linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40                                        unsigned int cycle_state, gfp_t flags)
  41{
  42        struct xhci_segment *seg;
  43        dma_addr_t      dma;
  44        int             i;
  45
  46        seg = kzalloc(sizeof *seg, flags);
  47        if (!seg)
  48                return NULL;
  49
  50        seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  51        if (!seg->trbs) {
  52                kfree(seg);
  53                return NULL;
  54        }
  55
  56        memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
  57        /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58        if (cycle_state == 0) {
  59                for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60                        seg->trbs[i].link.control |= TRB_CYCLE;
  61        }
  62        seg->dma = dma;
  63        seg->next = NULL;
  64
  65        return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70        if (seg->trbs) {
  71                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72                seg->trbs = NULL;
  73        }
  74        kfree(seg);
  75}
  76
  77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  78                                struct xhci_segment *first)
  79{
  80        struct xhci_segment *seg;
  81
  82        seg = first->next;
  83        while (seg != first) {
  84                struct xhci_segment *next = seg->next;
  85                xhci_segment_free(xhci, seg);
  86                seg = next;
  87        }
  88        xhci_segment_free(xhci, first);
  89}
  90
  91/*
  92 * Make the prev segment point to the next segment.
  93 *
  94 * Change the last TRB in the prev segment to be a Link TRB which points to the
  95 * DMA address of the next segment.  The caller needs to set any Link TRB
  96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  97 */
  98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  99                struct xhci_segment *next, enum xhci_ring_type type)
 100{
 101        u32 val;
 102
 103        if (!prev || !next)
 104                return;
 105        prev->next = next;
 106        if (type != TYPE_EVENT) {
 107                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 108                        cpu_to_le64(next->dma);
 109
 110                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 111                val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 112                val &= ~TRB_TYPE_BITMASK;
 113                val |= TRB_TYPE(TRB_LINK);
 114                /* Always set the chain bit with 0.95 hardware */
 115                /* Set chain bit for isoc rings on AMD 0.96 host */
 116                if (xhci_link_trb_quirk(xhci) ||
 117                                (type == TYPE_ISOC &&
 118                                 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 119                        val |= TRB_CHAIN;
 120                prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 121        }
 122}
 123
 124/*
 125 * Link the ring to the new segments.
 126 * Set Toggle Cycle for the new ring if needed.
 127 */
 128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 129                struct xhci_segment *first, struct xhci_segment *last,
 130                unsigned int num_segs)
 131{
 132        struct xhci_segment *next;
 133
 134        if (!ring || !first || !last)
 135                return;
 136
 137        next = ring->enq_seg->next;
 138        xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 139        xhci_link_segments(xhci, last, next, ring->type);
 140        ring->num_segs += num_segs;
 141        ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 142
 143        if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 144                ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 145                        &= ~cpu_to_le32(LINK_TOGGLE);
 146                last->trbs[TRBS_PER_SEGMENT-1].link.control
 147                        |= cpu_to_le32(LINK_TOGGLE);
 148                ring->last_seg = last;
 149        }
 150}
 151
 152/* XXX: Do we need the hcd structure in all these functions? */
 153void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 154{
 155        if (!ring)
 156                return;
 157
 158        if (ring->first_seg)
 159                xhci_free_segments_for_ring(xhci, ring->first_seg);
 160
 161        kfree(ring);
 162}
 163
 164static void xhci_initialize_ring_info(struct xhci_ring *ring,
 165                                        unsigned int cycle_state)
 166{
 167        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 168        ring->enqueue = ring->first_seg->trbs;
 169        ring->enq_seg = ring->first_seg;
 170        ring->dequeue = ring->enqueue;
 171        ring->deq_seg = ring->first_seg;
 172        /* The ring is initialized to 0. The producer must write 1 to the cycle
 173         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 174         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 175         *
 176         * New rings are initialized with cycle state equal to 1; if we are
 177         * handling ring expansion, set the cycle state equal to the old ring.
 178         */
 179        ring->cycle_state = cycle_state;
 180        /* Not necessary for new rings, but needed for re-initialized rings */
 181        ring->enq_updates = 0;
 182        ring->deq_updates = 0;
 183
 184        /*
 185         * Each segment has a link TRB, and leave an extra TRB for SW
 186         * accounting purpose
 187         */
 188        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 189}
 190
 191/* Allocate segments and link them for a ring */
 192static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 193                struct xhci_segment **first, struct xhci_segment **last,
 194                unsigned int num_segs, unsigned int cycle_state,
 195                enum xhci_ring_type type, gfp_t flags)
 196{
 197        struct xhci_segment *prev;
 198
 199        prev = xhci_segment_alloc(xhci, cycle_state, flags);
 200        if (!prev)
 201                return -ENOMEM;
 202        num_segs--;
 203
 204        *first = prev;
 205        while (num_segs > 0) {
 206                struct xhci_segment     *next;
 207
 208                next = xhci_segment_alloc(xhci, cycle_state, flags);
 209                if (!next) {
 210                        prev = *first;
 211                        while (prev) {
 212                                next = prev->next;
 213                                xhci_segment_free(xhci, prev);
 214                                prev = next;
 215                        }
 216                        return -ENOMEM;
 217                }
 218                xhci_link_segments(xhci, prev, next, type);
 219
 220                prev = next;
 221                num_segs--;
 222        }
 223        xhci_link_segments(xhci, prev, *first, type);
 224        *last = prev;
 225
 226        return 0;
 227}
 228
 229/**
 230 * Create a new ring with zero or more segments.
 231 *
 232 * Link each segment together into a ring.
 233 * Set the end flag and the cycle toggle bit on the last segment.
 234 * See section 4.9.1 and figures 15 and 16.
 235 */
 236static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 237                unsigned int num_segs, unsigned int cycle_state,
 238                enum xhci_ring_type type, gfp_t flags)
 239{
 240        struct xhci_ring        *ring;
 241        int ret;
 242
 243        ring = kzalloc(sizeof *(ring), flags);
 244        if (!ring)
 245                return NULL;
 246
 247        ring->num_segs = num_segs;
 248        INIT_LIST_HEAD(&ring->td_list);
 249        ring->type = type;
 250        if (num_segs == 0)
 251                return ring;
 252
 253        ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 254                        &ring->last_seg, num_segs, cycle_state, type, flags);
 255        if (ret)
 256                goto fail;
 257
 258        /* Only event ring does not use link TRB */
 259        if (type != TYPE_EVENT) {
 260                /* See section 4.9.2.1 and 6.4.4.1 */
 261                ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 262                        cpu_to_le32(LINK_TOGGLE);
 263        }
 264        xhci_initialize_ring_info(ring, cycle_state);
 265        return ring;
 266
 267fail:
 268        kfree(ring);
 269        return NULL;
 270}
 271
 272void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 273                struct xhci_virt_device *virt_dev,
 274                unsigned int ep_index)
 275{
 276        int rings_cached;
 277
 278        rings_cached = virt_dev->num_rings_cached;
 279        if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 280                virt_dev->ring_cache[rings_cached] =
 281                        virt_dev->eps[ep_index].ring;
 282                virt_dev->num_rings_cached++;
 283                xhci_dbg(xhci, "Cached old ring, "
 284                                "%d ring%s cached\n",
 285                                virt_dev->num_rings_cached,
 286                                (virt_dev->num_rings_cached > 1) ? "s" : "");
 287        } else {
 288                xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 289                xhci_dbg(xhci, "Ring cache full (%d rings), "
 290                                "freeing ring\n",
 291                                virt_dev->num_rings_cached);
 292        }
 293        virt_dev->eps[ep_index].ring = NULL;
 294}
 295
 296/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 297 * pointers to the beginning of the ring.
 298 */
 299static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 300                        struct xhci_ring *ring, unsigned int cycle_state,
 301                        enum xhci_ring_type type)
 302{
 303        struct xhci_segment     *seg = ring->first_seg;
 304        int i;
 305
 306        do {
 307                memset(seg->trbs, 0,
 308                                sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 309                if (cycle_state == 0) {
 310                        for (i = 0; i < TRBS_PER_SEGMENT; i++)
 311                                seg->trbs[i].link.control |= TRB_CYCLE;
 312                }
 313                /* All endpoint rings have link TRBs */
 314                xhci_link_segments(xhci, seg, seg->next, type);
 315                seg = seg->next;
 316        } while (seg != ring->first_seg);
 317        ring->type = type;
 318        xhci_initialize_ring_info(ring, cycle_state);
 319        /* td list should be empty since all URBs have been cancelled,
 320         * but just in case...
 321         */
 322        INIT_LIST_HEAD(&ring->td_list);
 323}
 324
 325/*
 326 * Expand an existing ring.
 327 * Look for a cached ring or allocate a new ring which has same segment numbers
 328 * and link the two rings.
 329 */
 330int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 331                                unsigned int num_trbs, gfp_t flags)
 332{
 333        struct xhci_segment     *first;
 334        struct xhci_segment     *last;
 335        unsigned int            num_segs;
 336        unsigned int            num_segs_needed;
 337        int                     ret;
 338
 339        num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 340                                (TRBS_PER_SEGMENT - 1);
 341
 342        /* Allocate number of segments we needed, or double the ring size */
 343        num_segs = ring->num_segs > num_segs_needed ?
