1906                        if (r1_sync_page_io(rdev, sect, s,
1907                                            bio->bi_io_vec[idx].bv_page,
1908                                            WRITE) == 0) {
1909                                r1_bio->bios[d]->bi_end_io = NULL;
1910                                rdev_dec_pending(rdev, mddev);
1911                        }
1912                }
1913                d = start;
1914                while (d != r1_bio->read_disk) {
1915                        if (d == 0)
1916                                d = conf->raid_disks * 2;
1917                        d--;
1918                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919                                continue;
1920                        rdev = conf->mirrors[d].rdev;
1921                        if (r1_sync_page_io(rdev, sect, s,
1922                                            bio->bi_io_vec[idx].bv_page,
1923                                            READ) != 0)
1924                                atomic_add(s, &rdev->corrected_errors);
1925                }
1926                sectors -= s;
1927                sect += s;
1928                idx ++;
1929        }
1930        set_bit(R1BIO_Uptodate, &r1_bio->state);
1931        set_bit(BIO_UPTODATE, &bio->bi_flags);
1932        return 1;
1933}
1934
1935static int process_checks(struct r1bio *r1_bio)
1936{
1937        /* We have read all readable devices.  If we haven't
1938         * got the block, then there is no hope left.
1939         * If we have, then we want to do a comparison
1940         * and skip the write if everything is the same.
1941         * If any blocks failed to read, then we need to
1942         * attempt an over-write
1943         */
1944        struct mddev *mddev = r1_bio->mddev;
1945        struct r1conf *conf = mddev->private;
1946        int primary;
1947        int i;
1948        int vcnt;
1949
1950        /* Fix variable parts of all bios */
1951        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1952        for (i = 0; i < conf->raid_disks * 2; i++) {
1953                int j;
1954                int size;
1955                struct bio *b = r1_bio->bios[i];
1956                if (b->bi_end_io != end_sync_read)
1957                        continue;
1958                /* fixup the bio for reuse */
1959                bio_reset(b);
1960                b->bi_vcnt = vcnt;
1961                b->bi_size = r1_bio->sectors << 9;
1962                b->bi_sector = r1_bio->sector +
1963                        conf->mirrors[i].rdev->data_offset;
1964                b->bi_bdev = conf->mirrors[i].rdev->bdev;
1965                b->bi_end_io = end_sync_read;
1966                b->bi_private = r1_bio;
1967
1968                size = b->bi_size;
1969                for (j = 0; j < vcnt ; j++) {
1970                        struct bio_vec *bi;
1971                        bi = &b->bi_io_vec[j];
1972                        bi->bv_offset = 0;
1973                        if (size > PAGE_SIZE)
1974                                bi->bv_len = PAGE_SIZE;
1975                        else
1976                                bi->bv_len = size;
1977                        size -= PAGE_SIZE;
1978                }
1979        }
1980        for (primary = 0; primary < conf->raid_disks * 2; primary++)
1981                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1982                    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1983                        r1_bio->bios[primary]->bi_end_io = NULL;
1984                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1985                        break;
1986                }
1987        r1_bio->read_disk = primary;
1988        for (i = 0; i < conf->raid_disks * 2; i++) {
1989                int j;
1990                struct bio *pbio = r1_bio->bios[primary];
1991                struct bio *sbio = r1_bio->bios[i];
1992
1993                if (sbio->bi_end_io != end_sync_read)
1994                        continue;
1995
1996                if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1997                        for (j = vcnt; j-- ; ) {
1998                                struct page *p, *s;
1999                                p = pbio->bi_io_vec[j].bv_page;
2000                                s = sbio->bi_io_vec[j].bv_page;
2001                                if (memcmp(page_address(p),
2002                                           page_address(s),
2003                                           sbio->bi_io_vec[j].bv_len))
2004                                        break;
2005                        }
2006                } else
2007                        j = 0;
2008                if (j >= 0)
2009                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2010                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2011                              && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
2012                        /* No need to write to this device. */
2013                        sbio->bi_end_io = NULL;
2014                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2015                        continue;
2016                }
2017
2018                bio_copy_data(sbio, pbio);
2019        }
2020        return 0;
2021}
2022
2023static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2024{
2025        struct r1conf *conf = mddev->private;
2026        int i;
2027        int disks = conf->raid_disks * 2;
2028        struct bio *bio, *wbio;
2029
2030        bio = r1_bio->bios[r1_bio->read_disk];
2031
2032        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2033                /* ouch - failed to read all of that. */
2034                if (!fix_sync_read_error(r1_bio))
2035                        return;
2036
2037        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2038                if (process_checks(r1_bio) < 0)
2039                        return;
2040        /*
2041         * schedule writes
2042         */
2043        atomic_set(&r1_bio->remaining, 1);
2044        for (i = 0; i < disks ; i++) {
2045                wbio = r1_bio->bios[i];
2046                if (wbio->bi_end_io == NULL ||
2047                    (wbio->bi_end_io == end_sync_read &&
2048                     (i == r1_bio->read_disk ||
2049                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2050                        continue;
2051
2052                wbio->bi_rw = WRITE;
2053                wbio->bi_end_io = end_sync_write;
2054                atomic_inc(&r1_bio->remaining);
2055                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2056
2057                generic_make_request(wbio);
2058        }
2059
2060        if (atomic_dec_and_test(&r1_bio->remaining)) {
2061                /* if we're here, all write(s) have completed, so clean up */
2062                int s = r1_bio->sectors;
2063                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2064                    test_bit(R1BIO_WriteError, &r1_bio->state))
2065                        reschedule_retry(r1_bio);
2066                else {
2067                        put_buf(r1_bio);
2068                        md_done_sync(mddev, s, 1);
2069                }
2070        }
2071}
2072
2073/*
2074 * This is a kernel thread which:
2075 *
2076 *      1.      Retries failed read operations on working mirrors.
