linux/fs/btrfs/inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/statfs.h>
  34#include <linux/compat.h>
  35#include <linux/aio.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/xattr.h>
  38#include <linux/posix_acl.h>
  39#include <linux/falloc.h>
  40#include <linux/slab.h>
  41#include <linux/ratelimit.h>
  42#include <linux/mount.h>
  43#include <linux/btrfs.h>
  44#include <linux/blkdev.h>
  45#include <linux/posix_acl_xattr.h>
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "print-tree.h"
  51#include "ordered-data.h"
  52#include "xattr.h"
  53#include "tree-log.h"
  54#include "volumes.h"
  55#include "compression.h"
  56#include "locking.h"
  57#include "free-space-cache.h"
  58#include "inode-map.h"
  59#include "backref.h"
  60#include "hash.h"
  61
  62struct btrfs_iget_args {
  63        u64 ino;
  64        struct btrfs_root *root;
  65};
  66
  67static const struct inode_operations btrfs_dir_inode_operations;
  68static const struct inode_operations btrfs_symlink_inode_operations;
  69static const struct inode_operations btrfs_dir_ro_inode_operations;
  70static const struct inode_operations btrfs_special_inode_operations;
  71static const struct inode_operations btrfs_file_inode_operations;
  72static const struct address_space_operations btrfs_aops;
  73static const struct address_space_operations btrfs_symlink_aops;
  74static const struct file_operations btrfs_dir_file_operations;
  75static struct extent_io_ops btrfs_extent_io_ops;
  76
  77static struct kmem_cache *btrfs_inode_cachep;
  78static struct kmem_cache *btrfs_delalloc_work_cachep;
  79struct kmem_cache *btrfs_trans_handle_cachep;
  80struct kmem_cache *btrfs_transaction_cachep;
  81struct kmem_cache *btrfs_path_cachep;
  82struct kmem_cache *btrfs_free_space_cachep;
  83
  84#define S_SHIFT 12
  85static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  86        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  87        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  88        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  89        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  90        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  91        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  92        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  93};
  94
  95static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  96static int btrfs_truncate(struct inode *inode);
  97static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  98static noinline int cow_file_range(struct inode *inode,
  99                                   struct page *locked_page,
 100                                   u64 start, u64 end, int *page_started,
 101                                   unsigned long *nr_written, int unlock);
 102static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
 103                                           u64 len, u64 orig_start,
 104                                           u64 block_start, u64 block_len,
 105                                           u64 orig_block_len, u64 ram_bytes,
 106                                           int type);
 107
 108static int btrfs_dirty_inode(struct inode *inode);
 109
 110static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 111                                     struct inode *inode,  struct inode *dir,
 112                                     const struct qstr *qstr)
 113{
 114        int err;
 115
 116        err = btrfs_init_acl(trans, inode, dir);
 117        if (!err)
 118                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 119        return err;
 120}
 121
 122/*
 123 * this does all the hard work for inserting an inline extent into
 124 * the btree.  The caller should have done a btrfs_drop_extents so that
 125 * no overlapping inline items exist in the btree
 126 */
 127static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
 128                                struct btrfs_root *root, struct inode *inode,
 129                                u64 start, size_t size, size_t compressed_size,
 130                                int compress_type,
 131                                struct page **compressed_pages)
 132{
 133        struct btrfs_key key;
 134        struct btrfs_path *path;
 135        struct extent_buffer *leaf;
 136        struct page *page = NULL;
 137        char *kaddr;
 138        unsigned long ptr;
 139        struct btrfs_file_extent_item *ei;
 140        int err = 0;
 141        int ret;
 142        size_t cur_size = size;
 143        size_t datasize;
 144        unsigned long offset;
 145
 146        if (compressed_size && compressed_pages)
 147                cur_size = compressed_size;
 148
 149        path = btrfs_alloc_path();
 150        if (!path)
 151                return -ENOMEM;
 152
 153        path->leave_spinning = 1;
 154
 155        key.objectid = btrfs_ino(inode);
 156        key.offset = start;
 157        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
 158        datasize = btrfs_file_extent_calc_inline_size(cur_size);
 159
 160        inode_add_bytes(inode, size);
 161        ret = btrfs_insert_empty_item(trans, root, path, &key,
 162                                      datasize);
 163        if (ret) {
 164                err = ret;
 165                goto fail;
 166        }
 167        leaf = path->nodes[0];
 168        ei = btrfs_item_ptr(leaf, path->slots[0],
 169                            struct btrfs_file_extent_item);
 170        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 171        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 172        btrfs_set_file_extent_encryption(leaf, ei, 0);
 173        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 174        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 175        ptr = btrfs_file_extent_inline_start(ei);
 176
 177        if (compress_type != BTRFS_COMPRESS_NONE) {
 178                struct page *cpage;
 179                int i = 0;
 180                while (compressed_size > 0) {
 181                        cpage = compressed_pages[i];
 182                        cur_size = min_t(unsigned long, compressed_size,
 183                                       PAGE_CACHE_SIZE);
 184
 185                        kaddr = kmap_atomic(cpage);
 186                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 187                        kunmap_atomic(kaddr);
 188
 189                        i++;
 190                        ptr += cur_size;
 191                        compressed_size -= cur_size;
 192                }
 193                btrfs_set_file_extent_compression(leaf, ei,
 194                                                  compress_type);
 195        } else {
 196                page = find_get_page(inode->i_mapping,
 197                                     start >> PAGE_CACHE_SHIFT);
 198                btrfs_set_file_extent_compression(leaf, ei, 0);
 199                kaddr = kmap_atomic(page);
 200                offset = start & (PAGE_CACHE_SIZE - 1);
 201                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 202                kunmap_atomic(kaddr);
 203                page_cache_release(page);
 204        }
 205        btrfs_mark_buffer_dirty(leaf);
 206        btrfs_free_path(path);
 207
 208        /*
 209         * we're an inline extent, so nobody can
 210         * extend the file past i_size without locking
 211         * a page we already have locked.
 212         *
 213         * We must do any isize and inode updates
 214         * before we unlock the pages.  Otherwise we
 215         * could end up racing with unlink.
 216         */
 217        BTRFS_I(inode)->disk_i_size = inode->i_size;
 218        ret = btrfs_update_inode(trans, root, inode);
 219
 220        return ret;
 221fail:
 222        btrfs_free_path(path);
 223        return err;
 224}
 225
 226
 227/*
 228 * conditionally insert an inline extent into the file.  This
 229 * does the checks required to make sure the data is small enough
 230 * to fit as an inline extent.
 231 */
 232static noinline int cow_file_range_inline(struct btrfs_root *root,
 233                                          struct inode *inode, u64 start,
 234                                          u64 end, size_t compressed_size,
 235                                          int compress_type,
 236                                          struct page **compressed_pages)
 237{
 238        struct btrfs_trans_handle *trans;
 239        u64 isize = i_size_read(inode);
 240        u64 actual_end = min(end + 1, isize);
 241        u64 inline_len = actual_end - start;
 242        u64 aligned_end = ALIGN(end, root->sectorsize);
 243        u64 data_len = inline_len;
 244        int ret;
 245
 246        if (compressed_size)
 247                data_len = compressed_size;
 248
 249        if (start > 0 ||
 250            actual_end >= PAGE_CACHE_SIZE ||
 251            data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
 252            (!compressed_size &&
 253            (actual_end & (root->sectorsize - 1)) == 0) ||
 254            end + 1 < isize ||
 255            data_len > root->fs_info->max_inline) {
 256                return 1;
 257        }
 258
 259        trans = btrfs_join_transaction(root);
 260        if (IS_ERR(trans))
 261                return PTR_ERR(trans);
 262        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 263
 264        ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
 265        if (ret) {
 266                btrfs_abort_transaction(trans, root, ret);
 267                goto out;
 268        }
 269
 270        if (isize > actual_end)
 271                inline_len = min_t(u64, isize, actual_end);
 272        ret = insert_inline_extent(trans, root, inode, start,
 273                                   inline_len, compressed_size,
 274                                   compress_type, compressed_pages);
 275        if (ret && ret != -ENOSPC) {
 276                btrfs_abort_transaction(trans, root, ret);
 277                goto out;
 278        } else if (ret == -ENOSPC) {
 279                ret = 1;
 280                goto out;
 281        }
 282
 283        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 284        btrfs_delalloc_release_metadata(inode, end + 1 - start);
 285        btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
 286out:
 287        btrfs_end_transaction(trans, root);
 288        return ret;
 289}
 290
 291struct async_extent {
 292        u64 start;
 293        u64 ram_size;
 294        u64 compressed_size;
 295        struct page **pages;
 296        unsigned long nr_pages;
 297        int compress_type;
 298        struct list_head list;
 299};
 300
 301struct async_cow {
 302        struct inode *inode;
 303        struct btrfs_root *root;
 304        struct page *locked_page;
 305        u64 start;
 306        u64 end;
 307        struct list_head extents;
 308        struct btrfs_work work;
 309};
 310
 311static noinline int add_async_extent(struct async_cow *cow,
 312                                     u64 start, u64 ram_size,
 313                                     u64 compressed_size,
 314                                     struct page **pages,
 315                                     unsigned long nr_pages,
 316                                     int compress_type)
 317{
 318        struct async_extent *async_extent;
 319
 320        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 321        BUG_ON(!async_extent); /* -ENOMEM */
 322        async_extent->start = start;
 323        async_extent->ram_size = ram_size;
 324        async_extent->compressed_size = compressed_size;
 325        async_extent->pages = pages;
 326        async_extent->nr_pages = nr_pages;
 327        async_extent->compress_type = compress_type;
 328        list_add_tail(&async_extent->list, &cow->extents);
 329        return 0;
 330}
 331
 332/*
 333 * we create compressed extents in two phases.  The first
 334 * phase compresses a range of pages that have already been
 335 * locked (both pages and state bits are locked).
 336 *
 337 * This is done inside an ordered work queue, and the compression
 338 * is spread across many cpus.  The actual IO submission is step
 339 * two, and the ordered work queue takes care of making sure that
 340 * happens in the same order things were put onto the queue by
 341 * writepages and friends.
 342 *
 343 * If this code finds it can't get good compression, it puts an
 344 * entry onto the work queue to write the uncompressed bytes.  This
 345 * makes sure that both compressed inodes and uncompressed inodes
 346 * are written in the same order that the flusher thread sent them
 347 * down.
