linux/drivers/mtd/nand/atmel_nand.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2003 Rick Bronson
   3 *
   4 *  Derived from drivers/mtd/nand/autcpu12.c
   5 *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
   6 *
   7 *  Derived from drivers/mtd/spia.c
   8 *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
   9 *
  10 *
  11 *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  12 *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
  13 *
  14 *     Derived from Das U-Boot source code
  15 *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  16 *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  17 *
  18 *  Add Programmable Multibit ECC support for various AT91 SoC
  19 *     © Copyright 2012 ATMEL, Hong Xu
  20 *
  21 *  Add Nand Flash Controller support for SAMA5 SoC
  22 *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#include <linux/dma-mapping.h>
  31#include <linux/slab.h>
  32#include <linux/module.h>
  33#include <linux/moduleparam.h>
  34#include <linux/platform_device.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
  37#include <linux/of_gpio.h>
  38#include <linux/of_mtd.h>
  39#include <linux/mtd/mtd.h>
  40#include <linux/mtd/nand.h>
  41#include <linux/mtd/partitions.h>
  42
  43#include <linux/delay.h>
  44#include <linux/dmaengine.h>
  45#include <linux/gpio.h>
  46#include <linux/interrupt.h>
  47#include <linux/io.h>
  48#include <linux/platform_data/atmel.h>
  49
  50static int use_dma = 1;
  51module_param(use_dma, int, 0);
  52
  53static int on_flash_bbt = 0;
  54module_param(on_flash_bbt, int, 0);
  55
  56/* Register access macros */
  57#define ecc_readl(add, reg)                             \
  58        __raw_readl(add + ATMEL_ECC_##reg)
  59#define ecc_writel(add, reg, value)                     \
  60        __raw_writel((value), add + ATMEL_ECC_##reg)
  61
  62#include "atmel_nand_ecc.h"     /* Hardware ECC registers */
  63#include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
  64
  65/* oob layout for large page size
  66 * bad block info is on bytes 0 and 1
  67 * the bytes have to be consecutives to avoid
  68 * several NAND_CMD_RNDOUT during read
  69 */
  70static struct nand_ecclayout atmel_oobinfo_large = {
  71        .eccbytes = 4,
  72        .eccpos = {60, 61, 62, 63},
  73        .oobfree = {
  74                {2, 58}
  75        },
  76};
  77
  78/* oob layout for small page size
  79 * bad block info is on bytes 4 and 5
  80 * the bytes have to be consecutives to avoid
  81 * several NAND_CMD_RNDOUT during read
  82 */
  83static struct nand_ecclayout atmel_oobinfo_small = {
  84        .eccbytes = 4,
  85        .eccpos = {0, 1, 2, 3},
  86        .oobfree = {
  87                {6, 10}
  88        },
  89};
  90
  91struct atmel_nfc {
  92        void __iomem            *base_cmd_regs;
  93        void __iomem            *hsmc_regs;
  94        void __iomem            *sram_bank0;
  95        dma_addr_t              sram_bank0_phys;
  96        bool                    use_nfc_sram;
  97        bool                    write_by_sram;
  98
  99        bool                    is_initialized;
 100        struct completion       comp_nfc;
 101
 102        /* Point to the sram bank which include readed data via NFC */
 103        void __iomem            *data_in_sram;
 104        bool                    will_write_sram;
 105};
 106static struct atmel_nfc nand_nfc;
 107
 108struct atmel_nand_host {
 109        struct nand_chip        nand_chip;
 110        struct mtd_info         mtd;
 111        void __iomem            *io_base;
 112        dma_addr_t              io_phys;
 113        struct atmel_nand_data  board;
 114        struct device           *dev;
 115        void __iomem            *ecc;
 116
 117        struct completion       comp;
 118        struct dma_chan         *dma_chan;
 119
 120        struct atmel_nfc        *nfc;
 121
 122        bool                    has_pmecc;
 123        u8                      pmecc_corr_cap;
 124        u16                     pmecc_sector_size;
 125        u32                     pmecc_lookup_table_offset;
 126        u32                     pmecc_lookup_table_offset_512;
 127        u32                     pmecc_lookup_table_offset_1024;
 128
 129        int                     pmecc_bytes_per_sector;
 130        int                     pmecc_sector_number;
 131        int                     pmecc_degree;   /* Degree of remainders */
 132        int                     pmecc_cw_len;   /* Length of codeword */
 133
 134        void __iomem            *pmerrloc_base;
 135        void __iomem            *pmecc_rom_base;
 136
 137        /* lookup table for alpha_to and index_of */
 138        void __iomem            *pmecc_alpha_to;
 139        void __iomem            *pmecc_index_of;
 140
 141        /* data for pmecc computation */
 142        int16_t                 *pmecc_partial_syn;
 143        int16_t                 *pmecc_si;
 144        int16_t                 *pmecc_smu;     /* Sigma table */
 145        int16_t                 *pmecc_lmu;     /* polynomal order */
 146        int                     *pmecc_mu;
 147        int                     *pmecc_dmu;
 148        int                     *pmecc_delta;
 149};
 150
 151static struct nand_ecclayout atmel_pmecc_oobinfo;
 152
 153/*
 154 * Enable NAND.
 155 */
 156static void atmel_nand_enable(struct atmel_nand_host *host)
 157{
 158        if (gpio_is_valid(host->board.enable_pin))
 159                gpio_set_value(host->board.enable_pin, 0);
 160}
 161
 162/*
 163 * Disable NAND.
 164 */
 165static void atmel_nand_disable(struct atmel_nand_host *host)
 166{
 167        if (gpio_is_valid(host->board.enable_pin))
 168                gpio_set_value(host->board.enable_pin, 1);
 169}
 170
 171/*
 172 * Hardware specific access to control-lines
 173 */
 174static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 175{
 176        struct nand_chip *nand_chip = mtd->priv;
 177        struct atmel_nand_host *host = nand_chip->priv;
 178
 179        if (ctrl & NAND_CTRL_CHANGE) {
 180                if (ctrl & NAND_NCE)
 181                        atmel_nand_enable(host);
 182                else
 183                        atmel_nand_disable(host);
 184        }
 185        if (cmd == NAND_CMD_NONE)
 186                return;
 187
 188        if (ctrl & NAND_CLE)
 189                writeb(cmd, host->io_base + (1 << host->board.cle));
 190        else
 191                writeb(cmd, host->io_base + (1 << host->board.ale));
 192}
 193
 194/*
 195 * Read the Device Ready pin.
 196 */
 197static int atmel_nand_device_ready(struct mtd_info *mtd)
 198{
 199        struct nand_chip *nand_chip = mtd->priv;
 200        struct atmel_nand_host *host = nand_chip->priv;
 201
 202        return gpio_get_value(host->board.rdy_pin) ^
 203                !!host->board.rdy_pin_active_low;
 204}
 205
 206/* Set up for hardware ready pin and enable pin. */
 207static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
 208{
 209        struct nand_chip *chip = mtd->priv;
 210        struct atmel_nand_host *host = chip->priv;
 211        int res = 0;
 212
 213        if (gpio_is_valid(host->board.rdy_pin)) {
 214                res = devm_gpio_request(host->dev,
 215                                host->board.rdy_pin, "nand_rdy");
 216                if (res < 0) {
 217                        dev_err(host->dev,
 218                                "can't request rdy gpio %d\n",
 219                                host->board.rdy_pin);
 220                        return res;
 221                }
 222
 223                res = gpio_direction_input(host->board.rdy_pin);
 224                if (res < 0) {
 225                        dev_err(host->dev,
 226                                "can't request input direction rdy gpio %d\n",
 227                                host->board.rdy_pin);
 228                        return res;
 229                }
 230
 231                chip->dev_ready = atmel_nand_device_ready;
 232        }
 233
 234        if (gpio_is_valid(host->board.enable_pin)) {
 235                res = devm_gpio_request(host->dev,
 236                                host->board.enable_pin, "nand_enable");
 237                if (res < 0) {
 238                        dev_err(host->dev,
 239                                "can't request enable gpio %d\n",
 240                                host->board.enable_pin);
 241                        return res;
 242                }
 243
 244                res = gpio_direction_output(host->board.enable_pin, 1);
 245                if (res < 0) {
 246                        dev_err(host->dev,
 247                                "can't request output direction enable gpio %d\n",
 248                                host->board.enable_pin);
 249                        return res;
 250                }
 251        }
 252
 253        return res;
 254}
 255
 256static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
 257{
 258        int i;
 259        u32 *t = trg;
 260        const __iomem u32 *s = src;
 261
 262        for (i = 0; i < (size >> 2); i++)
 263                *t++ = readl_relaxed(s++);
 264}
 265
 266static void memcpy32_toio(void __iomem *trg, const void *src, int size)
 267{
 268        int i;
 269        u32 __iomem *t = trg;
 270        const u32 *s = src;
 271
 272        for (i = 0; i < (size >> 2); i++)
 273                writel_relaxed(*s++, t++);
 274}
 275
 276/*
 277 * Minimal-overhead PIO for data access.