 344                        ring->num_segs : num_segs_needed;
 345
 346        ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 347                        num_segs, ring->cycle_state, ring->type, flags);
 348        if (ret)
 349                return -ENOMEM;
 350
 351        xhci_link_rings(xhci, ring, first, last, num_segs);
 352        xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 353                        "ring expansion succeed, now has %d segments",
 354                        ring->num_segs);
 355
 356        return 0;
 357}
 358
 359#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 360
 361static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 362                                                    int type, gfp_t flags)
 363{
 364        struct xhci_container_ctx *ctx;
 365
 366        if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 367                return NULL;
 368
 369        ctx = kzalloc(sizeof(*ctx), flags);
 370        if (!ctx)
 371                return NULL;
 372
 373        ctx->type = type;
 374        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 375        if (type == XHCI_CTX_TYPE_INPUT)
 376                ctx->size += CTX_SIZE(xhci->hcc_params);
 377
 378        ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 379        if (!ctx->bytes) {
 380                kfree(ctx);
 381                return NULL;
 382        }
 383        memset(ctx->bytes, 0, ctx->size);
 384        return ctx;
 385}
 386
 387static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 388                             struct xhci_container_ctx *ctx)
 389{
 390        if (!ctx)
 391                return;
 392        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 393        kfree(ctx);
 394}
 395
 396struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 397                                              struct xhci_container_ctx *ctx)
 398{
 399        if (ctx->type != XHCI_CTX_TYPE_INPUT)
 400                return NULL;
 401
 402        return (struct xhci_input_control_ctx *)ctx->bytes;
 403}
 404
 405struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 406                                        struct xhci_container_ctx *ctx)
 407{
 408        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 409                return (struct xhci_slot_ctx *)ctx->bytes;
 410
 411        return (struct xhci_slot_ctx *)
 412                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 413}
 414
 415struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 416                                    struct xhci_container_ctx *ctx,
 417                                    unsigned int ep_index)
 418{
 419        /* increment ep index by offset of start of ep ctx array */
 420        ep_index++;
 421        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 422                ep_index++;
 423
 424        return (struct xhci_ep_ctx *)
 425                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 426}
 427
 428
 429/***************** Streams structures manipulation *************************/
 430
 431static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 432                unsigned int num_stream_ctxs,
 433                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 434{
 435        struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 436
 437        if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 438                dma_free_coherent(&pdev->dev,
 439                                sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 440                                stream_ctx, dma);
 441        else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 442                return dma_pool_free(xhci->small_streams_pool,
 443                                stream_ctx, dma);
 444        else
 445                return dma_pool_free(xhci->medium_streams_pool,
 446                                stream_ctx, dma);
 447}
 448
 449/*
 450 * The stream context array for each endpoint with bulk streams enabled can
 451 * vary in size, based on:
 452 *  - how many streams the endpoint supports,
 453 *  - the maximum primary stream array size the host controller supports,
 454 *  - and how many streams the device driver asks for.
 455 *
 456 * The stream context array must be a power of 2, and can be as small as
 457 * 64 bytes or as large as 1MB.
 458 */
 459static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 460                unsigned int num_stream_ctxs, dma_addr_t *dma,
 461                gfp_t mem_flags)
 462{
 463        struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 464
 465        if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 466                return dma_alloc_coherent(&pdev->dev,
 467                                sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 468                                dma, mem_flags);
 469        else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 470                return dma_pool_alloc(xhci->small_streams_pool,
 471                                mem_flags, dma);
 472        else
 473                return dma_pool_alloc(xhci->medium_streams_pool,
 474                                mem_flags, dma);
 475}
 476
 477struct xhci_ring *xhci_dma_to_transfer_ring(
 478                struct xhci_virt_ep *ep,
 479                u64 address)
 480{
 481        if (ep->ep_state & EP_HAS_STREAMS)
 482                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 483                                address >> TRB_SEGMENT_SHIFT);
 484        return ep->ring;
 485}
 486
 487struct xhci_ring *xhci_stream_id_to_ring(
 488                struct xhci_virt_device *dev,
 489                unsigned int ep_index,
 490                unsigned int stream_id)
 491{
 492        struct xhci_virt_ep *ep = &dev->eps[ep_index];
 493
 494        if (stream_id == 0)
 495                return ep->ring;
 496        if (!ep->stream_info)
 497                return NULL;
 498
 499        if (stream_id > ep->stream_info->num_streams)
 500                return NULL;
 501        return ep->stream_info->stream_rings[stream_id];
 502}
 503
 504/*
 505 * Change an endpoint's internal structure so it supports stream IDs.  The
 506 * number of requested streams includes stream 0, which cannot be used by device
 507 * drivers.
 508 *
 509 * The number of stream contexts in the stream context array may be bigger than
 510 * the number of streams the driver wants to use.  This is because the number of
 511 * stream context array entries must be a power of two.
 512 *
 513 * We need a radix tree for mapping physical addresses of TRBs to which stream
 514 * ID they belong to.  We need to do this because the host controller won't tell
 515 * us which stream ring the TRB came from.  We could store the stream ID in an
 516 * event data TRB, but that doesn't help us for the cancellation case, since the
 517 * endpoint may stop before it reaches that event data TRB.
 518 *
 519 * The radix tree maps the upper portion of the TRB DMA address to a ring
 520 * segment that has the same upper portion of DMA addresses.  For example, say I
 521 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 522 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 523 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 524 * pass the radix tree a key to get the right stream ID:
 525 *
 526 *      0x10c90fff >> 10 = 0x43243
 527 *      0x10c912c0 >> 10 = 0x43244
 528 *      0x10c91400 >> 10 = 0x43245
 529 *
 530 * Obviously, only those TRBs with DMA addresses that are within the segment
 531 * will make the radix tree return the stream ID for that ring.
 532 *
 533 * Caveats for the radix tree:
 534 *
 535 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 536 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 537 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 538 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 539 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 540 * extended systems (where the DMA address can be bigger than 32-bits),
 541 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 542 */
 543struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 544                unsigned int num_stream_ctxs,
 545                unsigned int num_streams, gfp_t mem_flags)
 546{
 547        struct xhci_stream_info *stream_info;
 548        u32 cur_stream;
 549        struct xhci_ring *cur_ring;
 550        unsigned long key;
 551        u64 addr;
 552        int ret;
 553
 554        xhci_dbg(xhci, "Allocating %u streams and %u "
 555                        "stream context array entries.\n",
 556                        num_streams, num_stream_ctxs);
 557        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 558                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 559                return NULL;
 560        }
 561        xhci->cmd_ring_reserved_trbs++;
 562
 563        stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 564        if (!stream_info)
 565                goto cleanup_trbs;
 566
 567        stream_info->num_streams = num_streams;
 568        stream_info->num_stream_ctxs = num_stream_ctxs;
 569
 570        /* Initialize the array of virtual pointers to stream rings. */
 571        stream_info->stream_rings = kzalloc(
 572                        sizeof(struct xhci_ring *)*num_streams,
 573                        mem_flags);
 574        if (!stream_info->stream_rings)
 575                goto cleanup_info;
 576
 577        /* Initialize the array of DMA addresses for stream rings for the HW. */
 578        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 579                        num_stream_ctxs, &stream_info->ctx_array_dma,
 580                        mem_flags);
 581        if (!stream_info->stream_ctx_array)
 582                goto cleanup_ctx;
 583        memset(stream_info->stream_ctx_array, 0,
 584                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 585
 586        /* Allocate everything needed to free the stream rings later */
 587        stream_info->free_streams_command =
 588                xhci_alloc_command(xhci, true, true, mem_flags);
 589        if (!stream_info->free_streams_command)
 590                goto cleanup_ctx;
 591
 592        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 593
 594        /* Allocate rings for all the streams that the driver will use,
 595         * and add their segment DMA addresses to the radix tree.
 596         * Stream 0 is reserved.
 597         */
 598        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 599                stream_info->stream_rings[cur_stream] =
 600                        xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 601                cur_ring = stream_info->stream_rings[cur_stream];
 602                if (!cur_ring)
 603                        goto cleanup_rings;
 604                cur_ring->stream_id = cur_stream;
 605                /* Set deq ptr, cycle bit, and stream context type */
 606                addr = cur_ring->first_seg->dma |
 607                        SCT_FOR_CTX(SCT_PRI_TR) |
 608                        cur_ring->cycle_state;
 609                stream_info->stream_ctx_array[cur_stream].stream_ring =
 610                        cpu_to_le64(addr);
 611                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 612                                cur_stream, (unsigned long long) addr);
 613
 614                key = (unsigned long)
 615                        (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
 616                ret = radix_tree_insert(&stream_info->trb_address_map,
 617                                key, cur_ring);
 618                if (ret) {
 619                        xhci_ring_free(xhci, cur_ring);
 620                        stream_info->stream_rings[cur_stream] = NULL;
 621                        goto cleanup_rings;
 622                }
 623        }
 624        /* Leave the other unused stream ring pointers in the stream context
 625         * array initialized to zero.  This will cause the xHC to give us an
 626         * error if the device asks for a stream ID we don't have setup (if it
 627         * was any other way, the host controller would assume the ring is
 628         * "empty" and wait forever for data to be queued to that stream ID).
 629         */
 630
 631        return stream_info;
 632
 633cleanup_rings:
 634        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 635                cur_ring = stream_info->stream_rings[cur_stream];
 636                if (cur_ring) {
 637                        addr = cur_ring->first_seg->dma;
 638                        radix_tree_delete(&stream_info->trb_address_map,
 639                                        addr >> TRB_SEGMENT_SHIFT);
 640                        xhci_ring_free(xhci, cur_ring);
 641                        stream_info->stream_rings[cur_stream] = NULL;
 642                }
 643        }
 644        xhci_free_command(xhci, stream_info->free_streams_command);
 645cleanup_ctx:
 646        kfree(stream_info->stream_rings);
 647cleanup_info:
 648        kfree(stream_info);
 649cleanup_trbs:
 650        xhci->cmd_ring_reserved_trbs--;
 651        return NULL;
 652}
 653/*
 654 * Sets the MaxPStreams field and the Linear Stream Array field.
 655 * Sets the dequeue pointer to the stream context array.