 348 */
 349static noinline int compress_file_range(struct inode *inode,
 350                                        struct page *locked_page,
 351                                        u64 start, u64 end,
 352                                        struct async_cow *async_cow,
 353                                        int *num_added)
 354{
 355        struct btrfs_root *root = BTRFS_I(inode)->root;
 356        u64 num_bytes;
 357        u64 blocksize = root->sectorsize;
 358        u64 actual_end;
 359        u64 isize = i_size_read(inode);
 360        int ret = 0;
 361        struct page **pages = NULL;
 362        unsigned long nr_pages;
 363        unsigned long nr_pages_ret = 0;
 364        unsigned long total_compressed = 0;
 365        unsigned long total_in = 0;
 366        unsigned long max_compressed = 128 * 1024;
 367        unsigned long max_uncompressed = 128 * 1024;
 368        int i;
 369        int will_compress;
 370        int compress_type = root->fs_info->compress_type;
 371        int redirty = 0;
 372
 373        /* if this is a small write inside eof, kick off a defrag */
 374        if ((end - start + 1) < 16 * 1024 &&
 375            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 376                btrfs_add_inode_defrag(NULL, inode);
 377
 378        actual_end = min_t(u64, isize, end + 1);
 379again:
 380        will_compress = 0;
 381        nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
 382        nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
 383
 384        /*
 385         * we don't want to send crud past the end of i_size through
 386         * compression, that's just a waste of CPU time.  So, if the
 387         * end of the file is before the start of our current
 388         * requested range of bytes, we bail out to the uncompressed
 389         * cleanup code that can deal with all of this.
 390         *
 391         * It isn't really the fastest way to fix things, but this is a
 392         * very uncommon corner.
 393         */
 394        if (actual_end <= start)
 395                goto cleanup_and_bail_uncompressed;
 396
 397        total_compressed = actual_end - start;
 398
 399        /* we want to make sure that amount of ram required to uncompress
 400         * an extent is reasonable, so we limit the total size in ram
 401         * of a compressed extent to 128k.  This is a crucial number
 402         * because it also controls how easily we can spread reads across
 403         * cpus for decompression.
 404         *
 405         * We also want to make sure the amount of IO required to do
 406         * a random read is reasonably small, so we limit the size of
 407         * a compressed extent to 128k.
 408         */
 409        total_compressed = min(total_compressed, max_uncompressed);
 410        num_bytes = ALIGN(end - start + 1, blocksize);
 411        num_bytes = max(blocksize,  num_bytes);
 412        total_in = 0;
 413        ret = 0;
 414
 415        /*
 416         * we do compression for mount -o compress and when the
 417         * inode has not been flagged as nocompress.  This flag can
 418         * change at any time if we discover bad compression ratios.
 419         */
 420        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
 421            (btrfs_test_opt(root, COMPRESS) ||
 422             (BTRFS_I(inode)->force_compress) ||
 423             (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
 424                WARN_ON(pages);
 425                pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
 426                if (!pages) {
 427                        /* just bail out to the uncompressed code */
 428                        goto cont;
 429                }
 430
 431                if (BTRFS_I(inode)->force_compress)
 432                        compress_type = BTRFS_I(inode)->force_compress;
 433
 434                /*
 435                 * we need to call clear_page_dirty_for_io on each
 436                 * page in the range.  Otherwise applications with the file
 437                 * mmap'd can wander in and change the page contents while
 438                 * we are compressing them.
 439                 *
 440                 * If the compression fails for any reason, we set the pages
 441                 * dirty again later on.
 442                 */
 443                extent_range_clear_dirty_for_io(inode, start, end);
 444                redirty = 1;
 445                ret = btrfs_compress_pages(compress_type,
 446                                           inode->i_mapping, start,
 447                                           total_compressed, pages,
 448                                           nr_pages, &nr_pages_ret,
 449                                           &total_in,
 450                                           &total_compressed,
 451                                           max_compressed);
 452
 453                if (!ret) {
 454                        unsigned long offset = total_compressed &
 455                                (PAGE_CACHE_SIZE - 1);
 456                        struct page *page = pages[nr_pages_ret - 1];
 457                        char *kaddr;
 458
 459                        /* zero the tail end of the last page, we might be
 460                         * sending it down to disk
 461                         */
 462                        if (offset) {
 463                                kaddr = kmap_atomic(page);
 464                                memset(kaddr + offset, 0,
 465                                       PAGE_CACHE_SIZE - offset);
 466                                kunmap_atomic(kaddr);
 467                        }
 468                        will_compress = 1;
 469                }
 470        }
 471cont:
 472        if (start == 0) {
 473                /* lets try to make an inline extent */
 474                if (ret || total_in < (actual_end - start)) {
 475                        /* we didn't compress the entire range, try
 476                         * to make an uncompressed inline extent.
 477                         */
 478                        ret = cow_file_range_inline(root, inode, start, end,
 479                                                    0, 0, NULL);
 480                } else {
 481                        /* try making a compressed inline extent */
 482                        ret = cow_file_range_inline(root, inode, start, end,
 483                                                    total_compressed,
 484                                                    compress_type, pages);
 485                }
 486                if (ret <= 0) {
 487                        unsigned long clear_flags = EXTENT_DELALLOC |
 488                                EXTENT_DEFRAG;
 489                        clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
 490
 491                        /*
 492                         * inline extent creation worked or returned error,
 493                         * we don't need to create any more async work items.
 494                         * Unlock and free up our temp pages.
 495                         */
 496                        extent_clear_unlock_delalloc(inode, start, end, NULL,
 497                                                     clear_flags, PAGE_UNLOCK |
 498                                                     PAGE_CLEAR_DIRTY |
 499                                                     PAGE_SET_WRITEBACK |
 500                                                     PAGE_END_WRITEBACK);
 501                        goto free_pages_out;
 502                }
 503        }
 504
 505        if (will_compress) {
 506                /*
 507                 * we aren't doing an inline extent round the compressed size
 508                 * up to a block size boundary so the allocator does sane
 509                 * things
 510                 */
 511                total_compressed = ALIGN(total_compressed, blocksize);
 512
 513                /*
 514                 * one last check to make sure the compression is really a
 515                 * win, compare the page count read with the blocks on disk
 516                 */
 517                total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
 518                if (total_compressed >= total_in) {
 519                        will_compress = 0;
 520                } else {
 521                        num_bytes = total_in;
 522                }
 523        }
 524        if (!will_compress && pages) {
 525                /*
 526                 * the compression code ran but failed to make things smaller,
 527                 * free any pages it allocated and our page pointer array
 528                 */
 529                for (i = 0; i < nr_pages_ret; i++) {
 530                        WARN_ON(pages[i]->mapping);
 531                        page_cache_release(pages[i]);
 532                }
 533                kfree(pages);
 534                pages = NULL;
 535                total_compressed = 0;
 536                nr_pages_ret = 0;
 537
 538                /* flag the file so we don't compress in the future */
 539                if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
 540                    !(BTRFS_I(inode)->force_compress)) {
 541                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 542                }
 543        }
 544        if (will_compress) {
 545                *num_added += 1;
 546
 547                /* the async work queues will take care of doing actual
 548                 * allocation on disk for these compressed pages,
 549                 * and will submit them to the elevator.
 550                 */
 551                add_async_extent(async_cow, start, num_bytes,
 552                                 total_compressed, pages, nr_pages_ret,
 553                                 compress_type);
 554
 555                if (start + num_bytes < end) {
 556                        start += num_bytes;
 557                        pages = NULL;
 558                        cond_resched();
 559                        goto again;
 560                }
 561        } else {
 562cleanup_and_bail_uncompressed:
 563                /*
 564                 * No compression, but we still need to write the pages in
 565                 * the file we've been given so far.  redirty the locked
 566                 * page if it corresponds to our extent and set things up
 567                 * for the async work queue to run cow_file_range to do
 568                 * the normal delalloc dance
 569                 */
 570                if (page_offset(locked_page) >= start &&
 571                    page_offset(locked_page) <= end) {
 572                        __set_page_dirty_nobuffers(locked_page);
 573                        /* unlocked later on in the async handlers */
 574                }
 575                if (redirty)
 576                        extent_range_redirty_for_io(inode, start, end);
 577                add_async_extent(async_cow, start, end - start + 1,
 578                                 0, NULL, 0, BTRFS_COMPRESS_NONE);
 579                *num_added += 1;
 580        }
 581
 582out:
 583        return ret;
 584
 585free_pages_out:
 586        for (i = 0; i < nr_pages_ret; i++) {
 587                WARN_ON(pages[i]->mapping);
 588                page_cache_release(pages[i]);
 589        }
 590        kfree(pages);
 591
 592        goto out;
 593}
 594
 595/*
 596 * phase two of compressed writeback.  This is the ordered portion
 597 * of the code, which only gets called in the order the work was
 598 * queued.  We walk all the async extents created by compress_file_range
 599 * and send them down to the disk.
 600 */
 601static noinline int submit_compressed_extents(struct inode *inode,
 602                                              struct async_cow *async_cow)
 603{
 604        struct async_extent *async_extent;
 605        u64 alloc_hint = 0;
 606        struct btrfs_key ins;
 607        struct extent_map *em;
 608        struct btrfs_root *root = BTRFS_I(inode)->root;
 609        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 610        struct extent_io_tree *io_tree;
 611        int ret = 0;
 612
 613        if (list_empty(&async_cow->extents))
 614                return 0;
 615
 616again:
 617        while (!list_empty(&async_cow->extents)) {
 618                async_extent = list_entry(async_cow->extents.next,
 619                                          struct async_extent, list);
 620                list_del(&async_extent->list);
 621
 622                io_tree = &BTRFS_I(inode)->io_tree;
 623
 624retry:
 625                /* did the compression code fall back to uncompressed IO? */
 626                if (!async_extent->pages) {
 627                        int page_started = 0;
 628                        unsigned long nr_written = 0;
 629
 630                        lock_extent(io_tree, async_extent->start,
 631                                         async_extent->start +
 632                                         async_extent->ram_size - 1);
 633
 634                        /* allocate blocks */
 635                        ret = cow_file_range(inode, async_cow->locked_page,
 636                                             async_extent->start,
 637                                             async_extent->start +
 638                                             async_extent->ram_size - 1,
 639                                             &page_started, &nr_written, 0);
 640
 641                        /* JDM XXX */
 642
 643                        /*
 644                         * if page_started, cow_file_range inserted an
 645                         * inline extent and took care of all the unlocking
 646                         * and IO for us.  Otherwise, we need to submit
 647                         * all those pages down to the drive.