 278 */
 279static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
 280{
 281        struct nand_chip        *nand_chip = mtd->priv;
 282        struct atmel_nand_host *host = nand_chip->priv;
 283
 284        if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 285                memcpy32_fromio(buf, host->nfc->data_in_sram, len);
 286                host->nfc->data_in_sram += len;
 287        } else {
 288                __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
 289        }
 290}
 291
 292static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
 293{
 294        struct nand_chip        *nand_chip = mtd->priv;
 295        struct atmel_nand_host *host = nand_chip->priv;
 296
 297        if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 298                memcpy32_fromio(buf, host->nfc->data_in_sram, len);
 299                host->nfc->data_in_sram += len;
 300        } else {
 301                __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
 302        }
 303}
 304
 305static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
 306{
 307        struct nand_chip        *nand_chip = mtd->priv;
 308
 309        __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
 310}
 311
 312static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
 313{
 314        struct nand_chip        *nand_chip = mtd->priv;
 315
 316        __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
 317}
 318
 319static void dma_complete_func(void *completion)
 320{
 321        complete(completion);
 322}
 323
 324static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
 325{
 326        /* NFC only has two banks. Must be 0 or 1 */
 327        if (bank > 1)
 328                return -EINVAL;
 329
 330        if (bank) {
 331                /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
 332                if (host->mtd.writesize > 2048)
 333                        return -EINVAL;
 334                nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
 335        } else {
 336                nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
 337        }
 338
 339        return 0;
 340}
 341
 342static uint nfc_get_sram_off(struct atmel_nand_host *host)
 343{
 344        if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 345                return NFC_SRAM_BANK1_OFFSET;
 346        else
 347                return 0;
 348}
 349
 350static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
 351{
 352        if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 353                return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
 354        else
 355                return host->nfc->sram_bank0_phys;
 356}
 357
 358static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
 359                               int is_read)
 360{
 361        struct dma_device *dma_dev;
 362        enum dma_ctrl_flags flags;
 363        dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
 364        struct dma_async_tx_descriptor *tx = NULL;
 365        dma_cookie_t cookie;
 366        struct nand_chip *chip = mtd->priv;
 367        struct atmel_nand_host *host = chip->priv;
 368        void *p = buf;
 369        int err = -EIO;
 370        enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
 371        struct atmel_nfc *nfc = host->nfc;
 372
 373        if (buf >= high_memory)
 374                goto err_buf;
 375
 376        dma_dev = host->dma_chan->device;
 377
 378        flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 379
 380        phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
 381        if (dma_mapping_error(dma_dev->dev, phys_addr)) {
 382                dev_err(host->dev, "Failed to dma_map_single\n");
 383                goto err_buf;
 384        }
 385
 386        if (is_read) {
 387                if (nfc && nfc->data_in_sram)
 388                        dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
 389                                - (nfc->sram_bank0 + nfc_get_sram_off(host)));
 390                else
 391                        dma_src_addr = host->io_phys;
 392
 393                dma_dst_addr = phys_addr;
 394        } else {
 395                dma_src_addr = phys_addr;
 396
 397                if (nfc && nfc->write_by_sram)
 398                        dma_dst_addr = nfc_sram_phys(host);
 399                else
 400                        dma_dst_addr = host->io_phys;
 401        }
 402
 403        tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
 404                                             dma_src_addr, len, flags);
 405        if (!tx) {
 406                dev_err(host->dev, "Failed to prepare DMA memcpy\n");
 407                goto err_dma;
 408        }
 409
 410        init_completion(&host->comp);
 411        tx->callback = dma_complete_func;
 412        tx->callback_param = &host->comp;
 413
 414        cookie = tx->tx_submit(tx);
 415        if (dma_submit_error(cookie)) {
 416                dev_err(host->dev, "Failed to do DMA tx_submit\n");
 417                goto err_dma;
 418        }
 419
 420        dma_async_issue_pending(host->dma_chan);
 421        wait_for_completion(&host->comp);
 422
 423        if (is_read && nfc && nfc->data_in_sram)
 424                /* After read data from SRAM, need to increase the position */
 425                nfc->data_in_sram += len;
 426
 427        err = 0;
 428
 429err_dma:
 430        dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
 431err_buf:
 432        if (err != 0)
 433                dev_warn(host->dev, "Fall back to CPU I/O\n");
 434        return err;
 435}
 436
 437static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 438{
 439        struct nand_chip *chip = mtd->priv;
 440        struct atmel_nand_host *host = chip->priv;
 441
 442        if (use_dma && len > mtd->oobsize)
 443                /* only use DMA for bigger than oob size: better performances */
 444                if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
 445                        return;
 446
 447        if (host->board.bus_width_16)
 448                atmel_read_buf16(mtd, buf, len);
 449        else
 450                atmel_read_buf8(mtd, buf, len);
 451}
 452
 453static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 454{
 455        struct nand_chip *chip = mtd->priv;
 456        struct atmel_nand_host *host = chip->priv;
 457
 458        if (use_dma && len > mtd->oobsize)
 459                /* only use DMA for bigger than oob size: better performances */
 460                if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
 461                        return;
 462
 463        if (host->board.bus_width_16)
 464                atmel_write_buf16(mtd, buf, len);
 465        else
 466                atmel_write_buf8(mtd, buf, len);
 467}
 468
 469/*
 470 * Return number of ecc bytes per sector according to sector size and
 471 * correction capability
 472 *
 473 * Following table shows what at91 PMECC supported:
 474 * Correction Capability        Sector_512_bytes        Sector_1024_bytes
 475 * =====================        ================        =================
 476 *                2-bits                 4-bytes                  4-bytes
 477 *                4-bits                 7-bytes                  7-bytes
 478 *                8-bits                13-bytes                 14-bytes
 479 *               12-bits                20-bytes                 21-bytes
 480 *               24-bits                39-bytes                 42-bytes
 481 */
 482static int pmecc_get_ecc_bytes(int cap, int sector_size)
 483{
 484        int m = 12 + sector_size / 512;
 485        return (m * cap + 7) / 8;
 486}
 487
 488static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
 489                                    int oobsize, int ecc_len)
 490{
 491        int i;
 492
 493        layout->eccbytes = ecc_len;
 494
 495        /* ECC will occupy the last ecc_len bytes continuously */
 496        for (i = 0; i < ecc_len; i++)
 497                layout->eccpos[i] = oobsize - ecc_len + i;
 498
 499        layout->oobfree[0].offset = 2;
 500        layout->oobfree[0].length =
 501                oobsize - ecc_len - layout->oobfree[0].offset;
 502}
 503
 504static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 505{
 506        int table_size;
 507
 508        table_size = host->pmecc_sector_size == 512 ?