2077 *      2.      Updates the raid superblock when problems encounter.
2078 *      3.      Performs writes following reads for array synchronising.
2079 */
2080
2081static void fix_read_error(struct r1conf *conf, int read_disk,
2082                           sector_t sect, int sectors)
2083{
2084        struct mddev *mddev = conf->mddev;
2085        while(sectors) {
2086                int s = sectors;
2087                int d = read_disk;
2088                int success = 0;
2089                int start;
2090                struct md_rdev *rdev;
2091
2092                if (s > (PAGE_SIZE>>9))
2093                        s = PAGE_SIZE >> 9;
2094
2095                do {
2096                        /* Note: no rcu protection needed here
2097                         * as this is synchronous in the raid1d thread
2098                         * which is the thread that might remove
2099                         * a device.  If raid1d ever becomes multi-threaded....
2100                         */
2101                        sector_t first_bad;
2102                        int bad_sectors;
2103
2104                        rdev = conf->mirrors[d].rdev;
2105                        if (rdev &&
2106                            (test_bit(In_sync, &rdev->flags) ||
2107                             (!test_bit(Faulty, &rdev->flags) &&
2108                              rdev->recovery_offset >= sect + s)) &&
2109                            is_badblock(rdev, sect, s,
2110                                        &first_bad, &bad_sectors) == 0 &&
2111                            sync_page_io(rdev, sect, s<<9,
2112                                         conf->tmppage, READ, false))
2113                                success = 1;
2114                        else {
2115                                d++;
2116                                if (d == conf->raid_disks * 2)
2117                                        d = 0;
2118                        }
2119                } while (!success && d != read_disk);
2120
2121                if (!success) {
2122                        /* Cannot read from anywhere - mark it bad */
2123                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2124                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2125                                md_error(mddev, rdev);
2126                        break;
2127                }
2128                /* write it back and re-read */
2129                start = d;
2130                while (d != read_disk) {
2131                        if (d==0)
2132                                d = conf->raid_disks * 2;
2133                        d--;
2134                        rdev = conf->mirrors[d].rdev;
2135                        if (rdev &&
2136                            test_bit(In_sync, &rdev->flags))
2137                                r1_sync_page_io(rdev, sect, s,
2138                                                conf->tmppage, WRITE);
2139                }
2140                d = start;
2141                while (d != read_disk) {
2142                        char b[BDEVNAME_SIZE];
2143                        if (d==0)
2144                                d = conf->raid_disks * 2;
2145                        d--;
2146                        rdev = conf->mirrors[d].rdev;
2147                        if (rdev &&
2148                            test_bit(In_sync, &rdev->flags)) {
2149                                if (r1_sync_page_io(rdev, sect, s,
2150                                                    conf->tmppage, READ)) {
2151                                        atomic_add(s, &rdev->corrected_errors);
2152                                        printk(KERN_INFO
2153                                               "md/raid1:%s: read error corrected "
2154                                               "(%d sectors at %llu on %s)\n",
2155                                               mdname(mddev), s,
2156                                               (unsigned long long)(sect +
2157                                                   rdev->data_offset),
2158                                               bdevname(rdev->bdev, b));
2159                                }
2160                        }
2161                }
2162                sectors -= s;
2163                sect += s;
2164        }
2165}
2166
2167static int narrow_write_error(struct r1bio *r1_bio, int i)
2168{
2169        struct mddev *mddev = r1_bio->mddev;
2170        struct r1conf *conf = mddev->private;
2171        struct md_rdev *rdev = conf->mirrors[i].rdev;
2172
2173        /* bio has the data to be written to device 'i' where
2174         * we just recently had a write error.
2175         * We repeatedly clone the bio and trim down to one block,
2176         * then try the write.  Where the write fails we record
2177         * a bad block.
2178         * It is conceivable that the bio doesn't exactly align with
2179         * blocks.  We must handle this somehow.
2180         *
2181         * We currently own a reference on the rdev.