 648                         */
 649                        if (!page_started && !ret)
 650                                extent_write_locked_range(io_tree,
 651                                                  inode, async_extent->start,
 652                                                  async_extent->start +
 653                                                  async_extent->ram_size - 1,
 654                                                  btrfs_get_extent,
 655                                                  WB_SYNC_ALL);
 656                        else if (ret)
 657                                unlock_page(async_cow->locked_page);
 658                        kfree(async_extent);
 659                        cond_resched();
 660                        continue;
 661                }
 662
 663                lock_extent(io_tree, async_extent->start,
 664                            async_extent->start + async_extent->ram_size - 1);
 665
 666                ret = btrfs_reserve_extent(root,
 667                                           async_extent->compressed_size,
 668                                           async_extent->compressed_size,
 669                                           0, alloc_hint, &ins, 1);
 670                if (ret) {
 671                        int i;
 672
 673                        for (i = 0; i < async_extent->nr_pages; i++) {
 674                                WARN_ON(async_extent->pages[i]->mapping);
 675                                page_cache_release(async_extent->pages[i]);
 676                        }
 677                        kfree(async_extent->pages);
 678                        async_extent->nr_pages = 0;
 679                        async_extent->pages = NULL;
 680
 681                        if (ret == -ENOSPC) {
 682                                unlock_extent(io_tree, async_extent->start,
 683                                              async_extent->start +
 684                                              async_extent->ram_size - 1);
 685                                goto retry;
 686                        }
 687                        goto out_free;
 688                }
 689
 690                /*
 691                 * here we're doing allocation and writeback of the
 692                 * compressed pages
 693                 */
 694                btrfs_drop_extent_cache(inode, async_extent->start,
 695                                        async_extent->start +
 696                                        async_extent->ram_size - 1, 0);
 697
 698                em = alloc_extent_map();
 699                if (!em) {
 700                        ret = -ENOMEM;
 701                        goto out_free_reserve;
 702                }
 703                em->start = async_extent->start;
 704                em->len = async_extent->ram_size;
 705                em->orig_start = em->start;
 706                em->mod_start = em->start;
 707                em->mod_len = em->len;
 708
 709                em->block_start = ins.objectid;
 710                em->block_len = ins.offset;
 711                em->orig_block_len = ins.offset;
 712                em->ram_bytes = async_extent->ram_size;
 713                em->bdev = root->fs_info->fs_devices->latest_bdev;
 714                em->compress_type = async_extent->compress_type;
 715                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 716                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 717                em->generation = -1;
 718
 719                while (1) {
 720                        write_lock(&em_tree->lock);
 721                        ret = add_extent_mapping(em_tree, em, 1);
 722                        write_unlock(&em_tree->lock);
 723                        if (ret != -EEXIST) {
 724                                free_extent_map(em);
 725                                break;
 726                        }
 727                        btrfs_drop_extent_cache(inode, async_extent->start,
 728                                                async_extent->start +
 729                                                async_extent->ram_size - 1, 0);
 730                }
 731
 732                if (ret)
 733                        goto out_free_reserve;
 734
 735                ret = btrfs_add_ordered_extent_compress(inode,
 736                                                async_extent->start,
 737                                                ins.objectid,
 738                                                async_extent->ram_size,
 739                                                ins.offset,
 740                                                BTRFS_ORDERED_COMPRESSED,
 741                                                async_extent->compress_type);
 742                if (ret)
 743                        goto out_free_reserve;
 744
 745                /*
 746                 * clear dirty, set writeback and unlock the pages.
 747                 */
 748                extent_clear_unlock_delalloc(inode, async_extent->start,
 749                                async_extent->start +
 750                                async_extent->ram_size - 1,
 751                                NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
 752                                PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 753                                PAGE_SET_WRITEBACK);
 754                ret = btrfs_submit_compressed_write(inode,
 755                                    async_extent->start,
 756                                    async_extent->ram_size,
 757                                    ins.objectid,
 758                                    ins.offset, async_extent->pages,
 759                                    async_extent->nr_pages);
 760                alloc_hint = ins.objectid + ins.offset;
 761                kfree(async_extent);
 762                if (ret)
 763                        goto out;
 764                cond_resched();
 765        }
 766        ret = 0;
 767out:
 768        return ret;
 769out_free_reserve:
 770        btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
 771out_free:
 772        extent_clear_unlock_delalloc(inode, async_extent->start,
 773                                     async_extent->start +
 774                                     async_extent->ram_size - 1,
 775                                     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
 776                                     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
 777                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 778                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
 779        kfree(async_extent);
 780        goto again;
 781}
 782
 783static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 784                                      u64 num_bytes)
 785{
 786        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 787        struct extent_map *em;
 788        u64 alloc_hint = 0;
 789
 790        read_lock(&em_tree->lock);
 791        em = search_extent_mapping(em_tree, start, num_bytes);
 792        if (em) {
 793                /*
 794                 * if block start isn't an actual block number then find the
 795                 * first block in this inode and use that as a hint.  If that
 796                 * block is also bogus then just don't worry about it.
 797                 */
 798                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 799                        free_extent_map(em);
 800                        em = search_extent_mapping(em_tree, 0, 0);
 801                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 802                                alloc_hint = em->block_start;
 803                        if (em)
 804                                free_extent_map(em);
 805                } else {
 806                        alloc_hint = em->block_start;
 807                        free_extent_map(em);
 808                }
 809        }
 810        read_unlock(&em_tree->lock);
 811
 812        return alloc_hint;
 813}
 814
 815/*
 816 * when extent_io.c finds a delayed allocation range in the file,
 817 * the call backs end up in this code.  The basic idea is to
 818 * allocate extents on disk for the range, and create ordered data structs
 819 * in ram to track those extents.
 820 *
 821 * locked_page is the page that writepage had locked already.  We use
 822 * it to make sure we don't do extra locks or unlocks.
 823 *
 824 * *page_started is set to one if we unlock locked_page and do everything
 825 * required to start IO on it.  It may be clean and already done with
 826 * IO when we return.
 827 */
 828static noinline int cow_file_range(struct inode *inode,
 829                                   struct page *locked_page,
 830                                   u64 start, u64 end, int *page_started,
 831                                   unsigned long *nr_written,
 832                                   int unlock)
 833{
 834        struct btrfs_root *root = BTRFS_I(inode)->root;
 835        u64 alloc_hint = 0;
 836        u64 num_bytes;
 837        unsigned long ram_size;
 838        u64 disk_num_bytes;
 839        u64 cur_alloc_size;
 840        u64 blocksize = root->sectorsize;
 841        struct btrfs_key ins;
 842        struct extent_map *em;
 843        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 844        int ret = 0;
 845
 846        if (btrfs_is_free_space_inode(inode)) {
 847                WARN_ON_ONCE(1);
 848                return -EINVAL;
 849        }
 850
 851        num_bytes = ALIGN(end - start + 1, blocksize);
 852        num_bytes = max(blocksize,  num_bytes);
 853        disk_num_bytes = num_bytes;
 854
 855        /* if this is a small write inside eof, kick off defrag */
 856        if (num_bytes < 64 * 1024 &&
 857            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 858                btrfs_add_inode_defrag(NULL, inode);
 859
 860        if (start == 0) {
 861                /* lets try to make an inline extent */
 862                ret = cow_file_range_inline(root, inode, start, end, 0, 0,
 863                                            NULL);
 864                if (ret == 0) {
 865                        extent_clear_unlock_delalloc(inode, start, end, NULL,
 866                                     EXTENT_LOCKED | EXTENT_DELALLOC |
 867                                     EXTENT_DEFRAG, PAGE_UNLOCK |
 868                                     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
 869                                     PAGE_END_WRITEBACK);
 870
 871                        *nr_written = *nr_written +
 872                             (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
 873                        *page_started = 1;
 874                        goto out;
 875                } else if (ret < 0) {
 876                        goto out_unlock;
 877                }
 878        }
 879
 880        BUG_ON(disk_num_bytes >
 881               btrfs_super_total_bytes(root->fs_info->super_copy));
 882
 883        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 884        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
 885
 886        while (disk_num_bytes > 0) {
 887                unsigned long op;
 888
 889                cur_alloc_size = disk_num_bytes;
 890                ret = btrfs_reserve_extent(root, cur_alloc_size,
 891                                           root->sectorsize, 0, alloc_hint,
 892                                           &ins, 1);
 893                if (ret < 0)
 894                        goto out_unlock;
 895
 896                em = alloc_extent_map();
 897                if (!em) {
 898                        ret = -ENOMEM;
 899                        goto out_reserve;
 900                }
 901                em->start = start;
 902                em->orig_start = em->start;
 903                ram_size = ins.offset;
 904                em->len = ins.offset;
 905                em->mod_start = em->start;
 906                em->mod_len = em->len;
 907
 908                em->block_start = ins.objectid;
 909                em->block_len = ins.offset;
 910                em->orig_block_len = ins.offset;
 911                em->ram_bytes = ram_size;
 912                em->bdev = root->fs_info->fs_devices->latest_bdev;
 913                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 914                em->generation = -1;
 915
 916                while (1) {
 917                        write_lock(&em_tree->lock);
 918                        ret = add_extent_mapping(em_tree, em, 1);
 919                        write_unlock(&em_tree->lock);
 920                        if (ret != -EEXIST) {
 921                                free_extent_map(em);
 922                                break;
 923                        }
 924                        btrfs_drop_extent_cache(inode, start,
 925                                                start + ram_size - 1, 0);
 926                }
 927                if (ret)
 928                        goto out_reserve;
 929
 930                cur_alloc_size = ins.offset;
 931                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
 932                                               ram_size, cur_alloc_size, 0);
 933                if (ret)
 934                        goto out_reserve;
 935
 936                if (root->root_key.objectid ==
 937                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 938                        ret = btrfs_reloc_clone_csums(inode, start,
 939                                                      cur_alloc_size);
 940                        if (ret)
 941                                goto out_reserve;
 942                }
 943
 944                if (disk_num_bytes < cur_alloc_size)