 509                PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
 510
 511        return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
 512                        table_size * sizeof(int16_t);
 513}
 514
 515static int pmecc_data_alloc(struct atmel_nand_host *host)
 516{
 517        const int cap = host->pmecc_corr_cap;
 518        int size;
 519
 520        size = (2 * cap + 1) * sizeof(int16_t);
 521        host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
 522        host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
 523        host->pmecc_lmu = devm_kzalloc(host->dev,
 524                        (cap + 1) * sizeof(int16_t), GFP_KERNEL);
 525        host->pmecc_smu = devm_kzalloc(host->dev,
 526                        (cap + 2) * size, GFP_KERNEL);
 527
 528        size = (cap + 1) * sizeof(int);
 529        host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 530        host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 531        host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
 532
 533        if (!host->pmecc_partial_syn ||
 534                !host->pmecc_si ||
 535                !host->pmecc_lmu ||
 536                !host->pmecc_smu ||
 537                !host->pmecc_mu ||
 538                !host->pmecc_dmu ||
 539                !host->pmecc_delta)
 540                return -ENOMEM;
 541
 542        return 0;
 543}
 544
 545static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 546{
 547        struct nand_chip *nand_chip = mtd->priv;
 548        struct atmel_nand_host *host = nand_chip->priv;
 549        int i;
 550        uint32_t value;
 551
 552        /* Fill odd syndromes */
 553        for (i = 0; i < host->pmecc_corr_cap; i++) {
 554                value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
 555                if (i & 1)
 556                        value >>= 16;
 557                value &= 0xffff;
 558                host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 559        }
 560}
 561
 562static void pmecc_substitute(struct mtd_info *mtd)
 563{
 564        struct nand_chip *nand_chip = mtd->priv;
 565        struct atmel_nand_host *host = nand_chip->priv;
 566        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 567        int16_t __iomem *index_of = host->pmecc_index_of;
 568        int16_t *partial_syn = host->pmecc_partial_syn;
 569        const int cap = host->pmecc_corr_cap;
 570        int16_t *si;
 571        int i, j;
 572
 573        /* si[] is a table that holds the current syndrome value,
 574         * an element of that table belongs to the field
 575         */
 576        si = host->pmecc_si;
 577
 578        memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 579
 580        /* Computation 2t syndromes based on S(x) */
 581        /* Odd syndromes */
 582        for (i = 1; i < 2 * cap; i += 2) {
 583                for (j = 0; j < host->pmecc_degree; j++) {
 584                        if (partial_syn[i] & ((unsigned short)0x1 << j))
 585                                si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
 586                }
 587        }
 588        /* Even syndrome = (Odd syndrome) ** 2 */
 589        for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 590                if (si[j] == 0) {
 591                        si[i] = 0;
 592                } else {
 593                        int16_t tmp;
 594
 595                        tmp = readw_relaxed(index_of + si[j]);
 596                        tmp = (tmp * 2) % host->pmecc_cw_len;
 597                        si[i] = readw_relaxed(alpha_to + tmp);
 598                }
 599        }
 600
 601        return;
 602}
 603
 604static void pmecc_get_sigma(struct mtd_info *mtd)
 605{
 606        struct nand_chip *nand_chip = mtd->priv;
 607        struct atmel_nand_host *host = nand_chip->priv;
 608
 609        int16_t *lmu = host->pmecc_lmu;
 610        int16_t *si = host->pmecc_si;
 611        int *mu = host->pmecc_mu;
 612        int *dmu = host->pmecc_dmu;     /* Discrepancy */
 613        int *delta = host->pmecc_delta; /* Delta order */
 614        int cw_len = host->pmecc_cw_len;
 615        const int16_t cap = host->pmecc_corr_cap;
 616        const int num = 2 * cap + 1;
 617        int16_t __iomem *index_of = host->pmecc_index_of;
 618        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 619        int i, j, k;
 620        uint32_t dmu_0_count, tmp;
 621        int16_t *smu = host->pmecc_smu;
 622
 623        /* index of largest delta */
 624        int ro;
 625        int largest;
 626        int diff;
 627
 628        dmu_0_count = 0;
 629
 630        /* First Row */
 631
 632        /* Mu */
 633        mu[0] = -1;
 634
 635        memset(smu, 0, sizeof(int16_t) * num);
 636        smu[0] = 1;
 637
 638        /* discrepancy set to 1 */
 639        dmu[0] = 1;
 640        /* polynom order set to 0 */
 641        lmu[0] = 0;
 642        delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
 643
 644        /* Second Row */
 645
 646        /* Mu */
 647        mu[1] = 0;
 648        /* Sigma(x) set to 1 */
 649        memset(&smu[num], 0, sizeof(int16_t) * num);
 650        smu[num] = 1;
 651
 652        /* discrepancy set to S1 */
 653        dmu[1] = si[1];
 654
 655        /* polynom order set to 0 */
 656        lmu[1] = 0;
 657
 658        delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
 659
 660        /* Init the Sigma(x) last row */
 661        memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
 662
 663        for (i = 1; i <= cap; i++) {
 664                mu[i + 1] = i << 1;
 665                /* Begin Computing Sigma (Mu+1) and L(mu) */
 666                /* check if discrepancy is set to 0 */
 667                if (dmu[i] == 0) {
 668                        dmu_0_count++;
 669
 670                        tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 671                        if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 672                                tmp += 2;
 673                        else
 674                                tmp += 1;
 675
 676                        if (dmu_0_count == tmp) {
 677                                for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 678                                        smu[(cap + 1) * num + j] =
 679                                                        smu[i * num + j];
 680
 681                                lmu[cap + 1] = lmu[i];
 682                                return;
 683                        }
 684
 685                        /* copy polynom */
 686                        for (j = 0; j <= lmu[i] >> 1; j++)
 687                                smu[(i + 1) * num + j] = smu[i * num + j];
 688
 689                        /* copy previous polynom order to the next */
 690                        lmu[i + 1] = lmu[i];
 691                } else {
 692                        ro = 0;
 693                        largest = -1;
 694                        /* find largest delta with dmu != 0 */
 695                        for (j = 0; j < i; j++) {
 696                                if ((dmu[j]) && (delta[j] > largest)) {
 697                                        largest = delta[j];
 698                                        ro = j;
 699                                }
 700                        }
 701
 702                        /* compute difference */
 703                        diff = (mu[i] - mu[ro]);
 704
 705                        /* Compute degree of the new smu polynomial */
 706                        if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 707                                lmu[i + 1] = lmu[i];
 708                        else
 709                                lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 710
 711                        /* Init smu[i+1] with 0 */
 712                        for (k = 0; k < num; k++)
 713                                smu[(i + 1) * num + k] = 0;
 714
 715                        /* Compute smu[i+1] */
 716                        for (k = 0; k <= lmu[ro] >> 1; k++) {
 717                                int16_t a, b, c;
 718
 719                                if (!(smu[ro * num + k] && dmu[i]))
 720                                        continue;
 721                                a = readw_relaxed(index_of + dmu[i]);
 722                                b = readw_relaxed(index_of + dmu[ro]);
 723                                c = readw_relaxed(index_of + smu[ro * num + k]);
 724                                tmp = a + (cw_len - b) + c;
 725                                a = readw_relaxed(alpha_to + tmp % cw_len);
 726                                smu[(i + 1) * num + (k + diff)] = a;
 727                        }
 728
 729                        for (k = 0; k <= lmu[i] >> 1; k++)
 730                                smu[(i + 1) * num + k] ^= smu[i * num + k];
 731                }
 732
 733                /* End Computing Sigma (Mu+1) and L(mu) */
 734                /* In either case compute delta */
 735                delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 736
 737                /* Do not compute discrepancy for the last iteration */
 738                if (i >= cap)
 739                        continue;
 740
 741                for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 742                        tmp = 2 * (i - 1);
 743                        if (k == 0) {
 744                                dmu[i + 1] = si[tmp + 3];
 745                        } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 746                                int16_t a, b, c;
 747                                a = readw_relaxed(index_of +
 748                                                smu[(i + 1) * num + k]);
 749                                b = si[2 * (i - 1) + 3 - k];
 750                                c = readw_relaxed(index_of + b);
 751                                tmp = a + c;
 752                                tmp %= cw_len;
 753                                dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
 754                                        dmu[i + 1];
 755                        }
 756                }
 757        }
 758
 759        return;
 760}
 761
 762static int pmecc_err_location(struct mtd_info *mtd)
 763{
 764        struct nand_chip *nand_chip = mtd->priv;
 765        struct atmel_nand_host *host = nand_chip->priv;
 766        unsigned long end_time;
 767        const int cap = host->pmecc_corr_cap;
 768        const int num = 2 * cap + 1;
 769        int sector_size = host->pmecc_sector_size;
 770        int err_nbr = 0;        /* number of error */
 771        int roots_nbr;          /* number of roots */
 772        int i;
 773        uint32_t val;
 774        int16_t *smu = host->pmecc_smu;
 775
 776        pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
 777
 778        for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 779                pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
 780                                      smu[(cap + 1) * num + i]);
 781                err_nbr++;
 782        }
 783
 784        val = (err_nbr - 1) << 16;
 785        if (sector_size == 1024)
 786                val |= 1;
 787
 788        pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
 789        pmerrloc_writel(host->pmerrloc_base, ELEN,
 790                        sector_size * 8 + host->pmecc_degree * cap);
 791
 792        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 793        while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 794                 & PMERRLOC_CALC_DONE)) {
 795                if (unlikely(time_after(jiffies, end_time))) {
 796                        dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
 797                        return -1;
 798                }
 799                cpu_relax();
 800        }
 801
 802        roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 803                & PMERRLOC_ERR_NUM_MASK) >> 8;
 804        /* Number of roots == degree of smu hence <= cap */
 805        if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 806                return err_nbr - 1;
 807
 808        /* Number of roots does not match the degree of smu
 809         * unable to correct error */
 810        return -1;
 811}
 812
 813static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 814                int sector_num, int extra_bytes, int err_nbr)
 815{
 816        struct nand_chip *nand_chip = mtd->priv;