 656 */
 657void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 658                struct xhci_ep_ctx *ep_ctx,
 659                struct xhci_stream_info *stream_info)
 660{
 661        u32 max_primary_streams;
 662        /* MaxPStreams is the number of stream context array entries, not the
 663         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 664         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 665         */
 666        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 667        xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 668                        "Setting number of stream ctx array entries to %u",
 669                        1 << (max_primary_streams + 1));
 670        ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 671        ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 672                                       | EP_HAS_LSA);
 673        ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 674}
 675
 676/*
 677 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 678 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 679 * not at the beginning of the ring).
 680 */
 681void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 682                struct xhci_ep_ctx *ep_ctx,
 683                struct xhci_virt_ep *ep)
 684{
 685        dma_addr_t addr;
 686        ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 687        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 688        ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 689}
 690
 691/* Frees all stream contexts associated with the endpoint,
 692 *
 693 * Caller should fix the endpoint context streams fields.
 694 */
 695void xhci_free_stream_info(struct xhci_hcd *xhci,
 696                struct xhci_stream_info *stream_info)
 697{
 698        int cur_stream;
 699        struct xhci_ring *cur_ring;
 700        dma_addr_t addr;
 701
 702        if (!stream_info)
 703                return;
 704
 705        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 706                        cur_stream++) {
 707                cur_ring = stream_info->stream_rings[cur_stream];
 708                if (cur_ring) {
 709                        addr = cur_ring->first_seg->dma;
 710                        radix_tree_delete(&stream_info->trb_address_map,
 711                                        addr >> TRB_SEGMENT_SHIFT);
 712                        xhci_ring_free(xhci, cur_ring);
 713                        stream_info->stream_rings[cur_stream] = NULL;
 714                }
 715        }
 716        xhci_free_command(xhci, stream_info->free_streams_command);
 717        xhci->cmd_ring_reserved_trbs--;
 718        if (stream_info->stream_ctx_array)
 719                xhci_free_stream_ctx(xhci,
 720                                stream_info->num_stream_ctxs,
 721                                stream_info->stream_ctx_array,
 722                                stream_info->ctx_array_dma);
 723
 724        if (stream_info)
 725                kfree(stream_info->stream_rings);
 726        kfree(stream_info);
 727}
 728
 729
 730/***************** Device context manipulation *************************/
 731
 732static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 733                struct xhci_virt_ep *ep)
 734{
 735        init_timer(&ep->stop_cmd_timer);
 736        ep->stop_cmd_timer.data = (unsigned long) ep;
 737        ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 738        ep->xhci = xhci;
 739}
 740
 741static void xhci_free_tt_info(struct xhci_hcd *xhci,
 742                struct xhci_virt_device *virt_dev,
 743                int slot_id)
 744{
 745        struct list_head *tt_list_head;
 746        struct xhci_tt_bw_info *tt_info, *next;
 747        bool slot_found = false;
 748
 749        /* If the device never made it past the Set Address stage,
 750         * it may not have the real_port set correctly.
 751         */
 752        if (virt_dev->real_port == 0 ||
 753                        virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 754                xhci_dbg(xhci, "Bad real port.\n");
 755                return;
 756        }
 757
 758        tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 759        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 760                /* Multi-TT hubs will have more than one entry */
 761                if (tt_info->slot_id == slot_id) {
 762                        slot_found = true;
 763                        list_del(&tt_info->tt_list);
 764                        kfree(tt_info);
 765                } else if (slot_found) {
 766                        break;
 767                }
 768        }
 769}
 770
 771int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 772                struct xhci_virt_device *virt_dev,
 773                struct usb_device *hdev,
 774                struct usb_tt *tt, gfp_t mem_flags)
 775{
 776        struct xhci_tt_bw_info          *tt_info;
 777        unsigned int                    num_ports;
 778        int                             i, j;
 779
 780        if (!tt->multi)
 781                num_ports = 1;
 782        else
 783                num_ports = hdev->maxchild;
 784
 785        for (i = 0; i < num_ports; i++, tt_info++) {
 786                struct xhci_interval_bw_table *bw_table;
 787
 788                tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 789                if (!tt_info)
 790                        goto free_tts;
 791                INIT_LIST_HEAD(&tt_info->tt_list);
 792                list_add(&tt_info->tt_list,
 793                                &xhci->rh_bw[virt_dev->real_port - 1].tts);
 794                tt_info->slot_id = virt_dev->udev->slot_id;
 795                if (tt->multi)
 796                        tt_info->ttport = i+1;
 797                bw_table = &tt_info->bw_table;
 798                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 799                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 800        }
 801        return 0;
 802
 803free_tts:
 804        xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 805        return -ENOMEM;
 806}
 807
 808
 809/* All the xhci_tds in the ring's TD list should be freed at this point.
 810 * Should be called with xhci->lock held if there is any chance the TT lists
 811 * will be manipulated by the configure endpoint, allocate device, or update
 812 * hub functions while this function is removing the TT entries from the list.
 813 */
 814void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 815{
 816        struct xhci_virt_device *dev;
 817        int i;
 818        int old_active_eps = 0;
 819
 820        /* Slot ID 0 is reserved */
 821        if (slot_id == 0 || !xhci->devs[slot_id])
 822                return;
 823
 824        dev = xhci->devs[slot_id];
 825        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 826        if (!dev)
 827                return;
 828
 829        if (dev->tt_info)
 830                old_active_eps = dev->tt_info->active_eps;
 831
 832        for (i = 0; i < 31; ++i) {
 833                if (dev->eps[i].ring)
 834                        xhci_ring_free(xhci, dev->eps[i].ring);
 835                if (dev->eps[i].stream_info)
 836                        xhci_free_stream_info(xhci,
 837                                        dev->eps[i].stream_info);
 838                /* Endpoints on the TT/root port lists should have been removed
 839                 * when usb_disable_device() was called for the device.
 840                 * We can't drop them anyway, because the udev might have gone
 841                 * away by this point, and we can't tell what speed it was.
 842                 */
 843                if (!list_empty(&dev->eps[i].bw_endpoint_list))
 844                        xhci_warn(xhci, "Slot %u endpoint %u "
 845                                        "not removed from BW list!\n",
 846                                        slot_id, i);
 847        }
 848        /* If this is a hub, free the TT(s) from the TT list */
 849        xhci_free_tt_info(xhci, dev, slot_id);
 850        /* If necessary, update the number of active TTs on this root port */
 851        xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 852
 853        if (dev->ring_cache) {
 854                for (i = 0; i < dev->num_rings_cached; i++)
 855                        xhci_ring_free(xhci, dev->ring_cache[i]);
 856                kfree(dev->ring_cache);
 857        }
 858
 859        if (dev->in_ctx)
 860                xhci_free_container_ctx(xhci, dev->in_ctx);
 861        if (dev->out_ctx)
 862                xhci_free_container_ctx(xhci, dev->out_ctx);
 863
 864        kfree(xhci->devs[slot_id]);
 865        xhci->devs[slot_id] = NULL;
 866}
 867
 868int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 869                struct usb_device *udev, gfp_t flags)
 870{
 871        struct xhci_virt_device *dev;
 872        int i;
 873
 874        /* Slot ID 0 is reserved */
 875        if (slot_id == 0 || xhci->devs[slot_id]) {
 876                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 877                return 0;
 878        }
 879
 880        xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 881        if (!xhci->devs[slot_id])
 882                return 0;
 883        dev = xhci->devs[slot_id];
 884
 885        /* Allocate the (output) device context that will be used in the HC. */
 886        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 887        if (!dev->out_ctx)
 888                goto fail;
 889
 890        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 891                        (unsigned long long)dev->out_ctx->dma);
 892
 893        /* Allocate the (input) device context for address device command */
 894        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 895        if (!dev->in_ctx)
 896                goto fail;
 897
 898        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 899                        (unsigned long long)dev->in_ctx->dma);
 900
 901        /* Initialize the cancellation list and watchdog timers for each ep */
 902        for (i = 0; i < 31; i++) {
 903                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 904                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 905                INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 906        }
 907
 908        /* Allocate endpoint 0 ring */
 909        dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
 910        if (!dev->eps[0].ring)
 911                goto fail;
 912
 913        /* Allocate pointers to the ring cache */
 914        dev->ring_cache = kzalloc(
 915                        sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 916                        flags);
 917        if (!dev->ring_cache)
 918                goto fail;
 919        dev->num_rings_cached = 0;
 920
 921        init_completion(&dev->cmd_completion);
 922        INIT_LIST_HEAD(&dev->cmd_list);
 923        dev->udev = udev;
 924
 925        /* Point to output device context in dcbaa. */
 926        xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 927        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 928                 slot_id,
 929                 &xhci->dcbaa->dev_context_ptrs[slot_id],
 930                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 931
 932        return 1;
 933fail:
 934        xhci_free_virt_device(xhci, slot_id);
 935        return 0;
 936}
 937
 938void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 939                struct usb_device *udev)
 940{
 941        struct xhci_virt_device *virt_dev;
 942        struct xhci_ep_ctx      *ep0_ctx;
 943        struct xhci_ring        *ep_ring;
 944
 945        virt_dev = xhci->devs[udev->slot_id];
 946        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 947        ep_ring = virt_dev->eps[0].ring;
 948        /*
 949         * FIXME we don't keep track of the dequeue pointer very well after a
 950         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
 951         * host to our enqueue pointer.  This should only be called after a
 952         * configured device has reset, so all control transfers should have
 953         * been completed or cancelled before the reset.
 954         */
 955        ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
 956                                                        ep_ring->enqueue)
 957                                   | ep_ring->cycle_state);
 958}
 959
 960/*
 961 * The xHCI roothub may have ports of differing speeds in any order in the port
 962 * status registers.  xhci->port_array provides an array of the port speed for
 963 * each offset into the port status registers.
 964 *
 965 * The xHCI hardware wants to know the roothub port number that the USB device
 966 * is attached to (or the roothub port its ancestor hub is attached to).  All we
 967 * know is the index of that port under either the USB 2.0 or the USB 3.0
 968 * roothub, but that doesn't give us the real index into the HW port status
 969 * registers. Call xhci_find_raw_port_number() to get real index.