 945                        break;
 946
 947                /* we're not doing compressed IO, don't unlock the first
 948                 * page (which the caller expects to stay locked), don't
 949                 * clear any dirty bits and don't set any writeback bits
 950                 *
 951                 * Do set the Private2 bit so we know this page was properly
 952                 * setup for writepage
 953                 */
 954                op = unlock ? PAGE_UNLOCK : 0;
 955                op |= PAGE_SET_PRIVATE2;
 956
 957                extent_clear_unlock_delalloc(inode, start,
 958                                             start + ram_size - 1, locked_page,
 959                                             EXTENT_LOCKED | EXTENT_DELALLOC,
 960                                             op);
 961                disk_num_bytes -= cur_alloc_size;
 962                num_bytes -= cur_alloc_size;
 963                alloc_hint = ins.objectid + ins.offset;
 964                start += cur_alloc_size;
 965        }
 966out:
 967        return ret;
 968
 969out_reserve:
 970        btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
 971out_unlock:
 972        extent_clear_unlock_delalloc(inode, start, end, locked_page,
 973                                     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
 974                                     EXTENT_DELALLOC | EXTENT_DEFRAG,
 975                                     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
 976                                     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
 977        goto out;
 978}
 979
 980/*
 981 * work queue call back to started compression on a file and pages
 982 */
 983static noinline void async_cow_start(struct btrfs_work *work)
 984{
 985        struct async_cow *async_cow;
 986        int num_added = 0;
 987        async_cow = container_of(work, struct async_cow, work);
 988
 989        compress_file_range(async_cow->inode, async_cow->locked_page,
 990                            async_cow->start, async_cow->end, async_cow,
 991                            &num_added);
 992        if (num_added == 0) {
 993                btrfs_add_delayed_iput(async_cow->inode);
 994                async_cow->inode = NULL;
 995        }
 996}
 997
 998/*
 999 * work queue call back to submit previously compressed pages
1000 */
1001static noinline void async_cow_submit(struct btrfs_work *work)
1002{
1003        struct async_cow *async_cow;
1004        struct btrfs_root *root;
1005        unsigned long nr_pages;
1006
1007        async_cow = container_of(work, struct async_cow, work);
1008
1009        root = async_cow->root;
1010        nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1011                PAGE_CACHE_SHIFT;
1012
1013        if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1014            5 * 1024 * 1024 &&
1015            waitqueue_active(&root->fs_info->async_submit_wait))
1016                wake_up(&root->fs_info->async_submit_wait);
1017
1018        if (async_cow->inode)
1019                submit_compressed_extents(async_cow->inode, async_cow);
1020}
1021
1022static noinline void async_cow_free(struct btrfs_work *work)
1023{
1024        struct async_cow *async_cow;
1025        async_cow = container_of(work, struct async_cow, work);
1026        if (async_cow->inode)
1027                btrfs_add_delayed_iput(async_cow->inode);
1028        kfree(async_cow);
1029}
1030
1031static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1032                                u64 start, u64 end, int *page_started,
1033                                unsigned long *nr_written)
1034{
1035        struct async_cow *async_cow;
1036        struct btrfs_root *root = BTRFS_I(inode)->root;
1037        unsigned long nr_pages;
1038        u64 cur_end;
1039        int limit = 10 * 1024 * 1024;
1040
1041        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1042                         1, 0, NULL, GFP_NOFS);
1043        while (start < end) {
1044                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1045                BUG_ON(!async_cow); /* -ENOMEM */
1046                async_cow->inode = igrab(inode);
1047                async_cow->root = root;
1048                async_cow->locked_page = locked_page;
1049                async_cow->start = start;
1050
1051                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1052                        cur_end = end;
1053                else
1054                        cur_end = min(end, start + 512 * 1024 - 1);
1055
1056                async_cow->end = cur_end;
1057                INIT_LIST_HEAD(&async_cow->extents);
1058
1059                async_cow->work.func = async_cow_start;
1060                async_cow->work.ordered_func = async_cow_submit;
1061                async_cow->work.ordered_free = async_cow_free;
1062                async_cow->work.flags = 0;
1063
1064                nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1065                        PAGE_CACHE_SHIFT;
1066                atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1067
1068                btrfs_queue_worker(&root->fs_info->delalloc_workers,
1069                                   &async_cow->work);
1070
1071                if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1072                        wait_event(root->fs_info->async_submit_wait,
1073                           (atomic_read(&root->fs_info->async_delalloc_pages) <
1074                            limit));
1075                }
1076
1077                while (atomic_read(&root->fs_info->async_submit_draining) &&
1078                      atomic_read(&root->fs_info->async_delalloc_pages)) {
1079                        wait_event(root->fs_info->async_submit_wait,
1080                          (atomic_read(&root->fs_info->async_delalloc_pages) ==
1081                           0));
1082                }
1083
1084                *nr_written += nr_pages;
1085                start = cur_end + 1;
1086        }
1087        *page_started = 1;
1088        return 0;
1089}
1090
1091static noinline int csum_exist_in_range(struct btrfs_root *root,
1092                                        u64 bytenr, u64 num_bytes)
1093{
1094        int ret;
1095        struct btrfs_ordered_sum *sums;
1096        LIST_HEAD(list);
1097
1098        ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1099                                       bytenr + num_bytes - 1, &list, 0);
1100        if (ret == 0 && list_empty(&list))
1101                return 0;
1102
1103        while (!list_empty(&list)) {
1104                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1105                list_del(&sums->list);
1106                kfree(sums);
1107        }
1108        return 1;
1109}
1110
1111/*
1112 * when nowcow writeback call back.  This checks for snapshots or COW copies
1113 * of the extents that exist in the file, and COWs the file as required.
1114 *
1115 * If no cow copies or snapshots exist, we write directly to the existing
1116 * blocks on disk
1117 */
1118static noinline int run_delalloc_nocow(struct inode *inode,
1119                                       struct page *locked_page,
1120                              u64 start, u64 end, int *page_started, int force,
1121                              unsigned long *nr_written)
1122{
1123        struct btrfs_root *root = BTRFS_I(inode)->root;
1124        struct btrfs_trans_handle *trans;
1125        struct extent_buffer *leaf;
1126        struct btrfs_path *path;
1127        struct btrfs_file_extent_item *fi;
1128        struct btrfs_key found_key;
1129        u64 cow_start;
1130        u64 cur_offset;
1131        u64 extent_end;
1132        u64 extent_offset;
1133        u64 disk_bytenr;
1134        u64 num_bytes;
1135        u64 disk_num_bytes;
1136        u64 ram_bytes;
1137        int extent_type;
1138        int ret, err;
1139        int type;
1140        int nocow;
1141        int check_prev = 1;
1142        bool nolock;
1143        u64 ino = btrfs_ino(inode);
1144
1145        path = btrfs_alloc_path();
1146        if (!path) {
1147                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1148                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1149                                             EXTENT_DO_ACCOUNTING |
1150                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1151                                             PAGE_CLEAR_DIRTY |
1152                                             PAGE_SET_WRITEBACK |
1153                                             PAGE_END_WRITEBACK);
1154                return -ENOMEM;
1155        }
1156
1157        nolock = btrfs_is_free_space_inode(inode);
1158
1159        if (nolock)
1160                trans = btrfs_join_transaction_nolock(root);
1161        else
1162                trans = btrfs_join_transaction(root);
1163
1164        if (IS_ERR(trans)) {
1165                extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166                                             EXTENT_LOCKED | EXTENT_DELALLOC |
1167                                             EXTENT_DO_ACCOUNTING |
1168                                             EXTENT_DEFRAG, PAGE_UNLOCK |
1169                                             PAGE_CLEAR_DIRTY |
1170                                             PAGE_SET_WRITEBACK |
1171                                             PAGE_END_WRITEBACK);
1172                btrfs_free_path(path);
1173                return PTR_ERR(trans);
1174        }
1175
1176        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1177
1178        cow_start = (u64)-1;
1179        cur_offset = start;
1180        while (1) {
1181                ret = btrfs_lookup_file_extent(trans, root, path, ino,
1182                                               cur_offset, 0);
1183                if (ret < 0)
1184                        goto error;
1185                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186                        leaf = path->nodes[0];
1187                        btrfs_item_key_to_cpu(leaf, &found_key,
1188                                              path->slots[0] - 1);
1189                        if (found_key.objectid == ino &&
1190                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1191                                path->slots[0]--;
1192                }
1193                check_prev = 0;
1194next_slot:
1195                leaf = path->nodes[0];
1196                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197                        ret = btrfs_next_leaf(root, path);
1198                        if (ret < 0)
1199                                goto error;
1200                        if (ret > 0)
1201                                break;
1202                        leaf = path->nodes[0];
1203                }
1204
1205                nocow = 0;
1206                disk_bytenr = 0;
1207                num_bytes = 0;
1208                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1209
1210                if (found_key.objectid > ino ||
1211                    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1212                    found_key.offset > end)
1213                        break;
1214
1215                if (found_key.offset > cur_offset) {
1216                        extent_end = found_key.offset;
1217                        extent_type = 0;
1218                        goto out_check;
1219                }
1220
1221                fi = btrfs_item_ptr(leaf, path->slots[0],
1222                                    struct btrfs_file_extent_item);
1223                extent_type = btrfs_file_extent_type(leaf, fi);
1224
1225                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1226                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1227                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1228                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1229                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1230                        extent_end = found_key.offset +
1231                                btrfs_file_extent_num_bytes(leaf, fi);
1232                        disk_num_bytes =
1233                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1234                        if (extent_end <= start) {
1235                                path->slots[0]++;
1236                                goto next_slot;
1237                        }
1238                        if (disk_bytenr == 0)
1239                                goto out_check;
1240                        if (btrfs_file_extent_compression(leaf, fi) ||
1241                            btrfs_file_extent_encryption(leaf, fi) ||
1242                            btrfs_file_extent_other_encoding(leaf, fi))
1243                                goto out_check;
1244                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1245                                goto out_check;
1246                        if (btrfs_extent_readonly(root, disk_bytenr))
1247                                goto out_check;
1248                        if (btrfs_cross_ref_exist(trans, root, ino,
1249                                                  found_key.offset -
1250                                                  extent_offset, disk_bytenr))
1251                                goto out_check;
1252                        disk_bytenr += extent_offset;
1253                        disk_bytenr += cur_offset - found_key.offset;
1254                        num_bytes = min(end + 1, extent_end) - cur_offset;
1255                        /*
1256                         * force cow if csum exists in the range.
1257                         * this ensure that csum for a given extent are
1258                         * either valid or do not exist.