 817        struct atmel_nand_host *host = nand_chip->priv;
 818        int i = 0;
 819        int byte_pos, bit_pos, sector_size, pos;
 820        uint32_t tmp;
 821        uint8_t err_byte;
 822
 823        sector_size = host->pmecc_sector_size;
 824
 825        while (err_nbr) {
 826                tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
 827                byte_pos = tmp / 8;
 828                bit_pos  = tmp % 8;
 829
 830                if (byte_pos >= (sector_size + extra_bytes))
 831                        BUG();  /* should never happen */
 832
 833                if (byte_pos < sector_size) {
 834                        err_byte = *(buf + byte_pos);
 835                        *(buf + byte_pos) ^= (1 << bit_pos);
 836
 837                        pos = sector_num * host->pmecc_sector_size + byte_pos;
 838                        dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 839                                pos, bit_pos, err_byte, *(buf + byte_pos));
 840                } else {
 841                        /* Bit flip in OOB area */
 842                        tmp = sector_num * host->pmecc_bytes_per_sector
 843                                        + (byte_pos - sector_size);
 844                        err_byte = ecc[tmp];
 845                        ecc[tmp] ^= (1 << bit_pos);
 846
 847                        pos = tmp + nand_chip->ecc.layout->eccpos[0];
 848                        dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 849                                pos, bit_pos, err_byte, ecc[tmp]);
 850                }
 851
 852                i++;
 853                err_nbr--;
 854        }
 855
 856        return;
 857}
 858
 859static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 860        u8 *ecc)
 861{
 862        struct nand_chip *nand_chip = mtd->priv;
 863        struct atmel_nand_host *host = nand_chip->priv;
 864        int i, err_nbr, eccbytes;
 865        uint8_t *buf_pos;
 866        int total_err = 0;
 867
 868        eccbytes = nand_chip->ecc.bytes;
 869        for (i = 0; i < eccbytes; i++)
 870                if (ecc[i] != 0xff)
 871                        goto normal_check;
 872        /* Erased page, return OK */
 873        return 0;
 874
 875normal_check:
 876        for (i = 0; i < host->pmecc_sector_number; i++) {
 877                err_nbr = 0;
 878                if (pmecc_stat & 0x1) {
 879                        buf_pos = buf + i * host->pmecc_sector_size;
 880
 881                        pmecc_gen_syndrome(mtd, i);
 882                        pmecc_substitute(mtd);
 883                        pmecc_get_sigma(mtd);
 884
 885                        err_nbr = pmecc_err_location(mtd);
 886                        if (err_nbr == -1) {
 887                                dev_err(host->dev, "PMECC: Too many errors\n");
 888                                mtd->ecc_stats.failed++;
 889                                return -EIO;
 890                        } else {
 891                                pmecc_correct_data(mtd, buf_pos, ecc, i,
 892                                        host->pmecc_bytes_per_sector, err_nbr);
 893                                mtd->ecc_stats.corrected += err_nbr;
 894                                total_err += err_nbr;
 895                        }
 896                }
 897                pmecc_stat >>= 1;
 898        }
 899
 900        return total_err;
 901}
 902
 903static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
 904{
 905        u32 val;
 906
 907        if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
 908                dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
 909                return;
 910        }
 911
 912        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
 913        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
 914        val = pmecc_readl_relaxed(host->ecc, CFG);
 915
 916        if (ecc_op == NAND_ECC_READ)
 917                pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
 918                        | PMECC_CFG_AUTO_ENABLE);
 919        else
 920                pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
 921                        & ~PMECC_CFG_AUTO_ENABLE);
 922
 923        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
 924        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
 925}
 926
 927static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 928        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 929{
 930        struct atmel_nand_host *host = chip->priv;
 931        int eccsize = chip->ecc.size;
 932        uint8_t *oob = chip->oob_poi;
 933        uint32_t *eccpos = chip->ecc.layout->eccpos;
 934        uint32_t stat;
 935        unsigned long end_time;
 936        int bitflips = 0;
 937
 938        if (!host->nfc || !host->nfc->use_nfc_sram)
 939                pmecc_enable(host, NAND_ECC_READ);
 940
 941        chip->read_buf(mtd, buf, eccsize);
 942        chip->read_buf(mtd, oob, mtd->oobsize);
 943
 944        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 945        while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 946                if (unlikely(time_after(jiffies, end_time))) {
 947                        dev_err(host->dev, "PMECC: Timeout to get error status.\n");
 948                        return -EIO;
 949                }
 950                cpu_relax();
 951        }
 952
 953        stat = pmecc_readl_relaxed(host->ecc, ISR);
 954        if (stat != 0) {
 955                bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
 956                if (bitflips < 0)
 957                        /* uncorrectable errors */
 958                        return 0;
 959        }
 960
 961        return bitflips;
 962}
 963
 964static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 965                struct nand_chip *chip, const uint8_t *buf, int oob_required)
 966{
 967        struct atmel_nand_host *host = chip->priv;
 968        uint32_t *eccpos = chip->ecc.layout->eccpos;
 969        int i, j;
 970        unsigned long end_time;
 971
 972        if (!host->nfc || !host->nfc->write_by_sram) {
 973                pmecc_enable(host, NAND_ECC_WRITE);
 974                chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 975        }
 976
 977        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 978        while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 979                if (unlikely(time_after(jiffies, end_time))) {
 980                        dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
 981                        return -EIO;
 982                }
 983                cpu_relax();
 984        }
 985
 986        for (i = 0; i < host->pmecc_sector_number; i++) {
 987                for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
 988                        int pos;
 989
 990                        pos = i * host->pmecc_bytes_per_sector + j;
 991                        chip->oob_poi[eccpos[pos]] =
 992                                pmecc_readb_ecc_relaxed(host->ecc, i, j);
 993                }
 994        }
 995        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 996
 997        return 0;
 998}
 999
1000static void atmel_pmecc_core_init(struct mtd_info *mtd)
1001{
1002        struct nand_chip *nand_chip = mtd->priv;
1003        struct atmel_nand_host *host = nand_chip->priv;
1004        uint32_t val = 0;
1005        struct nand_ecclayout *ecc_layout;
1006
1007        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1008        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1009
1010        switch (host->pmecc_corr_cap) {
1011        case 2:
1012                val = PMECC_CFG_BCH_ERR2;
1013                break;
1014        case 4:
1015                val = PMECC_CFG_BCH_ERR4;
1016                break;
1017        case 8:
1018                val = PMECC_CFG_BCH_ERR8;
1019                break;
1020        case 12:
1021                val = PMECC_CFG_BCH_ERR12;
1022                break;
1023        case 24:
1024                val = PMECC_CFG_BCH_ERR24;
1025                break;
1026        }
1027
1028        if (host->pmecc_sector_size == 512)
1029                val |= PMECC_CFG_SECTOR512;
1030        else if (host->pmecc_sector_size == 1024)
1031                val |= PMECC_CFG_SECTOR1024;
1032
1033        switch (host->pmecc_sector_number) {
1034        case 1:
1035                val |= PMECC_CFG_PAGE_1SECTOR;
1036                break;
1037        case 2:
1038                val |= PMECC_CFG_PAGE_2SECTORS;
1039                break;
1040        case 4:
1041                val |= PMECC_CFG_PAGE_4SECTORS;
1042                break;
1043        case 8:
1044                val |= PMECC_CFG_PAGE_8SECTORS;
1045                break;
1046        }
1047
1048        val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1049                | PMECC_CFG_AUTO_DISABLE);
1050        pmecc_writel(host->ecc, CFG, val);
1051
1052        ecc_layout = nand_chip->ecc.layout;
1053        pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1054        pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1055        pmecc_writel(host->ecc, EADDR,
1056                        ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1057        /* See datasheet about PMECC Clock Control Register */
1058        pmecc_writel(host->ecc, CLK, 2);
1059        pmecc_writel(host->ecc, IDR, 0xff);
1060        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1061}
1062
1063/*
1064 * Get minimum ecc requirements from NAND.
1065 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1066 * will set them according to minimum ecc requirement. Otherwise, use the
1067 * value in DTS file.
1068 * return 0 if success. otherwise return error code.
1069 */
1070static int pmecc_choose_ecc(struct atmel_nand_host *host,
1071                int *cap, int *sector_size)
1072{
1073        /* Get minimum ECC requirements */
1074        if (host->nand_chip.ecc_strength_ds) {
1075                *cap = host->nand_chip.ecc_strength_ds;
1076                *sector_size = host->nand_chip.ecc_step_ds;
1077                dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1078                                *cap, *sector_size);
1079        } else {
1080                *cap = 2;
1081                *sector_size = 512;
1082                dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1083        }
1084
1085        /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1086        if (host->pmecc_corr_cap == 0) {
1087                /* use the most fitable ecc bits (the near bigger one ) */
1088                if (*cap <= 2)
1089                        host->pmecc_corr_cap = 2;
1090                else if (*cap <= 4)
1091                        host->pmecc_corr_cap = 4;
1092                else if (*cap <= 8)
1093                        host->pmecc_corr_cap = 8;
1094                else if (*cap <= 12)
1095                        host->pmecc_corr_cap = 12;
1096                else if (*cap <= 24)
1097                        host->pmecc_corr_cap = 24;
1098                else
1099                        return -EINVAL;
1100        }
1101        if (host->pmecc_sector_size == 0) {
1102                /* use the most fitable sector size (the near smaller one ) */
1103                if (*sector_size >= 1024)
1104                        host->pmecc_sector_size = 1024;
1105                else if (*sector_size >= 512)
1106                        host->pmecc_sector_size = 512;
1107                else
1108                        return -EINVAL;
1109        }
1110        return 0;
1111}
1112
1113static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1114                                         struct atmel_nand_host *host)
1115{
1116        struct mtd_info *mtd = &host->mtd;
1117        struct nand_chip *nand_chip = &host->nand_chip;
1118        struct resource *regs, *regs_pmerr, *regs_rom;
1119        int cap, sector_size, err_no;
1120
1121        err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1122        if (err_no) {
1123                dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1124                return err_no;
1125        }
1126
1127        if (cap > host->pmecc_corr_cap ||
1128                        sector_size != host->pmecc_sector_size)
1129                dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1130
1131        cap = host->pmecc_corr_cap;
1132        sector_size = host->pmecc_sector_size;
1133        host->pmecc_lookup_table_offset = (sector_size == 512) ?