 970 */
 971static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
 972                struct usb_device *udev)
 973{
 974        struct usb_device *top_dev;
 975        struct usb_hcd *hcd;
 976
 977        if (udev->speed == USB_SPEED_SUPER)
 978                hcd = xhci->shared_hcd;
 979        else
 980                hcd = xhci->main_hcd;
 981
 982        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 983                        top_dev = top_dev->parent)
 984                /* Found device below root hub */;
 985
 986        return  xhci_find_raw_port_number(hcd, top_dev->portnum);
 987}
 988
 989/* Setup an xHCI virtual device for a Set Address command */
 990int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
 991{
 992        struct xhci_virt_device *dev;
 993        struct xhci_ep_ctx      *ep0_ctx;
 994        struct xhci_slot_ctx    *slot_ctx;
 995        u32                     port_num;
 996        u32                     max_packets;
 997        struct usb_device *top_dev;
 998
 999        dev = xhci->devs[udev->slot_id];
1000        /* Slot ID 0 is reserved */
1001        if (udev->slot_id == 0 || !dev) {
1002                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1003                                udev->slot_id);
1004                return -EINVAL;
1005        }
1006        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1007        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1008
1009        /* 3) Only the control endpoint is valid - one endpoint context */
1010        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1011        switch (udev->speed) {
1012        case USB_SPEED_SUPER:
1013                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1014                max_packets = MAX_PACKET(512);
1015                break;
1016        case USB_SPEED_HIGH:
1017                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1018                max_packets = MAX_PACKET(64);
1019                break;
1020        /* USB core guesses at a 64-byte max packet first for FS devices */
1021        case USB_SPEED_FULL:
1022                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1023                max_packets = MAX_PACKET(64);
1024                break;
1025        case USB_SPEED_LOW:
1026                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1027                max_packets = MAX_PACKET(8);
1028                break;
1029        case USB_SPEED_WIRELESS:
1030                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1031                return -EINVAL;
1032                break;
1033        default:
1034                /* Speed was set earlier, this shouldn't happen. */
1035                return -EINVAL;
1036        }
1037        /* Find the root hub port this device is under */
1038        port_num = xhci_find_real_port_number(xhci, udev);
1039        if (!port_num)
1040                return -EINVAL;
1041        slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1042        /* Set the port number in the virtual_device to the faked port number */
1043        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1044                        top_dev = top_dev->parent)
1045                /* Found device below root hub */;
1046        dev->fake_port = top_dev->portnum;
1047        dev->real_port = port_num;
1048        xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1049        xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1050
1051        /* Find the right bandwidth table that this device will be a part of.
1052         * If this is a full speed device attached directly to a root port (or a
1053         * decendent of one), it counts as a primary bandwidth domain, not a
1054         * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1055         * will never be created for the HS root hub.
1056         */
1057        if (!udev->tt || !udev->tt->hub->parent) {
1058                dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1059        } else {
1060                struct xhci_root_port_bw_info *rh_bw;
1061                struct xhci_tt_bw_info *tt_bw;
1062
1063                rh_bw = &xhci->rh_bw[port_num - 1];
1064                /* Find the right TT. */
1065                list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1066                        if (tt_bw->slot_id != udev->tt->hub->slot_id)
1067                                continue;
1068
1069                        if (!dev->udev->tt->multi ||
1070                                        (udev->tt->multi &&
1071                                         tt_bw->ttport == dev->udev->ttport)) {
1072                                dev->bw_table = &tt_bw->bw_table;
1073                                dev->tt_info = tt_bw;
1074                                break;
1075                        }
1076                }
1077                if (!dev->tt_info)
1078                        xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1079        }
1080
1081        /* Is this a LS/FS device under an external HS hub? */
1082        if (udev->tt && udev->tt->hub->parent) {
1083                slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1084                                                (udev->ttport << 8));
1085                if (udev->tt->multi)
1086                        slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1087        }
1088        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1089        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1090
1091        /* Step 4 - ring already allocated */
1092        /* Step 5 */
1093        ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1094
1095        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1096        ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1097                                         max_packets);
1098
1099        ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1100                                   dev->eps[0].ring->cycle_state);
1101
1102        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1103
1104        return 0;
1105}
1106
1107/*
1108 * Convert interval expressed as 2^(bInterval - 1) == interval into
1109 * straight exponent value 2^n == interval.
1110 *
1111 */
1112static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1113                struct usb_host_endpoint *ep)
1114{
1115        unsigned int interval;
1116
1117        interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1118        if (interval != ep->desc.bInterval - 1)
1119                dev_warn(&udev->dev,
1120                         "ep %#x - rounding interval to %d %sframes\n",
1121                         ep->desc.bEndpointAddress,
1122                         1 << interval,
1123                         udev->speed == USB_SPEED_FULL ? "" : "micro");
1124
1125        if (udev->speed == USB_SPEED_FULL) {
1126                /*
1127                 * Full speed isoc endpoints specify interval in frames,
1128                 * not microframes. We are using microframes everywhere,
1129                 * so adjust accordingly.
1130                 */
1131                interval += 3;  /* 1 frame = 2^3 uframes */
1132        }
1133
1134        return interval;
1135}
1136
1137/*
1138 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1139 * microframes, rounded down to nearest power of 2.
1140 */
1141static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1142                struct usb_host_endpoint *ep, unsigned int desc_interval,
1143                unsigned int min_exponent, unsigned int max_exponent)
1144{
1145        unsigned int interval;
1146
1147        interval = fls(desc_interval) - 1;
1148        interval = clamp_val(interval, min_exponent, max_exponent);
1149        if ((1 << interval) != desc_interval)
1150                dev_warn(&udev->dev,
1151                         "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1152                         ep->desc.bEndpointAddress,
1153                         1 << interval,
1154                         desc_interval);
1155
1156        return interval;
1157}
1158
1159static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1160                struct usb_host_endpoint *ep)
1161{
1162        if (ep->desc.bInterval == 0)
1163                return 0;
1164        return xhci_microframes_to_exponent(udev, ep,
1165                        ep->desc.bInterval, 0, 15);
1166}
1167
1168
1169static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1170                struct usb_host_endpoint *ep)
1171{
1172        return xhci_microframes_to_exponent(udev, ep,
1173                        ep->desc.bInterval * 8, 3, 10);
1174}
1175
1176/* Return the polling or NAK interval.
1177 *
1178 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1179 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1180 *
1181 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1182 * is set to 0.
1183 */
1184static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1185                struct usb_host_endpoint *ep)
1186{
1187        unsigned int interval = 0;
1188
1189        switch (udev->speed) {
1190        case USB_SPEED_HIGH:
1191                /* Max NAK rate */
1192                if (usb_endpoint_xfer_control(&ep->desc) ||
1193                    usb_endpoint_xfer_bulk(&ep->desc)) {
1194                        interval = xhci_parse_microframe_interval(udev, ep);
1195                        break;
1196                }
1197                /* Fall through - SS and HS isoc/int have same decoding */
1198
1199        case USB_SPEED_SUPER:
1200                if (usb_endpoint_xfer_int(&ep->desc) ||
1201                    usb_endpoint_xfer_isoc(&ep->desc)) {
1202                        interval = xhci_parse_exponent_interval(udev, ep);
1203                }
1204                break;
1205
1206        case USB_SPEED_FULL:
1207                if (usb_endpoint_xfer_isoc(&ep->desc)) {
1208                        interval = xhci_parse_exponent_interval(udev, ep);
1209                        break;
1210                }
1211                /*
1212                 * Fall through for interrupt endpoint interval decoding
1213                 * since it uses the same rules as low speed interrupt
1214                 * endpoints.
1215                 */
1216
1217        case USB_SPEED_LOW:
1218                if (usb_endpoint_xfer_int(&ep->desc) ||
1219                    usb_endpoint_xfer_isoc(&ep->desc)) {
1220
1221                        interval = xhci_parse_frame_interval(udev, ep);
1222                }
1223                break;
1224
1225        default:
1226                BUG();
1227        }
1228        return EP_INTERVAL(interval);
1229}
1230
1231/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1232 * High speed endpoint descriptors can define "the number of additional
1233 * transaction opportunities per microframe", but that goes in the Max Burst
1234 * endpoint context field.
1235 */
1236static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1237                struct usb_host_endpoint *ep)
1238{
1239        if (udev->speed != USB_SPEED_SUPER ||
1240                        !usb_endpoint_xfer_isoc(&ep->desc))
1241                return 0;
1242        return ep->ss_ep_comp.bmAttributes;
1243}
1244
1245static u32 xhci_get_endpoint_type(struct usb_device *udev,
1246                struct usb_host_endpoint *ep)
1247{
1248        int in;
1249        u32 type;
1250
1251        in = usb_endpoint_dir_in(&ep->desc);
1252        if (usb_endpoint_xfer_control(&ep->desc)) {
1253                type = EP_TYPE(CTRL_EP);
1254        } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1255                if (in)
1256                        type = EP_TYPE(BULK_IN_EP);
1257                else
1258                        type = EP_TYPE(BULK_OUT_EP);
1259        } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1260                if (in)
1261                        type = EP_TYPE(ISOC_IN_EP);
1262                else
1263                        type = EP_TYPE(ISOC_OUT_EP);
1264        } else if (usb_endpoint_xfer_int(&ep->desc)) {
1265                if (in)
1266                        type = EP_TYPE(INT_IN_EP);
1267                else
1268                        type = EP_TYPE(INT_OUT_EP);
1269        } else {
1270                type = 0;
1271        }
1272        return type;
1273}
1274
1275/* Return the maximum endpoint service interval time (ESIT) payload.