1259                         */
1260                        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1261                                goto out_check;
1262                        nocow = 1;
1263                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1264                        extent_end = found_key.offset +
1265                                btrfs_file_extent_inline_len(leaf, fi);
1266                        extent_end = ALIGN(extent_end, root->sectorsize);
1267                } else {
1268                        BUG_ON(1);
1269                }
1270out_check:
1271                if (extent_end <= start) {
1272                        path->slots[0]++;
1273                        goto next_slot;
1274                }
1275                if (!nocow) {
1276                        if (cow_start == (u64)-1)
1277                                cow_start = cur_offset;
1278                        cur_offset = extent_end;
1279                        if (cur_offset > end)
1280                                break;
1281                        path->slots[0]++;
1282                        goto next_slot;
1283                }
1284
1285                btrfs_release_path(path);
1286                if (cow_start != (u64)-1) {
1287                        ret = cow_file_range(inode, locked_page,
1288                                             cow_start, found_key.offset - 1,
1289                                             page_started, nr_written, 1);
1290                        if (ret)
1291                                goto error;
1292                        cow_start = (u64)-1;
1293                }
1294
1295                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1296                        struct extent_map *em;
1297                        struct extent_map_tree *em_tree;
1298                        em_tree = &BTRFS_I(inode)->extent_tree;
1299                        em = alloc_extent_map();
1300                        BUG_ON(!em); /* -ENOMEM */
1301                        em->start = cur_offset;
1302                        em->orig_start = found_key.offset - extent_offset;
1303                        em->len = num_bytes;
1304                        em->block_len = num_bytes;
1305                        em->block_start = disk_bytenr;
1306                        em->orig_block_len = disk_num_bytes;
1307                        em->ram_bytes = ram_bytes;
1308                        em->bdev = root->fs_info->fs_devices->latest_bdev;
1309                        em->mod_start = em->start;
1310                        em->mod_len = em->len;
1311                        set_bit(EXTENT_FLAG_PINNED, &em->flags);
1312                        set_bit(EXTENT_FLAG_FILLING, &em->flags);
1313                        em->generation = -1;
1314                        while (1) {
1315                                write_lock(&em_tree->lock);
1316                                ret = add_extent_mapping(em_tree, em, 1);
1317                                write_unlock(&em_tree->lock);
1318                                if (ret != -EEXIST) {
1319                                        free_extent_map(em);
1320                                        break;
1321                                }
1322                                btrfs_drop_extent_cache(inode, em->start,
1323                                                em->start + em->len - 1, 0);
1324                        }
1325                        type = BTRFS_ORDERED_PREALLOC;
1326                } else {
1327                        type = BTRFS_ORDERED_NOCOW;
1328                }
1329
1330                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1331                                               num_bytes, num_bytes, type);
1332                BUG_ON(ret); /* -ENOMEM */
1333
1334                if (root->root_key.objectid ==
1335                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1336                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1337                                                      num_bytes);
1338                        if (ret)
1339                                goto error;
1340                }
1341
1342                extent_clear_unlock_delalloc(inode, cur_offset,
1343                                             cur_offset + num_bytes - 1,
1344                                             locked_page, EXTENT_LOCKED |
1345                                             EXTENT_DELALLOC, PAGE_UNLOCK |
1346                                             PAGE_SET_PRIVATE2);
1347                cur_offset = extent_end;
1348                if (cur_offset > end)
1349                        break;
1350        }
1351        btrfs_release_path(path);
1352
1353        if (cur_offset <= end && cow_start == (u64)-1) {
1354                cow_start = cur_offset;
1355                cur_offset = end;
1356        }
1357
1358        if (cow_start != (u64)-1) {
1359                ret = cow_file_range(inode, locked_page, cow_start, end,
1360                                     page_started, nr_written, 1);
1361                if (ret)
1362                        goto error;
1363        }
1364
1365error:
1366        err = btrfs_end_transaction(trans, root);
1367        if (!ret)
1368                ret = err;
1369
1370        if (ret && cur_offset < end)
1371                extent_clear_unlock_delalloc(inode, cur_offset, end,
1372                                             locked_page, EXTENT_LOCKED |
1373                                             EXTENT_DELALLOC | EXTENT_DEFRAG |
1374                                             EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1375                                             PAGE_CLEAR_DIRTY |
1376                                             PAGE_SET_WRITEBACK |
1377                                             PAGE_END_WRITEBACK);
1378        btrfs_free_path(path);
1379        return ret;
1380}
1381
1382/*
1383 * extent_io.c call back to do delayed allocation processing
1384 */
1385static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1386                              u64 start, u64 end, int *page_started,
1387                              unsigned long *nr_written)
1388{
1389        int ret;
1390        struct btrfs_root *root = BTRFS_I(inode)->root;
1391
1392        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1393                ret = run_delalloc_nocow(inode, locked_page, start, end,
1394                                         page_started, 1, nr_written);
1395        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1396                ret = run_delalloc_nocow(inode, locked_page, start, end,
1397                                         page_started, 0, nr_written);
1398        } else if (!btrfs_test_opt(root, COMPRESS) &&
1399                   !(BTRFS_I(inode)->force_compress) &&
1400                   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1401                ret = cow_file_range(inode, locked_page, start, end,
1402                                      page_started, nr_written, 1);
1403        } else {
1404                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1405                        &BTRFS_I(inode)->runtime_flags);
1406                ret = cow_file_range_async(inode, locked_page, start, end,
1407                                           page_started, nr_written);
1408        }
1409        return ret;
1410}
1411
1412static void btrfs_split_extent_hook(struct inode *inode,
1413                                    struct extent_state *orig, u64 split)
1414{
1415        /* not delalloc, ignore it */
1416        if (!(orig->state & EXTENT_DELALLOC))
1417                return;
1418
1419        spin_lock(&BTRFS_I(inode)->lock);
1420        BTRFS_I(inode)->outstanding_extents++;
1421        spin_unlock(&BTRFS_I(inode)->lock);
1422}
1423
1424/*
1425 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1426 * extents so we can keep track of new extents that are just merged onto old
1427 * extents, such as when we are doing sequential writes, so we can properly
1428 * account for the metadata space we'll need.
1429 */
1430static void btrfs_merge_extent_hook(struct inode *inode,
1431                                    struct extent_state *new,
1432                                    struct extent_state *other)
1433{
1434        /* not delalloc, ignore it */
1435        if (!(other->state & EXTENT_DELALLOC))
1436                return;
1437
1438        spin_lock(&BTRFS_I(inode)->lock);
1439        BTRFS_I(inode)->outstanding_extents--;
1440        spin_unlock(&BTRFS_I(inode)->lock);
1441}
1442
1443static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1444                                      struct inode *inode)
1445{
1446        spin_lock(&root->delalloc_lock);
1447        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1448                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1449                              &root->delalloc_inodes);
1450                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1451                        &BTRFS_I(inode)->runtime_flags);
1452                root->nr_delalloc_inodes++;
1453                if (root->nr_delalloc_inodes == 1) {
1454                        spin_lock(&root->fs_info->delalloc_root_lock);
1455                        BUG_ON(!list_empty(&root->delalloc_root));
1456                        list_add_tail(&root->delalloc_root,
1457                                      &root->fs_info->delalloc_roots);
1458                        spin_unlock(&root->fs_info->delalloc_root_lock);
1459                }
1460        }
1461        spin_unlock(&root->delalloc_lock);
1462}
1463
1464static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1465                                     struct inode *inode)
1466{
1467        spin_lock(&root->delalloc_lock);
1468        if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1469                list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1470                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1471                          &BTRFS_I(inode)->runtime_flags);
1472                root->nr_delalloc_inodes--;
1473                if (!root->nr_delalloc_inodes) {
1474                        spin_lock(&root->fs_info->delalloc_root_lock);
1475                        BUG_ON(list_empty(&root->delalloc_root));
1476                        list_del_init(&root->delalloc_root);
1477                        spin_unlock(&root->fs_info->delalloc_root_lock);
1478                }
1479        }
1480        spin_unlock(&root->delalloc_lock);
1481}
1482
1483/*
1484 * extent_io.c set_bit_hook, used to track delayed allocation
1485 * bytes in this file, and to maintain the list of inodes that
1486 * have pending delalloc work to be done.
1487 */
1488static void btrfs_set_bit_hook(struct inode *inode,
1489                               struct extent_state *state, unsigned long *bits)
1490{
1491
1492        /*
1493         * set_bit and clear bit hooks normally require _irqsave/restore
1494         * but in this case, we are only testing for the DELALLOC
1495         * bit, which is only set or cleared with irqs on
1496         */
1497        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1498                struct btrfs_root *root = BTRFS_I(inode)->root;
1499                u64 len = state->end + 1 - state->start;
1500                bool do_list = !btrfs_is_free_space_inode(inode);
1501
1502                if (*bits & EXTENT_FIRST_DELALLOC) {
1503                        *bits &= ~EXTENT_FIRST_DELALLOC;
1504                } else {
1505                        spin_lock(&BTRFS_I(inode)->lock);
1506                        BTRFS_I(inode)->outstanding_extents++;
1507                        spin_unlock(&BTRFS_I(inode)->lock);
1508                }
1509
1510                __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1511                                     root->fs_info->delalloc_batch);
1512                spin_lock(&BTRFS_I(inode)->lock);
1513                BTRFS_I(inode)->delalloc_bytes += len;
1514                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1515                                         &BTRFS_I(inode)->runtime_flags))
1516                        btrfs_add_delalloc_inodes(root, inode);
1517                spin_unlock(&BTRFS_I(inode)->lock);
1518        }
1519}
1520
1521/*
1522 * extent_io.c clear_bit_hook, see set_bit_hook for why
1523 */
1524static void btrfs_clear_bit_hook(struct inode *inode,
1525                                 struct extent_state *state,
1526                                 unsigned long *bits)
1527{
1528        /*
1529         * set_bit and clear bit hooks normally require _irqsave/restore
1530         * but in this case, we are only testing for the DELALLOC
1531         * bit, which is only set or cleared with irqs on
1532         */
1533        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1534                struct btrfs_root *root = BTRFS_I(inode)->root;
1535                u64 len = state->end + 1 - state->start;
1536                bool do_list = !btrfs_is_free_space_inode(inode);
1537
1538                if (*bits & EXTENT_FIRST_DELALLOC) {
1539                        *bits &= ~EXTENT_FIRST_DELALLOC;
1540                } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1541                        spin_lock(&BTRFS_I(inode)->lock);
1542                        BTRFS_I(inode)->outstanding_extents--;
1543                        spin_unlock(&BTRFS_I(inode)->lock);
1544                }
1545
1546                /*
1547                 * We don't reserve metadata space for space cache inodes so we
1548                 * don't need to call dellalloc_release_metadata if there is an
1549                 * error.
1550                 */
1551                if (*bits & EXTENT_DO_ACCOUNTING &&
1552                    root != root->fs_info->tree_root)
1553                        btrfs_delalloc_release_metadata(inode, len);
1554
1555                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1556                    && do_list && !(state->state & EXTENT_NORESERVE))
1557                        btrfs_free_reserved_data_space(inode, len);
1558
1559                __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1560                                     root->fs_info->delalloc_batch);
1561                spin_lock(&BTRFS_I(inode)->lock);
1562                BTRFS_I(inode)->delalloc_bytes -= len;
1563                if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1564                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1565                             &BTRFS_I(inode)->runtime_flags))
1566                        btrfs_del_delalloc_inode(root, inode);
1567                spin_unlock(&BTRFS_I(inode)->lock);
1568        }
1569}
1570
1571/*
1572 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1573 * we don't create bios that span stripes or chunks
1574 */
1575int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1576                         size_t size, struct bio *bio,
1577                         unsigned long bio_flags)
1578{
1579        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1580        u64 logical = (u64)bio->bi_sector << 9;
1581        u64 length = 0;
1582        u64 map_length;
1583        int ret;
1584
1585        if (bio_flags & EXTENT_BIO_COMPRESSED)
1586                return 0;
1587
1588        length = bio->bi_size;
1589        map_length = length;
1590        ret = btrfs_map_block(root->fs_info, rw, logical,
1591                              &map_length, NULL, 0);
1592        /* Will always return 0 with map_multi == NULL */
1593        BUG_ON(ret < 0);
1594        if (map_length < length + size)
1595                return 1;
1596        return 0;
1597}
1598
1599/*
1600 * in order to insert checksums into the metadata in large chunks,
1601 * we wait until bio submission time.   All the pages in the bio are
1602 * checksummed and sums are attached onto the ordered extent record.
1603 *
1604 * At IO completion time the cums attached on the ordered extent record
1605 * are inserted into the btree
1606 */
1607static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1608                                    struct bio *bio, int mirror_num,
1609                                    unsigned long bio_flags,
1610                                    u64 bio_offset)
1611{
1612        struct btrfs_root *root = BTRFS_I(inode)->root;
1613        int ret = 0;
1614
1615        ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1616        BUG_ON(ret); /* -ENOMEM */
1617        return 0;
1618}
1619
1620/*
1621 * in order to insert checksums into the metadata in large chunks,
1622 * we wait until bio submission time.   All the pages in the bio are
1623 * checksummed and sums are attached onto the ordered extent record.