1134                        host->pmecc_lookup_table_offset_512 :
1135                        host->pmecc_lookup_table_offset_1024;
1136
1137        dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1138                 cap, sector_size);
1139
1140        regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1141        if (!regs) {
1142                dev_warn(host->dev,
1143                        "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1144                nand_chip->ecc.mode = NAND_ECC_SOFT;
1145                return 0;
1146        }
1147
1148        host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1149        if (IS_ERR(host->ecc)) {
1150                dev_err(host->dev, "ioremap failed\n");
1151                err_no = PTR_ERR(host->ecc);
1152                goto err;
1153        }
1154
1155        regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1156        host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1157        if (IS_ERR(host->pmerrloc_base)) {
1158                dev_err(host->dev,
1159                        "Can not get I/O resource for PMECC ERRLOC controller!\n");
1160                err_no = PTR_ERR(host->pmerrloc_base);
1161                goto err;
1162        }
1163
1164        regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1165        host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
1166        if (IS_ERR(host->pmecc_rom_base)) {
1167                dev_err(host->dev, "Can not get I/O resource for ROM!\n");
1168                err_no = PTR_ERR(host->pmecc_rom_base);
1169                goto err;
1170        }
1171
1172        /* ECC is calculated for the whole page (1 step) */
1173        nand_chip->ecc.size = mtd->writesize;
1174
1175        /* set ECC page size and oob layout */
1176        switch (mtd->writesize) {
1177        case 2048:
1178                host->pmecc_degree = (sector_size == 512) ?
1179                        PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1180                host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1181                host->pmecc_sector_number = mtd->writesize / sector_size;
1182                host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
1183                        cap, sector_size);
1184                host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1185                host->pmecc_index_of = host->pmecc_rom_base +
1186                        host->pmecc_lookup_table_offset;
1187
1188                nand_chip->ecc.steps = 1;
1189                nand_chip->ecc.strength = cap;
1190                nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
1191                                       host->pmecc_sector_number;
1192                if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
1193                        dev_err(host->dev, "No room for ECC bytes\n");
1194                        err_no = -EINVAL;
1195                        goto err;
1196                }
1197                pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1198                                        mtd->oobsize,
1199                                        nand_chip->ecc.bytes);
1200                nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1201                break;
1202        case 512:
1203        case 1024:
1204        case 4096:
1205                /* TODO */
1206                dev_warn(host->dev,
1207                        "Unsupported page size for PMECC, use Software ECC\n");
1208        default:
1209                /* page size not handled by HW ECC */
1210                /* switching back to soft ECC */
1211                nand_chip->ecc.mode = NAND_ECC_SOFT;
1212                return 0;
1213        }
1214
1215        /* Allocate data for PMECC computation */
1216        err_no = pmecc_data_alloc(host);
1217        if (err_no) {
1218                dev_err(host->dev,
1219                                "Cannot allocate memory for PMECC computation!\n");
1220                goto err;
1221        }
1222
1223        nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1224        nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1225
1226        atmel_pmecc_core_init(mtd);
1227
1228        return 0;
1229
1230err:
1231        return err_no;
1232}
1233
1234/*
1235 * Calculate HW ECC
1236 *
1237 * function called after a write
1238 *
1239 * mtd:        MTD block structure
1240 * dat:        raw data (unused)
1241 * ecc_code:   buffer for ECC
1242 */
1243static int atmel_nand_calculate(struct mtd_info *mtd,
1244                const u_char *dat, unsigned char *ecc_code)
1245{
1246        struct nand_chip *nand_chip = mtd->priv;
1247        struct atmel_nand_host *host = nand_chip->priv;
1248        unsigned int ecc_value;
1249
1250        /* get the first 2 ECC bytes */
1251        ecc_value = ecc_readl(host->ecc, PR);
1252
1253        ecc_code[0] = ecc_value & 0xFF;
1254        ecc_code[1] = (ecc_value >> 8) & 0xFF;
1255
1256        /* get the last 2 ECC bytes */
1257        ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1258
1259        ecc_code[2] = ecc_value & 0xFF;
1260        ecc_code[3] = (ecc_value >> 8) & 0xFF;
1261
1262        return 0;
1263}
1264
1265/*
1266 * HW ECC read page function
1267 *
1268 * mtd:        mtd info structure
1269 * chip:       nand chip info structure
1270 * buf:        buffer to store read data
1271 * oob_required:    caller expects OOB data read to chip->oob_poi
1272 */
1273static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1274                                uint8_t *buf, int oob_required, int page)
1275{
1276        int eccsize = chip->ecc.size;
1277        int eccbytes = chip->ecc.bytes;
1278        uint32_t *eccpos = chip->ecc.layout->eccpos;
1279        uint8_t *p = buf;
1280        uint8_t *oob = chip->oob_poi;
1281        uint8_t *ecc_pos;
1282        int stat;
1283        unsigned int max_bitflips = 0;
1284
1285        /*
1286         * Errata: ALE is incorrectly wired up to the ECC controller
1287         * on the AP7000, so it will include the address cycles in the
1288         * ECC calculation.
1289         *
1290         * Workaround: Reset the parity registers before reading the
1291         * actual data.
1292         */
1293        struct atmel_nand_host *host = chip->priv;
1294        if (host->board.need_reset_workaround)
1295                ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1296
1297        /* read the page */
1298        chip->read_buf(mtd, p, eccsize);
1299
1300        /* move to ECC position if needed */
1301        if (eccpos[0] != 0) {
1302                /* This only works on large pages
1303                 * because the ECC controller waits for
1304                 * NAND_CMD_RNDOUTSTART after the
1305                 * NAND_CMD_RNDOUT.
1306                 * anyway, for small pages, the eccpos[0] == 0
1307                 */
1308                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1309                                mtd->writesize + eccpos[0], -1);
1310        }
1311
1312        /* the ECC controller needs to read the ECC just after the data */
1313        ecc_pos = oob + eccpos[0];
1314        chip->read_buf(mtd, ecc_pos, eccbytes);
1315
1316        /* check if there's an error */
1317        stat = chip->ecc.correct(mtd, p, oob, NULL);
1318
1319        if (stat < 0) {
1320                mtd->ecc_stats.failed++;
1321        } else {
1322                mtd->ecc_stats.corrected += stat;
1323                max_bitflips = max_t(unsigned int, max_bitflips, stat);
1324        }
1325
1326        /* get back to oob start (end of page) */
1327        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1328
1329        /* read the oob */
1330        chip->read_buf(mtd, oob, mtd->oobsize);
1331
1332        return max_bitflips;
1333}
1334
1335/*
1336 * HW ECC Correction
1337 *
1338 * function called after a read
1339 *
1340 * mtd:        MTD block structure
1341 * dat:        raw data read from the chip
1342 * read_ecc:   ECC from the chip (unused)
1343 * isnull:     unused
1344 *
1345 * Detect and correct a 1 bit error for a page
1346 */
1347static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1348                u_char *read_ecc, u_char *isnull)
1349{
1350        struct nand_chip *nand_chip = mtd->priv;
1351        struct atmel_nand_host *host = nand_chip->priv;
1352        unsigned int ecc_status;
1353        unsigned int ecc_word, ecc_bit;
1354
1355        /* get the status from the Status Register */
1356        ecc_status = ecc_readl(host->ecc, SR);
1357
1358        /* if there's no error */
1359        if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1360                return 0;
1361
1362        /* get error bit offset (4 bits) */
1363        ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1364        /* get word address (12 bits) */
1365        ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1366        ecc_word >>= 4;
1367
1368        /* if there are multiple errors */
1369        if (ecc_status & ATMEL_ECC_MULERR) {
1370                /* check if it is a freshly erased block
1371                 * (filled with 0xff) */
1372                if ((ecc_bit == ATMEL_ECC_BITADDR)
1373                                && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1374                        /* the block has just been erased, return OK */
1375                        return 0;
1376                }
1377                /* it doesn't seems to be a freshly
1378                 * erased block.
1379                 * We can't correct so many errors */
1380                dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1381                                " Unable to correct.\n");
1382                return -EIO;
1383        }
1384
1385        /* if there's a single bit error : we can correct it */
1386        if (ecc_status & ATMEL_ECC_ECCERR) {
1387                /* there's nothing much to do here.
1388                 * the bit error is on the ECC itself.
1389                 */
1390                dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1391                                " Nothing to correct\n");
1392                return 0;
1393        }
1394
1395        dev_dbg(host->dev, "atmel_nand : one bit error on data."
