linux/drivers/misc/vmw_vmci/vmci_queue_pair.c
<<
>>
Prefs
   1/*
   2 * VMware VMCI Driver
   3 *
   4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  12 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 * for more details.
  14 */
  15
  16#include <linux/vmw_vmci_defs.h>
  17#include <linux/vmw_vmci_api.h>
  18#include <linux/highmem.h>
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/module.h>
  22#include <linux/mutex.h>
  23#include <linux/pagemap.h>
  24#include <linux/pci.h>
  25#include <linux/sched.h>
  26#include <linux/slab.h>
  27#include <linux/uio.h>
  28#include <linux/wait.h>
  29#include <linux/vmalloc.h>
  30
  31#include "vmci_handle_array.h"
  32#include "vmci_queue_pair.h"
  33#include "vmci_datagram.h"
  34#include "vmci_resource.h"
  35#include "vmci_context.h"
  36#include "vmci_driver.h"
  37#include "vmci_event.h"
  38#include "vmci_route.h"
  39
  40/*
  41 * In the following, we will distinguish between two kinds of VMX processes -
  42 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
  43 * VMCI page files in the VMX and supporting VM to VM communication and the
  44 * newer ones that use the guest memory directly. We will in the following
  45 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
  46 * new-style VMX'en.
  47 *
  48 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
  49 * removed for readability) - see below for more details on the transtions:
  50 *
  51 *            --------------  NEW  -------------
  52 *            |                                |
  53 *           \_/                              \_/
  54 *     CREATED_NO_MEM <-----------------> CREATED_MEM
  55 *            |    |                           |
  56 *            |    o-----------------------o   |
  57 *            |                            |   |
  58 *           \_/                          \_/ \_/
  59 *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
  60 *            |                            |   |
  61 *            |     o----------------------o   |
  62 *            |     |                          |
  63 *           \_/   \_/                        \_/
  64 *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
  65 *            |                                |
  66 *            |                                |
  67 *            -------------> gone <-------------
  68 *
  69 * In more detail. When a VMCI queue pair is first created, it will be in the
  70 * VMCIQPB_NEW state. It will then move into one of the following states:
  71 *
  72 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
  73 *
  74 *     - the created was performed by a host endpoint, in which case there is
  75 *       no backing memory yet.
  76 *
  77 *     - the create was initiated by an old-style VMX, that uses
  78 *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
  79 *       a later point in time. This state can be distinguished from the one
  80 *       above by the context ID of the creator. A host side is not allowed to
  81 *       attach until the page store has been set.
  82 *
  83 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
  84 *     is created by a VMX using the queue pair device backend that
  85 *     sets the UVAs of the queue pair immediately and stores the
  86 *     information for later attachers. At this point, it is ready for
  87 *     the host side to attach to it.
  88 *
  89 * Once the queue pair is in one of the created states (with the exception of
  90 * the case mentioned for older VMX'en above), it is possible to attach to the
  91 * queue pair. Again we have two new states possible:
  92 *
  93 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
  94 *   paths:
  95 *
  96 *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
  97 *       pair, and attaches to a queue pair previously created by the host side.
  98 *
  99 *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
 100 *       already created by a guest.
 101 *
 102 *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
 103 *       vmci_qp_broker_set_page_store (see below).
 104 *
 105 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
 106 *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
 107 *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
 108 *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
 109 *     will be entered.
 110 *
 111 * From the attached queue pair, the queue pair can enter the shutdown states
 112 * when either side of the queue pair detaches. If the guest side detaches
 113 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
 114 * the content of the queue pair will no longer be available. If the host
 115 * side detaches first, the queue pair will either enter the
 116 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
 117 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
 118 * (e.g., the host detaches while a guest is stunned).
 119 *
 120 * New-style VMX'en will also unmap guest memory, if the guest is
 121 * quiesced, e.g., during a snapshot operation. In that case, the guest
 122 * memory will no longer be available, and the queue pair will transition from
 123 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
 124 * in which case the queue pair will transition from the *_NO_MEM state at that
 125 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
 126 * since the peer may have either attached or detached in the meantime. The
 127 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
 128 * *_MEM state, and vice versa.
 129 */
 130
 131/*
 132 * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
 133 * types are passed around to enqueue and dequeue routines.  Note that
 134 * often the functions passed are simply wrappers around memcpy
 135 * itself.
 136 *
 137 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
 138 * there's an unused last parameter for the hosted side.  In
 139 * ESX, that parameter holds a buffer type.
 140 */
 141typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
 142                                      u64 queue_offset, const void *src,
 143                                      size_t src_offset, size_t size);
 144typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
 145                                        const struct vmci_queue *queue,
 146                                        u64 queue_offset, size_t size);
 147
 148/* The Kernel specific component of the struct vmci_queue structure. */
 149struct vmci_queue_kern_if {
 150        struct mutex __mutex;   /* Protects the queue. */
 151        struct mutex *mutex;    /* Shared by producer and consumer queues. */
 152        size_t num_pages;       /* Number of pages incl. header. */
 153        bool host;              /* Host or guest? */
 154        union {
 155                struct {
 156                        dma_addr_t *pas;
 157                        void **vas;
 158                } g;            /* Used by the guest. */
 159                struct {
 160                        struct page **page;
 161                        struct page **header_page;
 162                } h;            /* Used by the host. */
 163        } u;
 164};
 165
 166/*
 167 * This structure is opaque to the clients.
 168 */
 169struct vmci_qp {
 170        struct vmci_handle handle;
 171        struct vmci_queue *produce_q;
 172        struct vmci_queue *consume_q;
 173        u64 produce_q_size;
 174        u64 consume_q_size;
 175        u32 peer;
 176        u32 flags;
 177        u32 priv_flags;
 178        bool guest_endpoint;
 179        unsigned int blocked;
 180        unsigned int generation;
 181        wait_queue_head_t event;
 182};
 183
 184enum qp_broker_state {
 185        VMCIQPB_NEW,
 186        VMCIQPB_CREATED_NO_MEM,
 187        VMCIQPB_CREATED_MEM,
 188        VMCIQPB_ATTACHED_NO_MEM,
 189        VMCIQPB_ATTACHED_MEM,
 190        VMCIQPB_SHUTDOWN_NO_MEM,
 191        VMCIQPB_SHUTDOWN_MEM,
 192        VMCIQPB_GONE
 193};
 194
 195#define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
 196                                     _qpb->state == VMCIQPB_ATTACHED_MEM || \
 197                                     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
 198
 199/*
 200 * In the queue pair broker, we always use the guest point of view for
 201 * the produce and consume queue values and references, e.g., the
 202 * produce queue size stored is the guests produce queue size. The
 203 * host endpoint will need to swap these around. The only exception is
 204 * the local queue pairs on the host, in which case the host endpoint
 205 * that creates the queue pair will have the right orientation, and
 206 * the attaching host endpoint will need to swap.
 207 */
 208struct qp_entry {
 209        struct list_head list_item;
 210        struct vmci_handle handle;
 211        u32 peer;
 212        u32 flags;
 213        u64 produce_size;
 214        u64 consume_size;
 215        u32 ref_count;
 216};
 217
 218struct qp_broker_entry {
 219        struct vmci_resource resource;
 220        struct qp_entry qp;
 221        u32 create_id;
 222        u32 attach_id;
 223        enum qp_broker_state state;
 224        bool require_trusted_attach;
 225        bool created_by_trusted;
 226        bool vmci_page_files;   /* Created by VMX using VMCI page files */
 227        struct vmci_queue *produce_q;
 228        struct vmci_queue *consume_q;
 229        struct vmci_queue_header saved_produce_q;
 230        struct vmci_queue_header saved_consume_q;
 231        vmci_event_release_cb wakeup_cb;
 232        void *client_data;
 233        void *local_mem;        /* Kernel memory for local queue pair */
 234};
 235
 236struct qp_guest_endpoint {
 237        struct vmci_resource resource;
 238        struct qp_entry qp;
 239        u64 num_ppns;
 240        void *produce_q;
 241        void *consume_q;
 242        struct ppn_set ppn_set;
 243};
 244
 245struct qp_list {
 246        struct list_head head;
 247        struct mutex mutex;     /* Protect queue list. */
 248};
 249
 250static struct qp_list qp_broker_list = {
 251        .head = LIST_HEAD_INIT(qp_broker_list.head),
 252        .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
 253};
 254
 255static struct qp_list qp_guest_endpoints = {
 256        .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
 257        .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
 258};
 259
 260#define INVALID_VMCI_GUEST_MEM_ID  0
 261#define QPE_NUM_PAGES(_QPE) ((u32) \
 262                             (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
 263                              DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
 264
 265
 266/*
 267 * Frees kernel VA space for a given queue and its queue header, and
 268 * frees physical data pages.
 269 */
 270static void qp_free_queue(void *q, u64 size)
 271{
 272        struct vmci_queue *queue = q;
 273
 274        if (queue) {
 275                u64 i;
 276
 277                /* Given size does not include header, so add in a page here. */
 278                for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
 279                        dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
 280                                          queue->kernel_if->u.g.vas[i],
 281                                          queue->kernel_if->u.g.pas[i]);
 282                }
 283
 284                vfree(queue);
 285        }
 286}
 287
 288/*
 289 * Allocates kernel queue pages of specified size with IOMMU mappings,
 290 * plus space for the queue structure/kernel interface and the queue
 291 * header.
 292 */
 293static void *qp_alloc_queue(u64 size, u32 flags)
 294{
 295        u64 i;
 296        struct vmci_queue *queue;
 297        const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 298        const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
 299        const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
 300        const size_t queue_size =
 301                sizeof(*queue) + sizeof(*queue->kernel_if) +
 302                pas_size + vas_size;
 303
 304        queue = vmalloc(queue_size);
 305        if (!queue)
 306                return NULL;
 307
 308        queue->q_header = NULL;
 309        queue->saved_header = NULL;
 310        queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 311        queue->kernel_if->mutex = NULL;
 312        queue->kernel_if->num_pages = num_pages;
 313        queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
 314        queue->kernel_if->u.g.vas =
 315                (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
 316        queue->kernel_if->host = false;
 317
 318        for (i = 0; i < num_pages; i++) {
 319                queue->kernel_if->u.g.vas[i] =
 320                        dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
 321                                           &queue->kernel_if->u.g.pas[i],
 322                                           GFP_KERNEL);
 323                if (!queue->kernel_if->u.g.vas[i]) {
 324                        /* Size excl. the header. */
 325                        qp_free_queue(queue, i * PAGE_SIZE);
 326                        return NULL;
 327                }
 328        }
 329
 330        /* Queue header is the first page. */
 331        queue->q_header = queue->kernel_if->u.g.vas[0];
 332
 333        return queue;
 334}
 335
 336/*
 337 * Copies from a given buffer or iovector to a VMCI Queue.  Uses
 338 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 339 * by traversing the offset -> page translation structure for the queue.
 340 * Assumes that offset + size does not wrap around in the queue.
 341 */
 342static int __qp_memcpy_to_queue(struct vmci_queue *queue,
 343                                u64 queue_offset,
 344                                const void *src,
 345                                size_t size,
 346                                bool is_iovec)
 347{
 348        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 349        size_t bytes_copied = 0;
 350
 351        while (bytes_copied < size) {
 352                const u64 page_index =
 353                        (queue_offset + bytes_copied) / PAGE_SIZE;
 354                const size_t page_offset =
 355                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 356                void *va;
 357                size_t to_copy;
 358
 359                if (kernel_if->host)
 360                        va = kmap(kernel_if->u.h.page[page_index]);
 361                else
 362                        va = kernel_if->u.g.vas[page_index + 1];
 363                        /* Skip header. */
 364
 365                if (size - bytes_copied > PAGE_SIZE - page_offset)
 366                        /* Enough payload to fill up from this page. */
 367                        to_copy = PAGE_SIZE - page_offset;
 368                else
 369                        to_copy = size - bytes_copied;
 370
 371                if (is_iovec) {
 372                        struct iovec *iov = (struct iovec *)src;
 373                        int err;
 374
 375                        /* The iovec will track bytes_copied internally. */
 376                        err = memcpy_fromiovec((u8 *)va + page_offset,
 377                                               iov, to_copy);
 378                        if (err != 0) {
 379                                if (kernel_if->host)
 380                                        kunmap(kernel_if->u.h.page[page_index]);
 381                                return VMCI_ERROR_INVALID_ARGS;
 382                        }
 383                } else {
 384                        memcpy((u8 *)va + page_offset,
 385                               (u8 *)src + bytes_copied, to_copy);
 386                }
 387
 388                bytes_copied += to_copy;
 389                if (kernel_if->host)
 390                        kunmap(kernel_if->u.h.page[page_index]);
 391        }
 392
 393        return VMCI_SUCCESS;
 394}
 395
 396/*
 397 * Copies to a given buffer or iovector from a VMCI Queue.  Uses
 398 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
 399 * by traversing the offset -> page translation structure for the queue.
 400 * Assumes that offset + size does not wrap around in the queue.