1624 *
1625 * At IO completion time the cums attached on the ordered extent record
1626 * are inserted into the btree
1627 */
1628static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1629                          int mirror_num, unsigned long bio_flags,
1630                          u64 bio_offset)
1631{
1632        struct btrfs_root *root = BTRFS_I(inode)->root;
1633        int ret;
1634
1635        ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1636        if (ret)
1637                bio_endio(bio, ret);
1638        return ret;
1639}
1640
1641/*
1642 * extent_io.c submission hook. This does the right thing for csum calculation
1643 * on write, or reading the csums from the tree before a read
1644 */
1645static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1646                          int mirror_num, unsigned long bio_flags,
1647                          u64 bio_offset)
1648{
1649        struct btrfs_root *root = BTRFS_I(inode)->root;
1650        int ret = 0;
1651        int skip_sum;
1652        int metadata = 0;
1653        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1654
1655        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1656
1657        if (btrfs_is_free_space_inode(inode))
1658                metadata = 2;
1659
1660        if (!(rw & REQ_WRITE)) {
1661                ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1662                if (ret)
1663                        goto out;
1664
1665                if (bio_flags & EXTENT_BIO_COMPRESSED) {
1666                        ret = btrfs_submit_compressed_read(inode, bio,
1667                                                           mirror_num,
1668                                                           bio_flags);
1669                        goto out;
1670                } else if (!skip_sum) {
1671                        ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1672                        if (ret)
1673                                goto out;
1674                }
1675                goto mapit;
1676        } else if (async && !skip_sum) {
1677                /* csum items have already been cloned */
1678                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1679                        goto mapit;
1680                /* we're doing a write, do the async checksumming */
1681                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1682                                   inode, rw, bio, mirror_num,
1683                                   bio_flags, bio_offset,
1684                                   __btrfs_submit_bio_start,
1685                                   __btrfs_submit_bio_done);
1686                goto out;
1687        } else if (!skip_sum) {
1688                ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1689                if (ret)
1690                        goto out;
1691        }
1692
1693mapit:
1694        ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1695
1696out:
1697        if (ret < 0)
1698                bio_endio(bio, ret);
1699        return ret;
1700}
1701
1702/*
1703 * given a list of ordered sums record them in the inode.  This happens
1704 * at IO completion time based on sums calculated at bio submission time.
1705 */
1706static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1707                             struct inode *inode, u64 file_offset,
1708                             struct list_head *list)
1709{
1710        struct btrfs_ordered_sum *sum;
1711
1712        list_for_each_entry(sum, list, list) {
1713                trans->adding_csums = 1;
1714                btrfs_csum_file_blocks(trans,
1715                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1716                trans->adding_csums = 0;
1717        }
1718        return 0;
1719}
1720
1721int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1722                              struct extent_state **cached_state)
1723{
1724        WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1725        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1726                                   cached_state, GFP_NOFS);
1727}
1728
1729/* see btrfs_writepage_start_hook for details on why this is required */
1730struct btrfs_writepage_fixup {
1731        struct page *page;
1732        struct btrfs_work work;
1733};
1734
1735static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1736{
1737        struct btrfs_writepage_fixup *fixup;
1738        struct btrfs_ordered_extent *ordered;
1739        struct extent_state *cached_state = NULL;
1740        struct page *page;
1741        struct inode *inode;
1742        u64 page_start;
1743        u64 page_end;
1744        int ret;
1745
1746        fixup = container_of(work, struct btrfs_writepage_fixup, work);
1747        page = fixup->page;
1748again:
1749        lock_page(page);
1750        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1751                ClearPageChecked(page);
1752                goto out_page;
1753        }
1754
1755        inode = page->mapping->host;
1756        page_start = page_offset(page);
1757        page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1758
1759        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1760                         &cached_state);
1761
1762        /* already ordered? We're done */
1763        if (PagePrivate2(page))
1764                goto out;
1765
1766        ordered = btrfs_lookup_ordered_extent(inode, page_start);
1767        if (ordered) {
1768                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1769                                     page_end, &cached_state, GFP_NOFS);
1770                unlock_page(page);
1771                btrfs_start_ordered_extent(inode, ordered, 1);
1772                btrfs_put_ordered_extent(ordered);
1773                goto again;
1774        }
1775
1776        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1777        if (ret) {
1778                mapping_set_error(page->mapping, ret);
1779                end_extent_writepage(page, ret, page_start, page_end);
1780                ClearPageChecked(page);
1781                goto out;
1782         }
1783
1784        btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1785        ClearPageChecked(page);
1786        set_page_dirty(page);
1787out:
1788        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1789                             &cached_state, GFP_NOFS);
1790out_page:
1791        unlock_page(page);
1792        page_cache_release(page);
1793        kfree(fixup);
1794}
1795
1796/*
1797 * There are a few paths in the higher layers of the kernel that directly
1798 * set the page dirty bit without asking the filesystem if it is a
1799 * good idea.  This causes problems because we want to make sure COW
1800 * properly happens and the data=ordered rules are followed.
1801 *
1802 * In our case any range that doesn't have the ORDERED bit set
1803 * hasn't been properly setup for IO.  We kick off an async process
1804 * to fix it up.  The async helper will wait for ordered extents, set
1805 * the delalloc bit and make it safe to write the page.
1806 */
1807static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1808{
1809        struct inode *inode = page->mapping->host;
1810        struct btrfs_writepage_fixup *fixup;
1811        struct btrfs_root *root = BTRFS_I(inode)->root;
1812
1813        /* this page is properly in the ordered list */
1814        if (TestClearPagePrivate2(page))
1815                return 0;
1816
1817        if (PageChecked(page))
1818                return -EAGAIN;
1819
1820        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1821        if (!fixup)
1822                return -EAGAIN;
1823
1824        SetPageChecked(page);
1825        page_cache_get(page);
1826        fixup->work.func = btrfs_writepage_fixup_worker;
1827        fixup->page = page;
1828        btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1829        return -EBUSY;
1830}
1831
1832static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1833                                       struct inode *inode, u64 file_pos,
1834                                       u64 disk_bytenr, u64 disk_num_bytes,
1835                                       u64 num_bytes, u64 ram_bytes,
1836                                       u8 compression, u8 encryption,
1837                                       u16 other_encoding, int extent_type)
1838{
1839        struct btrfs_root *root = BTRFS_I(inode)->root;
1840        struct btrfs_file_extent_item *fi;
1841        struct btrfs_path *path;
1842        struct extent_buffer *leaf;
1843        struct btrfs_key ins;
1844        int ret;
1845
1846        path = btrfs_alloc_path();
1847        if (!path)
1848                return -ENOMEM;
1849
1850        path->leave_spinning = 1;
1851
1852        /*
1853         * we may be replacing one extent in the tree with another.
1854         * The new extent is pinned in the extent map, and we don't want
1855         * to drop it from the cache until it is completely in the btree.
1856         *
1857         * So, tell btrfs_drop_extents to leave this extent in the cache.
1858         * the caller is expected to unpin it and allow it to be merged
1859         * with the others.
1860         */
1861        ret = btrfs_drop_extents(trans, root, inode, file_pos,
1862                                 file_pos + num_bytes, 0);
1863        if (ret)
1864                goto out;
1865
1866        ins.objectid = btrfs_ino(inode);
1867        ins.offset = file_pos;
1868        ins.type = BTRFS_EXTENT_DATA_KEY;
1869        ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1870        if (ret)
1871                goto out;
1872        leaf = path->nodes[0];
1873        fi = btrfs_item_ptr(leaf, path->slots[0],
1874                            struct btrfs_file_extent_item);
1875        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1876        btrfs_set_file_extent_type(leaf, fi, extent_type);
1877        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1878        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1879        btrfs_set_file_extent_offset(leaf, fi, 0);
1880        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1881        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1882        btrfs_set_file_extent_compression(leaf, fi, compression);
1883        btrfs_set_file_extent_encryption(leaf, fi, encryption);
1884        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1885
1886        btrfs_mark_buffer_dirty(leaf);
1887        btrfs_release_path(path);
1888
1889        inode_add_bytes(inode, num_bytes);
1890
1891        ins.objectid = disk_bytenr;
1892        ins.offset = disk_num_bytes;
1893        ins.type = BTRFS_EXTENT_ITEM_KEY;
1894        ret = btrfs_alloc_reserved_file_extent(trans, root,
1895                                        root->root_key.objectid,
1896                                        btrfs_ino(inode), file_pos, &ins);
1897out:
1898        btrfs_free_path(path);
1899
1900        return ret;
1901}
1902
1903/* snapshot-aware defrag */
1904struct sa_defrag_extent_backref {
1905        struct rb_node node;
1906        struct old_sa_defrag_extent *old;
1907        u64 root_id;
1908        u64 inum;
1909        u64 file_pos;
1910        u64 extent_offset;
1911        u64 num_bytes;
1912        u64 generation;
1913};
1914
1915struct old_sa_defrag_extent {
1916        struct list_head list;
1917        struct new_sa_defrag_extent *new;
1918
1919        u64 extent_offset;
1920        u64 bytenr;
1921        u64 offset;
1922        u64 len;
1923        int count;
1924};
1925
1926struct new_sa_defrag_extent {
1927        struct rb_root root;
1928        struct list_head head;
1929        struct btrfs_path *path;
1930        struct inode *inode;
1931        u64 file_pos;
1932        u64 len;
1933        u64 bytenr;
1934        u64 disk_len;
1935        u8 compress_type;
1936};
1937
1938static int backref_comp(struct sa_defrag_extent_backref *b1,
1939                        struct sa_defrag_extent_backref *b2)
1940{
1941        if (b1->root_id < b2->root_id)
1942                return -1;
1943        else if (b1->root_id > b2->root_id)
1944                return 1;
1945
1946        if (b1->inum < b2->inum)
1947                return -1;
1948        else if (b1->inum > b2->inum)
1949                return 1;
1950
1951        if (b1->file_pos < b2->file_pos)
1952                return -1;
1953        else if (b1->file_pos > b2->file_pos)
1954                return 1;
1955
1956        /*
1957         * [------------------------------] ===> (a range of space)
1958         *     |<--->|   |<---->| =============> (fs/file tree A)
1959         * |<---------------------------->| ===> (fs/file tree B)
1960         *
1961         * A range of space can refer to two file extents in one tree while
1962         * refer to only one file extent in another tree.
1963         *
1964         * So we may process a disk offset more than one time(two extents in A)
1965         * and locate at the same extent(one extent in B), then insert two same
1966         * backrefs(both refer to the extent in B).