1396                        " (word offset in the page :"
1397                        " 0x%x bit offset : 0x%x)\n",
1398                        ecc_word, ecc_bit);
1399        /* correct the error */
1400        if (nand_chip->options & NAND_BUSWIDTH_16) {
1401                /* 16 bits words */
1402                ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1403        } else {
1404                /* 8 bits words */
1405                dat[ecc_word] ^= (1 << ecc_bit);
1406        }
1407        dev_dbg(host->dev, "atmel_nand : error corrected\n");
1408        return 1;
1409}
1410
1411/*
1412 * Enable HW ECC : unused on most chips
1413 */
1414static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1415{
1416        struct nand_chip *nand_chip = mtd->priv;
1417        struct atmel_nand_host *host = nand_chip->priv;
1418
1419        if (host->board.need_reset_workaround)
1420                ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1421}
1422
1423static int atmel_of_init_port(struct atmel_nand_host *host,
1424                              struct device_node *np)
1425{
1426        u32 val;
1427        u32 offset[2];
1428        int ecc_mode;
1429        struct atmel_nand_data *board = &host->board;
1430        enum of_gpio_flags flags = 0;
1431
1432        if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1433                if (val >= 32) {
1434                        dev_err(host->dev, "invalid addr-offset %u\n", val);
1435                        return -EINVAL;
1436                }
1437                board->ale = val;
1438        }
1439
1440        if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1441                if (val >= 32) {
1442                        dev_err(host->dev, "invalid cmd-offset %u\n", val);
1443                        return -EINVAL;
1444                }
1445                board->cle = val;
1446        }
1447
1448        ecc_mode = of_get_nand_ecc_mode(np);
1449
1450        board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1451
1452        board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1453
1454        board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1455
1456        if (of_get_nand_bus_width(np) == 16)
1457                board->bus_width_16 = 1;
1458
1459        board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1460        board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1461
1462        board->enable_pin = of_get_gpio(np, 1);
1463        board->det_pin = of_get_gpio(np, 2);
1464
1465        host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1466
1467        /* load the nfc driver if there is */
1468        of_platform_populate(np, NULL, NULL, host->dev);
1469
1470        if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1471                return 0;       /* Not using PMECC */
1472
1473        /* use PMECC, get correction capability, sector size and lookup
1474         * table offset.
1475         * If correction bits and sector size are not specified, then find
1476         * them from NAND ONFI parameters.
1477         */
1478        if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1479                if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1480                                (val != 24)) {
1481                        dev_err(host->dev,
1482                                "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1483                                val);
1484                        return -EINVAL;
1485                }
1486                host->pmecc_corr_cap = (u8)val;
1487        }
1488
1489        if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1490                if ((val != 512) && (val != 1024)) {
1491                        dev_err(host->dev,
1492                                "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1493                                val);
1494                        return -EINVAL;
1495                }
1496                host->pmecc_sector_size = (u16)val;
1497        }
1498
1499        if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1500                        offset, 2) != 0) {
1501                dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1502                return -EINVAL;
1503        }
1504        if (!offset[0] && !offset[1]) {
1505                dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1506                return -EINVAL;
1507        }
1508        host->pmecc_lookup_table_offset_512 = offset[0];
1509        host->pmecc_lookup_table_offset_1024 = offset[1];
1510
1511        return 0;
1512}
1513
1514static int atmel_hw_nand_init_params(struct platform_device *pdev,
1515                                         struct atmel_nand_host *host)
1516{
1517        struct mtd_info *mtd = &host->mtd;
1518        struct nand_chip *nand_chip = &host->nand_chip;
1519        struct resource         *regs;
1520
1521        regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1522        if (!regs) {
1523                dev_err(host->dev,
1524                        "Can't get I/O resource regs, use software ECC\n");
1525                nand_chip->ecc.mode = NAND_ECC_SOFT;
1526                return 0;
1527        }
1528
1529        host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1530        if (IS_ERR(host->ecc)) {
1531                dev_err(host->dev, "ioremap failed\n");
1532                return PTR_ERR(host->ecc);
1533        }
1534
1535        /* ECC is calculated for the whole page (1 step) */
1536        nand_chip->ecc.size = mtd->writesize;
1537
1538        /* set ECC page size and oob layout */
1539        switch (mtd->writesize) {
1540        case 512:
1541                nand_chip->ecc.layout = &atmel_oobinfo_small;
1542                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1543                break;
1544        case 1024:
1545                nand_chip->ecc.layout = &atmel_oobinfo_large;
1546                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1547                break;
1548        case 2048:
1549                nand_chip->ecc.layout = &atmel_oobinfo_large;
1550                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1551                break;
1552        case 4096:
1553                nand_chip->ecc.layout = &atmel_oobinfo_large;
1554                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1555                break;
1556        default:
1557                /* page size not handled by HW ECC */
1558                /* switching back to soft ECC */
1559                nand_chip->ecc.mode = NAND_ECC_SOFT;
1560                return 0;
1561        }
1562
1563        /* set up for HW ECC */
1564        nand_chip->ecc.calculate = atmel_nand_calculate;
1565        nand_chip->ecc.correct = atmel_nand_correct;
1566        nand_chip->ecc.hwctl = atmel_nand_hwctl;
1567        nand_chip->ecc.read_page = atmel_nand_read_page;
1568        nand_chip->ecc.bytes = 4;
1569        nand_chip->ecc.strength = 1;
1570
1571        return 0;
1572}
1573
1574/* SMC interrupt service routine */
1575static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1576{
1577        struct atmel_nand_host *host = dev_id;
1578        u32 status, mask, pending;
1579        irqreturn_t ret = IRQ_HANDLED;
1580
1581        status = nfc_readl(host->nfc->hsmc_regs, SR);
1582        mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1583        pending = status & mask;
1584
1585        if (pending & NFC_SR_XFR_DONE) {
1586                complete(&host->nfc->comp_nfc);
1587                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1588        } else if (pending & NFC_SR_RB_EDGE) {
1589                complete(&host->nfc->comp_nfc);
1590                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1591        } else if (pending & NFC_SR_CMD_DONE) {
1592                complete(&host->nfc->comp_nfc);
1593                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1594        } else {
1595                ret = IRQ_NONE;
1596        }
1597
1598        return ret;
1599}
1600
1601/* NFC(Nand Flash Controller) related functions */
1602static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1603{
1604        unsigned long timeout;
1605        init_completion(&host->nfc->comp_nfc);
1606
1607        /* Enable interrupt that need to wait for */
1608        nfc_writel(host->nfc->hsmc_regs, IER, flag);
1609
1610        timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
1611                        msecs_to_jiffies(NFC_TIME_OUT_MS));
1612        if (timeout)
1613                return 0;
1614
1615        /* Time out to wait for the interrupt */
1616        dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1617        return -ETIMEDOUT;
1618}
1619
1620static int nfc_send_command(struct atmel_nand_host *host,
1621        unsigned int cmd, unsigned int addr, unsigned char cycle0)
1622{
1623        unsigned long timeout;
1624        dev_dbg(host->dev,
1625                "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1626                cmd, addr, cycle0);
1627
1628        timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1629        while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
1630                        & NFCADDR_CMD_NFCBUSY) {
1631                if (time_after(jiffies, timeout)) {
1632                        dev_err(host->dev,
1633                                "Time out to wait CMD_NFCBUSY ready!\n");
1634                        return -ETIMEDOUT;
1635                }
1636        }
1637        nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1638        nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1639        return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
1640}
1641
1642static int nfc_device_ready(struct mtd_info *mtd)
1643{
1644        struct nand_chip *nand_chip = mtd->priv;
1645        struct atmel_nand_host *host = nand_chip->priv;
1646        if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
1647                return 1;
1648        return 0;
1649}
1650
1651static void nfc_select_chip(struct mtd_info *mtd, int chip)
1652{
1653        struct nand_chip *nand_chip = mtd->priv;
1654        struct atmel_nand_host *host = nand_chip->priv;
1655
1656        if (chip == -1)
1657                nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1658        else
1659                nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1660}
1661
1662static int nfc_make_addr(struct mtd_info *mtd, int column, int page_addr,
1663                unsigned int *addr1234, unsigned int *cycle0)
1664{
1665        struct nand_chip *chip = mtd->priv;
1666
1667        int acycle = 0;
1668        unsigned char addr_bytes[8];
1669        int index = 0, bit_shift;
1670
1671        BUG_ON(addr1234 == NULL || cycle0 == NULL);
1672
1673        *cycle0 = 0;
1674        *addr1234 = 0;
1675
1676        if (column != -1) {
1677                if (chip->options & NAND_BUSWIDTH_16)
1678                        column >>= 1;
1679                addr_bytes[acycle++] = column & 0xff;
1680                if (mtd->writesize > 512)
1681                        addr_bytes[acycle++] = (column >> 8) & 0xff;
1682        }
1683
1684        if (page_addr != -1) {
1685                addr_bytes[acycle++] = page_addr & 0xff;
1686                addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1687                if (chip->chipsize > (128 << 20))
1688                        addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1689        }
1690
1691        if (acycle > 4)
1692                *cycle0 = addr_bytes[index++];
1693
1694        for (bit_shift = 0; index < acycle; bit_shift += 8)
1695                *addr1234 += addr_bytes[index++] << bit_shift;
1696
1697        /* return acycle in cmd register */
1698        return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1699}
1700
1701static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1702                                int column, int page_addr)
1703{
1704        struct nand_chip *chip = mtd->priv;
1705        struct atmel_nand_host *host = chip->priv;
1706        unsigned long timeout;
1707        unsigned int nfc_addr_cmd = 0;
1708
1709        unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1710
1711        /* Set default settings: no cmd2, no addr cycle. read from nand */
1712        unsigned int cmd2 = 0;
1713        unsigned int vcmd2 = 0;
1714        int acycle = NFCADDR_CMD_ACYCLE_NONE;
1715        int csid = NFCADDR_CMD_CSID_3;
1716        int dataen = NFCADDR_CMD_DATADIS;
1717        int nfcwr = NFCADDR_CMD_NFCRD;
1718        unsigned int addr1234 = 0;
1719        unsigned int cycle0 = 0;
1720        bool do_addr = true;
1721        host->nfc->data_in_sram = NULL;
1722
1723        dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1724             __func__, command, column, page_addr);
1725
1726        switch (command) {
1727        case NAND_CMD_RESET:
1728                nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1729                nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1730                udelay(chip->chip_delay);
1731
1732                nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1733                timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1734                while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1735                        if (time_after(jiffies, timeout)) {
1736                                dev_err(host->dev,
1737                                        "Time out to wait status ready!\n");
1738                                break;
1739                        }
1740                }
1741                return;
1742        case NAND_CMD_STATUS:
1743                do_addr = false;
1744                break;
1745        case NAND_CMD_PARAM:
1746        case NAND_CMD_READID:
1747                do_addr = false;
1748                acycle = NFCADDR_CMD_ACYCLE_1;
1749                if (column != -1)
1750                        addr1234 = column;
1751                break;
1752        case NAND_CMD_RNDOUT:
1753                cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1754                vcmd2 = NFCADDR_CMD_VCMD2;
1755                break;
1756        case NAND_CMD_READ0:
1757        case NAND_CMD_READOOB:
1758                if (command == NAND_CMD_READOOB) {
1759                        column += mtd->writesize;
1760                        command = NAND_CMD_READ0; /* only READ0 is valid */
1761                        cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1762                }
1763                if (host->nfc->use_nfc_sram) {
1764                        /* Enable Data transfer to sram */
1765                        dataen = NFCADDR_CMD_DATAEN;
1766
1767                        /* Need enable PMECC now, since NFC will transfer
1768                         * data in bus after sending nfc read command.