 401 */
 402static int __qp_memcpy_from_queue(void *dest,
 403                                  const struct vmci_queue *queue,
 404                                  u64 queue_offset,
 405                                  size_t size,
 406                                  bool is_iovec)
 407{
 408        struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
 409        size_t bytes_copied = 0;
 410
 411        while (bytes_copied < size) {
 412                const u64 page_index =
 413                        (queue_offset + bytes_copied) / PAGE_SIZE;
 414                const size_t page_offset =
 415                    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
 416                void *va;
 417                size_t to_copy;
 418
 419                if (kernel_if->host)
 420                        va = kmap(kernel_if->u.h.page[page_index]);
 421                else
 422                        va = kernel_if->u.g.vas[page_index + 1];
 423                        /* Skip header. */
 424
 425                if (size - bytes_copied > PAGE_SIZE - page_offset)
 426                        /* Enough payload to fill up this page. */
 427                        to_copy = PAGE_SIZE - page_offset;
 428                else
 429                        to_copy = size - bytes_copied;
 430
 431                if (is_iovec) {
 432                        struct iovec *iov = (struct iovec *)dest;
 433                        int err;
 434
 435                        /* The iovec will track bytes_copied internally. */
 436                        err = memcpy_toiovec(iov, (u8 *)va + page_offset,
 437                                             to_copy);
 438                        if (err != 0) {
 439                                if (kernel_if->host)
 440                                        kunmap(kernel_if->u.h.page[page_index]);
 441                                return VMCI_ERROR_INVALID_ARGS;
 442                        }
 443                } else {
 444                        memcpy((u8 *)dest + bytes_copied,
 445                               (u8 *)va + page_offset, to_copy);
 446                }
 447
 448                bytes_copied += to_copy;
 449                if (kernel_if->host)
 450                        kunmap(kernel_if->u.h.page[page_index]);
 451        }
 452
 453        return VMCI_SUCCESS;
 454}
 455
 456/*
 457 * Allocates two list of PPNs --- one for the pages in the produce queue,
 458 * and the other for the pages in the consume queue. Intializes the list
 459 * of PPNs with the page frame numbers of the KVA for the two queues (and
 460 * the queue headers).
 461 */
 462static int qp_alloc_ppn_set(void *prod_q,
 463                            u64 num_produce_pages,
 464                            void *cons_q,
 465                            u64 num_consume_pages, struct ppn_set *ppn_set)
 466{
 467        u32 *produce_ppns;
 468        u32 *consume_ppns;
 469        struct vmci_queue *produce_q = prod_q;
 470        struct vmci_queue *consume_q = cons_q;
 471        u64 i;
 472
 473        if (!produce_q || !num_produce_pages || !consume_q ||
 474            !num_consume_pages || !ppn_set)
 475                return VMCI_ERROR_INVALID_ARGS;
 476
 477        if (ppn_set->initialized)
 478                return VMCI_ERROR_ALREADY_EXISTS;
 479
 480        produce_ppns =
 481            kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
 482        if (!produce_ppns)
 483                return VMCI_ERROR_NO_MEM;
 484
 485        consume_ppns =
 486            kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
 487        if (!consume_ppns) {
 488                kfree(produce_ppns);
 489                return VMCI_ERROR_NO_MEM;
 490        }
 491
 492        for (i = 0; i < num_produce_pages; i++) {
 493                unsigned long pfn;
 494
 495                produce_ppns[i] =
 496                        produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 497                pfn = produce_ppns[i];
 498
 499                /* Fail allocation if PFN isn't supported by hypervisor. */
 500                if (sizeof(pfn) > sizeof(*produce_ppns)
 501                    && pfn != produce_ppns[i])
 502                        goto ppn_error;
 503        }
 504
 505        for (i = 0; i < num_consume_pages; i++) {
 506                unsigned long pfn;
 507
 508                consume_ppns[i] =
 509                        consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
 510                pfn = consume_ppns[i];
 511
 512                /* Fail allocation if PFN isn't supported by hypervisor. */
 513                if (sizeof(pfn) > sizeof(*consume_ppns)
 514                    && pfn != consume_ppns[i])
 515                        goto ppn_error;
 516        }
 517
 518        ppn_set->num_produce_pages = num_produce_pages;
 519        ppn_set->num_consume_pages = num_consume_pages;
 520        ppn_set->produce_ppns = produce_ppns;
 521        ppn_set->consume_ppns = consume_ppns;
 522        ppn_set->initialized = true;
 523        return VMCI_SUCCESS;
 524
 525 ppn_error:
 526        kfree(produce_ppns);
 527        kfree(consume_ppns);
 528        return VMCI_ERROR_INVALID_ARGS;
 529}
 530
 531/*
 532 * Frees the two list of PPNs for a queue pair.
 533 */
 534static void qp_free_ppn_set(struct ppn_set *ppn_set)
 535{
 536        if (ppn_set->initialized) {
 537                /* Do not call these functions on NULL inputs. */
 538                kfree(ppn_set->produce_ppns);
 539                kfree(ppn_set->consume_ppns);
 540        }
 541        memset(ppn_set, 0, sizeof(*ppn_set));
 542}
 543
 544/*
 545 * Populates the list of PPNs in the hypercall structure with the PPNS
 546 * of the produce queue and the consume queue.
 547 */
 548static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
 549{
 550        memcpy(call_buf, ppn_set->produce_ppns,
 551               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
 552        memcpy(call_buf +
 553               ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
 554               ppn_set->consume_ppns,
 555               ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
 556
 557        return VMCI_SUCCESS;
 558}
 559
 560static int qp_memcpy_to_queue(struct vmci_queue *queue,
 561                              u64 queue_offset,
 562                              const void *src, size_t src_offset, size_t size)
 563{
 564        return __qp_memcpy_to_queue(queue, queue_offset,
 565                                    (u8 *)src + src_offset, size, false);
 566}
 567
 568static int qp_memcpy_from_queue(void *dest,
 569                                size_t dest_offset,
 570                                const struct vmci_queue *queue,
 571                                u64 queue_offset, size_t size)
 572{
 573        return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
 574                                      queue, queue_offset, size, false);
 575}
 576
 577/*
 578 * Copies from a given iovec from a VMCI Queue.
 579 */
 580static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
 581                                  u64 queue_offset,
 582                                  const void *src,
 583                                  size_t src_offset, size_t size)
 584{
 585
 586        /*
 587         * We ignore src_offset because src is really a struct iovec * and will
 588         * maintain offset internally.
 589         */
 590        return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
 591}
 592
 593/*
 594 * Copies to a given iovec from a VMCI Queue.
 595 */
 596static int qp_memcpy_from_queue_iov(void *dest,
 597                                    size_t dest_offset,
 598                                    const struct vmci_queue *queue,
 599                                    u64 queue_offset, size_t size)
 600{
 601        /*
 602         * We ignore dest_offset because dest is really a struct iovec * and
 603         * will maintain offset internally.
 604         */
 605        return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
 606}
 607
 608/*
 609 * Allocates kernel VA space of specified size plus space for the queue
 610 * and kernel interface.  This is different from the guest queue allocator,
 611 * because we do not allocate our own queue header/data pages here but
 612 * share those of the guest.
 613 */
 614static struct vmci_queue *qp_host_alloc_queue(u64 size)
 615{
 616        struct vmci_queue *queue;
 617        const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
 618        const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
 619        const size_t queue_page_size =
 620            num_pages * sizeof(*queue->kernel_if->u.h.page);
 621
 622        queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
 623        if (queue) {
 624                queue->q_header = NULL;
 625                queue->saved_header = NULL;
 626                queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
 627                queue->kernel_if->host = true;
 628                queue->kernel_if->mutex = NULL;
 629                queue->kernel_if->num_pages = num_pages;
 630                queue->kernel_if->u.h.header_page =
 631                    (struct page **)((u8 *)queue + queue_size);
 632                queue->kernel_if->u.h.page =
 633                        &queue->kernel_if->u.h.header_page[1];
 634        }
 635
 636        return queue;
 637}
 638
 639/*
 640 * Frees kernel memory for a given queue (header plus translation
 641 * structure).
 642 */
 643static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
 644{
 645        kfree(queue);
 646}
 647
 648/*
 649 * Initialize the mutex for the pair of queues.  This mutex is used to
 650 * protect the q_header and the buffer from changing out from under any
 651 * users of either queue.  Of course, it's only any good if the mutexes
 652 * are actually acquired.  Queue structure must lie on non-paged memory
 653 * or we cannot guarantee access to the mutex.
 654 */
 655static void qp_init_queue_mutex(struct vmci_queue *produce_q,
 656                                struct vmci_queue *consume_q)
 657{
 658        /*
 659         * Only the host queue has shared state - the guest queues do not
 660         * need to synchronize access using a queue mutex.
 661         */
 662
 663        if (produce_q->kernel_if->host) {
 664                produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 665                consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
 666                mutex_init(produce_q->kernel_if->mutex);
 667        }
 668}
 669
 670/*
 671 * Cleans up the mutex for the pair of queues.
 672 */
 673static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
 674                                   struct vmci_queue *consume_q)
 675{
 676        if (produce_q->kernel_if->host) {
 677                produce_q->kernel_if->mutex = NULL;
 678                consume_q->kernel_if->mutex = NULL;
 679        }
 680}
 681
 682/*
 683 * Acquire the mutex for the queue.  Note that the produce_q and
 684 * the consume_q share a mutex.  So, only one of the two need to
 685 * be passed in to this routine.  Either will work just fine.
 686 */
 687static void qp_acquire_queue_mutex(struct vmci_queue *queue)
 688{
 689        if (queue->kernel_if->host)
 690                mutex_lock(queue->kernel_if->mutex);
 691}
 692
 693/*
 694 * Release the mutex for the queue.  Note that the produce_q and
 695 * the consume_q share a mutex.  So, only one of the two need to
 696 * be passed in to this routine.  Either will work just fine.
 697 */
 698static void qp_release_queue_mutex(struct vmci_queue *queue)
 699{
 700        if (queue->kernel_if->host)
 701                mutex_unlock(queue->kernel_if->mutex);
 702}
 703
 704/*
 705 * Helper function to release pages in the PageStoreAttachInfo
 706 * previously obtained using get_user_pages.
 707 */
 708static void qp_release_pages(struct page **pages,
 709                             u64 num_pages, bool dirty)
 710{
 711        int i;
 712
 713        for (i = 0; i < num_pages; i++) {
 714                if (dirty)
 715                        set_page_dirty(pages[i]);
 716
 717                page_cache_release(pages[i]);
 718                pages[i] = NULL;
 719        }
 720}
 721
 722/*
 723 * Lock the user pages referenced by the {produce,consume}Buffer
 724 * struct into memory and populate the {produce,consume}Pages
 725 * arrays in the attach structure with them.
 726 */
 727static int qp_host_get_user_memory(u64 produce_uva,
 728                                   u64 consume_uva,
 729                                   struct vmci_queue *produce_q,
 730                                   struct vmci_queue *consume_q)
 731{
 732        int retval;
 733        int err = VMCI_SUCCESS;
 734
 735        retval = get_user_pages_fast((uintptr_t) produce_uva,
 736                                     produce_q->kernel_if->num_pages, 1,
 737                                     produce_q->kernel_if->u.h.header_page);
 738        if (retval < produce_q->kernel_if->num_pages) {
 739                pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
 740                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 741                                 retval, false);
 742                err = VMCI_ERROR_NO_MEM;
 743                goto out;
 744        }
 745
 746        retval = get_user_pages_fast((uintptr_t) consume_uva,
 747                                     consume_q->kernel_if->num_pages, 1,
 748                                     consume_q->kernel_if->u.h.header_page);
 749        if (retval < consume_q->kernel_if->num_pages) {
 750                pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
 751                qp_release_pages(consume_q->kernel_if->u.h.header_page,
 752                                 retval, false);
 753                qp_release_pages(produce_q->kernel_if->u.h.header_page,
 754                                 produce_q->kernel_if->num_pages, false);
 755                err = VMCI_ERROR_NO_MEM;
 756        }
 757
 758 out:
 759        return err;
 760}
 761
 762/*
 763 * Registers the specification of the user pages used for backing a queue
 764 * pair. Enough information to map in pages is stored in the OS specific
 765 * part of the struct vmci_queue structure.
 766 */
 767static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
 768                                        struct vmci_queue *produce_q,
 769                                        struct vmci_queue *consume_q)
 770{
 771        u64 produce_uva;
 772        u64 consume_uva;
 773
 774        /*
 775         * The new style and the old style mapping only differs in
 776         * that we either get a single or two UVAs, so we split the
 777         * single UVA range at the appropriate spot.
 778         */
 779        produce_uva = page_store->pages;
 780        consume_uva = page_store->pages +
 781            produce_q->kernel_if->num_pages * PAGE_SIZE;
 782        return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
 783                                       consume_q);
 784}
 785
 786/*
 787 * Releases and removes the references to user pages stored in the attach
 788 * struct.  Pages are released from the page cache and may become
 789 * swappable again.
 790 */
 791static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
 792                                           struct vmci_queue *consume_q)
 793{
 794        qp_release_pages(produce_q->kernel_if->u.h.header_page,
 795                         produce_q->kernel_if->num_pages, true);
 796        memset(produce_q->kernel_if->u.h.header_page, 0,
 797               sizeof(*produce_q->kernel_if->u.h.header_page) *
 798               produce_q->kernel_if->num_pages);
 799        qp_release_pages(consume_q->kernel_if->u.h.header_page,
 800                         consume_q->kernel_if->num_pages, true);
 801        memset(consume_q->kernel_if->u.h.header_page, 0,
 802               sizeof(*consume_q->kernel_if->u.h.header_page) *
 803               consume_q->kernel_if->num_pages);
 804}
 805
 806/*
 807 * Once qp_host_register_user_memory has been performed on a
 808 * queue, the queue pair headers can be mapped into the
 809 * kernel. Once mapped, they must be unmapped with
 810 * qp_host_unmap_queues prior to calling
 811 * qp_host_unregister_user_memory.
 812 * Pages are pinned.