1276 * Basically, this is the maxpacket size, multiplied by the burst size
1277 * and mult size.
1278 */
1279static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1280                struct usb_device *udev,
1281                struct usb_host_endpoint *ep)
1282{
1283        int max_burst;
1284        int max_packet;
1285
1286        /* Only applies for interrupt or isochronous endpoints */
1287        if (usb_endpoint_xfer_control(&ep->desc) ||
1288                        usb_endpoint_xfer_bulk(&ep->desc))
1289                return 0;
1290
1291        if (udev->speed == USB_SPEED_SUPER)
1292                return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1293
1294        max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1295        max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1296        /* A 0 in max burst means 1 transfer per ESIT */
1297        return max_packet * (max_burst + 1);
1298}
1299
1300/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1301 * Drivers will have to call usb_alloc_streams() to do that.
1302 */
1303int xhci_endpoint_init(struct xhci_hcd *xhci,
1304                struct xhci_virt_device *virt_dev,
1305                struct usb_device *udev,
1306                struct usb_host_endpoint *ep,
1307                gfp_t mem_flags)
1308{
1309        unsigned int ep_index;
1310        struct xhci_ep_ctx *ep_ctx;
1311        struct xhci_ring *ep_ring;
1312        unsigned int max_packet;
1313        unsigned int max_burst;
1314        enum xhci_ring_type type;
1315        u32 max_esit_payload;
1316        u32 endpoint_type;
1317
1318        ep_index = xhci_get_endpoint_index(&ep->desc);
1319        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1320
1321        endpoint_type = xhci_get_endpoint_type(udev, ep);
1322        if (!endpoint_type)
1323                return -EINVAL;
1324        ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1325
1326        type = usb_endpoint_type(&ep->desc);
1327        /* Set up the endpoint ring */
1328        virt_dev->eps[ep_index].new_ring =
1329                xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1330        if (!virt_dev->eps[ep_index].new_ring) {
1331                /* Attempt to use the ring cache */
1332                if (virt_dev->num_rings_cached == 0)
1333                        return -ENOMEM;
1334                virt_dev->eps[ep_index].new_ring =
1335                        virt_dev->ring_cache[virt_dev->num_rings_cached];
1336                virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1337                virt_dev->num_rings_cached--;
1338                xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1339                                        1, type);
1340        }
1341        virt_dev->eps[ep_index].skip = false;
1342        ep_ring = virt_dev->eps[ep_index].new_ring;
1343        ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1344
1345        ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1346                                      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1347
1348        /* FIXME dig Mult and streams info out of ep companion desc */
1349
1350        /* Allow 3 retries for everything but isoc;
1351         * CErr shall be set to 0 for Isoch endpoints.
1352         */
1353        if (!usb_endpoint_xfer_isoc(&ep->desc))
1354                ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1355        else
1356                ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1357
1358        /* Set the max packet size and max burst */
1359        max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1360        max_burst = 0;
1361        switch (udev->speed) {
1362        case USB_SPEED_SUPER:
1363                /* dig out max burst from ep companion desc */
1364                max_burst = ep->ss_ep_comp.bMaxBurst;
1365                break;
1366        case USB_SPEED_HIGH:
1367                /* Some devices get this wrong */
1368                if (usb_endpoint_xfer_bulk(&ep->desc))
1369                        max_packet = 512;
1370                /* bits 11:12 specify the number of additional transaction
1371                 * opportunities per microframe (USB 2.0, section 9.6.6)
1372                 */
1373                if (usb_endpoint_xfer_isoc(&ep->desc) ||
1374                                usb_endpoint_xfer_int(&ep->desc)) {
1375                        max_burst = (usb_endpoint_maxp(&ep->desc)
1376                                     & 0x1800) >> 11;
1377                }
1378                break;
1379        case USB_SPEED_FULL:
1380        case USB_SPEED_LOW:
1381                break;
1382        default:
1383                BUG();
1384        }
1385        ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1386                        MAX_BURST(max_burst));
1387        max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1388        ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1389
1390        /*
1391         * XXX no idea how to calculate the average TRB buffer length for bulk
1392         * endpoints, as the driver gives us no clue how big each scatter gather
1393         * list entry (or buffer) is going to be.
1394         *
1395         * For isochronous and interrupt endpoints, we set it to the max
1396         * available, until we have new API in the USB core to allow drivers to
1397         * declare how much bandwidth they actually need.
1398         *
1399         * Normally, it would be calculated by taking the total of the buffer
1400         * lengths in the TD and then dividing by the number of TRBs in a TD,
1401         * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1402         * use Event Data TRBs, and we don't chain in a link TRB on short
1403         * transfers, we're basically dividing by 1.
1404         *
1405         * xHCI 1.0 specification indicates that the Average TRB Length should
1406         * be set to 8 for control endpoints.
1407         */
1408        if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1409                ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1410        else
1411                ep_ctx->tx_info |=
1412                         cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1413
1414        /* FIXME Debug endpoint context */
1415        return 0;
1416}
1417
1418void xhci_endpoint_zero(struct xhci_hcd *xhci,
1419                struct xhci_virt_device *virt_dev,
1420                struct usb_host_endpoint *ep)
1421{
1422        unsigned int ep_index;
1423        struct xhci_ep_ctx *ep_ctx;
1424
1425        ep_index = xhci_get_endpoint_index(&ep->desc);
1426        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1427
1428        ep_ctx->ep_info = 0;
1429        ep_ctx->ep_info2 = 0;
1430        ep_ctx->deq = 0;
1431        ep_ctx->tx_info = 0;
1432        /* Don't free the endpoint ring until the set interface or configuration
1433         * request succeeds.
1434         */
1435}
1436
1437void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1438{
1439        bw_info->ep_interval = 0;
1440        bw_info->mult = 0;
1441        bw_info->num_packets = 0;
1442        bw_info->max_packet_size = 0;
1443        bw_info->type = 0;
1444        bw_info->max_esit_payload = 0;
1445}
1446
1447void xhci_update_bw_info(struct xhci_hcd *xhci,
1448                struct xhci_container_ctx *in_ctx,
1449                struct xhci_input_control_ctx *ctrl_ctx,
1450                struct xhci_virt_device *virt_dev)
1451{
1452        struct xhci_bw_info *bw_info;
1453        struct xhci_ep_ctx *ep_ctx;
1454        unsigned int ep_type;
1455        int i;
1456
1457        for (i = 1; i < 31; ++i) {
1458                bw_info = &virt_dev->eps[i].bw_info;
1459
1460                /* We can't tell what endpoint type is being dropped, but
1461                 * unconditionally clearing the bandwidth info for non-periodic
1462                 * endpoints should be harmless because the info will never be
1463                 * set in the first place.
1464                 */
1465                if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1466                        /* Dropped endpoint */
1467                        xhci_clear_endpoint_bw_info(bw_info);
1468                        continue;
1469                }
1470
1471                if (EP_IS_ADDED(ctrl_ctx, i)) {
1472                        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1473                        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1474
1475                        /* Ignore non-periodic endpoints */
1476                        if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1477                                        ep_type != ISOC_IN_EP &&
1478                                        ep_type != INT_IN_EP)
1479                                continue;
1480
1481                        /* Added or changed endpoint */
1482                        bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1483                                        le32_to_cpu(ep_ctx->ep_info));
1484                        /* Number of packets and mult are zero-based in the
1485                         * input context, but we want one-based for the
1486                         * interval table.
1487                         */
1488                        bw_info->mult = CTX_TO_EP_MULT(
1489                                        le32_to_cpu(ep_ctx->ep_info)) + 1;
1490                        bw_info->num_packets = CTX_TO_MAX_BURST(
1491                                        le32_to_cpu(ep_ctx->ep_info2)) + 1;
1492                        bw_info->max_packet_size = MAX_PACKET_DECODED(
1493                                        le32_to_cpu(ep_ctx->ep_info2));
1494                        bw_info->type = ep_type;
1495                        bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1496                                        le32_to_cpu(ep_ctx->tx_info));
1497                }
1498        }
1499}
1500
1501/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1502 * Useful when you want to change one particular aspect of the endpoint and then
1503 * issue a configure endpoint command.
1504 */
1505void xhci_endpoint_copy(struct xhci_hcd *xhci,
1506                struct xhci_container_ctx *in_ctx,
1507                struct xhci_container_ctx *out_ctx,
1508                unsigned int ep_index)
1509{
1510        struct xhci_ep_ctx *out_ep_ctx;
1511        struct xhci_ep_ctx *in_ep_ctx;
1512
1513        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1514        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1515
1516        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1517        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1518        in_ep_ctx->deq = out_ep_ctx->deq;
1519        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1520}
1521
1522/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1523 * Useful when you want to change one particular aspect of the endpoint and then
1524 * issue a configure endpoint command.  Only the context entries field matters,
1525 * but we'll copy the whole thing anyway.
