linux/drivers/media/pci/cx88/cx88-dsp.c
<<
>>
Prefs
   1/*
   2 *
   3 *  Stereo and SAP detection for cx88
   4 *
   5 *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2 of the License, or
  10 *  (at your option) any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; if not, write to the Free Software
  19 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/slab.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/jiffies.h>
  26#include <asm/div64.h>
  27
  28#include "cx88.h"
  29#include "cx88-reg.h"
  30
  31#define INT_PI                  ((s32)(3.141592653589 * 32768.0))
  32
  33#define compat_remainder(a, b) \
  34         ((float)(((s32)((a)*100))%((s32)((b)*100)))/100.0)
  35
  36#define baseband_freq(carrier, srate, tone) ((s32)( \
  37         (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
  38
  39/* We calculate the baseband frequencies of the carrier and the pilot tones
  40 * based on the the sampling rate of the audio rds fifo. */
  41
  42#define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
  43#define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
  44#define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
  45
  46/* The frequencies below are from the reference driver. They probably need
  47 * further adjustments, because they are not tested at all. You may even need
  48 * to play a bit with the registers of the chip to select the proper signal
  49 * for the input of the audio rds fifo, and measure it's sampling rate to
  50 * calculate the proper baseband frequencies... */
  51
  52#define FREQ_A2M_CARRIER        ((s32)(2.114516 * 32768.0))
  53#define FREQ_A2M_DUAL           ((s32)(2.754916 * 32768.0))
  54#define FREQ_A2M_STEREO         ((s32)(2.462326 * 32768.0))
  55
  56#define FREQ_EIAJ_CARRIER       ((s32)(1.963495 * 32768.0)) /* 5pi/8  */
  57#define FREQ_EIAJ_DUAL          ((s32)(2.562118 * 32768.0))
  58#define FREQ_EIAJ_STEREO        ((s32)(2.601053 * 32768.0))
  59
  60#define FREQ_BTSC_DUAL          ((s32)(1.963495 * 32768.0)) /* 5pi/8  */
  61#define FREQ_BTSC_DUAL_REF      ((s32)(1.374446 * 32768.0)) /* 7pi/16 */
  62
  63#define FREQ_BTSC_SAP           ((s32)(2.471532 * 32768.0))
  64#define FREQ_BTSC_SAP_REF       ((s32)(1.730072 * 32768.0))
  65
  66/* The spectrum of the signal should be empty between these frequencies. */
  67#define FREQ_NOISE_START        ((s32)(0.100000 * 32768.0))
  68#define FREQ_NOISE_END          ((s32)(1.200000 * 32768.0))
  69
  70static unsigned int dsp_debug;
  71module_param(dsp_debug, int, 0644);
  72MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
  73
  74#define dprintk(level, fmt, arg...)     if (dsp_debug >= level) \
  75        printk(KERN_DEBUG "%s/0: " fmt, core->name , ## arg)
  76
  77static s32 int_cos(u32 x)
  78{
  79        u32 t2, t4, t6, t8;
  80        s32 ret;
  81        u16 period = x / INT_PI;
  82        if (period % 2)
  83                return -int_cos(x - INT_PI);
  84        x = x % INT_PI;
  85        if (x > INT_PI/2)
  86                return -int_cos(INT_PI/2 - (x % (INT_PI/2)));
  87        /* Now x is between 0 and INT_PI/2.
  88         * To calculate cos(x) we use it's Taylor polinom. */
  89        t2 = x*x/32768/2;
  90        t4 = t2*x/32768*x/32768/3/4;
  91        t6 = t4*x/32768*x/32768/5/6;
  92        t8 = t6*x/32768*x/32768/7/8;
  93        ret = 32768-t2+t4-t6+t8;
  94        return ret;
  95}
  96
  97static u32 int_goertzel(s16 x[], u32 N, u32 freq)
  98{
  99        /* We use the Goertzel algorithm to determine the power of the
 100         * given frequency in the signal */
 101        s32 s_prev = 0;
 102        s32 s_prev2 = 0;
 103        s32 coeff = 2*int_cos(freq);
 104        u32 i;
 105
 106        u64 tmp;
 107        u32 divisor;
 108
 109        for (i = 0; i < N; i++) {
 110                s32 s = x[i] + ((s64)coeff*s_prev/32768) - s_prev2;
 111                s_prev2 = s_prev;
 112                s_prev = s;
 113        }
 114
 115        tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
 116                      (s64)coeff * s_prev2 * s_prev / 32768;
 117
 118        /* XXX: N must be low enough so that N*N fits in s32.