1769                         */
1770                        if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1771                                pmecc_enable(host, NAND_ECC_READ);
1772                }
1773
1774                cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1775                vcmd2 = NFCADDR_CMD_VCMD2;
1776                break;
1777        /* For prgramming command, the cmd need set to write enable */
1778        case NAND_CMD_PAGEPROG:
1779        case NAND_CMD_SEQIN:
1780        case NAND_CMD_RNDIN:
1781                nfcwr = NFCADDR_CMD_NFCWR;
1782                if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1783                        dataen = NFCADDR_CMD_DATAEN;
1784                break;
1785        default:
1786                break;
1787        }
1788
1789        if (do_addr)
1790                acycle = nfc_make_addr(mtd, column, page_addr, &addr1234,
1791                                &cycle0);
1792
1793        nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1794        nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1795
1796        if (dataen == NFCADDR_CMD_DATAEN)
1797                if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
1798                        dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");
1799
1800        /*
1801         * Program and erase have their own busy handlers status, sequential
1802         * in, and deplete1 need no delay.
1803         */
1804        switch (command) {
1805        case NAND_CMD_CACHEDPROG:
1806        case NAND_CMD_PAGEPROG:
1807        case NAND_CMD_ERASE1:
1808        case NAND_CMD_ERASE2:
1809        case NAND_CMD_RNDIN:
1810        case NAND_CMD_STATUS:
1811        case NAND_CMD_RNDOUT:
1812        case NAND_CMD_SEQIN:
1813        case NAND_CMD_READID:
1814                return;
1815
1816        case NAND_CMD_READ0:
1817                if (dataen == NFCADDR_CMD_DATAEN) {
1818                        host->nfc->data_in_sram = host->nfc->sram_bank0 +
1819                                nfc_get_sram_off(host);
1820                        return;
1821                }
1822                /* fall through */
1823        default:
1824                nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1825        }
1826}
1827
1828static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1829                        uint32_t offset, int data_len, const uint8_t *buf,
1830                        int oob_required, int page, int cached, int raw)
1831{
1832        int cfg, len;
1833        int status = 0;
1834        struct atmel_nand_host *host = chip->priv;
1835        void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1836
1837        /* Subpage write is not supported */
1838        if (offset || (data_len < mtd->writesize))
1839                return -EINVAL;
1840
1841        cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1842        len = mtd->writesize;
1843
1844        if (unlikely(raw)) {
1845                len += mtd->oobsize;
1846                nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1847        } else
1848                nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1849
1850        /* Copy page data to sram that will write to nand via NFC */
1851        if (use_dma) {
1852                if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1853                        /* Fall back to use cpu copy */
1854                        memcpy32_toio(sram, buf, len);
1855        } else {
1856                memcpy32_toio(sram, buf, len);
1857        }
1858
1859        if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1860                /*
1861                 * When use NFC sram, need set up PMECC before send
1862                 * NAND_CMD_SEQIN command. Since when the nand command
1863                 * is sent, nfc will do transfer from sram and nand.
1864                 */
1865                pmecc_enable(host, NAND_ECC_WRITE);
1866
1867        host->nfc->will_write_sram = true;
1868        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1869        host->nfc->will_write_sram = false;
1870
1871        if (likely(!raw))
1872                /* Need to write ecc into oob */
1873                status = chip->ecc.write_page(mtd, chip, buf, oob_required);
1874
1875        if (status < 0)
1876                return status;
1877
1878        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1879        status = chip->waitfunc(mtd, chip);
1880
1881        if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1882                status = chip->errstat(mtd, chip, FL_WRITING, status, page);
1883
1884        if (status & NAND_STATUS_FAIL)
1885                return -EIO;
1886
1887        return 0;
1888}
1889
1890static int nfc_sram_init(struct mtd_info *mtd)
1891{
1892        struct nand_chip *chip = mtd->priv;
1893        struct atmel_nand_host *host = chip->priv;
1894        int res = 0;
1895
1896        /* Initialize the NFC CFG register */
1897        unsigned int cfg_nfc = 0;
1898
1899        /* set page size and oob layout */
1900        switch (mtd->writesize) {
1901        case 512:
1902                cfg_nfc = NFC_CFG_PAGESIZE_512;
1903                break;
1904        case 1024:
1905                cfg_nfc = NFC_CFG_PAGESIZE_1024;
1906                break;
1907        case 2048:
1908                cfg_nfc = NFC_CFG_PAGESIZE_2048;
1909                break;
1910        case 4096:
1911                cfg_nfc = NFC_CFG_PAGESIZE_4096;
1912                break;
1913        case 8192:
1914                cfg_nfc = NFC_CFG_PAGESIZE_8192;
1915                break;
1916        default:
1917                dev_err(host->dev, "Unsupported page size for NFC.\n");
1918                res = -ENXIO;
1919                return res;
1920        }
1921
1922        /* oob bytes size = (NFCSPARESIZE + 1) * 4
1923         * Max support spare size is 512 bytes. */
1924        cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
1925                & NFC_CFG_NFC_SPARESIZE);
1926        /* default set a max timeout */
1927        cfg_nfc |= NFC_CFG_RSPARE |
1928                        NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
1929
1930        nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
1931
1932        host->nfc->will_write_sram = false;
1933        nfc_set_sram_bank(host, 0);
1934
1935        /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
1936        if (host->nfc->write_by_sram) {
1937                if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
1938                                chip->ecc.mode == NAND_ECC_NONE)
1939                        chip->write_page = nfc_sram_write_page;
1940                else
1941                        host->nfc->write_by_sram = false;
1942        }
1943
1944        dev_info(host->dev, "Using NFC Sram read %s\n",
1945                        host->nfc->write_by_sram ? "and write" : "");
1946        return 0;
1947}
1948
1949static struct platform_driver atmel_nand_nfc_driver;
1950/*
1951 * Probe for the NAND device.