1526 */
1527void xhci_slot_copy(struct xhci_hcd *xhci,
1528                struct xhci_container_ctx *in_ctx,
1529                struct xhci_container_ctx *out_ctx)
1530{
1531        struct xhci_slot_ctx *in_slot_ctx;
1532        struct xhci_slot_ctx *out_slot_ctx;
1533
1534        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1535        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1536
1537        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1538        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1539        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1540        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1541}
1542
1543/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1544static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1545{
1546        int i;
1547        struct device *dev = xhci_to_hcd(xhci)->self.controller;
1548        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1549
1550        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1551                        "Allocating %d scratchpad buffers", num_sp);
1552
1553        if (!num_sp)
1554                return 0;
1555
1556        xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1557        if (!xhci->scratchpad)
1558                goto fail_sp;
1559
1560        xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1561                                     num_sp * sizeof(u64),
1562                                     &xhci->scratchpad->sp_dma, flags);
1563        if (!xhci->scratchpad->sp_array)
1564                goto fail_sp2;
1565
1566        xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1567        if (!xhci->scratchpad->sp_buffers)
1568                goto fail_sp3;
1569
1570        xhci->scratchpad->sp_dma_buffers =
1571                kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1572
1573        if (!xhci->scratchpad->sp_dma_buffers)
1574                goto fail_sp4;
1575
1576        xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1577        for (i = 0; i < num_sp; i++) {
1578                dma_addr_t dma;
1579                void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1580                                flags);
1581                if (!buf)
1582                        goto fail_sp5;
1583
1584                xhci->scratchpad->sp_array[i] = dma;
1585                xhci->scratchpad->sp_buffers[i] = buf;
1586                xhci->scratchpad->sp_dma_buffers[i] = dma;
1587        }
1588
1589        return 0;
1590
1591 fail_sp5:
1592        for (i = i - 1; i >= 0; i--) {
1593                dma_free_coherent(dev, xhci->page_size,
1594                                    xhci->scratchpad->sp_buffers[i],
1595                                    xhci->scratchpad->sp_dma_buffers[i]);
1596        }
1597        kfree(xhci->scratchpad->sp_dma_buffers);
1598
1599 fail_sp4:
1600        kfree(xhci->scratchpad->sp_buffers);
1601
1602 fail_sp3:
1603        dma_free_coherent(dev, num_sp * sizeof(u64),
1604                            xhci->scratchpad->sp_array,
1605                            xhci->scratchpad->sp_dma);
1606
1607 fail_sp2:
1608        kfree(xhci->scratchpad);
1609        xhci->scratchpad = NULL;
1610
1611 fail_sp:
1612        return -ENOMEM;
1613}
1614
1615static void scratchpad_free(struct xhci_hcd *xhci)
1616{
1617        int num_sp;
1618        int i;
1619        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1620
1621        if (!xhci->scratchpad)
1622                return;
1623
1624        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1625
1626        for (i = 0; i < num_sp; i++) {
1627                dma_free_coherent(&pdev->dev, xhci->page_size,
1628                                    xhci->scratchpad->sp_buffers[i],
1629                                    xhci->scratchpad->sp_dma_buffers[i]);
1630        }
1631        kfree(xhci->scratchpad->sp_dma_buffers);
1632        kfree(xhci->scratchpad->sp_buffers);
1633        dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1634                            xhci->scratchpad->sp_array,
1635                            xhci->scratchpad->sp_dma);
1636        kfree(xhci->scratchpad);
1637        xhci->scratchpad = NULL;
1638}
1639
1640struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1641                bool allocate_in_ctx, bool allocate_completion,
1642                gfp_t mem_flags)
1643{
1644        struct xhci_command *command;
1645
1646        command = kzalloc(sizeof(*command), mem_flags);
1647        if (!command)
1648                return NULL;
1649
1650        if (allocate_in_ctx) {
1651                command->in_ctx =
1652                        xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1653                                        mem_flags);
1654                if (!command->in_ctx) {
1655                        kfree(command);
1656                        return NULL;
1657                }
1658        }
1659
1660        if (allocate_completion) {
1661                command->completion =
1662                        kzalloc(sizeof(struct completion), mem_flags);
1663                if (!command->completion) {
1664                        xhci_free_container_ctx(xhci, command->in_ctx);
1665                        kfree(command);
1666                        return NULL;
1667                }
1668                init_completion(command->completion);
1669        }
1670
1671        command->status = 0;
1672        INIT_LIST_HEAD(&command->cmd_list);
1673        return command;
1674}
1675
1676void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1677{
1678        if (urb_priv) {
1679                kfree(urb_priv->td[0]);
1680                kfree(urb_priv);
1681        }
1682}
1683
1684void xhci_free_command(struct xhci_hcd *xhci,
1685                struct xhci_command *command)
1686{
1687        xhci_free_container_ctx(xhci,
1688                        command->in_ctx);
1689        kfree(command->completion);
1690        kfree(command);
1691}
1692
1693void xhci_mem_cleanup(struct xhci_hcd *xhci)
1694{
1695        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1696        struct xhci_cd  *cur_cd, *next_cd;
1697        int size;
1698        int i, j, num_ports;
1699
1700        /* Free the Event Ring Segment Table and the actual Event Ring */
1701        size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1702        if (xhci->erst.entries)
1703                dma_free_coherent(&pdev->dev, size,
1704                                xhci->erst.entries, xhci->erst.erst_dma_addr);
1705        xhci->erst.entries = NULL;
1706        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1707        if (xhci->event_ring)
1708                xhci_ring_free(xhci, xhci->event_ring);
1709        xhci->event_ring = NULL;
1710        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1711
1712        if (xhci->lpm_command)
1713                xhci_free_command(xhci, xhci->lpm_command);
1714        xhci->cmd_ring_reserved_trbs = 0;
1715        if (xhci->cmd_ring)
1716                xhci_ring_free(xhci, xhci->cmd_ring);
1717        xhci->cmd_ring = NULL;
1718        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1719        list_for_each_entry_safe(cur_cd, next_cd,
1720                        &xhci->cancel_cmd_list, cancel_cmd_list) {
1721                list_del(&cur_cd->cancel_cmd_list);
1722                kfree(cur_cd);
1723        }
1724
1725        for (i = 1; i < MAX_HC_SLOTS; ++i)
1726                xhci_free_virt_device(xhci, i);
1727
1728        if (xhci->segment_pool)
1729                dma_pool_destroy(xhci->segment_pool);
1730        xhci->segment_pool = NULL;
1731        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1732
1733        if (xhci->device_pool)
1734                dma_pool_destroy(xhci->device_pool);
1735        xhci->device_pool = NULL;
1736        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1737
1738        if (xhci->small_streams_pool)
1739                dma_pool_destroy(xhci->small_streams_pool);
1740        xhci->small_streams_pool = NULL;
1741        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1742                        "Freed small stream array pool");
1743
1744        if (xhci->medium_streams_pool)
1745                dma_pool_destroy(xhci->medium_streams_pool);
1746        xhci->medium_streams_pool = NULL;
1747        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1748                        "Freed medium stream array pool");
1749
1750        if (xhci->dcbaa)
1751                dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1752                                xhci->dcbaa, xhci->dcbaa->dma);
1753        xhci->dcbaa = NULL;
1754
1755        scratchpad_free(xhci);
1756
1757        if (!xhci->rh_bw)
1758                goto no_bw;
1759
1760        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1761        for (i = 0; i < num_ports; i++) {
1762                struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1763                for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1764                        struct list_head *ep = &bwt->interval_bw[j].endpoints;
1765                        while (!list_empty(ep))
1766                                list_del_init(ep->next);
1767                }
1768        }
1769
1770        for (i = 0; i < num_ports; i++) {
1771                struct xhci_tt_bw_info *tt, *n;
1772                list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1773                        list_del(&tt->tt_list);
1774                        kfree(tt);
1775                }
1776        }
1777
1778no_bw:
1779        xhci->num_usb2_ports = 0;
1780        xhci->num_usb3_ports = 0;
1781        xhci->num_active_eps = 0;
1782        kfree(xhci->usb2_ports);
1783        kfree(xhci->usb3_ports);
1784        kfree(xhci->port_array);
1785        kfree(xhci->rh_bw);
1786        kfree(xhci->ext_caps);
1787
1788        xhci->page_size = 0;
1789        xhci->page_shift = 0;
1790        xhci->bus_state[0].bus_suspended = 0;
1791        xhci->bus_state[1].bus_suspended = 0;
1792}
1793
1794static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1795                struct xhci_segment *input_seg,
1796                union xhci_trb *start_trb,
1797                union xhci_trb *end_trb,
1798                dma_addr_t input_dma,
1799                struct xhci_segment *result_seg,
1800                char *test_name, int test_number)
1801{
1802        unsigned long long start_dma;
1803        unsigned long long end_dma;
1804        struct xhci_segment *seg;
1805
1806        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1807        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1808
1809        seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1810        if (seg != result_seg) {
1811                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1812                                test_name, test_number);
1813                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1814                                "input DMA 0x%llx\n",
1815                                input_seg,
1816                                (unsigned long long) input_dma);
1817                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1818                                "ending TRB %p (0x%llx DMA)\n",
1819                                start_trb, start_dma,
1820                                end_trb, end_dma);
1821                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1822                                result_seg, seg);
1823                return -1;
1824        }
1825        return 0;
1826}
1827
1828/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1829static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1830{
1831        struct {
1832                dma_addr_t              input_dma;
1833                struct xhci_segment     *result_seg;
1834        } simple_test_vector [] = {
1835                /* A zeroed DMA field should fail */
1836                { 0, NULL },
1837                /* One TRB before the ring start should fail */
1838                { xhci->event_ring->first_seg->dma - 16, NULL },
1839                /* One byte before the ring start should fail */
1840                { xhci->event_ring->first_seg->dma - 1, NULL },
1841                /* Starting TRB should succeed */
1842                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1843                /* Ending TRB should succeed */
1844                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1845                        xhci->event_ring->first_seg },
1846                /* One byte after the ring end should fail */
1847                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1848                /* One TRB after the ring end should fail */
1849                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1850                /* An address of all ones should fail */
1851                { (dma_addr_t) (~0), NULL },
1852        };
1853        struct {
1854                struct xhci_segment     *input_seg;
1855                union xhci_trb          *start_trb;
1856                union xhci_trb          *end_trb;
1857                dma_addr_t              input_dma;
1858                struct xhci_segment     *result_seg;
1859        } complex_test_vector [] = {
1860                /* Test feeding a valid DMA address from a different ring */
1861                {       .input_seg = xhci->event_ring->first_seg,
1862                        .start_trb = xhci->event_ring->first_seg->trbs,
1863                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1864                        .input_dma = xhci->cmd_ring->first_seg->dma,
1865                        .result_seg = NULL,
1866                },