1967         */
1968        return 0;
1969}
1970
1971static void backref_insert(struct rb_root *root,
1972                           struct sa_defrag_extent_backref *backref)
1973{
1974        struct rb_node **p = &root->rb_node;
1975        struct rb_node *parent = NULL;
1976        struct sa_defrag_extent_backref *entry;
1977        int ret;
1978
1979        while (*p) {
1980                parent = *p;
1981                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1982
1983                ret = backref_comp(backref, entry);
1984                if (ret < 0)
1985                        p = &(*p)->rb_left;
1986                else
1987                        p = &(*p)->rb_right;
1988        }
1989
1990        rb_link_node(&backref->node, parent, p);
1991        rb_insert_color(&backref->node, root);
1992}
1993
1994/*
1995 * Note the backref might has changed, and in this case we just return 0.
1996 */
1997static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
1998                                       void *ctx)
1999{
2000        struct btrfs_file_extent_item *extent;
2001        struct btrfs_fs_info *fs_info;
2002        struct old_sa_defrag_extent *old = ctx;
2003        struct new_sa_defrag_extent *new = old->new;
2004        struct btrfs_path *path = new->path;
2005        struct btrfs_key key;
2006        struct btrfs_root *root;
2007        struct sa_defrag_extent_backref *backref;
2008        struct extent_buffer *leaf;
2009        struct inode *inode = new->inode;
2010        int slot;
2011        int ret;
2012        u64 extent_offset;
2013        u64 num_bytes;
2014
2015        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2016            inum == btrfs_ino(inode))
2017                return 0;
2018
2019        key.objectid = root_id;
2020        key.type = BTRFS_ROOT_ITEM_KEY;
2021        key.offset = (u64)-1;
2022
2023        fs_info = BTRFS_I(inode)->root->fs_info;
2024        root = btrfs_read_fs_root_no_name(fs_info, &key);
2025        if (IS_ERR(root)) {
2026                if (PTR_ERR(root) == -ENOENT)
2027                        return 0;
2028                WARN_ON(1);
2029                pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2030                         inum, offset, root_id);
2031                return PTR_ERR(root);
2032        }
2033
2034        key.objectid = inum;
2035        key.type = BTRFS_EXTENT_DATA_KEY;
2036        if (offset > (u64)-1 << 32)
2037                key.offset = 0;
2038        else
2039                key.offset = offset;
2040
2041        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2042        if (WARN_ON(ret < 0))
2043                return ret;
2044        ret = 0;
2045
2046        while (1) {
2047                cond_resched();
2048
2049                leaf = path->nodes[0];
2050                slot = path->slots[0];
2051
2052                if (slot >= btrfs_header_nritems(leaf)) {
2053                        ret = btrfs_next_leaf(root, path);
2054                        if (ret < 0) {
2055                                goto out;
2056                        } else if (ret > 0) {
2057                                ret = 0;
2058                                goto out;
2059                        }
2060                        continue;
2061                }
2062
2063                path->slots[0]++;
2064
2065                btrfs_item_key_to_cpu(leaf, &key, slot);
2066
2067                if (key.objectid > inum)
2068                        goto out;
2069
2070                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2071                        continue;
2072
2073                extent = btrfs_item_ptr(leaf, slot,
2074                                        struct btrfs_file_extent_item);
2075
2076                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2077                        continue;
2078
2079                /*
2080                 * 'offset' refers to the exact key.offset,
2081                 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2082                 * (key.offset - extent_offset).
2083                 */
2084                if (key.offset != offset)
2085                        continue;
2086
2087                extent_offset = btrfs_file_extent_offset(leaf, extent);
2088                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2089
2090                if (extent_offset >= old->extent_offset + old->offset +
2091                    old->len || extent_offset + num_bytes <=
2092                    old->extent_offset + old->offset)
2093                        continue;
2094                break;
2095        }
2096
2097        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2098        if (!backref) {
2099                ret = -ENOENT;
2100                goto out;
2101        }
2102
2103        backref->root_id = root_id;
2104        backref->inum = inum;
2105        backref->file_pos = offset;
2106        backref->num_bytes = num_bytes;
2107        backref->extent_offset = extent_offset;
2108        backref->generation = btrfs_file_extent_generation(leaf, extent);
2109        backref->old = old;
2110        backref_insert(&new->root, backref);
2111        old->count++;
2112out:
2113        btrfs_release_path(path);
2114        WARN_ON(ret);
2115        return ret;
2116}
2117
2118static noinline bool record_extent_backrefs(struct btrfs_path *path,
2119                                   struct new_sa_defrag_extent *new)
2120{
2121        struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2122        struct old_sa_defrag_extent *old, *tmp;
2123        int ret;
2124
2125        new->path = path;
2126
2127        list_for_each_entry_safe(old, tmp, &new->head, list) {
2128                ret = iterate_inodes_from_logical(old->bytenr +
2129                                                  old->extent_offset, fs_info,
2130                                                  path, record_one_backref,
2131                                                  old);
2132                if (ret < 0 && ret != -ENOENT)
2133                        return false;
2134
2135                /* no backref to be processed for this extent */
2136                if (!old->count) {
2137                        list_del(&old->list);
2138                        kfree(old);
2139                }
2140        }
2141
2142        if (list_empty(&new->head))
2143                return false;
2144
2145        return true;
2146}
2147
2148static int relink_is_mergable(struct extent_buffer *leaf,
2149                              struct btrfs_file_extent_item *fi,
2150                              struct new_sa_defrag_extent *new)
2151{
2152        if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2153                return 0;
2154
2155        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2156                return 0;
2157
2158        if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2159                return 0;
2160
2161        if (btrfs_file_extent_encryption(leaf, fi) ||
2162            btrfs_file_extent_other_encoding(leaf, fi))
2163                return 0;
2164
2165        return 1;
2166}
2167
2168/*
2169 * Note the backref might has changed, and in this case we just return 0.
2170 */
2171static noinline int relink_extent_backref(struct btrfs_path *path,
2172                                 struct sa_defrag_extent_backref *prev,
2173                                 struct sa_defrag_extent_backref *backref)
2174{
2175        struct btrfs_file_extent_item *extent;
2176        struct btrfs_file_extent_item *item;
2177        struct btrfs_ordered_extent *ordered;
2178        struct btrfs_trans_handle *trans;
2179        struct btrfs_fs_info *fs_info;
2180        struct btrfs_root *root;
2181        struct btrfs_key key;
2182        struct extent_buffer *leaf;
2183        struct old_sa_defrag_extent *old = backref->old;
2184        struct new_sa_defrag_extent *new = old->new;
2185        struct inode *src_inode = new->inode;
2186        struct inode *inode;
2187        struct extent_state *cached = NULL;
2188        int ret = 0;
2189        u64 start;
2190        u64 len;
2191        u64 lock_start;
2192        u64 lock_end;
2193        bool merge = false;
2194        int index;
2195
2196        if (prev && prev->root_id == backref->root_id &&
2197            prev->inum == backref->inum &&
2198            prev->file_pos + prev->num_bytes == backref->file_pos)
2199                merge = true;
2200
2201        /* step 1: get root */
2202        key.objectid = backref->root_id;
2203        key.type = BTRFS_ROOT_ITEM_KEY;
2204        key.offset = (u64)-1;
2205
2206        fs_info = BTRFS_I(src_inode)->root->fs_info;
2207        index = srcu_read_lock(&fs_info->subvol_srcu);
2208
2209        root = btrfs_read_fs_root_no_name(fs_info, &key);
2210        if (IS_ERR(root)) {
2211                srcu_read_unlock(&fs_info->subvol_srcu, index);
2212                if (PTR_ERR(root) == -ENOENT)
2213                        return 0;
2214                return PTR_ERR(root);
2215        }
2216
2217        /* step 2: get inode */
2218        key.objectid = backref->inum;
2219        key.type = BTRFS_INODE_ITEM_KEY;
2220        key.offset = 0;
2221
2222        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2223        if (IS_ERR(inode)) {
2224                srcu_read_unlock(&fs_info->subvol_srcu, index);
2225                return 0;
2226        }
2227
2228        srcu_read_unlock(&fs_info->subvol_srcu, index);
2229
2230        /* step 3: relink backref */
2231        lock_start = backref->file_pos;
2232        lock_end = backref->file_pos + backref->num_bytes - 1;
2233        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2234                         0, &cached);
2235
2236        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2237        if (ordered) {
2238                btrfs_put_ordered_extent(ordered);
2239                goto out_unlock;
2240        }
2241
2242        trans = btrfs_join_transaction(root);
2243        if (IS_ERR(trans)) {
2244                ret = PTR_ERR(trans);
2245                goto out_unlock;
2246        }
2247
2248        key.objectid = backref->inum;
2249        key.type = BTRFS_EXTENT_DATA_KEY;
2250        key.offset = backref->file_pos;
2251
2252        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2253        if (ret < 0) {
2254                goto out_free_path;
2255        } else if (ret > 0) {
2256                ret = 0;
2257                goto out_free_path;
2258        }
2259
2260        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2261                                struct btrfs_file_extent_item);
2262
2263        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2264            backref->generation)
2265                goto out_free_path;
2266
2267        btrfs_release_path(path);
2268
2269        start = backref->file_pos;
2270        if (backref->extent_offset < old->extent_offset + old->offset)
2271                start += old->extent_offset + old->offset -
2272                         backref->extent_offset;
2273
2274        len = min(backref->extent_offset + backref->num_bytes,
2275                  old->extent_offset + old->offset + old->len);
2276        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2277
2278        ret = btrfs_drop_extents(trans, root, inode, start,
2279                                 start + len, 1);
2280        if (ret)
2281                goto out_free_path;
2282again:
2283        key.objectid = btrfs_ino(inode);
2284        key.type = BTRFS_EXTENT_DATA_KEY;
2285        key.offset = start;
2286
2287        path->leave_spinning = 1;
2288        if (merge) {
2289                struct btrfs_file_extent_item *fi;
2290                u64 extent_len;
2291                struct btrfs_key found_key;
2292
2293                ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2294                if (ret < 0)
2295                        goto out_free_path;
2296
2297                path->slots[0]--;
2298                leaf = path->nodes[0];
2299                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2300
2301                fi = btrfs_item_ptr(leaf, path->slots[0],
2302                                    struct btrfs_file_extent_item);
2303                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2304
2305                if (extent_len + found_key.offset == start &&
2306                    relink_is_mergable(leaf, fi, new)) {
2307                        btrfs_set_file_extent_num_bytes(leaf, fi,
2308                                                        extent_len + len);
2309                        btrfs_mark_buffer_dirty(leaf);
2310                        inode_add_bytes(inode, len);
2311
2312                        ret = 1;
2313                        goto out_free_path;
2314                } else {
2315                        merge = false;
2316                        btrfs_release_path(path);
2317                        goto again;
2318                }
2319        }
2320
2321        ret = btrfs_insert_empty_item(trans, root, path, &key,
2322                                        sizeof(*extent));
2323        if (ret) {
2324                btrfs_abort_transaction(trans, root, ret);
2325                goto out_free_path;
2326        }
2327
2328        leaf = path->nodes[0];
2329        item = btrfs_item_ptr(leaf, path->slots[0],
2330                                struct btrfs_file_extent_item);