2182         */
2183
2184        int block_sectors;
2185        sector_t sector;
2186        int sectors;
2187        int sect_to_write = r1_bio->sectors;
2188        int ok = 1;
2189
2190        if (rdev->badblocks.shift < 0)
2191                return 0;
2192
2193        block_sectors = 1 << rdev->badblocks.shift;
2194        sector = r1_bio->sector;
2195        sectors = ((sector + block_sectors)
2196                   & ~(sector_t)(block_sectors - 1))
2197                - sector;
2198
2199        while (sect_to_write) {
2200                struct bio *wbio;
2201                if (sectors > sect_to_write)
2202                        sectors = sect_to_write;
2203                /* Write at 'sector' for 'sectors'*/
2204
2205                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2206                        unsigned vcnt = r1_bio->behind_page_count;
2207                        struct bio_vec *vec = r1_bio->behind_bvecs;
2208
2209                        while (!vec->bv_page) {
2210                                vec++;
2211                                vcnt--;
2212                        }
2213
2214                        wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2215                        memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2216
2217                        wbio->bi_vcnt = vcnt;
2218                } else {
2219                        wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2220                }
2221
2222                wbio->bi_rw = WRITE;
2223                wbio->bi_sector = r1_bio->sector;
2224                wbio->bi_size = r1_bio->sectors << 9;
2225
2226                bio_trim(wbio, sector - r1_bio->sector, sectors);
2227                wbio->bi_sector += rdev->data_offset;
2228                wbio->bi_bdev = rdev->bdev;
2229                if (submit_bio_wait(WRITE, wbio) == 0)
2230                        /* failure! */
2231                        ok = rdev_set_badblocks(rdev, sector,
2232                                                sectors, 0)
2233                                && ok;
2234
2235                bio_put(wbio);
2236                sect_to_write -= sectors;
2237                sector += sectors;
2238                sectors = block_sectors;
2239        }
2240        return ok;
2241}
2242
2243static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2244{
2245        int m;
2246        int s = r1_bio->sectors;
2247        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2248                struct md_rdev *rdev = conf->mirrors[m].rdev;
2249                struct bio *bio = r1_bio->bios[m];
2250                if (bio->bi_end_io == NULL)
2251                        continue;
2252                if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2253                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2254                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2255                }
2256                if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2257                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2258                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2259                                md_error(conf->mddev, rdev);
2260                }
2261        }
2262        put_buf(r1_bio);
2263        md_done_sync(conf->mddev, s, 1);
2264}
2265
2266static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2267{
2268        int m;
2269        for (m = 0; m < conf->raid_disks * 2 ; m++)
2270                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2271                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2272                        rdev_clear_badblocks(rdev,
2273                                             r1_bio->sector,
2274                                             r1_bio->sectors, 0);
2275                        rdev_dec_pending(rdev, conf->mddev);
2276                } else if (r1_bio->bios[m] != NULL) {
2277                        /* This drive got a write error.  We need to
2278                         * narrow down and record precise write
2279                         * errors.
2280                         */
2281                        if (!narrow_write_error(r1_bio, m)) {
2282                                md_error(conf->mddev,
2283                                         conf->mirrors[m].rdev);
2284                                /* an I/O failed, we can't clear the bitmap */
2285                                set_bit(R1BIO_Degraded, &r1_bio->state);
2286                        }
2287                        rdev_dec_pending(conf->mirrors[m].rdev,
2288                                         conf->mddev);
2289                }
2290        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2291                close_write(r1_bio);
2292        raid_end_bio_io(r1_bio);
2293}
2294
2295static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2296{
2297        int disk;
2298        int max_sectors;
2299        struct mddev *mddev = conf->mddev;
2300        struct bio *bio;
2301        char b[BDEVNAME_SIZE];
2302        struct md_rdev *rdev;
2303
2304        clear_bit(R1BIO_ReadError, &r1_bio->state);
2305        /* we got a read error. Maybe the drive is bad.  Maybe just
2306         * the block and we can fix it.
2307         * We freeze all other IO, and try reading the block from
2308         * other devices.  When we find one, we re-write
2309         * and check it that fixes the read error.
2310         * This is all done synchronously while the array is
2311         * frozen
2312         */
2313        if (mddev->ro == 0) {
2314                freeze_array(conf, 1);
2315                fix_read_error(conf, r1_bio->read_disk,
2316                               r1_bio->sector, r1_bio->sectors);
2317                unfreeze_array(conf);
2318        } else
2319                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2320        rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2321
2322        bio = r1_bio->bios[r1_bio->read_disk];
2323        bdevname(bio->bi_bdev, b);
2324read_more:
2325        disk = read_balance(conf, r1_bio, &max_sectors);
2326        if (disk == -1) {
2327                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2328                       " read error for block %llu\n",
2329                       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2330                raid_end_bio_io(r1_bio);
2331        } else {
2332                const unsigned long do_sync
2333                        = r1_bio->master_bio->bi_rw & REQ_SYNC;
2334                if (bio) {
2335                        r1_bio->bios[r1_bio->read_disk] =
2336                                mddev->ro ? IO_BLOCKED : NULL;
2337                        bio_put(bio);
2338                }
2339                r1_bio->read_disk = disk;
2340                bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2341                bio_trim(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2342                r1_bio->bios[r1_bio->read_disk] = bio;
2343                rdev = conf->mirrors[disk].rdev;
2344                printk_ratelimited(KERN_ERR
2345                                   "md/raid1:%s: redirecting sector %llu"
2346                                   " to other mirror: %s\n",
2347                                   mdname(mddev),
2348                                   (unsigned long long)r1_bio->sector,
2349                                   bdevname(rdev->bdev, b));
2350                bio->bi_sector = r1_bio->sector + rdev->data_offset;
2351                bio->bi_bdev = rdev->bdev;
2352                bio->bi_end_io = raid1_end_read_request;
2353                bio->bi_rw = READ | do_sync;
2354                bio->bi_private = r1_bio;