1952 */
1953static int atmel_nand_probe(struct platform_device *pdev)
1954{
1955        struct atmel_nand_host *host;
1956        struct mtd_info *mtd;
1957        struct nand_chip *nand_chip;
1958        struct resource *mem;
1959        struct mtd_part_parser_data ppdata = {};
1960        int res, irq;
1961
1962        /* Allocate memory for the device structure (and zero it) */
1963        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
1964        if (!host) {
1965                printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
1966                return -ENOMEM;
1967        }
1968
1969        res = platform_driver_register(&atmel_nand_nfc_driver);
1970        if (res)
1971                dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
1972
1973        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1974        host->io_base = devm_ioremap_resource(&pdev->dev, mem);
1975        if (IS_ERR(host->io_base)) {
1976                dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
1977                res = PTR_ERR(host->io_base);
1978                goto err_nand_ioremap;
1979        }
1980        host->io_phys = (dma_addr_t)mem->start;
1981
1982        mtd = &host->mtd;
1983        nand_chip = &host->nand_chip;
1984        host->dev = &pdev->dev;
1985        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1986                /* Only when CONFIG_OF is enabled of_node can be parsed */
1987                res = atmel_of_init_port(host, pdev->dev.of_node);
1988                if (res)
1989                        goto err_nand_ioremap;
1990        } else {
1991                memcpy(&host->board, dev_get_platdata(&pdev->dev),
1992                       sizeof(struct atmel_nand_data));
1993        }
1994
1995        nand_chip->priv = host;         /* link the private data structures */
1996        mtd->priv = nand_chip;
1997        mtd->owner = THIS_MODULE;
1998
1999        /* Set address of NAND IO lines */
2000        nand_chip->IO_ADDR_R = host->io_base;
2001        nand_chip->IO_ADDR_W = host->io_base;
2002
2003        if (nand_nfc.is_initialized) {
2004                /* NFC driver is probed and initialized */
2005                host->nfc = &nand_nfc;
2006
2007                nand_chip->select_chip = nfc_select_chip;
2008                nand_chip->dev_ready = nfc_device_ready;
2009                nand_chip->cmdfunc = nfc_nand_command;
2010
2011                /* Initialize the interrupt for NFC */
2012                irq = platform_get_irq(pdev, 0);
2013                if (irq < 0) {
2014                        dev_err(host->dev, "Cannot get HSMC irq!\n");
2015                        res = irq;
2016                        goto err_nand_ioremap;
2017                }
2018
2019                res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2020                                0, "hsmc", host);
2021                if (res) {
2022                        dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2023                                irq);
2024                        goto err_nand_ioremap;
2025                }
2026        } else {
2027                res = atmel_nand_set_enable_ready_pins(mtd);
2028                if (res)
2029                        goto err_nand_ioremap;
2030
2031                nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2032        }
2033
2034        nand_chip->ecc.mode = host->board.ecc_mode;
2035        nand_chip->chip_delay = 20;             /* 20us command delay time */
2036
2037        if (host->board.bus_width_16)   /* 16-bit bus width */
2038                nand_chip->options |= NAND_BUSWIDTH_16;
2039
2040        nand_chip->read_buf = atmel_read_buf;
2041        nand_chip->write_buf = atmel_write_buf;
2042
2043        platform_set_drvdata(pdev, host);
2044        atmel_nand_enable(host);
2045
2046        if (gpio_is_valid(host->board.det_pin)) {
2047                res = devm_gpio_request(&pdev->dev,
2048                                host->board.det_pin, "nand_det");
2049                if (res < 0) {
2050                        dev_err(&pdev->dev,
2051                                "can't request det gpio %d\n",
2052                                host->board.det_pin);
2053                        goto err_no_card;
2054                }
2055
2056                res = gpio_direction_input(host->board.det_pin);
2057                if (res < 0) {
2058                        dev_err(&pdev->dev,
2059                                "can't request input direction det gpio %d\n",
2060                                host->board.det_pin);
2061                        goto err_no_card;
2062                }
2063
2064                if (gpio_get_value(host->board.det_pin)) {
2065                        printk(KERN_INFO "No SmartMedia card inserted.\n");
2066                        res = -ENXIO;
2067                        goto err_no_card;
2068                }
2069        }
2070
2071        if (host->board.on_flash_bbt || on_flash_bbt) {
2072                printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
2073                nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2074        }
2075
2076        if (!host->board.has_dma)
2077                use_dma = 0;
2078
2079        if (use_dma) {
2080                dma_cap_mask_t mask;
2081
2082                dma_cap_zero(mask);
2083                dma_cap_set(DMA_MEMCPY, mask);
2084                host->dma_chan = dma_request_channel(mask, NULL, NULL);
2085                if (!host->dma_chan) {
2086                        dev_err(host->dev, "Failed to request DMA channel\n");
2087                        use_dma = 0;
2088                }
2089        }
2090        if (use_dma)
2091                dev_info(host->dev, "Using %s for DMA transfers.\n",
2092                                        dma_chan_name(host->dma_chan));
2093        else
2094                dev_info(host->dev, "No DMA support for NAND access.\n");
2095
2096        /* first scan to find the device and get the page size */
2097        if (nand_scan_ident(mtd, 1, NULL)) {
2098                res = -ENXIO;
2099                goto err_scan_ident;
2100        }
2101
2102        if (nand_chip->ecc.mode == NAND_ECC_HW) {
2103                if (host->has_pmecc)
2104                        res = atmel_pmecc_nand_init_params(pdev, host);
2105                else
2106                        res = atmel_hw_nand_init_params(pdev, host);
2107
2108                if (res != 0)
2109                        goto err_hw_ecc;
2110        }
2111
2112        /* initialize the nfc configuration register */
2113        if (host->nfc && host->nfc->use_nfc_sram) {
2114                res = nfc_sram_init(mtd);
2115                if (res) {
2116                        host->nfc->use_nfc_sram = false;
2117                        dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2118                }
2119        }
2120
2121        /* second phase scan */
2122        if (nand_scan_tail(mtd)) {
2123                res = -ENXIO;
2124                goto err_scan_tail;
2125        }
2126
2127        mtd->name = "atmel_nand";
2128        ppdata.of_node = pdev->dev.of_node;
2129        res = mtd_device_parse_register(mtd, NULL, &ppdata,
2130                        host->board.parts, host->board.num_parts);
2131        if (!res)
2132                return res;
2133
2134err_scan_tail:
2135        if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2136                pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2137err_hw_ecc:
2138err_scan_ident:
2139err_no_card:
2140        atmel_nand_disable(host);
2141        if (host->dma_chan)
2142                dma_release_channel(host->dma_chan);
2143err_nand_ioremap:
2144        return res;
2145}
2146
2147/*
2148 * Remove a NAND device.
2149 */
2150static int atmel_nand_remove(struct platform_device *pdev)
2151{
2152        struct atmel_nand_host *host = platform_get_drvdata(pdev);
2153        struct mtd_info *mtd = &host->mtd;
2154
2155        nand_release(mtd);
2156
2157        atmel_nand_disable(host);
2158
2159        if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2160                pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2161                pmerrloc_writel(host->pmerrloc_base, ELDIS,
2162                                PMERRLOC_DISABLE);
2163        }
2164
2165        if (host->dma_chan)
2166                dma_release_channel(host->dma_chan);
2167
2168        platform_driver_unregister(&atmel_nand_nfc_driver);
2169
2170        return 0;
2171}
2172
2173static const struct of_device_id atmel_nand_dt_ids[] = {
2174        { .compatible = "atmel,at91rm9200-nand" },
2175        { /* sentinel */ }
2176};
2177
2178MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2179
2180static int atmel_nand_nfc_probe(struct platform_device *pdev)
2181{
2182        struct atmel_nfc *nfc = &nand_nfc;
2183        struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2184
2185        nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2186        nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2187        if (IS_ERR(nfc->base_cmd_regs))
2188                return PTR_ERR(nfc->base_cmd_regs);
2189
2190        nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2191        nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2192        if (IS_ERR(nfc->hsmc_regs))
2193                return PTR_ERR(nfc->hsmc_regs);
2194
2195        nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2196        if (nfc_sram) {
2197                nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2198                if (IS_ERR(nfc->sram_bank0)) {
2199                        dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2200                                        PTR_ERR(nfc->sram_bank0));
2201                } else {
2202                        nfc->use_nfc_sram = true;
2203                        nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2204
2205                        if (pdev->dev.of_node)
2206                                nfc->write_by_sram = of_property_read_bool(
2207                                                pdev->dev.of_node,
2208                                                "atmel,write-by-sram");
2209                }
2210        }
2211
2212        nfc->is_initialized = true;
2213        dev_info(&pdev->dev, "NFC is probed.\n");
2214        return 0;
2215}
2216
2217static const struct of_device_id atmel_nand_nfc_match[] = {
2218        { .compatible = "atmel,sama5d3-nfc" },
2219        { /* sentinel */ }
2220};
2221MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2222
2223static struct platform_driver atmel_nand_nfc_driver = {
2224        .driver = {
2225                .name = "atmel_nand_nfc",
2226                .owner = THIS_MODULE,
2227                .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2228        },
2229        .probe = atmel_nand_nfc_probe,
2230};
2231
2232static struct platform_driver atmel_nand_driver = {
2233        .probe          = atmel_nand_probe,
2234        .remove         = atmel_nand_remove,
2235        .driver         = {
2236                .name   = "atmel_nand",
2237                .owner  = THIS_MODULE,
2238                .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2239        },
2240};
2241
2242module_platform_driver(atmel_nand_driver);
2243
2244MODULE_LICENSE("GPL");
2245MODULE_AUTHOR("Rick Bronson");
2246MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2247MODULE_ALIAS("platform:atmel_nand");
2248