1867                /* Test feeding a valid end TRB from a different ring */
1868                {       .input_seg = xhci->event_ring->first_seg,
1869                        .start_trb = xhci->event_ring->first_seg->trbs,
1870                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1871                        .input_dma = xhci->cmd_ring->first_seg->dma,
1872                        .result_seg = NULL,
1873                },
1874                /* Test feeding a valid start and end TRB from a different ring */
1875                {       .input_seg = xhci->event_ring->first_seg,
1876                        .start_trb = xhci->cmd_ring->first_seg->trbs,
1877                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1878                        .input_dma = xhci->cmd_ring->first_seg->dma,
1879                        .result_seg = NULL,
1880                },
1881                /* TRB in this ring, but after this TD */
1882                {       .input_seg = xhci->event_ring->first_seg,
1883                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
1884                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
1885                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1886                        .result_seg = NULL,
1887                },
1888                /* TRB in this ring, but before this TD */
1889                {       .input_seg = xhci->event_ring->first_seg,
1890                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
1891                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
1892                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1893                        .result_seg = NULL,
1894                },
1895                /* TRB in this ring, but after this wrapped TD */
1896                {       .input_seg = xhci->event_ring->first_seg,
1897                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1898                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1899                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1900                        .result_seg = NULL,
1901                },
1902                /* TRB in this ring, but before this wrapped TD */
1903                {       .input_seg = xhci->event_ring->first_seg,
1904                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1905                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1906                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1907                        .result_seg = NULL,
1908                },
1909                /* TRB not in this ring, and we have a wrapped TD */
1910                {       .input_seg = xhci->event_ring->first_seg,
1911                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1912                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1913                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1914                        .result_seg = NULL,
1915                },
1916        };
1917
1918        unsigned int num_tests;
1919        int i, ret;
1920
1921        num_tests = ARRAY_SIZE(simple_test_vector);
1922        for (i = 0; i < num_tests; i++) {
1923                ret = xhci_test_trb_in_td(xhci,
1924                                xhci->event_ring->first_seg,
1925                                xhci->event_ring->first_seg->trbs,
1926                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1927                                simple_test_vector[i].input_dma,
1928                                simple_test_vector[i].result_seg,
1929                                "Simple", i);
1930                if (ret < 0)
1931                        return ret;
1932        }
1933
1934        num_tests = ARRAY_SIZE(complex_test_vector);
1935        for (i = 0; i < num_tests; i++) {
1936                ret = xhci_test_trb_in_td(xhci,
1937                                complex_test_vector[i].input_seg,
1938                                complex_test_vector[i].start_trb,
1939                                complex_test_vector[i].end_trb,
1940                                complex_test_vector[i].input_dma,
1941                                complex_test_vector[i].result_seg,
1942                                "Complex", i);
1943                if (ret < 0)
1944                        return ret;
1945        }
1946        xhci_dbg(xhci, "TRB math tests passed.\n");
1947        return 0;
1948}
1949
1950static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1951{
1952        u64 temp;
1953        dma_addr_t deq;
1954
1955        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1956                        xhci->event_ring->dequeue);
1957        if (deq == 0 && !in_interrupt())
1958                xhci_warn(xhci, "WARN something wrong with SW event ring "
1959                                "dequeue ptr.\n");
1960        /* Update HC event ring dequeue pointer */
1961        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1962        temp &= ERST_PTR_MASK;
1963        /* Don't clear the EHB bit (which is RW1C) because
1964         * there might be more events to service.
1965         */
1966        temp &= ~ERST_EHB;
1967        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1968                        "// Write event ring dequeue pointer, "
1969                        "preserving EHB bit");
1970        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1971                        &xhci->ir_set->erst_dequeue);
1972}
1973
1974static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1975                __le32 __iomem *addr, u8 major_revision, int max_caps)
1976{
1977        u32 temp, port_offset, port_count;
1978        int i;
1979
1980        if (major_revision > 0x03) {
1981                xhci_warn(xhci, "Ignoring unknown port speed, "
1982                                "Ext Cap %p, revision = 0x%x\n",
1983                                addr, major_revision);
1984                /* Ignoring port protocol we can't understand. FIXME */
1985                return;
1986        }
1987
1988        /* Port offset and count in the third dword, see section 7.2 */
1989        temp = xhci_readl(xhci, addr + 2);
1990        port_offset = XHCI_EXT_PORT_OFF(temp);
1991        port_count = XHCI_EXT_PORT_COUNT(temp);
1992        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1993                        "Ext Cap %p, port offset = %u, "
1994                        "count = %u, revision = 0x%x",
1995                        addr, port_offset, port_count, major_revision);
1996        /* Port count includes the current port offset */
1997        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1998                /* WTF? "Valid values are ‘1’ to MaxPorts" */
1999                return;
2000
2001        /* cache usb2 port capabilities */
2002        if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2003                xhci->ext_caps[xhci->num_ext_caps++] = temp;
2004
2005        /* Check the host's USB2 LPM capability */
2006        if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2007                        (temp & XHCI_L1C)) {
2008                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2009                                "xHCI 0.96: support USB2 software lpm");
2010                xhci->sw_lpm_support = 1;
2011        }
2012
2013        if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2014                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2015                                "xHCI 1.0: support USB2 software lpm");
2016                xhci->sw_lpm_support = 1;
2017                if (temp & XHCI_HLC) {
2018                        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2019                                        "xHCI 1.0: support USB2 hardware lpm");
2020                        xhci->hw_lpm_support = 1;
2021                }
2022        }
2023
2024        port_offset--;
2025        for (i = port_offset; i < (port_offset + port_count); i++) {
2026                /* Duplicate entry.  Ignore the port if the revisions differ. */
2027                if (xhci->port_array[i] != 0) {
2028                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2029                                        " port %u\n", addr, i);
2030                        xhci_warn(xhci, "Port was marked as USB %u, "
2031                                        "duplicated as USB %u\n",
2032                                        xhci->port_array[i], major_revision);
2033                        /* Only adjust the roothub port counts if we haven't
2034                         * found a similar duplicate.
2035                         */
2036                        if (xhci->port_array[i] != major_revision &&
2037                                xhci->port_array[i] != DUPLICATE_ENTRY) {
2038                                if (xhci->port_array[i] == 0x03)
2039                                        xhci->num_usb3_ports--;
2040                                else
2041                                        xhci->num_usb2_ports--;
2042                                xhci->port_array[i] = DUPLICATE_ENTRY;
2043                        }
2044                        /* FIXME: Should we disable the port? */
2045                        continue;
2046                }
2047                xhci->port_array[i] = major_revision;
2048                if (major_revision == 0x03)
2049                        xhci->num_usb3_ports++;
2050                else
2051                        xhci->num_usb2_ports++;
2052        }
2053        /* FIXME: Should we disable ports not in the Extended Capabilities? */
2054}
2055
2056/*
2057 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2058 * specify what speeds each port is supposed to be.  We can't count on the port
2059 * speed bits in the PORTSC register being correct until a device is connected,
2060 * but we need to set up the two fake roothubs with the correct number of USB
2061 * 3.0 and USB 2.0 ports at host controller initialization time.
2062 */
2063static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2064{
2065        __le32 __iomem *addr, *tmp_addr;
2066        u32 offset, tmp_offset;
2067        unsigned int num_ports;
2068        int i, j, port_index;
2069        int cap_count = 0;
2070
2071        addr = &xhci->cap_regs->hcc_params;
2072        offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2073        if (offset == 0) {
2074                xhci_err(xhci, "No Extended Capability registers, "
2075                                "unable to set up roothub.\n");
2076                return -ENODEV;
2077        }
2078
2079        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2080        xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2081        if (!xhci->port_array)
2082                return -ENOMEM;
2083
2084        xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2085        if (!xhci->rh_bw)
2086                return -ENOMEM;
2087        for (i = 0; i < num_ports; i++) {
2088                struct xhci_interval_bw_table *bw_table;
2089
2090                INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2091                bw_table = &xhci->rh_bw[i].bw_table;
2092                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2093                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2094        }
2095
2096        /*
2097         * For whatever reason, the first capability offset is from the
2098         * capability register base, not from the HCCPARAMS register.
2099         * See section 5.3.6 for offset calculation.
2100         */
2101        addr = &xhci->cap_regs->hc_capbase + offset;
2102
2103        tmp_addr = addr;
2104        tmp_offset = offset;
2105
2106        /* count extended protocol capability entries for later caching */
2107        do {
2108                u32 cap_id;
2109                cap_id = xhci_readl(xhci, tmp_addr);
2110                if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2111                        cap_count++;
2112                tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2113                tmp_addr += tmp_offset;
2114        } while (tmp_offset);
2115
2116        xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2117        if (!xhci->ext_caps)
2118                return -ENOMEM;
2119
2120        while (1) {
2121                u32 cap_id;
2122
2123                cap_id = xhci_readl(xhci, addr);
2124                if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2125                        xhci_add_in_port(xhci, num_ports, addr,
2126                                        (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2127                                        cap_count);
2128                offset = XHCI_EXT_CAPS_NEXT(cap_id);
2129                if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2130                                == num_ports)
2131                        break;
2132                /*
2133                 * Once you're into the Extended Capabilities, the offset is
2134                 * always relative to the register holding the offset.
2135                 */
2136                addr += offset;
2137        }
2138
2139        if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2140                xhci_warn(xhci, "No ports on the roothubs?\n");
2141                return -ENODEV;
2142        }
2143        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2144                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2145                        xhci->num_usb2_ports, xhci->num_usb3_ports);
2146
2147        /* Place limits on the number of roothub ports so that the hub
2148         * descriptors aren't longer than the USB core will allocate.