 813 */
 814static int qp_host_map_queues(struct vmci_queue *produce_q,
 815                              struct vmci_queue *consume_q)
 816{
 817        int result;
 818
 819        if (!produce_q->q_header || !consume_q->q_header) {
 820                struct page *headers[2];
 821
 822                if (produce_q->q_header != consume_q->q_header)
 823                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
 824
 825                if (produce_q->kernel_if->u.h.header_page == NULL ||
 826                    *produce_q->kernel_if->u.h.header_page == NULL)
 827                        return VMCI_ERROR_UNAVAILABLE;
 828
 829                headers[0] = *produce_q->kernel_if->u.h.header_page;
 830                headers[1] = *consume_q->kernel_if->u.h.header_page;
 831
 832                produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
 833                if (produce_q->q_header != NULL) {
 834                        consume_q->q_header =
 835                            (struct vmci_queue_header *)((u8 *)
 836                                                         produce_q->q_header +
 837                                                         PAGE_SIZE);
 838                        result = VMCI_SUCCESS;
 839                } else {
 840                        pr_warn("vmap failed\n");
 841                        result = VMCI_ERROR_NO_MEM;
 842                }
 843        } else {
 844                result = VMCI_SUCCESS;
 845        }
 846
 847        return result;
 848}
 849
 850/*
 851 * Unmaps previously mapped queue pair headers from the kernel.
 852 * Pages are unpinned.
 853 */
 854static int qp_host_unmap_queues(u32 gid,
 855                                struct vmci_queue *produce_q,
 856                                struct vmci_queue *consume_q)
 857{
 858        if (produce_q->q_header) {
 859                if (produce_q->q_header < consume_q->q_header)
 860                        vunmap(produce_q->q_header);
 861                else
 862                        vunmap(consume_q->q_header);
 863
 864                produce_q->q_header = NULL;
 865                consume_q->q_header = NULL;
 866        }
 867
 868        return VMCI_SUCCESS;
 869}
 870
 871/*
 872 * Finds the entry in the list corresponding to a given handle. Assumes
 873 * that the list is locked.
 874 */
 875static struct qp_entry *qp_list_find(struct qp_list *qp_list,
 876                                     struct vmci_handle handle)
 877{
 878        struct qp_entry *entry;
 879
 880        if (vmci_handle_is_invalid(handle))
 881                return NULL;
 882
 883        list_for_each_entry(entry, &qp_list->head, list_item) {
 884                if (vmci_handle_is_equal(entry->handle, handle))
 885                        return entry;
 886        }
 887
 888        return NULL;
 889}
 890
 891/*
 892 * Finds the entry in the list corresponding to a given handle.
 893 */
 894static struct qp_guest_endpoint *
 895qp_guest_handle_to_entry(struct vmci_handle handle)
 896{
 897        struct qp_guest_endpoint *entry;
 898        struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
 899
 900        entry = qp ? container_of(
 901                qp, struct qp_guest_endpoint, qp) : NULL;
 902        return entry;
 903}
 904
 905/*
 906 * Finds the entry in the list corresponding to a given handle.
 907 */
 908static struct qp_broker_entry *
 909qp_broker_handle_to_entry(struct vmci_handle handle)
 910{
 911        struct qp_broker_entry *entry;
 912        struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
 913
 914        entry = qp ? container_of(
 915                qp, struct qp_broker_entry, qp) : NULL;
 916        return entry;
 917}
 918
 919/*
 920 * Dispatches a queue pair event message directly into the local event
 921 * queue.
 922 */
 923static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
 924{
 925        u32 context_id = vmci_get_context_id();
 926        struct vmci_event_qp ev;
 927
 928        ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
 929        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 930                                          VMCI_CONTEXT_RESOURCE_ID);
 931        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
 932        ev.msg.event_data.event =
 933            attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
 934        ev.payload.peer_id = context_id;
 935        ev.payload.handle = handle;
 936
 937        return vmci_event_dispatch(&ev.msg.hdr);
 938}
 939
 940/*
 941 * Allocates and initializes a qp_guest_endpoint structure.
 942 * Allocates a queue_pair rid (and handle) iff the given entry has
 943 * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
 944 * are reserved handles.  Assumes that the QP list mutex is held
 945 * by the caller.
 946 */
 947static struct qp_guest_endpoint *
 948qp_guest_endpoint_create(struct vmci_handle handle,
 949                         u32 peer,
 950                         u32 flags,
 951                         u64 produce_size,
 952                         u64 consume_size,
 953                         void *produce_q,
 954                         void *consume_q)
 955{
 956        int result;
 957        struct qp_guest_endpoint *entry;
 958        /* One page each for the queue headers. */
 959        const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
 960            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
 961
 962        if (vmci_handle_is_invalid(handle)) {
 963                u32 context_id = vmci_get_context_id();
 964
 965                handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
 966        }
 967
 968        entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 969        if (entry) {
 970                entry->qp.peer = peer;
 971                entry->qp.flags = flags;
 972                entry->qp.produce_size = produce_size;
 973                entry->qp.consume_size = consume_size;
 974                entry->qp.ref_count = 0;
 975                entry->num_ppns = num_ppns;
 976                entry->produce_q = produce_q;
 977                entry->consume_q = consume_q;
 978                INIT_LIST_HEAD(&entry->qp.list_item);
 979
 980                /* Add resource obj */
 981                result = vmci_resource_add(&entry->resource,
 982                                           VMCI_RESOURCE_TYPE_QPAIR_GUEST,
 983                                           handle);
 984                entry->qp.handle = vmci_resource_handle(&entry->resource);
 985                if ((result != VMCI_SUCCESS) ||
 986                    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
 987                        pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
 988                                handle.context, handle.resource, result);
 989                        kfree(entry);
 990                        entry = NULL;
 991                }
 992        }
 993        return entry;
 994}
 995
 996/*
 997 * Frees a qp_guest_endpoint structure.
 998 */
 999static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1000{
1001        qp_free_ppn_set(&entry->ppn_set);
1002        qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1003        qp_free_queue(entry->produce_q, entry->qp.produce_size);
1004        qp_free_queue(entry->consume_q, entry->qp.consume_size);
1005        /* Unlink from resource hash table and free callback */
1006        vmci_resource_remove(&entry->resource);
1007
1008        kfree(entry);
1009}
1010
1011/*
1012 * Helper to make a queue_pairAlloc hypercall when the driver is
1013 * supporting a guest device.
1014 */
1015static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1016{
1017        struct vmci_qp_alloc_msg *alloc_msg;
1018        size_t msg_size;
1019        int result;
1020
1021        if (!entry || entry->num_ppns <= 2)
1022                return VMCI_ERROR_INVALID_ARGS;
1023
1024        msg_size = sizeof(*alloc_msg) +
1025            (size_t) entry->num_ppns * sizeof(u32);
1026        alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1027        if (!alloc_msg)
1028                return VMCI_ERROR_NO_MEM;
1029
1030        alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1031                                              VMCI_QUEUEPAIR_ALLOC);
1032        alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1033        alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1034        alloc_msg->handle = entry->qp.handle;
1035        alloc_msg->peer = entry->qp.peer;
1036        alloc_msg->flags = entry->qp.flags;
1037        alloc_msg->produce_size = entry->qp.produce_size;
1038        alloc_msg->consume_size = entry->qp.consume_size;
1039        alloc_msg->num_ppns = entry->num_ppns;
1040
1041        result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1042                                     &entry->ppn_set);
1043        if (result == VMCI_SUCCESS)
1044                result = vmci_send_datagram(&alloc_msg->hdr);
1045
1046        kfree(alloc_msg);
1047
1048        return result;
1049}
1050
1051/*
1052 * Helper to make a queue_pairDetach hypercall when the driver is
1053 * supporting a guest device.
1054 */
1055static int qp_detatch_hypercall(struct vmci_handle handle)
1056{
1057        struct vmci_qp_detach_msg detach_msg;
1058
1059        detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1060                                              VMCI_QUEUEPAIR_DETACH);
1061        detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1062        detach_msg.hdr.payload_size = sizeof(handle);
1063        detach_msg.handle = handle;
1064
1065        return vmci_send_datagram(&detach_msg.hdr);
1066}
1067
1068/*
1069 * Adds the given entry to the list. Assumes that the list is locked.
1070 */
1071static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1072{
1073        if (entry)
1074                list_add(&entry->list_item, &qp_list->head);
1075}
1076
1077/*
1078 * Removes the given entry from the list. Assumes that the list is locked.
1079 */
1080static void qp_list_remove_entry(struct qp_list *qp_list,
1081                                 struct qp_entry *entry)
1082{
1083        if (entry)
1084                list_del(&entry->list_item);
1085}
1086
1087/*
1088 * Helper for VMCI queue_pair detach interface. Frees the physical
1089 * pages for the queue pair.
1090 */
1091static int qp_detatch_guest_work(struct vmci_handle handle)
1092{
1093        int result;
1094        struct qp_guest_endpoint *entry;
1095        u32 ref_count = ~0;     /* To avoid compiler warning below */
1096
1097        mutex_lock(&qp_guest_endpoints.mutex);
1098
1099        entry = qp_guest_handle_to_entry(handle);
1100        if (!entry) {
1101                mutex_unlock(&qp_guest_endpoints.mutex);
1102                return VMCI_ERROR_NOT_FOUND;
1103        }
1104
1105        if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1106                result = VMCI_SUCCESS;
1107
1108                if (entry->qp.ref_count > 1) {
1109                        result = qp_notify_peer_local(false, handle);
1110                        /*
1111                         * We can fail to notify a local queuepair
1112                         * because we can't allocate.  We still want
1113                         * to release the entry if that happens, so
1114                         * don't bail out yet.
1115                         */
1116                }
1117        } else {
1118                result = qp_detatch_hypercall(handle);
1119                if (result < VMCI_SUCCESS) {
1120                        /*
1121                         * We failed to notify a non-local queuepair.
1122                         * That other queuepair might still be
1123                         * accessing the shared memory, so don't
1124                         * release the entry yet.  It will get cleaned
1125                         * up by VMCIqueue_pair_Exit() if necessary
1126                         * (assuming we are going away, otherwise why
1127                         * did this fail?).
1128                         */
1129
1130                        mutex_unlock(&qp_guest_endpoints.mutex);
1131                        return result;
1132                }
1133        }
1134
1135        /*
1136         * If we get here then we either failed to notify a local queuepair, or
1137         * we succeeded in all cases.  Release the entry if required.
1138         */
1139
1140        entry->qp.ref_count--;
1141        if (entry->qp.ref_count == 0)
1142                qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1143
1144        /* If we didn't remove the entry, this could change once we unlock. */
1145        if (entry)
1146                ref_count = entry->qp.ref_count;
1147
1148        mutex_unlock(&qp_guest_endpoints.mutex);
1149
1150        if (ref_count == 0)
1151                qp_guest_endpoint_destroy(entry);
1152
1153        return result;
1154}
1155
1156/*
1157 * This functions handles the actual allocation of a VMCI queue
1158 * pair guest endpoint. Allocates physical pages for the queue
1159 * pair. It makes OS dependent calls through generic wrappers.
1160 */
1161static int qp_alloc_guest_work(struct vmci_handle *handle,
1162                               struct vmci_queue **produce_q,
1163                               u64 produce_size,
1164                               struct vmci_queue **consume_q,
1165                               u64 consume_size,
1166                               u32 peer,
1167                               u32 flags,
1168                               u32 priv_flags)
1169{
1170        const u64 num_produce_pages =
1171            DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1172        const u64 num_consume_pages =
1173            DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1174        void *my_produce_q = NULL;
1175        void *my_consume_q = NULL;
1176        int result;
1177        struct qp_guest_endpoint *queue_pair_entry = NULL;
1178
1179        if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1180                return VMCI_ERROR_NO_ACCESS;
1181
1182        mutex_lock(&qp_guest_endpoints.mutex);
1183
1184        queue_pair_entry = qp_guest_handle_to_entry(*handle);
1185        if (queue_pair_entry) {
1186                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1187                        /* Local attach case. */
1188                        if (queue_pair_entry->qp.ref_count > 1) {
1189                                pr_devel("Error attempting to attach more than once\n");
1190                                result = VMCI_ERROR_UNAVAILABLE;
1191                                goto error_keep_entry;
1192                        }
1193
1194                        if (queue_pair_entry->qp.produce_size != consume_size ||
1195                            queue_pair_entry->qp.consume_size !=
1196                            produce_size ||
1197                            queue_pair_entry->qp.flags !=
1198                            (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1199                                pr_devel("Error mismatched queue pair in local attach\n");
1200                                result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1201                                goto error_keep_entry;
1202                        }
1203
1204                        /*
1205                         * Do a local attach.  We swap the consume and
1206                         * produce queues for the attacher and deliver
1207                         * an attach event.
1208                         */
1209                        result = qp_notify_peer_local(true, *handle);
1210                        if (result < VMCI_SUCCESS)
1211                                goto error_keep_entry;
1212
1213                        my_produce_q = queue_pair_entry->consume_q;
1214                        my_consume_q = queue_pair_entry->produce_q;
1215                        goto out;
1216                }
1217
1218                result = VMCI_ERROR_ALREADY_EXISTS;
1219                goto error_keep_entry;
1220        }
1221
1222        my_produce_q = qp_alloc_queue(produce_size, flags);
1223        if (!my_produce_q) {
1224                pr_warn("Error allocating pages for produce queue\n");
1225                result = VMCI_ERROR_NO_MEM;
1226                goto error;
1227        }
1228
1229        my_consume_q = qp_alloc_queue(consume_size, flags);
1230        if (!my_consume_q) {
1231                pr_warn("Error allocating pages for consume queue\n");
1232                result = VMCI_ERROR_NO_MEM;
1233                goto error;
1234        }
1235
1236        queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1237                                                    produce_size, consume_size,
1238                                                    my_produce_q, my_consume_q);
1239        if (!queue_pair_entry) {
1240                pr_warn("Error allocating memory in %s\n", __func__);
1241                result = VMCI_ERROR_NO_MEM;
1242                goto error;
1243        }
1244
1245        result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1246                                  num_consume_pages,
1247                                  &queue_pair_entry->ppn_set);
1248        if (result < VMCI_SUCCESS) {
1249                pr_warn("qp_alloc_ppn_set failed\n");
1250                goto error;
1251        }
1252
1253        /*
1254         * It's only necessary to notify the host if this queue pair will be
1255         * attached to from another context.