2355                if (max_sectors < r1_bio->sectors) {
2356                        /* Drat - have to split this up more */
2357                        struct bio *mbio = r1_bio->master_bio;
2358                        int sectors_handled = (r1_bio->sector + max_sectors
2359                                               - mbio->bi_sector);
2360                        r1_bio->sectors = max_sectors;
2361                        spin_lock_irq(&conf->device_lock);
2362                        if (mbio->bi_phys_segments == 0)
2363                                mbio->bi_phys_segments = 2;
2364                        else
2365                                mbio->bi_phys_segments++;
2366                        spin_unlock_irq(&conf->device_lock);
2367                        generic_make_request(bio);
2368                        bio = NULL;
2369
2370                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2371
2372                        r1_bio->master_bio = mbio;
2373                        r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2374                        r1_bio->state = 0;
2375                        set_bit(R1BIO_ReadError, &r1_bio->state);
2376                        r1_bio->mddev = mddev;
2377                        r1_bio->sector = mbio->bi_sector + sectors_handled;
2378
2379                        goto read_more;
2380                } else
2381                        generic_make_request(bio);
2382        }
2383}
2384
2385static void raid1d(struct md_thread *thread)
2386{
2387        struct mddev *mddev = thread->mddev;
2388        struct r1bio *r1_bio;
2389        unsigned long flags;
2390        struct r1conf *conf = mddev->private;
2391        struct list_head *head = &conf->retry_list;
2392        struct blk_plug plug;
2393
2394        md_check_recovery(mddev);
2395
2396        blk_start_plug(&plug);
2397        for (;;) {
2398
2399                flush_pending_writes(conf);
2400
2401                spin_lock_irqsave(&conf->device_lock, flags);
2402                if (list_empty(head)) {
2403                        spin_unlock_irqrestore(&conf->device_lock, flags);
2404                        break;
2405                }
2406                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2407                list_del(head->prev);
2408                conf->nr_queued--;
2409                spin_unlock_irqrestore(&conf->device_lock, flags);
2410
2411                mddev = r1_bio->mddev;
2412                conf = mddev->private;
2413                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2414                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2415                            test_bit(R1BIO_WriteError, &r1_bio->state))
2416                                handle_sync_write_finished(conf, r1_bio);
2417                        else
2418                                sync_request_write(mddev, r1_bio);
2419                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2420                           test_bit(R1BIO_WriteError, &r1_bio->state))
2421                        handle_write_finished(conf, r1_bio);
2422                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2423                        handle_read_error(conf, r1_bio);
2424                else
2425                        /* just a partial read to be scheduled from separate
2426                         * context
2427                         */
2428                        generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2429
2430                cond_resched();
2431                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2432                        md_check_recovery(mddev);
2433        }
2434        blk_finish_plug(&plug);
2435}
2436
2437
2438static int init_resync(struct r1conf *conf)
2439{
2440        int buffs;
2441
2442        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2443        BUG_ON(conf->r1buf_pool);
2444        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2445                                          conf->poolinfo);
2446        if (!conf->r1buf_pool)
2447                return -ENOMEM;
2448        conf->next_resync = 0;
2449        return 0;
2450}
2451
2452/*
2453 * perform a "sync" on one "block"
2454 *
2455 * We need to make sure that no normal I/O request - particularly write
2456 * requests - conflict with active sync requests.
2457 *
2458 * This is achieved by tracking pending requests and a 'barrier' concept
2459 * that can be installed to exclude normal IO requests.
2460 */
2461
2462static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2463{
2464        struct r1conf *conf = mddev->private;
2465        struct r1bio *r1_bio;
2466        struct bio *bio;
2467        sector_t max_sector, nr_sectors;
2468        int disk = -1;
2469        int i;
2470        int wonly = -1;
2471        int write_targets = 0, read_targets = 0;
2472        sector_t sync_blocks;
2473        int still_degraded = 0;
2474        int good_sectors = RESYNC_SECTORS;
2475        int min_bad = 0; /* number of sectors that are bad in all devices */
2476
2477        if (!conf->r1buf_pool)
2478                if (init_resync(conf))
2479                        return 0;
2480
2481        max_sector = mddev->dev_sectors;
2482        if (sector_nr >= max_sector) {
2483                /* If we aborted, we need to abort the
2484                 * sync on the 'current' bitmap chunk (there will
2485                 * only be one in raid1 resync.
2486                 * We can find the current addess in mddev->curr_resync
2487                 */
2488                if (mddev->curr_resync < max_sector) /* aborted */
2489                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2490                                                &sync_blocks, 1);
2491                else /* completed sync */
2492                        conf->fullsync = 0;
2493
2494                bitmap_close_sync(mddev->bitmap);
2495                close_sync(conf);
2496                return 0;
2497        }
2498
2499        if (mddev->bitmap == NULL &&
2500            mddev->recovery_cp == MaxSector &&
2501            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2502            conf->fullsync == 0) {
2503                *skipped = 1;
2504                return max_sector - sector_nr;
2505        }
2506        /* before building a request, check if we can skip these blocks..
2507         * This call the bitmap_start_sync doesn't actually record anything
2508         */
2509        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2510            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2511                /* We can skip this block, and probably several more */
2512                *skipped = 1;
2513                return sync_blocks;
2514        }
2515        /*
2516         * If there is non-resync activity waiting for a turn,
2517         * and resync is going fast enough,
2518         * then let it though before starting on this new sync request.
2519         */
2520        if (!go_faster && conf->nr_waiting)
2521                msleep_interruptible(1000);
2522
2523        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2524        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2525        raise_barrier(conf);
2526
2527        conf->next_resync = sector_nr;
2528
2529        rcu_read_lock();
2530        /*
2531         * If we get a correctably read error during resync or recovery,
2532         * we might want to read from a different device.  So we
2533         * flag all drives that could conceivably be read from for READ,
2534         * and any others (which will be non-In_sync devices) for WRITE.
2535         * If a read fails, we try reading from something else for which READ
2536         * is OK.