2149         */
2150        if (xhci->num_usb3_ports > 15) {
2151                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2152                                "Limiting USB 3.0 roothub ports to 15.");
2153                xhci->num_usb3_ports = 15;
2154        }
2155        if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2156                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2157                                "Limiting USB 2.0 roothub ports to %u.",
2158                                USB_MAXCHILDREN);
2159                xhci->num_usb2_ports = USB_MAXCHILDREN;
2160        }
2161
2162        /*
2163         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2164         * Not sure how the USB core will handle a hub with no ports...
2165         */
2166        if (xhci->num_usb2_ports) {
2167                xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2168                                xhci->num_usb2_ports, flags);
2169                if (!xhci->usb2_ports)
2170                        return -ENOMEM;
2171
2172                port_index = 0;
2173                for (i = 0; i < num_ports; i++) {
2174                        if (xhci->port_array[i] == 0x03 ||
2175                                        xhci->port_array[i] == 0 ||
2176                                        xhci->port_array[i] == DUPLICATE_ENTRY)
2177                                continue;
2178
2179                        xhci->usb2_ports[port_index] =
2180                                &xhci->op_regs->port_status_base +
2181                                NUM_PORT_REGS*i;
2182                        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2183                                        "USB 2.0 port at index %u, "
2184                                        "addr = %p", i,
2185                                        xhci->usb2_ports[port_index]);
2186                        port_index++;
2187                        if (port_index == xhci->num_usb2_ports)
2188                                break;
2189                }
2190        }
2191        if (xhci->num_usb3_ports) {
2192                xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2193                                xhci->num_usb3_ports, flags);
2194                if (!xhci->usb3_ports)
2195                        return -ENOMEM;
2196
2197                port_index = 0;
2198                for (i = 0; i < num_ports; i++)
2199                        if (xhci->port_array[i] == 0x03) {
2200                                xhci->usb3_ports[port_index] =
2201                                        &xhci->op_regs->port_status_base +
2202                                        NUM_PORT_REGS*i;
2203                                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2204                                                "USB 3.0 port at index %u, "
2205                                                "addr = %p", i,
2206                                                xhci->usb3_ports[port_index]);
2207                                port_index++;
2208                                if (port_index == xhci->num_usb3_ports)
2209                                        break;
2210                        }
2211        }
2212        return 0;
2213}
2214
2215int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2216{
2217        dma_addr_t      dma;
2218        struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2219        unsigned int    val, val2;
2220        u64             val_64;
2221        struct xhci_segment     *seg;
2222        u32 page_size, temp;
2223        int i;
2224
2225        INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2226
2227        page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2228        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2229                        "Supported page size register = 0x%x", page_size);
2230        for (i = 0; i < 16; i++) {
2231                if ((0x1 & page_size) != 0)
2232                        break;
2233                page_size = page_size >> 1;
2234        }
2235        if (i < 16)
2236                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2237                        "Supported page size of %iK", (1 << (i+12)) / 1024);
2238        else
2239                xhci_warn(xhci, "WARN: no supported page size\n");
2240        /* Use 4K pages, since that's common and the minimum the HC supports */
2241        xhci->page_shift = 12;
2242        xhci->page_size = 1 << xhci->page_shift;
2243        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2244                        "HCD page size set to %iK", xhci->page_size / 1024);
2245
2246        /*
2247         * Program the Number of Device Slots Enabled field in the CONFIG
2248         * register with the max value of slots the HC can handle.
2249         */
2250        val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2251        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2252                        "// xHC can handle at most %d device slots.", val);
2253        val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2254        val |= (val2 & ~HCS_SLOTS_MASK);
2255        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2256                        "// Setting Max device slots reg = 0x%x.", val);
2257        xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2258
2259        /*
2260         * Section 5.4.8 - doorbell array must be
2261         * "physically contiguous and 64-byte (cache line) aligned".
2262         */
2263        xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2264                        GFP_KERNEL);
2265        if (!xhci->dcbaa)
2266                goto fail;
2267        memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2268        xhci->dcbaa->dma = dma;
2269        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2270                        "// Device context base array address = 0x%llx (DMA), %p (virt)",
2271                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2272        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2273
2274        /*
2275         * Initialize the ring segment pool.  The ring must be a contiguous
2276         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2277         * however, the command ring segment needs 64-byte aligned segments,
2278         * so we pick the greater alignment need.
2279         */
2280        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2281                        TRB_SEGMENT_SIZE, 64, xhci->page_size);
2282
2283        /* See Table 46 and Note on Figure 55 */
2284        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2285                        2112, 64, xhci->page_size);
2286        if (!xhci->segment_pool || !xhci->device_pool)
2287                goto fail;
2288
2289        /* Linear stream context arrays don't have any boundary restrictions,
2290         * and only need to be 16-byte aligned.
2291         */
2292        xhci->small_streams_pool =
2293                dma_pool_create("xHCI 256 byte stream ctx arrays",
2294                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2295        xhci->medium_streams_pool =
2296                dma_pool_create("xHCI 1KB stream ctx arrays",
2297                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2298        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2299         * will be allocated with dma_alloc_coherent()
2300         */
2301
2302        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2303                goto fail;
2304
2305        /* Set up the command ring to have one segments for now. */
2306        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2307        if (!xhci->cmd_ring)
2308                goto fail;
2309        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2310                        "Allocated command ring at %p", xhci->cmd_ring);
2311        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2312                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
2313
2314        /* Set the address in the Command Ring Control register */
2315        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2316        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2317                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2318                xhci->cmd_ring->cycle_state;
2319        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2320                        "// Setting command ring address to 0x%x", val);
2321        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2322        xhci_dbg_cmd_ptrs(xhci);
2323
2324        xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2325        if (!xhci->lpm_command)
2326                goto fail;
2327
2328        /* Reserve one command ring TRB for disabling LPM.
2329         * Since the USB core grabs the shared usb_bus bandwidth mutex before
2330         * disabling LPM, we only need to reserve one TRB for all devices.
2331         */
2332        xhci->cmd_ring_reserved_trbs++;
2333
2334        val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2335        val &= DBOFF_MASK;
2336        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2337                        "// Doorbell array is located at offset 0x%x"
2338                        " from cap regs base addr", val);
2339        xhci->dba = (void __iomem *) xhci->cap_regs + val;
2340        xhci_dbg_regs(xhci);
2341        xhci_print_run_regs(xhci);
2342        /* Set ir_set to interrupt register set 0 */
2343        xhci->ir_set = &xhci->run_regs->ir_set[0];
2344
2345        /*
2346         * Event ring setup: Allocate a normal ring, but also setup
2347         * the event ring segment table (ERST).  Section 4.9.3.
2348         */
2349        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2350        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2351                                                flags);
2352        if (!xhci->event_ring)
2353                goto fail;
2354        if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2355                goto fail;
2356
2357        xhci->erst.entries = dma_alloc_coherent(dev,
2358                        sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2359                        GFP_KERNEL);
2360        if (!xhci->erst.entries)
2361                goto fail;
2362        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2363                        "// Allocated event ring segment table at 0x%llx",
2364                        (unsigned long long)dma);
2365
2366        memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2367        xhci->erst.num_entries = ERST_NUM_SEGS;
2368        xhci->erst.erst_dma_addr = dma;
2369        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2370                        "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2371                        xhci->erst.num_entries,
2372                        xhci->erst.entries,
2373                        (unsigned long long)xhci->erst.erst_dma_addr);
2374
2375        /* set ring base address and size for each segment table entry */
2376        for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2377                struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2378                entry->seg_addr = cpu_to_le64(seg->dma);
2379                entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2380                entry->rsvd = 0;
2381                seg = seg->next;
2382        }
2383
2384        /* set ERST count with the number of entries in the segment table */
2385        val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2386        val &= ERST_SIZE_MASK;
2387        val |= ERST_NUM_SEGS;
2388        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2389                        "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2390                        val);
2391        xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2392
2393        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2394                        "// Set ERST entries to point to event ring.");
2395        /* set the segment table base address */
2396        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397                        "// Set ERST base address for ir_set 0 = 0x%llx",
2398                        (unsigned long long)xhci->erst.erst_dma_addr);
2399        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2400        val_64 &= ERST_PTR_MASK;
2401        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2402        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2403
2404        /* Set the event ring dequeue address */
2405        xhci_set_hc_event_deq(xhci);
2406        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2407                        "Wrote ERST address to ir_set 0.");
2408        xhci_print_ir_set(xhci, 0);
2409
2410        /*
2411         * XXX: Might need to set the Interrupter Moderation Register to
2412         * something other than the default (~1ms minimum between interrupts).
2413         * See section 5.5.1.2.
2414         */
2415        init_completion(&xhci->addr_dev);
2416        for (i = 0; i < MAX_HC_SLOTS; ++i)
2417                xhci->devs[i] = NULL;
2418        for (i = 0; i < USB_MAXCHILDREN; ++i) {
2419                xhci->bus_state[0].resume_done[i] = 0;
2420                xhci->bus_state[1].resume_done[i] = 0;
2421                /* Only the USB 2.0 completions will ever be used. */
2422                init_completion(&xhci->bus_state[1].rexit_done[i]);
2423        }
2424
2425        if (scratchpad_alloc(xhci, flags))
2426                goto fail;
2427        if (xhci_setup_port_arrays(xhci, flags))
2428                goto fail;
2429
2430        /* Enable USB 3.0 device notifications for function remote wake, which
2431         * is necessary for allowing USB 3.0 devices to do remote wakeup from
2432         * U3 (device suspend).
2433         */
2434        temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2435        temp &= ~DEV_NOTE_MASK;
2436        temp |= DEV_NOTE_FWAKE;
2437        xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2438
2439        return 0;
2440
2441fail:
2442        xhci_warn(xhci, "Couldn't initialize memory\n");
2443        xhci_halt(xhci);
2444        xhci_reset(xhci);
2445        xhci_mem_cleanup(xhci);
2446        return -ENOMEM;
2447}
2448