1256         */
1257        if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1258                /* Local create case. */
1259                u32 context_id = vmci_get_context_id();
1260
1261                /*
1262                 * Enforce similar checks on local queue pairs as we
1263                 * do for regular ones.  The handle's context must
1264                 * match the creator or attacher context id (here they
1265                 * are both the current context id) and the
1266                 * attach-only flag cannot exist during create.  We
1267                 * also ensure specified peer is this context or an
1268                 * invalid one.
1269                 */
1270                if (queue_pair_entry->qp.handle.context != context_id ||
1271                    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1272                     queue_pair_entry->qp.peer != context_id)) {
1273                        result = VMCI_ERROR_NO_ACCESS;
1274                        goto error;
1275                }
1276
1277                if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1278                        result = VMCI_ERROR_NOT_FOUND;
1279                        goto error;
1280                }
1281        } else {
1282                result = qp_alloc_hypercall(queue_pair_entry);
1283                if (result < VMCI_SUCCESS) {
1284                        pr_warn("qp_alloc_hypercall result = %d\n", result);
1285                        goto error;
1286                }
1287        }
1288
1289        qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1290                            (struct vmci_queue *)my_consume_q);
1291
1292        qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1293
1294 out:
1295        queue_pair_entry->qp.ref_count++;
1296        *handle = queue_pair_entry->qp.handle;
1297        *produce_q = (struct vmci_queue *)my_produce_q;
1298        *consume_q = (struct vmci_queue *)my_consume_q;
1299
1300        /*
1301         * We should initialize the queue pair header pages on a local
1302         * queue pair create.  For non-local queue pairs, the
1303         * hypervisor initializes the header pages in the create step.
1304         */
1305        if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1306            queue_pair_entry->qp.ref_count == 1) {
1307                vmci_q_header_init((*produce_q)->q_header, *handle);
1308                vmci_q_header_init((*consume_q)->q_header, *handle);
1309        }
1310
1311        mutex_unlock(&qp_guest_endpoints.mutex);
1312
1313        return VMCI_SUCCESS;
1314
1315 error:
1316        mutex_unlock(&qp_guest_endpoints.mutex);
1317        if (queue_pair_entry) {
1318                /* The queues will be freed inside the destroy routine. */
1319                qp_guest_endpoint_destroy(queue_pair_entry);
1320        } else {
1321                qp_free_queue(my_produce_q, produce_size);
1322                qp_free_queue(my_consume_q, consume_size);
1323        }
1324        return result;
1325
1326 error_keep_entry:
1327        /* This path should only be used when an existing entry was found. */
1328        mutex_unlock(&qp_guest_endpoints.mutex);
1329        return result;
1330}
1331
1332/*
1333 * The first endpoint issuing a queue pair allocation will create the state
1334 * of the queue pair in the queue pair broker.
1335 *
1336 * If the creator is a guest, it will associate a VMX virtual address range
1337 * with the queue pair as specified by the page_store. For compatibility with
1338 * older VMX'en, that would use a separate step to set the VMX virtual
1339 * address range, the virtual address range can be registered later using
1340 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1341 * used.
1342 *
1343 * If the creator is the host, a page_store of NULL should be used as well,
1344 * since the host is not able to supply a page store for the queue pair.
1345 *
1346 * For older VMX and host callers, the queue pair will be created in the
1347 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1348 * created in VMCOQPB_CREATED_MEM state.
1349 */
1350static int qp_broker_create(struct vmci_handle handle,
1351                            u32 peer,
1352                            u32 flags,
1353                            u32 priv_flags,
1354                            u64 produce_size,
1355                            u64 consume_size,
1356                            struct vmci_qp_page_store *page_store,
1357                            struct vmci_ctx *context,
1358                            vmci_event_release_cb wakeup_cb,
1359                            void *client_data, struct qp_broker_entry **ent)
1360{
1361        struct qp_broker_entry *entry = NULL;
1362        const u32 context_id = vmci_ctx_get_id(context);
1363        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1364        int result;
1365        u64 guest_produce_size;
1366        u64 guest_consume_size;
1367
1368        /* Do not create if the caller asked not to. */
1369        if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1370                return VMCI_ERROR_NOT_FOUND;
1371
1372        /*
1373         * Creator's context ID should match handle's context ID or the creator
1374         * must allow the context in handle's context ID as the "peer".
1375         */
1376        if (handle.context != context_id && handle.context != peer)
1377                return VMCI_ERROR_NO_ACCESS;
1378
1379        if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1380                return VMCI_ERROR_DST_UNREACHABLE;
1381
1382        /*
1383         * Creator's context ID for local queue pairs should match the
1384         * peer, if a peer is specified.
1385         */
1386        if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1387                return VMCI_ERROR_NO_ACCESS;
1388
1389        entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1390        if (!entry)
1391                return VMCI_ERROR_NO_MEM;
1392
1393        if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1394                /*
1395                 * The queue pair broker entry stores values from the guest
1396                 * point of view, so a creating host side endpoint should swap
1397                 * produce and consume values -- unless it is a local queue
1398                 * pair, in which case no swapping is necessary, since the local
1399                 * attacher will swap queues.
1400                 */
1401
1402                guest_produce_size = consume_size;
1403                guest_consume_size = produce_size;
1404        } else {
1405                guest_produce_size = produce_size;
1406                guest_consume_size = consume_size;
1407        }
1408
1409        entry->qp.handle = handle;
1410        entry->qp.peer = peer;
1411        entry->qp.flags = flags;
1412        entry->qp.produce_size = guest_produce_size;
1413        entry->qp.consume_size = guest_consume_size;
1414        entry->qp.ref_count = 1;
1415        entry->create_id = context_id;
1416        entry->attach_id = VMCI_INVALID_ID;
1417        entry->state = VMCIQPB_NEW;
1418        entry->require_trusted_attach =
1419            !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1420        entry->created_by_trusted =
1421            !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1422        entry->vmci_page_files = false;
1423        entry->wakeup_cb = wakeup_cb;
1424        entry->client_data = client_data;
1425        entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1426        if (entry->produce_q == NULL) {
1427                result = VMCI_ERROR_NO_MEM;
1428                goto error;
1429        }
1430        entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1431        if (entry->consume_q == NULL) {
1432                result = VMCI_ERROR_NO_MEM;
1433                goto error;
1434        }
1435
1436        qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1437
1438        INIT_LIST_HEAD(&entry->qp.list_item);
1439
1440        if (is_local) {
1441                u8 *tmp;
1442
1443                entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1444                                           PAGE_SIZE, GFP_KERNEL);
1445                if (entry->local_mem == NULL) {
1446                        result = VMCI_ERROR_NO_MEM;
1447                        goto error;
1448                }
1449                entry->state = VMCIQPB_CREATED_MEM;
1450                entry->produce_q->q_header = entry->local_mem;
1451                tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1452                    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1453                entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1454        } else if (page_store) {
1455                /*
1456                 * The VMX already initialized the queue pair headers, so no
1457                 * need for the kernel side to do that.
1458                 */
1459                result = qp_host_register_user_memory(page_store,
1460                                                      entry->produce_q,
1461                                                      entry->consume_q);
1462                if (result < VMCI_SUCCESS)
1463                        goto error;
1464
1465                entry->state = VMCIQPB_CREATED_MEM;
1466        } else {
1467                /*
1468                 * A create without a page_store may be either a host
1469                 * side create (in which case we are waiting for the
1470                 * guest side to supply the memory) or an old style
1471                 * queue pair create (in which case we will expect a
1472                 * set page store call as the next step).
1473                 */
1474                entry->state = VMCIQPB_CREATED_NO_MEM;
1475        }
1476
1477        qp_list_add_entry(&qp_broker_list, &entry->qp);
1478        if (ent != NULL)
1479                *ent = entry;
1480
1481        /* Add to resource obj */
1482        result = vmci_resource_add(&entry->resource,
1483                                   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1484                                   handle);
1485        if (result != VMCI_SUCCESS) {
1486                pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1487                        handle.context, handle.resource, result);
1488                goto error;
1489        }
1490
1491        entry->qp.handle = vmci_resource_handle(&entry->resource);
1492        if (is_local) {
1493                vmci_q_header_init(entry->produce_q->q_header,
1494                                   entry->qp.handle);
1495                vmci_q_header_init(entry->consume_q->q_header,
1496                                   entry->qp.handle);
1497        }
1498
1499        vmci_ctx_qp_create(context, entry->qp.handle);
1500
1501        return VMCI_SUCCESS;
1502
1503 error:
1504        if (entry != NULL) {
1505                qp_host_free_queue(entry->produce_q, guest_produce_size);
1506                qp_host_free_queue(entry->consume_q, guest_consume_size);
1507                kfree(entry);
1508        }
1509
1510        return result;
1511}
1512
1513/*
1514 * Enqueues an event datagram to notify the peer VM attached to
1515 * the given queue pair handle about attach/detach event by the
1516 * given VM.  Returns Payload size of datagram enqueued on
1517 * success, error code otherwise.
1518 */
1519static int qp_notify_peer(bool attach,
1520                          struct vmci_handle handle,
1521                          u32 my_id,
1522                          u32 peer_id)
1523{
1524        int rv;
1525        struct vmci_event_qp ev;
1526
1527        if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1528            peer_id == VMCI_INVALID_ID)
1529                return VMCI_ERROR_INVALID_ARGS;
1530
1531        /*
1532         * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1533         * number of pending events from the hypervisor to a given VM
1534         * otherwise a rogue VM could do an arbitrary number of attach
1535         * and detach operations causing memory pressure in the host
1536         * kernel.
1537         */
1538
1539        ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1540        ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1541                                          VMCI_CONTEXT_RESOURCE_ID);
1542        ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1543        ev.msg.event_data.event = attach ?
1544            VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1545        ev.payload.handle = handle;
1546        ev.payload.peer_id = my_id;
1547
1548        rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1549                                    &ev.msg.hdr, false);
1550        if (rv < VMCI_SUCCESS)
1551                pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1552                        attach ? "ATTACH" : "DETACH", peer_id);
1553
1554        return rv;
1555}
1556
1557/*
1558 * The second endpoint issuing a queue pair allocation will attach to
1559 * the queue pair registered with the queue pair broker.
1560 *
1561 * If the attacher is a guest, it will associate a VMX virtual address
1562 * range with the queue pair as specified by the page_store. At this
1563 * point, the already attach host endpoint may start using the queue
1564 * pair, and an attach event is sent to it. For compatibility with
1565 * older VMX'en, that used a separate step to set the VMX virtual
1566 * address range, the virtual address range can be registered later
1567 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1568 * NULL should be used, and the attach event will be generated once
1569 * the actual page store has been set.
1570 *
1571 * If the attacher is the host, a page_store of NULL should be used as
1572 * well, since the page store information is already set by the guest.
1573 *
1574 * For new VMX and host callers, the queue pair will be moved to the
1575 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1576 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1577 */
1578static int qp_broker_attach(struct qp_broker_entry *entry,
1579                            u32 peer,
1580                            u32 flags,
1581                            u32 priv_flags,
1582                            u64 produce_size,
1583                            u64 consume_size,
1584                            struct vmci_qp_page_store *page_store,
1585                            struct vmci_ctx *context,
1586                            vmci_event_release_cb wakeup_cb,
1587                            void *client_data,
1588                            struct qp_broker_entry **ent)
1589{
1590        const u32 context_id = vmci_ctx_get_id(context);
1591        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1592        int result;
1593
1594        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1595            entry->state != VMCIQPB_CREATED_MEM)
1596                return VMCI_ERROR_UNAVAILABLE;
1597
1598        if (is_local) {
1599                if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1600                    context_id != entry->create_id) {
1601                        return VMCI_ERROR_INVALID_ARGS;
1602                }
1603        } else if (context_id == entry->create_id ||
1604                   context_id == entry->attach_id) {
1605                return VMCI_ERROR_ALREADY_EXISTS;
1606        }
1607
1608        if (VMCI_CONTEXT_IS_VM(context_id) &&
1609            VMCI_CONTEXT_IS_VM(entry->create_id))
1610                return VMCI_ERROR_DST_UNREACHABLE;
1611
1612        /*
1613         * If we are attaching from a restricted context then the queuepair
1614         * must have been created by a trusted endpoint.
1615         */
1616        if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1617            !entry->created_by_trusted)
1618                return VMCI_ERROR_NO_ACCESS;
1619
1620        /*
1621         * If we are attaching to a queuepair that was created by a restricted
1622         * context then we must be trusted.
1623         */
1624        if (entry->require_trusted_attach &&
1625            (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1626                return VMCI_ERROR_NO_ACCESS;
1627
1628        /*
1629         * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1630         * control check is not performed.
1631         */
1632        if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1633                return VMCI_ERROR_NO_ACCESS;
1634
1635        if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1636                /*
1637                 * Do not attach if the caller doesn't support Host Queue Pairs
1638                 * and a host created this queue pair.
1639                 */
1640
1641                if (!vmci_ctx_supports_host_qp(context))
1642                        return VMCI_ERROR_INVALID_RESOURCE;
1643
1644        } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1645                struct vmci_ctx *create_context;
1646                bool supports_host_qp;
1647
1648                /*
1649                 * Do not attach a host to a user created queue pair if that
1650                 * user doesn't support host queue pair end points.