2537         */
2538
2539        r1_bio->mddev = mddev;
2540        r1_bio->sector = sector_nr;
2541        r1_bio->state = 0;
2542        set_bit(R1BIO_IsSync, &r1_bio->state);
2543
2544        for (i = 0; i < conf->raid_disks * 2; i++) {
2545                struct md_rdev *rdev;
2546                bio = r1_bio->bios[i];
2547                bio_reset(bio);
2548
2549                rdev = rcu_dereference(conf->mirrors[i].rdev);
2550                if (rdev == NULL ||
2551                    test_bit(Faulty, &rdev->flags)) {
2552                        if (i < conf->raid_disks)
2553                                still_degraded = 1;
2554                } else if (!test_bit(In_sync, &rdev->flags)) {
2555                        bio->bi_rw = WRITE;
2556                        bio->bi_end_io = end_sync_write;
2557                        write_targets ++;
2558                } else {
2559                        /* may need to read from here */
2560                        sector_t first_bad = MaxSector;
2561                        int bad_sectors;
2562
2563                        if (is_badblock(rdev, sector_nr, good_sectors,
2564                                        &first_bad, &bad_sectors)) {
2565                                if (first_bad > sector_nr)
2566                                        good_sectors = first_bad - sector_nr;
2567                                else {
2568                                        bad_sectors -= (sector_nr - first_bad);
2569                                        if (min_bad == 0 ||
2570                                            min_bad > bad_sectors)
2571                                                min_bad = bad_sectors;
2572                                }
2573                        }
2574                        if (sector_nr < first_bad) {
2575                                if (test_bit(WriteMostly, &rdev->flags)) {
2576                                        if (wonly < 0)
2577                                                wonly = i;
2578                                } else {
2579                                        if (disk < 0)
2580                                                disk = i;
2581                                }
2582                                bio->bi_rw = READ;
2583                                bio->bi_end_io = end_sync_read;
2584                                read_targets++;
2585                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2586                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2587                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2588                                /*
2589                                 * The device is suitable for reading (InSync),
2590                                 * but has bad block(s) here. Let's try to correct them,
2591                                 * if we are doing resync or repair. Otherwise, leave
2592                                 * this device alone for this sync request.
2593                                 */
2594                                bio->bi_rw = WRITE;
2595                                bio->bi_end_io = end_sync_write;
2596                                write_targets++;
2597                        }
2598                }
2599                if (bio->bi_end_io) {
2600                        atomic_inc(&rdev->nr_pending);
2601                        bio->bi_sector = sector_nr + rdev->data_offset;
2602                        bio->bi_bdev = rdev->bdev;
2603                        bio->bi_private = r1_bio;
2604                }
2605        }
2606        rcu_read_unlock();
2607        if (disk < 0)
2608                disk = wonly;
2609        r1_bio->read_disk = disk;
2610
2611        if (read_targets == 0 && min_bad > 0) {
2612                /* These sectors are bad on all InSync devices, so we
2613                 * need to mark them bad on all write targets
2614                 */
2615                int ok = 1;
2616                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2617                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2618                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2619                                ok = rdev_set_badblocks(rdev, sector_nr,
2620                                                        min_bad, 0
2621                                        ) && ok;
2622                        }
2623                set_bit(MD_CHANGE_DEVS, &mddev->flags);
2624                *skipped = 1;
2625                put_buf(r1_bio);
2626
2627                if (!ok) {
2628                        /* Cannot record the badblocks, so need to
2629                         * abort the resync.
2630                         * If there are multiple read targets, could just
2631                         * fail the really bad ones ???
2632                         */
2633                        conf->recovery_disabled = mddev->recovery_disabled;
2634                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2635                        return 0;
2636                } else
2637                        return min_bad;
2638
2639        }
2640        if (min_bad > 0 && min_bad < good_sectors) {
2641                /* only resync enough to reach the next bad->good
2642                 * transition */
2643                good_sectors = min_bad;
2644        }
2645
2646        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2647                /* extra read targets are also write targets */
2648                write_targets += read_targets-1;
2649
2650        if (write_targets == 0 || read_targets == 0) {
2651                /* There is nowhere to write, so all non-sync
2652                 * drives must be failed - so we are finished
2653                 */
2654                sector_t rv;
2655                if (min_bad > 0)
2656                        max_sector = sector_nr + min_bad;
2657                rv = max_sector - sector_nr;
2658                *skipped = 1;
2659                put_buf(r1_bio);
2660                return rv;
2661        }
2662
2663        if (max_sector > mddev->resync_max)
2664                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2665        if (max_sector > sector_nr + good_sectors)
2666                max_sector = sector_nr + good_sectors;
2667        nr_sectors = 0;
2668        sync_blocks = 0;
2669        do {
2670                struct page *page;
2671                int len = PAGE_SIZE;
2672                if (sector_nr + (len>>9) > max_sector)
2673                        len = (max_sector - sector_nr) << 9;
2674                if (len == 0)
2675                        break;
2676                if (sync_blocks == 0) {
2677                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2678                                               &sync_blocks, still_degraded) &&
2679                            !conf->fullsync &&
2680                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2681                                break;