 119         * Else we need two divisions. */
 120        divisor = N * N;
 121        do_div(tmp, divisor);
 122
 123        return (u32) tmp;
 124}
 125
 126static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
 127{
 128        u32 sum = int_goertzel(x, N, freq);
 129        return (u32)int_sqrt(sum);
 130}
 131
 132static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
 133{
 134        int i;
 135        u32 sum = 0;
 136        u32 freq_step;
 137        int samples = 5;
 138
 139        if (N > 192) {
 140                /* The last 192 samples are enough for noise detection */
 141                x += (N-192);
 142                N = 192;
 143        }
 144
 145        freq_step = (freq_end - freq_start) / (samples - 1);
 146
 147        for (i = 0; i < samples; i++) {
 148                sum += int_goertzel(x, N, freq_start);
 149                freq_start += freq_step;
 150        }
 151
 152        return (u32)int_sqrt(sum / samples);
 153}
 154
 155static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
 156{
 157        s32 carrier, stereo, dual, noise;
 158        s32 carrier_freq, stereo_freq, dual_freq;
 159        s32 ret;
 160
 161        switch (core->tvaudio) {
 162        case WW_BG:
 163        case WW_DK:
 164                carrier_freq = FREQ_A2_CARRIER;
 165                stereo_freq = FREQ_A2_STEREO;
 166                dual_freq = FREQ_A2_DUAL;
 167                break;
 168        case WW_M:
 169                carrier_freq = FREQ_A2M_CARRIER;
 170                stereo_freq = FREQ_A2M_STEREO;
 171                dual_freq = FREQ_A2M_DUAL;
 172                break;
 173        case WW_EIAJ:
 174                carrier_freq = FREQ_EIAJ_CARRIER;
 175                stereo_freq = FREQ_EIAJ_STEREO;
 176                dual_freq = FREQ_EIAJ_DUAL;
 177                break;
 178        default:
 179                printk(KERN_WARNING "%s/0: unsupported audio mode %d for %s\n",
 180                       core->name, core->tvaudio, __func__);
 181                return UNSET;
 182        }
 183
 184        carrier = freq_magnitude(x, N, carrier_freq);
 185        stereo  = freq_magnitude(x, N, stereo_freq);
 186        dual    = freq_magnitude(x, N, dual_freq);
 187        noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
 188
 189        dprintk(1, "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, "
 190                   "noise=%d\n", carrier, stereo, dual, noise);
 191
 192        if (stereo > dual)
 193                ret = V4L2_TUNER_SUB_STEREO;
 194        else
 195                ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
 196
 197        if (core->tvaudio == WW_EIAJ) {
 198                /* EIAJ checks may need adjustments */
 199                if ((carrier > max(stereo, dual)*2) &&
 200                    (carrier < max(stereo, dual)*6) &&
 201                    (carrier > 20 && carrier < 200) &&
 202                    (max(stereo, dual) > min(stereo, dual))) {
 203                        /* For EIAJ the carrier is always present,
 204                           so we probably don't need noise detection */
 205                        return ret;
 206                }
 207        } else {
 208                if ((carrier > max(stereo, dual)*2) &&
 209                    (carrier < max(stereo, dual)*8) &&
 210                    (carrier > 20 && carrier < 200) &&
 211                    (noise < 10) &&
 212                    (max(stereo, dual) > min(stereo, dual)*2)) {
 213                        return ret;
 214                }
 215        }
 216        return V4L2_TUNER_SUB_MONO;
 217}
 218
 219static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
 220{
 221        s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
 222        s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
 223        s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
 224        s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
 225        dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d"
 226                   "\n", dual_ref, dual, sap_ref, sap);
 227        /* FIXME: Currently not supported */
 228        return UNSET;
 229}
 230
 231static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
 232{
 233        const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
 234        s16 *samples;
 235
 236        unsigned int i;
 237        unsigned int bpl = srch->fifo_size/AUD_RDS_LINES;
 238        unsigned int spl = bpl/4;
 239        unsigned int sample_count = spl*(AUD_RDS_LINES-1);
 240
 241        u32 current_address = cx_read(srch->ptr1_reg);
 242        u32 offset = (current_address - srch->fifo_start + bpl);
 243
 244        dprintk(1, "read RDS samples: current_address=%08x (offset=%08x), "
 245                "sample_count=%d, aud_intstat=%08x\n", current_address,
 246                current_address - srch->fifo_start, sample_count,
 247                cx_read(MO_AUD_INTSTAT));
 248
 249        samples = kmalloc(sizeof(s16)*sample_count, GFP_KERNEL);
 250        if (!samples)
 251                return NULL;
 252
 253        *N = sample_count;
 254
 255        for (i = 0; i < sample_count; i++)  {
 256                offset = offset % (AUD_RDS_LINES*bpl);
 257                samples[i] = cx_read(srch->fifo_start + offset);
 258                offset += 4;
 259        }
 260
 261        if (dsp_debug >= 2) {
 262                dprintk(2, "RDS samples dump: ");
 263                for (i = 0; i < sample_count; i++)
 264                        printk("%hd ", samples[i]);
 265                printk(".\n");
 266        }
 267
 268        return samples;
 269}
 270
 271s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
 272{
 273        s16 *samples;
 274        u32 N = 0;
 275        s32 ret = UNSET;
 276
 277        /* If audio RDS fifo is disabled, we can't read the samples */
 278        if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
 279                return ret;
 280        if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
 281                return ret;
 282
 283        /* Wait at least 500 ms after an audio standard change */
 284        if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
 285                return ret;
 286
 287        samples = read_rds_samples(core, &N);
 288
 289        if (!samples)
 290                return ret;
 291
 292        switch (core->tvaudio) {
 293        case WW_BG:
 294        case WW_DK:
 295        case WW_EIAJ:
 296        case WW_M:
 297                ret = detect_a2_a2m_eiaj(core, samples, N);
 298                break;
 299        case WW_BTSC:
 300                ret = detect_btsc(core, samples, N);
 301                break;
 302        case WW_NONE:
 303        case WW_I:
 304        case WW_L:
 305        case WW_I2SPT:
 306        case WW_FM:
 307        case WW_I2SADC:
 308                break;
 309        }
 310
 311        kfree(samples);
 312
 313        if (UNSET != ret)
 314                dprintk(1, "stereo/sap detection result:%s%s%s\n",
 315                           (ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
 316                           (ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
 317                           (ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
 318
 319        return ret;
 320}
 321EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
 322
 323