1651                 */
1652
1653                create_context = vmci_ctx_get(entry->create_id);
1654                supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1655                vmci_ctx_put(create_context);
1656
1657                if (!supports_host_qp)
1658                        return VMCI_ERROR_INVALID_RESOURCE;
1659        }
1660
1661        if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1662                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1663
1664        if (context_id != VMCI_HOST_CONTEXT_ID) {
1665                /*
1666                 * The queue pair broker entry stores values from the guest
1667                 * point of view, so an attaching guest should match the values
1668                 * stored in the entry.
1669                 */
1670
1671                if (entry->qp.produce_size != produce_size ||
1672                    entry->qp.consume_size != consume_size) {
1673                        return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1674                }
1675        } else if (entry->qp.produce_size != consume_size ||
1676                   entry->qp.consume_size != produce_size) {
1677                return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1678        }
1679
1680        if (context_id != VMCI_HOST_CONTEXT_ID) {
1681                /*
1682                 * If a guest attached to a queue pair, it will supply
1683                 * the backing memory.  If this is a pre NOVMVM vmx,
1684                 * the backing memory will be supplied by calling
1685                 * vmci_qp_broker_set_page_store() following the
1686                 * return of the vmci_qp_broker_alloc() call. If it is
1687                 * a vmx of version NOVMVM or later, the page store
1688                 * must be supplied as part of the
1689                 * vmci_qp_broker_alloc call.  Under all circumstances
1690                 * must the initially created queue pair not have any
1691                 * memory associated with it already.
1692                 */
1693
1694                if (entry->state != VMCIQPB_CREATED_NO_MEM)
1695                        return VMCI_ERROR_INVALID_ARGS;
1696
1697                if (page_store != NULL) {
1698                        /*
1699                         * Patch up host state to point to guest
1700                         * supplied memory. The VMX already
1701                         * initialized the queue pair headers, so no
1702                         * need for the kernel side to do that.
1703                         */
1704
1705                        result = qp_host_register_user_memory(page_store,
1706                                                              entry->produce_q,
1707                                                              entry->consume_q);
1708                        if (result < VMCI_SUCCESS)
1709                                return result;
1710
1711                        entry->state = VMCIQPB_ATTACHED_MEM;
1712                } else {
1713                        entry->state = VMCIQPB_ATTACHED_NO_MEM;
1714                }
1715        } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1716                /*
1717                 * The host side is attempting to attach to a queue
1718                 * pair that doesn't have any memory associated with
1719                 * it. This must be a pre NOVMVM vmx that hasn't set
1720                 * the page store information yet, or a quiesced VM.
1721                 */
1722
1723                return VMCI_ERROR_UNAVAILABLE;
1724        } else {
1725                /* The host side has successfully attached to a queue pair. */
1726                entry->state = VMCIQPB_ATTACHED_MEM;
1727        }
1728
1729        if (entry->state == VMCIQPB_ATTACHED_MEM) {
1730                result =
1731                    qp_notify_peer(true, entry->qp.handle, context_id,
1732                                   entry->create_id);
1733                if (result < VMCI_SUCCESS)
1734                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1735                                entry->create_id, entry->qp.handle.context,
1736                                entry->qp.handle.resource);
1737        }
1738
1739        entry->attach_id = context_id;
1740        entry->qp.ref_count++;
1741        if (wakeup_cb) {
1742                entry->wakeup_cb = wakeup_cb;
1743                entry->client_data = client_data;
1744        }
1745
1746        /*
1747         * When attaching to local queue pairs, the context already has
1748         * an entry tracking the queue pair, so don't add another one.
1749         */
1750        if (!is_local)
1751                vmci_ctx_qp_create(context, entry->qp.handle);
1752
1753        if (ent != NULL)
1754                *ent = entry;
1755
1756        return VMCI_SUCCESS;
1757}
1758
1759/*
1760 * queue_pair_Alloc for use when setting up queue pair endpoints
1761 * on the host.
1762 */
1763static int qp_broker_alloc(struct vmci_handle handle,
1764                           u32 peer,
1765                           u32 flags,
1766                           u32 priv_flags,
1767                           u64 produce_size,
1768                           u64 consume_size,
1769                           struct vmci_qp_page_store *page_store,
1770                           struct vmci_ctx *context,
1771                           vmci_event_release_cb wakeup_cb,
1772                           void *client_data,
1773                           struct qp_broker_entry **ent,
1774                           bool *swap)
1775{
1776        const u32 context_id = vmci_ctx_get_id(context);
1777        bool create;
1778        struct qp_broker_entry *entry = NULL;
1779        bool is_local = flags & VMCI_QPFLAG_LOCAL;
1780        int result;
1781
1782        if (vmci_handle_is_invalid(handle) ||
1783            (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1784            !(produce_size || consume_size) ||
1785            !context || context_id == VMCI_INVALID_ID ||
1786            handle.context == VMCI_INVALID_ID) {
1787                return VMCI_ERROR_INVALID_ARGS;
1788        }
1789
1790        if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1791                return VMCI_ERROR_INVALID_ARGS;
1792
1793        /*
1794         * In the initial argument check, we ensure that non-vmkernel hosts
1795         * are not allowed to create local queue pairs.
1796         */
1797
1798        mutex_lock(&qp_broker_list.mutex);
1799
1800        if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1801                pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1802                         context_id, handle.context, handle.resource);
1803                mutex_unlock(&qp_broker_list.mutex);
1804                return VMCI_ERROR_ALREADY_EXISTS;
1805        }
1806
1807        if (handle.resource != VMCI_INVALID_ID)
1808                entry = qp_broker_handle_to_entry(handle);
1809
1810        if (!entry) {
1811                create = true;
1812                result =
1813                    qp_broker_create(handle, peer, flags, priv_flags,
1814                                     produce_size, consume_size, page_store,
1815                                     context, wakeup_cb, client_data, ent);
1816        } else {
1817                create = false;
1818                result =
1819                    qp_broker_attach(entry, peer, flags, priv_flags,
1820                                     produce_size, consume_size, page_store,
1821                                     context, wakeup_cb, client_data, ent);
1822        }
1823
1824        mutex_unlock(&qp_broker_list.mutex);
1825
1826        if (swap)
1827                *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1828                    !(create && is_local);
1829
1830        return result;
1831}
1832
1833/*
1834 * This function implements the kernel API for allocating a queue
1835 * pair.
1836 */
1837static int qp_alloc_host_work(struct vmci_handle *handle,
1838                              struct vmci_queue **produce_q,
1839                              u64 produce_size,
1840                              struct vmci_queue **consume_q,
1841                              u64 consume_size,
1842                              u32 peer,
1843                              u32 flags,
1844                              u32 priv_flags,
1845                              vmci_event_release_cb wakeup_cb,
1846                              void *client_data)
1847{
1848        struct vmci_handle new_handle;
1849        struct vmci_ctx *context;
1850        struct qp_broker_entry *entry;
1851        int result;
1852        bool swap;
1853
1854        if (vmci_handle_is_invalid(*handle)) {
1855                new_handle = vmci_make_handle(
1856                        VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1857        } else
1858                new_handle = *handle;
1859
1860        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1861        entry = NULL;
1862        result =
1863            qp_broker_alloc(new_handle, peer, flags, priv_flags,
1864                            produce_size, consume_size, NULL, context,
1865                            wakeup_cb, client_data, &entry, &swap);
1866        if (result == VMCI_SUCCESS) {
1867                if (swap) {
1868                        /*
1869                         * If this is a local queue pair, the attacher
1870                         * will swap around produce and consume
1871                         * queues.
1872                         */
1873
1874                        *produce_q = entry->consume_q;
1875                        *consume_q = entry->produce_q;
1876                } else {
1877                        *produce_q = entry->produce_q;
1878                        *consume_q = entry->consume_q;
1879                }
1880
1881                *handle = vmci_resource_handle(&entry->resource);
1882        } else {
1883                *handle = VMCI_INVALID_HANDLE;
1884                pr_devel("queue pair broker failed to alloc (result=%d)\n",
1885                         result);
1886        }
1887        vmci_ctx_put(context);
1888        return result;
1889}
1890
1891/*
1892 * Allocates a VMCI queue_pair. Only checks validity of input
1893 * arguments. The real work is done in the host or guest
1894 * specific function.
1895 */
1896int vmci_qp_alloc(struct vmci_handle *handle,
1897                  struct vmci_queue **produce_q,
1898                  u64 produce_size,
1899                  struct vmci_queue **consume_q,
1900                  u64 consume_size,
1901                  u32 peer,
1902                  u32 flags,
1903                  u32 priv_flags,
1904                  bool guest_endpoint,
1905                  vmci_event_release_cb wakeup_cb,
1906                  void *client_data)
1907{
1908        if (!handle || !produce_q || !consume_q ||
1909            (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1910                return VMCI_ERROR_INVALID_ARGS;
1911
1912        if (guest_endpoint) {
1913                return qp_alloc_guest_work(handle, produce_q,
1914                                           produce_size, consume_q,
1915                                           consume_size, peer,
1916                                           flags, priv_flags);
1917        } else {
1918                return qp_alloc_host_work(handle, produce_q,
1919                                          produce_size, consume_q,
1920                                          consume_size, peer, flags,
1921                                          priv_flags, wakeup_cb, client_data);
1922        }
1923}
1924
1925/*
1926 * This function implements the host kernel API for detaching from
1927 * a queue pair.
1928 */
1929static int qp_detatch_host_work(struct vmci_handle handle)
1930{
1931        int result;
1932        struct vmci_ctx *context;
1933
1934        context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1935
1936        result = vmci_qp_broker_detach(handle, context);
1937
1938        vmci_ctx_put(context);
1939        return result;
1940}
1941
1942/*
1943 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1944 * Real work is done in the host or guest specific function.
1945 */
1946static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1947{
1948        if (vmci_handle_is_invalid(handle))
1949                return VMCI_ERROR_INVALID_ARGS;
1950
1951        if (guest_endpoint)
1952                return qp_detatch_guest_work(handle);
1953        else
1954                return qp_detatch_host_work(handle);
1955}
1956
1957/*
1958 * Returns the entry from the head of the list. Assumes that the list is
1959 * locked.
1960 */
1961static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1962{
1963        if (!list_empty(&qp_list->head)) {
1964                struct qp_entry *entry =
1965                    list_first_entry(&qp_list->head, struct qp_entry,
1966                                     list_item);
1967                return entry;
1968        }
1969
1970        return NULL;
1971}
1972
1973void vmci_qp_broker_exit(void)
1974{
1975        struct qp_entry *entry;
1976        struct qp_broker_entry *be;
1977
1978        mutex_lock(&qp_broker_list.mutex);
1979
1980        while ((entry = qp_list_get_head(&qp_broker_list))) {
1981                be = (struct qp_broker_entry *)entry;
1982
1983                qp_list_remove_entry(&qp_broker_list, entry);
1984                kfree(be);
1985        }
1986
1987        mutex_unlock(&qp_broker_list.mutex);
1988}
1989
1990/*
1991 * Requests that a queue pair be allocated with the VMCI queue
1992 * pair broker. Allocates a queue pair entry if one does not
1993 * exist. Attaches to one if it exists, and retrieves the page
1994 * files backing that queue_pair.  Assumes that the queue pair
1995 * broker lock is held.
1996 */
1997int vmci_qp_broker_alloc(struct vmci_handle handle,
1998                         u32 peer,
1999                         u32 flags,
2000                         u32 priv_flags,
2001                         u64 produce_size,
2002                         u64 consume_size,
2003                         struct vmci_qp_page_store *page_store,
2004                         struct vmci_ctx *context)
2005{
2006        return qp_broker_alloc(handle, peer, flags, priv_flags,
2007                               produce_size, consume_size,
2008                               page_store, context, NULL, NULL, NULL, NULL);
2009}
2010
2011/*
2012 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2013 * step to add the UVAs of the VMX mapping of the queue pair. This function
2014 * provides backwards compatibility with such VMX'en, and takes care of
2015 * registering the page store for a queue pair previously allocated by the
2016 * VMX during create or attach. This function will move the queue pair state
2017 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2018 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2019 * attached state with memory, the queue pair is ready to be used by the
2020 * host peer, and an attached event will be generated.
2021 *
2022 * Assumes that the queue pair broker lock is held.
2023 *
2024 * This function is only used by the hosted platform, since there is no
2025 * issue with backwards compatibility for vmkernel.
2026 */
2027int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2028                                  u64 produce_uva,
2029                                  u64 consume_uva,
2030                                  struct vmci_ctx *context)
2031{
2032        struct qp_broker_entry *entry;
2033        int result;
2034        const u32 context_id = vmci_ctx_get_id(context);
2035
2036        if (vmci_handle_is_invalid(handle) || !context ||
2037            context_id == VMCI_INVALID_ID)
2038                return VMCI_ERROR_INVALID_ARGS;
2039
2040        /*
2041         * We only support guest to host queue pairs, so the VMX must
2042         * supply UVAs for the mapped page files.
2043         */
2044
2045        if (produce_uva == 0 || consume_uva == 0)
2046                return VMCI_ERROR_INVALID_ARGS;
2047
2048        mutex_lock(&qp_broker_list.mutex);
2049
2050        if (!vmci_ctx_qp_exists(context, handle)) {
2051                pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2052                        context_id, handle.context, handle.resource);
2053                result = VMCI_ERROR_NOT_FOUND;
2054                goto out;
2055        }
2056
2057        entry = qp_broker_handle_to_entry(handle);
2058        if (!entry) {
2059                result = VMCI_ERROR_NOT_FOUND;
2060                goto out;
2061        }
2062
2063        /*
2064         * If I'm the owner then I can set the page store.