2682                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2683                        if ((len >> 9) > sync_blocks)
2684                                len = sync_blocks<<9;
2685                }
2686
2687                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2688                        bio = r1_bio->bios[i];
2689                        if (bio->bi_end_io) {
2690                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2691                                if (bio_add_page(bio, page, len, 0) == 0) {
2692                                        /* stop here */
2693                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2694                                        while (i > 0) {
2695                                                i--;
2696                                                bio = r1_bio->bios[i];
2697                                                if (bio->bi_end_io==NULL)
2698                                                        continue;
2699                                                /* remove last page from this bio */
2700                                                bio->bi_vcnt--;
2701                                                bio->bi_size -= len;
2702                                                bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2703                                        }
2704                                        goto bio_full;
2705                                }
2706                        }
2707                }
2708                nr_sectors += len>>9;
2709                sector_nr += len>>9;
2710                sync_blocks -= (len>>9);
2711        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2712 bio_full:
2713        r1_bio->sectors = nr_sectors;
2714
2715        /* For a user-requested sync, we read all readable devices and do a
2716         * compare
2717         */
2718        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2719                atomic_set(&r1_bio->remaining, read_targets);
2720                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2721                        bio = r1_bio->bios[i];
2722                        if (bio->bi_end_io == end_sync_read) {
2723                                read_targets--;
2724                                md_sync_acct(bio->bi_bdev, nr_sectors);
2725                                generic_make_request(bio);
2726                        }
2727                }
2728        } else {
2729                atomic_set(&r1_bio->remaining, 1);
2730                bio = r1_bio->bios[r1_bio->read_disk];
2731                md_sync_acct(bio->bi_bdev, nr_sectors);
2732                generic_make_request(bio);
2733
2734        }
2735        return nr_sectors;
2736}
2737
2738static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2739{
2740        if (sectors)
2741                return sectors;
2742
2743        return mddev->dev_sectors;
2744}
2745
2746static struct r1conf *setup_conf(struct mddev *mddev)
2747{
2748        struct r1conf *conf;
2749        int i;
2750        struct raid1_info *disk;
2751        struct md_rdev *rdev;
2752        int err = -ENOMEM;
2753
2754        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2755        if (!conf)
2756                goto abort;
2757
2758        conf->mirrors = kzalloc(sizeof(struct raid1_info)
2759                                * mddev->raid_disks * 2,
2760                                 GFP_KERNEL);
2761        if (!conf->mirrors)
2762                goto abort;
2763
2764        conf->tmppage = alloc_page(GFP_KERNEL);
2765        if (!conf->tmppage)
2766                goto abort;
2767
2768        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2769        if (!conf->poolinfo)
2770                goto abort;
2771        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2772        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2773                                          r1bio_pool_free,
2774                                          conf->poolinfo);
2775        if (!conf->r1bio_pool)
2776                goto abort;
2777
2778        conf->poolinfo->mddev = mddev;
2779
2780        err = -EINVAL;
2781        spin_lock_init(&conf->device_lock);
2782        rdev_for_each(rdev, mddev) {
2783                struct request_queue *q;
2784                int disk_idx = rdev->raid_disk;
2785                if (disk_idx >= mddev->raid_disks
2786                    || disk_idx < 0)
2787                        continue;
2788                if (test_bit(Replacement, &rdev->flags))
2789                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
2790                else
2791                        disk = conf->mirrors + disk_idx;
2792
2793                if (disk->rdev)
2794                        goto abort;
2795                disk->rdev = rdev;
2796                q = bdev_get_queue(rdev->bdev);
2797                if (q->merge_bvec_fn)
2798                        mddev->merge_check_needed = 1;
2799
2800                disk->head_position = 0;
2801                disk->seq_start = MaxSector;
2802        }
2803        conf->raid_disks = mddev->raid_disks;
2804        conf->mddev = mddev;
2805        INIT_LIST_HEAD(&conf->retry_list);
2806
2807        spin_lock_init(&conf->resync_lock);
2808        init_waitqueue_head(&conf->wait_barrier);
2809
2810        bio_list_init(&conf->pending_bio_list);
2811        conf->pending_count = 0;
2812        conf->recovery_disabled = mddev->recovery_disabled - 1;
2813
2814        conf->start_next_window = MaxSector;
2815        conf->current_window_requests = conf->next_window_requests = 0;
2816
2817        err = -EIO;
2818        for (i = 0; i < conf->raid_disks * 2; i++) {
2819
2820                disk = conf->mirrors + i;
2821
2822                if (i < conf->raid_disks &&
2823                    disk[conf->raid_disks].rdev) {
2824                        /* This slot has a replacement. */
2825                        if (!disk->rdev) {
2826                                /* No original, just make the replacement
2827                                 * a recovering spare
2828                                 */
2829                                disk->rdev =
2830                                        disk[conf->raid_disks].rdev;
2831                                disk[conf->raid_disks].rdev = NULL;
2832                        } else if (!test_bit(In_sync, &disk->rdev->flags))
2833                                /* Original is not in_sync - bad */
2834                                goto abort;
2835                }
2836
2837                if (!disk->rdev ||
2838                    !test_bit(In_sync, &disk->rdev->flags)) {
2839                        disk->head_position = 0;
2840                        if (disk->rdev &&
2841                            (disk->rdev->saved_raid_disk < 0))
2842                                conf->fullsync = 1;
2843                }
2844        }
2845
2846        err = -ENOMEM;
2847        conf->thread = md_register_thread(raid1d, mddev, "raid1");
2848        if (!conf->thread) {