2065         *
2066         * Or, if a host created the queue_pair and I'm the attached peer
2067         * then I can set the page store.
2068         */
2069        if (entry->create_id != context_id &&
2070            (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2071             entry->attach_id != context_id)) {
2072                result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2073                goto out;
2074        }
2075
2076        if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2077            entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2078                result = VMCI_ERROR_UNAVAILABLE;
2079                goto out;
2080        }
2081
2082        result = qp_host_get_user_memory(produce_uva, consume_uva,
2083                                         entry->produce_q, entry->consume_q);
2084        if (result < VMCI_SUCCESS)
2085                goto out;
2086
2087        result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2088        if (result < VMCI_SUCCESS) {
2089                qp_host_unregister_user_memory(entry->produce_q,
2090                                               entry->consume_q);
2091                goto out;
2092        }
2093
2094        if (entry->state == VMCIQPB_CREATED_NO_MEM)
2095                entry->state = VMCIQPB_CREATED_MEM;
2096        else
2097                entry->state = VMCIQPB_ATTACHED_MEM;
2098
2099        entry->vmci_page_files = true;
2100
2101        if (entry->state == VMCIQPB_ATTACHED_MEM) {
2102                result =
2103                    qp_notify_peer(true, handle, context_id, entry->create_id);
2104                if (result < VMCI_SUCCESS) {
2105                        pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2106                                entry->create_id, entry->qp.handle.context,
2107                                entry->qp.handle.resource);
2108                }
2109        }
2110
2111        result = VMCI_SUCCESS;
2112 out:
2113        mutex_unlock(&qp_broker_list.mutex);
2114        return result;
2115}
2116
2117/*
2118 * Resets saved queue headers for the given QP broker
2119 * entry. Should be used when guest memory becomes available
2120 * again, or the guest detaches.
2121 */
2122static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2123{
2124        entry->produce_q->saved_header = NULL;
2125        entry->consume_q->saved_header = NULL;
2126}
2127
2128/*
2129 * The main entry point for detaching from a queue pair registered with the
2130 * queue pair broker. If more than one endpoint is attached to the queue
2131 * pair, the first endpoint will mainly decrement a reference count and
2132 * generate a notification to its peer. The last endpoint will clean up
2133 * the queue pair state registered with the broker.
2134 *
2135 * When a guest endpoint detaches, it will unmap and unregister the guest
2136 * memory backing the queue pair. If the host is still attached, it will
2137 * no longer be able to access the queue pair content.
2138 *
2139 * If the queue pair is already in a state where there is no memory
2140 * registered for the queue pair (any *_NO_MEM state), it will transition to
2141 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2142 * endpoint is the first of two endpoints to detach. If the host endpoint is
2143 * the first out of two to detach, the queue pair will move to the
2144 * VMCIQPB_SHUTDOWN_MEM state.
2145 */
2146int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2147{
2148        struct qp_broker_entry *entry;
2149        const u32 context_id = vmci_ctx_get_id(context);
2150        u32 peer_id;
2151        bool is_local = false;
2152        int result;
2153
2154        if (vmci_handle_is_invalid(handle) || !context ||
2155            context_id == VMCI_INVALID_ID) {
2156                return VMCI_ERROR_INVALID_ARGS;
2157        }
2158
2159        mutex_lock(&qp_broker_list.mutex);
2160
2161        if (!vmci_ctx_qp_exists(context, handle)) {
2162                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2163                         context_id, handle.context, handle.resource);
2164                result = VMCI_ERROR_NOT_FOUND;
2165                goto out;
2166        }
2167
2168        entry = qp_broker_handle_to_entry(handle);
2169        if (!entry) {
2170                pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2171                         context_id, handle.context, handle.resource);
2172                result = VMCI_ERROR_NOT_FOUND;
2173                goto out;
2174        }
2175
2176        if (context_id != entry->create_id && context_id != entry->attach_id) {
2177                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2178                goto out;
2179        }
2180
2181        if (context_id == entry->create_id) {
2182                peer_id = entry->attach_id;
2183                entry->create_id = VMCI_INVALID_ID;
2184        } else {
2185                peer_id = entry->create_id;
2186                entry->attach_id = VMCI_INVALID_ID;
2187        }
2188        entry->qp.ref_count--;
2189
2190        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2191
2192        if (context_id != VMCI_HOST_CONTEXT_ID) {
2193                bool headers_mapped;
2194
2195                /*
2196                 * Pre NOVMVM vmx'en may detach from a queue pair
2197                 * before setting the page store, and in that case
2198                 * there is no user memory to detach from. Also, more
2199                 * recent VMX'en may detach from a queue pair in the
2200                 * quiesced state.
2201                 */
2202
2203                qp_acquire_queue_mutex(entry->produce_q);
2204                headers_mapped = entry->produce_q->q_header ||
2205                    entry->consume_q->q_header;
2206                if (QPBROKERSTATE_HAS_MEM(entry)) {
2207                        result =
2208                            qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2209                                                 entry->produce_q,
2210                                                 entry->consume_q);
2211                        if (result < VMCI_SUCCESS)
2212                                pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2213                                        handle.context, handle.resource,
2214                                        result);
2215
2216                        if (entry->vmci_page_files)
2217                                qp_host_unregister_user_memory(entry->produce_q,
2218                                                               entry->
2219                                                               consume_q);
2220                        else
2221                                qp_host_unregister_user_memory(entry->produce_q,
2222                                                               entry->
2223                                                               consume_q);
2224
2225                }
2226
2227                if (!headers_mapped)
2228                        qp_reset_saved_headers(entry);
2229
2230                qp_release_queue_mutex(entry->produce_q);
2231
2232                if (!headers_mapped && entry->wakeup_cb)
2233                        entry->wakeup_cb(entry->client_data);
2234
2235        } else {
2236                if (entry->wakeup_cb) {
2237                        entry->wakeup_cb = NULL;
2238                        entry->client_data = NULL;
2239                }
2240        }
2241
2242        if (entry->qp.ref_count == 0) {
2243                qp_list_remove_entry(&qp_broker_list, &entry->qp);
2244
2245                if (is_local)
2246                        kfree(entry->local_mem);
2247
2248                qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2249                qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2250                qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2251                /* Unlink from resource hash table and free callback */
2252                vmci_resource_remove(&entry->resource);
2253
2254                kfree(entry);
2255
2256                vmci_ctx_qp_destroy(context, handle);
2257        } else {
2258                qp_notify_peer(false, handle, context_id, peer_id);
2259                if (context_id == VMCI_HOST_CONTEXT_ID &&
2260                    QPBROKERSTATE_HAS_MEM(entry)) {
2261                        entry->state = VMCIQPB_SHUTDOWN_MEM;
2262                } else {
2263                        entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2264                }
2265
2266                if (!is_local)
2267                        vmci_ctx_qp_destroy(context, handle);
2268
2269        }
2270        result = VMCI_SUCCESS;
2271 out:
2272        mutex_unlock(&qp_broker_list.mutex);
2273        return result;
2274}
2275
2276/*
2277 * Establishes the necessary mappings for a queue pair given a
2278 * reference to the queue pair guest memory. This is usually
2279 * called when a guest is unquiesced and the VMX is allowed to
2280 * map guest memory once again.
2281 */
2282int vmci_qp_broker_map(struct vmci_handle handle,
2283                       struct vmci_ctx *context,
2284                       u64 guest_mem)
2285{
2286        struct qp_broker_entry *entry;
2287        const u32 context_id = vmci_ctx_get_id(context);
2288        bool is_local = false;
2289        int result;
2290
2291        if (vmci_handle_is_invalid(handle) || !context ||
2292            context_id == VMCI_INVALID_ID)
2293                return VMCI_ERROR_INVALID_ARGS;
2294
2295        mutex_lock(&qp_broker_list.mutex);
2296
2297        if (!vmci_ctx_qp_exists(context, handle)) {
2298                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2299                         context_id, handle.context, handle.resource);
2300                result = VMCI_ERROR_NOT_FOUND;
2301                goto out;
2302        }
2303
2304        entry = qp_broker_handle_to_entry(handle);
2305        if (!entry) {
2306                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2307                         context_id, handle.context, handle.resource);
2308                result = VMCI_ERROR_NOT_FOUND;
2309                goto out;
2310        }
2311
2312        if (context_id != entry->create_id && context_id != entry->attach_id) {
2313                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2314                goto out;
2315        }
2316
2317        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2318        result = VMCI_SUCCESS;
2319
2320        if (context_id != VMCI_HOST_CONTEXT_ID) {
2321                struct vmci_qp_page_store page_store;
2322
2323                page_store.pages = guest_mem;
2324                page_store.len = QPE_NUM_PAGES(entry->qp);
2325
2326                qp_acquire_queue_mutex(entry->produce_q);
2327                qp_reset_saved_headers(entry);
2328                result =
2329                    qp_host_register_user_memory(&page_store,
2330                                                 entry->produce_q,
2331                                                 entry->consume_q);
2332                qp_release_queue_mutex(entry->produce_q);
2333                if (result == VMCI_SUCCESS) {
2334                        /* Move state from *_NO_MEM to *_MEM */
2335
2336                        entry->state++;
2337
2338                        if (entry->wakeup_cb)
2339                                entry->wakeup_cb(entry->client_data);
2340                }
2341        }
2342
2343 out:
2344        mutex_unlock(&qp_broker_list.mutex);
2345        return result;
2346}
2347
2348/*
2349 * Saves a snapshot of the queue headers for the given QP broker
2350 * entry. Should be used when guest memory is unmapped.
2351 * Results:
2352 * VMCI_SUCCESS on success, appropriate error code if guest memory
2353 * can't be accessed..
2354 */
2355static int qp_save_headers(struct qp_broker_entry *entry)
2356{
2357        int result;
2358
2359        if (entry->produce_q->saved_header != NULL &&
2360            entry->consume_q->saved_header != NULL) {
2361                /*
2362                 *  If the headers have already been saved, we don't need to do
2363                 *  it again, and we don't want to map in the headers
2364                 *  unnecessarily.
2365                 */
2366
2367                return VMCI_SUCCESS;
2368        }
2369
2370        if (NULL == entry->produce_q->q_header ||
2371            NULL == entry->consume_q->q_header) {
2372                result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2373                if (result < VMCI_SUCCESS)
2374                        return result;
2375        }
2376
2377        memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2378               sizeof(entry->saved_produce_q));
2379        entry->produce_q->saved_header = &entry->saved_produce_q;
2380        memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2381               sizeof(entry->saved_consume_q));
2382        entry->consume_q->saved_header = &entry->saved_consume_q;
2383
2384        return VMCI_SUCCESS;
2385}
2386
2387/*
2388 * Removes all references to the guest memory of a given queue pair, and
2389 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2390 * called when a VM is being quiesced where access to guest memory should
2391 * avoided.
2392 */
2393int vmci_qp_broker_unmap(struct vmci_handle handle,
2394                         struct vmci_ctx *context,
2395                         u32 gid)
2396{
2397        struct qp_broker_entry *entry;
2398        const u32 context_id = vmci_ctx_get_id(context);
2399        bool is_local = false;
2400        int result;
2401
2402        if (vmci_handle_is_invalid(handle) || !context ||
2403            context_id == VMCI_INVALID_ID)
2404                return VMCI_ERROR_INVALID_ARGS;
2405
2406        mutex_lock(&qp_broker_list.mutex);
2407
2408        if (!vmci_ctx_qp_exists(context, handle)) {
2409                pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2410                         context_id, handle.context, handle.resource);
2411                result = VMCI_ERROR_NOT_FOUND;
2412                goto out;
2413        }
2414
2415        entry = qp_broker_handle_to_entry(handle);
2416        if (!entry) {
2417                pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2418                         context_id, handle.context, handle.resource);
2419                result = VMCI_ERROR_NOT_FOUND;
2420                goto out;
2421        }
2422
2423        if (context_id != entry->create_id && context_id != entry->attach_id) {
2424                result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2425                goto out;
2426        }
2427
2428        is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2429
2430        if (context_id != VMCI_HOST_CONTEXT_ID) {
2431                qp_acquire_queue_mutex(entry->produce_q);
2432                result = qp_save_headers(entry);
2433                if (result < VMCI_SUCCESS)
2434                        pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2435                                handle.context, handle.resource, result);
2436
2437                qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2438
2439                /*
2440                 * On hosted, when we unmap queue pairs, the VMX will also
2441                 * unmap the guest memory, so we invalidate the previously
2442                 * registered memory. If the queue pair is mapped again at a
2443                 * later point in time, we will need to reregister the user
2444                 * memory with a possibly new user VA.
2445                 */
2446                qp_host_unregister_user_memory(entry->produce_q,
2447                                               entry->consume_q);
2448
2449                /*
2450                 * Move state from *_MEM to *_NO_MEM.
2451                 */
2452                entry->state--;
2453
2454                qp_release_queue_mutex(entry->produce_q);
2455        }
2456
2457        result = VMCI_SUCCESS;
2458
2459 out:
2460        mutex_unlock(&qp_broker_list.mutex);
2461        return result;
2462}
2463
2464/*
2465 * Destroys all guest queue pair endpoints. If active guest queue
2466 * pairs still exist, hypercalls to attempt detach from these
2467 * queue pairs will be made. Any failure to detach is silently
2468 * ignored.
2469 */
2470void vmci_qp_guest_endpoints_exit(void)
2471{
2472        struct qp_entry *entry;
2473        struct qp_guest_endpoint *ep;
2474
2475        mutex_lock(&qp_guest_endpoints.mutex);
2476
2477        while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2478                ep = (struct qp_guest_endpoint *)entry;
2479
2480                /* Don't make a hypercall for local queue_pairs. */
2481                if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2482                        qp_detatch_hypercall(entry->handle);
2483
2484                /* We cannot fail the exit, so let's reset ref_count. */
2485                entry->ref_count = 0;
2486                qp_list_remove_entry(&qp_guest_endpoints, entry);
2487
2488                qp_guest_endpoint_destroy(ep);
2489        }
2490
2491        mutex_unlock(&qp_guest_endpoints.mutex);
2492}
2493
2494/*
2495 * Helper routine that will lock the queue pair before subsequent
2496 * operations.
2497 * Note: Non-blocking on the host side is currently only implemented in ESX.
2498 * Since non-blocking isn't yet implemented on the host personality we
2499 * have no reason to acquire a spin lock.  So to avoid the use of an
2500 * unnecessary lock only acquire the mutex if we can block.
2501 */
2502static void qp_lock(const struct vmci_qp *qpair)
2503{
2504        qp_acquire_queue_mutex(qpair->produce_q);
2505}
2506
2507/*
2508 * Helper routine that unlocks the queue pair after calling
2509 * qp_lock.
2510 */
2511static void qp_unlock(const struct vmci_qp *qpair)
2512{
2513        qp_release_queue_mutex(qpair->produce_q);
2514}
2515
2516/*
2517 * The queue headers may not be mapped at all times. If a queue is
2518 * currently not mapped, it will be attempted to do so.
2519 */
2520static int qp_map_queue_headers(struct vmci_queue *produce_q,
2521                                struct vmci_queue *consume_q)
2522{
2523        int result;
2524
2525        if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2526                result = qp_host_map_queues(produce_q, consume_q);
2527                if (result < VMCI_SUCCESS)
2528                        return (produce_q->saved_header &&
2529                                consume_q->saved_header) ?
2530                            VMCI_ERROR_QUEUEPAIR_NOT_READY :
2531                            VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2532        }
2533
2534        return VMCI_SUCCESS;
2535}
2536
2537/*
2538 * Helper routine that will retrieve the produce and consume
2539 * headers of a given queue pair. If the guest memory of the
2540 * queue pair is currently not available, the saved queue headers
2541 * will be returned, if these are available.
2542 */
2543static int qp_get_queue_headers(const struct vmci_qp *qpair,
2544                                struct vmci_queue_header **produce_q_header,
2545                                struct vmci_queue_header **consume_q_header)
2546{
2547        int result;
2548
2549        result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2550        if (result == VMCI_SUCCESS) {
2551                *produce_q_header = qpair->produce_q->q_header;
2552                *consume_q_header = qpair->consume_q->q_header;
2553        } else if (qpair->produce_q->saved_header &&
2554                   qpair->consume_q->saved_header) {
2555                *produce_q_header = qpair->produce_q->saved_header;
2556                *consume_q_header = qpair->consume_q->saved_header;
2557                result = VMCI_SUCCESS;
2558        }
2559
2560        return result;
2561}
2562
2563/*
2564 * Callback from VMCI queue pair broker indicating that a queue
2565 * pair that was previously not ready, now either is ready or
2566 * gone forever.
2567 */
2568static int qp_wakeup_cb(void *client_data)
2569{
2570        struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2571
2572        qp_lock(qpair);
2573        while (qpair->blocked > 0) {
2574                qpair->blocked--;
2575                qpair->generation++;
2576                wake_up(&qpair->event);
2577        }
2578        qp_unlock(qpair);
2579
2580        return VMCI_SUCCESS;
2581}
2582
2583/*
2584 * Makes the calling thread wait for the queue pair to become
2585 * ready for host side access.  Returns true when thread is
2586 * woken up after queue pair state change, false otherwise.
2587 */
2588static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2589{
2590        unsigned int generation;
2591
2592        qpair->blocked++;
2593        generation = qpair->generation;
2594        qp_unlock(qpair);
2595        wait_event(qpair->event, generation != qpair->generation);
2596        qp_lock(qpair);
2597
2598        return true;
2599}
2600
2601/*
2602 * Enqueues a given buffer to the produce queue using the provided
2603 * function. As many bytes as possible (space available in the queue)
2604 * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2605 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2606 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2607 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2608 * an error occured when accessing the buffer,
2609 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2610 * available.  Otherwise, the number of bytes written to the queue is
2611 * returned.  Updates the tail pointer of the produce queue.
2612 */
2613static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2614                                 struct vmci_queue *consume_q,
2615                                 const u64 produce_q_size,
2616                                 const void *buf,
2617                                 size_t buf_size,
2618                                 vmci_memcpy_to_queue_func memcpy_to_queue)
2619{
2620        s64 free_space;
2621        u64 tail;
2622        size_t written;
2623        ssize_t result;
2624
2625        result = qp_map_queue_headers(produce_q, consume_q);
2626        if (unlikely(result != VMCI_SUCCESS))
2627                return result;
2628
2629        free_space = vmci_q_header_free_space(produce_q->q_header,
2630                                              consume_q->q_header,
2631                                              produce_q_size);
2632        if (free_space == 0)
2633                return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2634
2635        if (free_space < VMCI_SUCCESS)
2636                return (ssize_t) free_space;
2637
2638        written = (size_t) (free_space > buf_size ? buf_size : free_space);
2639        tail = vmci_q_header_producer_tail(produce_q->q_header);
2640        if (likely(tail + written < produce_q_size)) {
2641                result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2642        } else {
2643                /* Tail pointer wraps around. */
2644
2645                const size_t tmp = (size_t) (produce_q_size - tail);
2646
2647                result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2648                if (result >= VMCI_SUCCESS)
2649                        result = memcpy_to_queue(produce_q, 0, buf, tmp,
2650                                                 written - tmp);
2651        }
2652
2653        if (result < VMCI_SUCCESS)
2654                return result;
2655
2656        vmci_q_header_add_producer_tail(produce_q->q_header, written,
2657                                        produce_q_size);
2658        return written;
2659}
2660
2661/*
2662 * Dequeues data (if available) from the given consume queue. Writes data
2663 * to the user provided buffer using the provided function.
2664 * Assumes the queue->mutex has been acquired.
2665 * Results:
2666 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2667 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2668 * (as defined by the queue size).
2669 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2670 * Otherwise the number of bytes dequeued is returned.
2671 * Side effects:
2672 * Updates the head pointer of the consume queue.
2673 */
2674static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2675                                 struct vmci_queue *consume_q,
2676                                 const u64 consume_q_size,
2677                                 void *buf,
2678                                 size_t buf_size,
2679                                 vmci_memcpy_from_queue_func memcpy_from_queue,
2680                                 bool update_consumer)
2681{
2682        s64 buf_ready;
2683        u64 head;
2684        size_t read;
2685        ssize_t result;
2686
2687        result = qp_map_queue_headers(produce_q, consume_q);
2688        if (unlikely(result != VMCI_SUCCESS))
2689                return result;
2690
2691        buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2692                                            produce_q->q_header,
2693                                            consume_q_size);
2694        if (buf_ready == 0)
2695                return VMCI_ERROR_QUEUEPAIR_NODATA;
2696
2697        if (buf_ready < VMCI_SUCCESS)
2698                return (ssize_t) buf_ready;
2699
2700        read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2701        head = vmci_q_header_consumer_head(produce_q->q_header);
2702        if (likely(head + read < consume_q_size)) {
2703                result = memcpy_from_queue(buf, 0, consume_q, head, read);
2704        } else {
2705                /* Head pointer wraps around. */
2706
2707                const size_t tmp = (size_t) (consume_q_size - head);
2708
2709                result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2710                if (result >= VMCI_SUCCESS)
2711                        result = memcpy_from_queue(buf, tmp, consume_q, 0,
2712                                                   read - tmp);
2713
2714        }
2715
2716        if (result < VMCI_SUCCESS)
2717                return result;
2718
2719        if (update_consumer)
2720                vmci_q_header_add_consumer_head(produce_q->q_header,
2721                                                read, consume_q_size);
2722
2723        return read;
2724}
2725
2726/*
2727 * vmci_qpair_alloc() - Allocates a queue pair.
2728 * @qpair:      Pointer for the new vmci_qp struct.
2729 * @handle:     Handle to track the resource.
2730 * @produce_qsize:      Desired size of the producer queue.
2731 * @consume_qsize:      Desired size of the consumer queue.
2732 * @peer:       ContextID of the peer.
2733 * @flags:      VMCI flags.
2734 * @priv_flags: VMCI priviledge flags.
2735 *
2736 * This is the client interface for allocating the memory for a
2737 * vmci_qp structure and then attaching to the underlying
2738 * queue.  If an error occurs allocating the memory for the
2739 * vmci_qp structure no attempt is made to attach.  If an
2740 * error occurs attaching, then the structure is freed.
2741 */
2742int vmci_qpair_alloc(struct vmci_qp **qpair,
2743                     struct vmci_handle *handle,
2744                     u64 produce_qsize,
2745                     u64 consume_qsize,
2746                     u32 peer,
2747                     u32 flags,
2748                     u32 priv_flags)
2749{
2750        struct vmci_qp *my_qpair;
2751        int retval;
2752        struct vmci_handle src = VMCI_INVALID_HANDLE;
2753        struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2754        enum vmci_route route;
2755        vmci_event_release_cb wakeup_cb;
2756        void *client_data;
2757
2758        /*
2759         * Restrict the size of a queuepair.  The device already
2760         * enforces a limit on the total amount of memory that can be
2761         * allocated to queuepairs for a guest.  However, we try to
2762         * allocate this memory before we make the queuepair
2763         * allocation hypercall.  On Linux, we allocate each page
2764         * separately, which means rather than fail, the guest will
2765         * thrash while it tries to allocate, and will become
2766         * increasingly unresponsive to the point where it appears to
2767         * be hung.  So we place a limit on the size of an individual
2768         * queuepair here, and leave the device to enforce the
2769         * restriction on total queuepair memory.  (Note that this
2770         * doesn't prevent all cases; a user with only this much
2771         * physical memory could still get into trouble.)  The error
2772         * used by the device is NO_RESOURCES, so use that here too.
2773         */
2774
2775        if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2776            produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2777                return VMCI_ERROR_NO_RESOURCES;
2778
2779        retval = vmci_route(&src, &dst, false, &route);
2780        if (retval < VMCI_SUCCESS)
2781                route = vmci_guest_code_active() ?
2782                    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2783
2784        if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2785                pr_devel("NONBLOCK OR PINNED set");
2786                return VMCI_ERROR_INVALID_ARGS;
2787        }
2788
2789        my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2790        if (!my_qpair)
2791                return VMCI_ERROR_NO_MEM;
2792
2793        my_qpair->produce_q_size = produce_qsize;
2794        my_qpair->consume_q_size = consume_qsize;
2795        my_qpair->peer = peer;
2796        my_qpair->flags = flags;
2797        my_qpair->priv_flags = priv_flags;
2798
2799        wakeup_cb = NULL;
2800        client_data = NULL;
2801
2802        if (VMCI_ROUTE_AS_HOST == route) {
2803                my_qpair->guest_endpoint = false;
2804                if (!(flags & VMCI_QPFLAG_LOCAL)) {
2805                        my_qpair->blocked = 0;
2806                        my_qpair->generation = 0;
2807                        init_waitqueue_head(&my_qpair->event);
2808                        wakeup_cb = qp_wakeup_cb;
2809                        client_data = (void *)my_qpair;
2810                }
2811        } else {
2812                my_qpair->guest_endpoint = true;
2813        }
2814
2815        retval = vmci_qp_alloc(handle,
2816                               &my_qpair->produce_q,
2817                               my_qpair->produce_q_size,
2818                               &my_qpair->consume_q,
2819                               my_qpair->consume_q_size,
2820                               my_qpair->peer,
2821                               my_qpair->flags,
2822                               my_qpair->priv_flags,
2823                               my_qpair->guest_endpoint,
2824                               wakeup_cb, client_data);
2825
2826        if (retval < VMCI_SUCCESS) {
2827                kfree(my_qpair);
2828                return retval;
2829        }
2830
2831        *qpair = my_qpair;
2832        my_qpair->handle = *handle;
2833
2834        return retval;
2835}
2836EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2837
2838/*
2839 * vmci_qpair_detach() - Detatches the client from a queue pair.
2840 * @qpair:      Reference of a pointer to the qpair struct.
2841 *
2842 * This is the client interface for detaching from a VMCIQPair.
2843 * Note that this routine will free the memory allocated for the
2844 * vmci_qp structure too.
2845 */
2846int vmci_qpair_detach(struct vmci_qp **qpair)
2847{
2848        int result;
2849        struct vmci_qp *old_qpair;
2850
2851        if (!qpair || !(*qpair))
2852                return VMCI_ERROR_INVALID_ARGS;
2853
2854        old_qpair = *qpair;
2855        result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2856
2857        /*
2858         * The guest can fail to detach for a number of reasons, and
2859         * if it does so, it will cleanup the entry (if there is one).
2860         * The host can fail too, but it won't cleanup the entry
2861         * immediately, it will do that later when the context is
2862         * freed.  Either way, we need to release the qpair struct
2863         * here; there isn't much the caller can do, and we don't want
2864         * to leak.
2865         */
2866
2867        memset(old_qpair, 0, sizeof(*old_qpair));
2868        old_qpair->handle = VMCI_INVALID_HANDLE;
2869        old_qpair->peer = VMCI_INVALID_ID;
2870        kfree(old_qpair);
2871        *qpair = NULL;
2872
2873        return result;
2874}
2875EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2876
2877/*
2878 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2879 * @qpair:      Pointer to the queue pair struct.