2849                printk(KERN_ERR
2850                       "md/raid1:%s: couldn't allocate thread\n",
2851                       mdname(mddev));
2852                goto abort;
2853        }
2854
2855        return conf;
2856
2857 abort:
2858        if (conf) {
2859                if (conf->r1bio_pool)
2860                        mempool_destroy(conf->r1bio_pool);
2861                kfree(conf->mirrors);
2862                safe_put_page(conf->tmppage);
2863                kfree(conf->poolinfo);
2864                kfree(conf);
2865        }
2866        return ERR_PTR(err);
2867}
2868
2869static int stop(struct mddev *mddev);
2870static int run(struct mddev *mddev)
2871{
2872        struct r1conf *conf;
2873        int i;
2874        struct md_rdev *rdev;
2875        int ret;
2876        bool discard_supported = false;
2877
2878        if (mddev->level != 1) {
2879                printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2880                       mdname(mddev), mddev->level);
2881                return -EIO;
2882        }
2883        if (mddev->reshape_position != MaxSector) {
2884                printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2885                       mdname(mddev));
2886                return -EIO;
2887        }
2888        /*
2889         * copy the already verified devices into our private RAID1
2890         * bookkeeping area. [whatever we allocate in run(),
2891         * should be freed in stop()]
2892         */
2893        if (mddev->private == NULL)
2894                conf = setup_conf(mddev);
2895        else
2896                conf = mddev->private;
2897
2898        if (IS_ERR(conf))
2899                return PTR_ERR(conf);
2900
2901        if (mddev->queue)
2902                blk_queue_max_write_same_sectors(mddev->queue, 0);
2903
2904        rdev_for_each(rdev, mddev) {
2905                if (!mddev->gendisk)
2906                        continue;
2907                disk_stack_limits(mddev->gendisk, rdev->bdev,
2908                                  rdev->data_offset << 9);
2909                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2910                        discard_supported = true;
2911        }
2912
2913        mddev->degraded = 0;
2914        for (i=0; i < conf->raid_disks; i++)
2915                if (conf->mirrors[i].rdev == NULL ||
2916                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2917                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2918                        mddev->degraded++;
2919
2920        if (conf->raid_disks - mddev->degraded == 1)
2921                mddev->recovery_cp = MaxSector;
2922
2923        if (mddev->recovery_cp != MaxSector)
2924                printk(KERN_NOTICE "md/raid1:%s: not clean"
2925                       " -- starting background reconstruction\n",
2926                       mdname(mddev));
2927        printk(KERN_INFO 
2928                "md/raid1:%s: active with %d out of %d mirrors\n",
2929                mdname(mddev), mddev->raid_disks - mddev->degraded, 
2930                mddev->raid_disks);
2931
2932        /*
2933         * Ok, everything is just fine now
2934         */
2935        mddev->thread = conf->thread;
2936        conf->thread = NULL;
2937        mddev->private = conf;
2938
2939        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2940
2941        if (mddev->queue) {
2942                mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2943                mddev->queue->backing_dev_info.congested_data = mddev;
2944                blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2945
2946                if (discard_supported)
2947                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2948                                                mddev->queue);
2949                else
2950                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2951                                                  mddev->queue);
2952        }
2953
2954        ret =  md_integrity_register(mddev);
2955        if (ret)
2956                stop(mddev);
2957        return ret;
2958}
2959
2960static int stop(struct mddev *mddev)
2961{
2962        struct r1conf *conf = mddev->private;
2963        struct bitmap *bitmap = mddev->bitmap;
2964
2965        /* wait for behind writes to complete */
2966        if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2967                printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2968                       mdname(mddev));
2969                /* need to kick something here to make sure I/O goes? */
2970                wait_event(bitmap->behind_wait,
2971                           atomic_read(&bitmap->behind_writes) == 0);
2972        }
2973
2974        freeze_array(conf, 0);
2975        unfreeze_array(conf);
2976
2977        md_unregister_thread(&mddev->thread);
2978        if (conf->r1bio_pool)
2979                mempool_destroy(conf->r1bio_pool);
2980        kfree(conf->mirrors);
2981        safe_put_page(conf->tmppage);
2982        kfree(conf->poolinfo);
2983        kfree(conf);
2984        mddev->private = NULL;
2985        return 0;
2986}
2987
2988static int raid1_resize(struct mddev *mddev, sector_t sectors)
2989{
2990        /* no resync is happening, and there is enough space
2991         * on all devices, so we can resize.
2992         * We need to make sure resync covers any new space.
2993         * If the array is shrinking we should possibly wait until
2994         * any io in the removed space completes, but it hardly seems
2995         * worth it.
2996         */
2997        sector_t newsize = raid1_size(mddev, sectors, 0);
2998        if (mddev->external_size &&
2999            mddev->array_sectors > newsize)
3000                return -EINVAL;
3001        if (mddev->bitmap) {
3002                int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3003                if (ret)
3004                        return ret;
3005        }
3006        md_set_array_sectors(mddev, newsize);
3007        set_capacity(mddev->gendisk, mddev->array_sectors);
3008        revalidate_disk(mddev->gendisk);
3009        if (sectors > mddev->dev_sectors &&
3010            mddev->recovery_cp > mddev->dev_sectors) {
3011                mddev->recovery_cp = mddev->dev_sectors;
3012                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3013        }
3014        mddev->dev_sectors = sectors;
3015        mddev->resync_max_sectors = sectors;
3016        return 0;
3017}
3018
3019static int raid1_reshape(struct mddev *mddev)
3020{
3021        /* We need to:
3022         * 1/ resize the r1bio_pool
3023         * 2/ resize conf->mirrors
3024         *
3025         * We allocate a new r1bio_pool if we can.
3026         * Then raise a device barrier and wait until all IO stops.
3027         * Then resize conf->mirrors and swap in the new r1bio pool.
3028         *
3029         * At the same time, we "pack" the devices so that all the missing
3030         * devices have the higher raid_disk numbers.