2880 * @producer_tail:      Reference used for storing producer tail index.
2881 * @consumer_head:      Reference used for storing the consumer head index.
2882 *
2883 * This is the client interface for getting the current indexes of the
2884 * QPair from the point of the view of the caller as the producer.
2885 */
2886int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2887                                   u64 *producer_tail,
2888                                   u64 *consumer_head)
2889{
2890        struct vmci_queue_header *produce_q_header;
2891        struct vmci_queue_header *consume_q_header;
2892        int result;
2893
2894        if (!qpair)
2895                return VMCI_ERROR_INVALID_ARGS;
2896
2897        qp_lock(qpair);
2898        result =
2899            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2900        if (result == VMCI_SUCCESS)
2901                vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2902                                           producer_tail, consumer_head);
2903        qp_unlock(qpair);
2904
2905        if (result == VMCI_SUCCESS &&
2906            ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2907             (consumer_head && *consumer_head >= qpair->produce_q_size)))
2908                return VMCI_ERROR_INVALID_SIZE;
2909
2910        return result;
2911}
2912EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2913
2914/*
2915 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2916 * @qpair:      Pointer to the queue pair struct.
2917 * @consumer_tail:      Reference used for storing consumer tail index.
2918 * @producer_head:      Reference used for storing the producer head index.
2919 *
2920 * This is the client interface for getting the current indexes of the
2921 * QPair from the point of the view of the caller as the consumer.
2922 */
2923int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2924                                   u64 *consumer_tail,
2925                                   u64 *producer_head)
2926{
2927        struct vmci_queue_header *produce_q_header;
2928        struct vmci_queue_header *consume_q_header;
2929        int result;
2930
2931        if (!qpair)
2932                return VMCI_ERROR_INVALID_ARGS;
2933
2934        qp_lock(qpair);
2935        result =
2936            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2937        if (result == VMCI_SUCCESS)
2938                vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2939                                           consumer_tail, producer_head);
2940        qp_unlock(qpair);
2941
2942        if (result == VMCI_SUCCESS &&
2943            ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2944             (producer_head && *producer_head >= qpair->consume_q_size)))
2945                return VMCI_ERROR_INVALID_SIZE;
2946
2947        return result;
2948}
2949EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2950
2951/*
2952 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2953 * @qpair:      Pointer to the queue pair struct.
2954 *
2955 * This is the client interface for getting the amount of free
2956 * space in the QPair from the point of the view of the caller as
2957 * the producer which is the common case.  Returns < 0 if err, else
2958 * available bytes into which data can be enqueued if > 0.
2959 */
2960s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2961{
2962        struct vmci_queue_header *produce_q_header;
2963        struct vmci_queue_header *consume_q_header;
2964        s64 result;
2965
2966        if (!qpair)
2967                return VMCI_ERROR_INVALID_ARGS;
2968
2969        qp_lock(qpair);
2970        result =
2971            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2972        if (result == VMCI_SUCCESS)
2973                result = vmci_q_header_free_space(produce_q_header,
2974                                                  consume_q_header,
2975                                                  qpair->produce_q_size);
2976        else
2977                result = 0;
2978
2979        qp_unlock(qpair);
2980
2981        return result;
2982}
2983EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2984
2985/*
2986 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2987 * @qpair:      Pointer to the queue pair struct.
2988 *
2989 * This is the client interface for getting the amount of free
2990 * space in the QPair from the point of the view of the caller as
2991 * the consumer which is not the common case.  Returns < 0 if err, else
2992 * available bytes into which data can be enqueued if > 0.
2993 */
2994s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2995{
2996        struct vmci_queue_header *produce_q_header;
2997        struct vmci_queue_header *consume_q_header;
2998        s64 result;
2999
3000        if (!qpair)
3001                return VMCI_ERROR_INVALID_ARGS;
3002
3003        qp_lock(qpair);
3004        result =
3005            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3006        if (result == VMCI_SUCCESS)
3007                result = vmci_q_header_free_space(consume_q_header,
3008                                                  produce_q_header,
3009                                                  qpair->consume_q_size);
3010        else
3011                result = 0;
3012
3013        qp_unlock(qpair);
3014
3015        return result;
3016}
3017EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3018
3019/*
3020 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3021 * producer queue.
3022 * @qpair:      Pointer to the queue pair struct.
3023 *
3024 * This is the client interface for getting the amount of
3025 * enqueued data in the QPair from the point of the view of the
3026 * caller as the producer which is not the common case.  Returns < 0 if err,
3027 * else available bytes that may be read.
3028 */
3029s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3030{
3031        struct vmci_queue_header *produce_q_header;
3032        struct vmci_queue_header *consume_q_header;
3033        s64 result;
3034
3035        if (!qpair)
3036                return VMCI_ERROR_INVALID_ARGS;
3037
3038        qp_lock(qpair);
3039        result =
3040            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3041        if (result == VMCI_SUCCESS)
3042                result = vmci_q_header_buf_ready(produce_q_header,
3043                                                 consume_q_header,
3044                                                 qpair->produce_q_size);
3045        else
3046                result = 0;
3047
3048        qp_unlock(qpair);
3049
3050        return result;
3051}
3052EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3053
3054/*
3055 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3056 * consumer queue.
3057 * @qpair:      Pointer to the queue pair struct.
3058 *
3059 * This is the client interface for getting the amount of
3060 * enqueued data in the QPair from the point of the view of the
3061 * caller as the consumer which is the normal case.  Returns < 0 if err,
3062 * else available bytes that may be read.
3063 */
3064s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3065{
3066        struct vmci_queue_header *produce_q_header;
3067        struct vmci_queue_header *consume_q_header;
3068        s64 result;
3069
3070        if (!qpair)
3071                return VMCI_ERROR_INVALID_ARGS;
3072
3073        qp_lock(qpair);
3074        result =
3075            qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3076        if (result == VMCI_SUCCESS)
3077                result = vmci_q_header_buf_ready(consume_q_header,
3078                                                 produce_q_header,
3079                                                 qpair->consume_q_size);
3080        else
3081                result = 0;
3082
3083        qp_unlock(qpair);
3084
3085        return result;
3086}
3087EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3088
3089/*
3090 * vmci_qpair_enqueue() - Throw data on the queue.
3091 * @qpair:      Pointer to the queue pair struct.
3092 * @buf:        Pointer to buffer containing data
3093 * @buf_size:   Length of buffer.
3094 * @buf_type:   Buffer type (Unused).
3095 *
3096 * This is the client interface for enqueueing data into the queue.
3097 * Returns number of bytes enqueued or < 0 on error.
3098 */
3099ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3100                           const void *buf,
3101                           size_t buf_size,
3102                           int buf_type)
3103{
3104        ssize_t result;
3105
3106        if (!qpair || !buf)
3107                return VMCI_ERROR_INVALID_ARGS;
3108
3109        qp_lock(qpair);
3110
3111        do {
3112                result = qp_enqueue_locked(qpair->produce_q,
3113                                           qpair->consume_q,
3114                                           qpair->produce_q_size,
3115                                           buf, buf_size,
3116                                           qp_memcpy_to_queue);
3117
3118                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3119                    !qp_wait_for_ready_queue(qpair))
3120                        result = VMCI_ERROR_WOULD_BLOCK;
3121
3122        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3123
3124        qp_unlock(qpair);
3125
3126        return result;
3127}
3128EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3129
3130/*
3131 * vmci_qpair_dequeue() - Get data from the queue.
3132 * @qpair:      Pointer to the queue pair struct.
3133 * @buf:        Pointer to buffer for the data
3134 * @buf_size:   Length of buffer.
3135 * @buf_type:   Buffer type (Unused).
3136 *
3137 * This is the client interface for dequeueing data from the queue.
3138 * Returns number of bytes dequeued or < 0 on error.
3139 */
3140ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3141                           void *buf,
3142                           size_t buf_size,
3143                           int buf_type)
3144{
3145        ssize_t result;
3146
3147        if (!qpair || !buf)
3148                return VMCI_ERROR_INVALID_ARGS;
3149
3150        qp_lock(qpair);
3151
3152        do {
3153                result = qp_dequeue_locked(qpair->produce_q,
3154                                           qpair->consume_q,
3155                                           qpair->consume_q_size,
3156                                           buf, buf_size,
3157                                           qp_memcpy_from_queue, true);
3158
3159                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3160                    !qp_wait_for_ready_queue(qpair))
3161                        result = VMCI_ERROR_WOULD_BLOCK;
3162
3163        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3164
3165        qp_unlock(qpair);
3166
3167        return result;
3168}
3169EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3170
3171/*
3172 * vmci_qpair_peek() - Peek at the data in the queue.
3173 * @qpair:      Pointer to the queue pair struct.
3174 * @buf:        Pointer to buffer for the data
3175 * @buf_size:   Length of buffer.
3176 * @buf_type:   Buffer type (Unused on Linux).
3177 *
3178 * This is the client interface for peeking into a queue.  (I.e.,
3179 * copy data from the queue without updating the head pointer.)
3180 * Returns number of bytes dequeued or < 0 on error.
3181 */
3182ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3183                        void *buf,
3184                        size_t buf_size,
3185                        int buf_type)
3186{
3187        ssize_t result;
3188
3189        if (!qpair || !buf)
3190                return VMCI_ERROR_INVALID_ARGS;
3191
3192        qp_lock(qpair);
3193
3194        do {
3195                result = qp_dequeue_locked(qpair->produce_q,
3196                                           qpair->consume_q,
3197                                           qpair->consume_q_size,
3198                                           buf, buf_size,
3199                                           qp_memcpy_from_queue, false);
3200
3201                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3202                    !qp_wait_for_ready_queue(qpair))
3203                        result = VMCI_ERROR_WOULD_BLOCK;
3204
3205        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3206
3207        qp_unlock(qpair);
3208
3209        return result;
3210}
3211EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3212
3213/*
3214 * vmci_qpair_enquev() - Throw data on the queue using iov.
3215 * @qpair:      Pointer to the queue pair struct.
3216 * @iov:        Pointer to buffer containing data
3217 * @iov_size:   Length of buffer.
3218 * @buf_type:   Buffer type (Unused).
3219 *
3220 * This is the client interface for enqueueing data into the queue.
3221 * This function uses IO vectors to handle the work. Returns number
3222 * of bytes enqueued or < 0 on error.
3223 */
3224ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3225                          void *iov,
3226                          size_t iov_size,
3227                          int buf_type)
3228{
3229        ssize_t result;
3230
3231        if (!qpair || !iov)
3232                return VMCI_ERROR_INVALID_ARGS;
3233
3234        qp_lock(qpair);
3235
3236        do {
3237                result = qp_enqueue_locked(qpair->produce_q,
3238                                           qpair->consume_q,
3239                                           qpair->produce_q_size,
3240                                           iov, iov_size,
3241                                           qp_memcpy_to_queue_iov);
3242
3243                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3244                    !qp_wait_for_ready_queue(qpair))
3245                        result = VMCI_ERROR_WOULD_BLOCK;
3246
3247        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3248
3249        qp_unlock(qpair);
3250
3251        return result;
3252}
3253EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3254
3255/*
3256 * vmci_qpair_dequev() - Get data from the queue using iov.
3257 * @qpair:      Pointer to the queue pair struct.
3258 * @iov:        Pointer to buffer for the data
3259 * @iov_size:   Length of buffer.
3260 * @buf_type:   Buffer type (Unused).
3261 *
3262 * This is the client interface for dequeueing data from the queue.
3263 * This function uses IO vectors to handle the work. Returns number
3264 * of bytes dequeued or < 0 on error.
3265 */
3266ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3267                          void *iov,
3268                          size_t iov_size,
3269                          int buf_type)
3270{
3271        ssize_t result;
3272
3273        if (!qpair || !iov)
3274                return VMCI_ERROR_INVALID_ARGS;
3275
3276        qp_lock(qpair);
3277
3278        do {
3279                result = qp_dequeue_locked(qpair->produce_q,
3280                                           qpair->consume_q,
3281                                           qpair->consume_q_size,
3282                                           iov, iov_size,
3283                                           qp_memcpy_from_queue_iov,
3284                                           true);
3285
3286                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3287                    !qp_wait_for_ready_queue(qpair))
3288                        result = VMCI_ERROR_WOULD_BLOCK;
3289
3290        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3291
3292        qp_unlock(qpair);
3293
3294        return result;
3295}
3296EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3297
3298/*
3299 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3300 * @qpair:      Pointer to the queue pair struct.
3301 * @iov:        Pointer to buffer for the data
3302 * @iov_size:   Length of buffer.
3303 * @buf_type:   Buffer type (Unused on Linux).
3304 *
3305 * This is the client interface for peeking into a queue.  (I.e.,
3306 * copy data from the queue without updating the head pointer.)
3307 * This function uses IO vectors to handle the work. Returns number
3308 * of bytes peeked or < 0 on error.
3309 */
3310ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3311                         void *iov,
3312                         size_t iov_size,
3313                         int buf_type)
3314{
3315        ssize_t result;
3316
3317        if (!qpair || !iov)
3318                return VMCI_ERROR_INVALID_ARGS;
3319
3320        qp_lock(qpair);
3321
3322        do {
3323                result = qp_dequeue_locked(qpair->produce_q,
3324                                           qpair->consume_q,
3325                                           qpair->consume_q_size,
3326                                           iov, iov_size,
3327                                           qp_memcpy_from_queue_iov,
3328                                           false);
3329
3330                if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3331                    !qp_wait_for_ready_queue(qpair))
3332                        result = VMCI_ERROR_WOULD_BLOCK;
3333
3334        } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3335
3336        qp_unlock(qpair);
3337        return result;
3338}
3339EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3340