3031         */
3032        mempool_t *newpool, *oldpool;
3033        struct pool_info *newpoolinfo;
3034        struct raid1_info *newmirrors;
3035        struct r1conf *conf = mddev->private;
3036        int cnt, raid_disks;
3037        unsigned long flags;
3038        int d, d2, err;
3039
3040        /* Cannot change chunk_size, layout, or level */
3041        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3042            mddev->layout != mddev->new_layout ||
3043            mddev->level != mddev->new_level) {
3044                mddev->new_chunk_sectors = mddev->chunk_sectors;
3045                mddev->new_layout = mddev->layout;
3046                mddev->new_level = mddev->level;
3047                return -EINVAL;
3048        }
3049
3050        err = md_allow_write(mddev);
3051        if (err)
3052                return err;
3053
3054        raid_disks = mddev->raid_disks + mddev->delta_disks;
3055
3056        if (raid_disks < conf->raid_disks) {
3057                cnt=0;
3058                for (d= 0; d < conf->raid_disks; d++)
3059                        if (conf->mirrors[d].rdev)
3060                                cnt++;
3061                if (cnt > raid_disks)
3062                        return -EBUSY;
3063        }
3064
3065        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3066        if (!newpoolinfo)
3067                return -ENOMEM;
3068        newpoolinfo->mddev = mddev;
3069        newpoolinfo->raid_disks = raid_disks * 2;
3070
3071        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3072                                 r1bio_pool_free, newpoolinfo);
3073        if (!newpool) {
3074                kfree(newpoolinfo);
3075                return -ENOMEM;
3076        }
3077        newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3078                             GFP_KERNEL);
3079        if (!newmirrors) {
3080                kfree(newpoolinfo);
3081                mempool_destroy(newpool);
3082                return -ENOMEM;
3083        }
3084
3085        freeze_array(conf, 0);
3086
3087        /* ok, everything is stopped */
3088        oldpool = conf->r1bio_pool;
3089        conf->r1bio_pool = newpool;
3090
3091        for (d = d2 = 0; d < conf->raid_disks; d++) {
3092                struct md_rdev *rdev = conf->mirrors[d].rdev;
3093                if (rdev && rdev->raid_disk != d2) {
3094                        sysfs_unlink_rdev(mddev, rdev);
3095                        rdev->raid_disk = d2;
3096                        sysfs_unlink_rdev(mddev, rdev);
3097                        if (sysfs_link_rdev(mddev, rdev))
3098                                printk(KERN_WARNING
3099                                       "md/raid1:%s: cannot register rd%d\n",
3100                                       mdname(mddev), rdev->raid_disk);
3101                }
3102                if (rdev)
3103                        newmirrors[d2++].rdev = rdev;
3104        }
3105        kfree(conf->mirrors);
3106        conf->mirrors = newmirrors;
3107        kfree(conf->poolinfo);
3108        conf->poolinfo = newpoolinfo;
3109
3110        spin_lock_irqsave(&conf->device_lock, flags);
3111        mddev->degraded += (raid_disks - conf->raid_disks);
3112        spin_unlock_irqrestore(&conf->device_lock, flags);
3113        conf->raid_disks = mddev->raid_disks = raid_disks;
3114        mddev->delta_disks = 0;
3115
3116        unfreeze_array(conf);
3117
3118        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119        md_wakeup_thread(mddev->thread);
3120
3121        mempool_destroy(oldpool);
3122        return 0;
3123}
3124
3125static void raid1_quiesce(struct mddev *mddev, int state)
3126{
3127        struct r1conf *conf = mddev->private;
3128
3129        switch(state) {
3130        case 2: /* wake for suspend */
3131                wake_up(&conf->wait_barrier);
3132                break;
3133        case 1:
3134                freeze_array(conf, 0);
3135                break;
3136        case 0:
3137                unfreeze_array(conf);
3138                break;
3139        }
3140}
3141
3142static void *raid1_takeover(struct mddev *mddev)
3143{
3144        /* raid1 can take over:
3145         *  raid5 with 2 devices, any layout or chunk size
3146         */
3147        if (mddev->level == 5 && mddev->raid_disks == 2) {
3148                struct r1conf *conf;
3149                mddev->new_level = 1;
3150                mddev->new_layout = 0;
3151                mddev->new_chunk_sectors = 0;
3152                conf = setup_conf(mddev);
3153                if (!IS_ERR(conf))
3154                        /* Array must appear to be quiesced */
3155                        conf->array_frozen = 1;
3156                return conf;
3157        }
3158        return ERR_PTR(-EINVAL);
3159}
3160
3161static struct md_personality raid1_personality =
3162{
3163        .name           = "raid1",
3164        .level          = 1,
3165        .owner          = THIS_MODULE,
3166        .make_request   = make_request,
3167        .run            = run,
3168        .stop           = stop,
3169        .status         = status,
3170        .error_handler  = error,
3171        .hot_add_disk   = raid1_add_disk,
3172        .hot_remove_disk= raid1_remove_disk,
3173        .spare_active   = raid1_spare_active,
3174        .sync_request   = sync_request,
3175        .resize         = raid1_resize,
3176        .size           = raid1_size,
3177        .check_reshape  = raid1_reshape,
3178        .quiesce        = raid1_quiesce,
3179        .takeover       = raid1_takeover,
3180};
3181
3182static int __init raid_init(void)
3183{
3184        return register_md_personality(&raid1_personality);
3185}
3186
3187static void raid_exit(void)
3188{
3189        unregister_md_personality(&raid1_personality);
3190}
3191
3192module_init(raid_init);
3193module_exit(raid_exit);
3194MODULE_LICENSE("GPL");
3195MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3196MODULE_ALIAS("md-personality-3"); /* RAID1 */
3197MODULE_ALIAS("md-raid1");
3198MODULE_ALIAS("md-level-1");
3199
3200module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3201