2331        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2332        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2333        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2334        btrfs_set_file_extent_num_bytes(leaf, item, len);
2335        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2336        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2337        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2338        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2339        btrfs_set_file_extent_encryption(leaf, item, 0);
2340        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2341
2342        btrfs_mark_buffer_dirty(leaf);
2343        inode_add_bytes(inode, len);
2344        btrfs_release_path(path);
2345
2346        ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2347                        new->disk_len, 0,
2348                        backref->root_id, backref->inum,
2349                        new->file_pos, 0);      /* start - extent_offset */
2350        if (ret) {
2351                btrfs_abort_transaction(trans, root, ret);
2352                goto out_free_path;
2353        }
2354
2355        ret = 1;
2356out_free_path:
2357        btrfs_release_path(path);
2358        path->leave_spinning = 0;
2359        btrfs_end_transaction(trans, root);
2360out_unlock:
2361        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2362                             &cached, GFP_NOFS);
2363        iput(inode);
2364        return ret;
2365}
2366
2367static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2368{
2369        struct old_sa_defrag_extent *old, *tmp;
2370
2371        if (!new)
2372                return;
2373
2374        list_for_each_entry_safe(old, tmp, &new->head, list) {
2375                list_del(&old->list);
2376                kfree(old);
2377        }
2378        kfree(new);
2379}
2380
2381static void relink_file_extents(struct new_sa_defrag_extent *new)
2382{
2383        struct btrfs_path *path;
2384        struct sa_defrag_extent_backref *backref;
2385        struct sa_defrag_extent_backref *prev = NULL;
2386        struct inode *inode;
2387        struct btrfs_root *root;
2388        struct rb_node *node;
2389        int ret;
2390
2391        inode = new->inode;
2392        root = BTRFS_I(inode)->root;
2393
2394        path = btrfs_alloc_path();
2395        if (!path)
2396                return;
2397
2398        if (!record_extent_backrefs(path, new)) {
2399                btrfs_free_path(path);
2400                goto out;
2401        }
2402        btrfs_release_path(path);
2403
2404        while (1) {
2405                node = rb_first(&new->root);
2406                if (!node)
2407                        break;
2408                rb_erase(node, &new->root);
2409
2410                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2411
2412                ret = relink_extent_backref(path, prev, backref);
2413                WARN_ON(ret < 0);
2414
2415                kfree(prev);
2416
2417                if (ret == 1)
2418                        prev = backref;
2419                else
2420                        prev = NULL;
2421                cond_resched();
2422        }
2423        kfree(prev);
2424
2425        btrfs_free_path(path);
2426out:
2427        free_sa_defrag_extent(new);
2428
2429        atomic_dec(&root->fs_info->defrag_running);
2430        wake_up(&root->fs_info->transaction_wait);
2431}
2432
2433static struct new_sa_defrag_extent *
2434record_old_file_extents(struct inode *inode,
2435                        struct btrfs_ordered_extent *ordered)
2436{
2437        struct btrfs_root *root = BTRFS_I(inode)->root;
2438        struct btrfs_path *path;
2439        struct btrfs_key key;
2440        struct old_sa_defrag_extent *old;
2441        struct new_sa_defrag_extent *new;
2442        int ret;
2443
2444        new = kmalloc(sizeof(*new), GFP_NOFS);
2445        if (!new)
2446                return NULL;
2447
2448        new->inode = inode;
2449        new->file_pos = ordered->file_offset;
2450        new->len = ordered->len;
2451        new->bytenr = ordered->start;
2452        new->disk_len = ordered->disk_len;
2453        new->compress_type = ordered->compress_type;
2454        new->root = RB_ROOT;
2455        INIT_LIST_HEAD(&new->head);
2456
2457        path = btrfs_alloc_path();
2458        if (!path)
2459                goto out_kfree;
2460
2461        key.objectid = btrfs_ino(inode);
2462        key.type = BTRFS_EXTENT_DATA_KEY;
2463        key.offset = new->file_pos;
2464
2465        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2466        if (ret < 0)
2467                goto out_free_path;
2468        if (ret > 0 && path->slots[0] > 0)
2469                path->slots[0]--;
2470
2471        /* find out all the old extents for the file range */
2472        while (1) {
2473                struct btrfs_file_extent_item *extent;
2474                struct extent_buffer *l;
2475                int slot;
2476                u64 num_bytes;
2477                u64 offset;
2478                u64 end;
2479                u64 disk_bytenr;
2480                u64 extent_offset;
2481
2482                l = path->nodes[0];
2483                slot = path->slots[0];
2484
2485                if (slot >= btrfs_header_nritems(l)) {
2486                        ret = btrfs_next_leaf(root, path);
2487                        if (ret < 0)
2488                                goto out_free_path;
2489                        else if (ret > 0)
2490                                break;
2491                        continue;
2492                }
2493
2494                btrfs_item_key_to_cpu(l, &key, slot);
2495
2496                if (key.objectid != btrfs_ino(inode))
2497                        break;
2498                if (key.type != BTRFS_EXTENT_DATA_KEY)
2499                        break;
2500                if (key.offset >= new->file_pos + new->len)
2501                        break;
2502
2503                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2504
2505                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2506                if (key.offset + num_bytes < new->file_pos)
2507                        goto next;
2508
2509                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2510                if (!disk_bytenr)
2511                        goto next;
2512
2513                extent_offset = btrfs_file_extent_offset(l, extent);
2514
2515                old = kmalloc(sizeof(*old), GFP_NOFS);
2516                if (!old)
2517                        goto out_free_path;
2518
2519                offset = max(new->file_pos, key.offset);
2520                end = min(new->file_pos + new->len, key.offset + num_bytes);
2521
2522                old->bytenr = disk_bytenr;
2523                old->extent_offset = extent_offset;
2524                old->offset = offset - key.offset;
2525                old->len = end - offset;
2526                old->new = new;
2527                old->count = 0;
2528                list_add_tail(&old->list, &new->head);
2529next:
2530                path->slots[0]++;
2531                cond_resched();
2532        }
2533
2534        btrfs_free_path(path);
2535        atomic_inc(&root->fs_info->defrag_running);
2536
2537        return new;
2538
2539out_free_path:
2540        btrfs_free_path(path);
2541out_kfree:
2542        free_sa_defrag_extent(new);
2543        return NULL;
2544}
2545
2546/*
2547 * helper function for btrfs_finish_ordered_io, this
2548 * just reads in some of the csum leaves to prime them into ram
2549 * before we start the transaction.  It limits the amount of btree
2550 * reads required while inside the transaction.
2551 */
2552/* as ordered data IO finishes, this gets called so we can finish
2553 * an ordered extent if the range of bytes in the file it covers are
2554 * fully written.
2555 */
2556static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2557{
2558        struct inode *inode = ordered_extent->inode;
2559        struct btrfs_root *root = BTRFS_I(inode)->root;
2560        struct btrfs_trans_handle *trans = NULL;
2561        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2562        struct extent_state *cached_state = NULL;
2563        struct new_sa_defrag_extent *new = NULL;
2564        int compress_type = 0;
2565        int ret = 0;
2566        u64 logical_len = ordered_extent->len;
2567        bool nolock;
2568        bool truncated = false;
2569
2570        nolock = btrfs_is_free_space_inode(inode);
2571
2572        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2573                ret = -EIO;
2574                goto out;
2575        }
2576
2577        if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2578                truncated = true;
2579                logical_len = ordered_extent->truncated_len;
2580                /* Truncated the entire extent, don't bother adding */
2581                if (!logical_len)
2582                        goto out;
2583        }
2584
2585        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2586                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2587                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2588                if (nolock)
2589                        trans = btrfs_join_transaction_nolock(root);
2590                else
2591                        trans = btrfs_join_transaction(root);
2592                if (IS_ERR(trans)) {
2593                        ret = PTR_ERR(trans);
2594                        trans = NULL;
2595                        goto out;
2596                }
2597                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2598                ret = btrfs_update_inode_fallback(trans, root, inode);
2599                if (ret) /* -ENOMEM or corruption */
2600                        btrfs_abort_transaction(trans, root, ret);
2601                goto out;
2602        }
2603
2604        lock_extent_bits(io_tree, ordered_extent->file_offset,
2605                         ordered_extent->file_offset + ordered_extent->len - 1,
2606                         0, &cached_state);
2607
2608        ret = test_range_bit(io_tree, ordered_extent->file_offset,
2609                        ordered_extent->file_offset + ordered_extent->len - 1,
2610                        EXTENT_DEFRAG, 1, cached_state);
2611        if (ret) {
2612                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2613                if (last_snapshot >= BTRFS_I(inode)->generation)
2614                        /* the inode is shared */
2615                        new = record_old_file_extents(inode, ordered_extent);
2616
2617                clear_extent_bit(io_tree, ordered_extent->file_offset,
2618                        ordered_extent->file_offset + ordered_extent->len - 1,
2619                        EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2620        }
2621
2622        if (nolock)
2623                trans = btrfs_join_transaction_nolock(root);
2624        else
2625                trans = btrfs_join_transaction(root);
2626        if (IS_ERR(trans)) {
2627                ret = PTR_ERR(trans);
2628                trans = NULL;
2629                goto out_unlock;
2630        }
2631        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2632
2633        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2634                compress_type = ordered_extent->compress_type;
2635        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2636                BUG_ON(compress_type);
2637                ret = btrfs_mark_extent_written(trans, inode,
2638                                                ordered_extent->file_offset,
2639                                                ordered_extent->file_offset +
2640                                                logical_len);
2641        } else {
2642                BUG_ON(root == root->fs_info->tree_root);
2643                ret = insert_reserved_file_extent(trans, inode,
2644                                                ordered_extent->file_offset,
2645                                                ordered_extent->start,
2646                                                ordered_extent->disk_len,
2647                                                logical_len, logical_len,
2648                                                compress_type, 0, 0,
2649                                                BTRFS_FILE_EXTENT_REG);
2650        }
2651        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2652                           ordered_extent->file_offset, ordered_extent->len,
2653                           trans->transid);
2654        if (ret < 0) {
2655                btrfs_abort_transaction(trans, root, ret);
2656                goto out_unlock;
2657        }
2658
2659        add_pending_csums(trans, inode, ordered_extent->file_offset,
2660                          &ordered_extent->list);
2661
2662        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2663        ret = btrfs_update_inode_fallback(trans, root, inode);
2664        if (ret) { /* -ENOMEM or corruption */
2665                btrfs_abort_transaction(trans, root, ret);
2666                goto out_unlock;
2667        }
2668        ret = 0;
2669out_unlock:
2670        unlock_extent_cached(io_tree, ordered_extent->file_offset,
2671                             ordered_extent->file_offset +
2672                             ordered_extent->len - 1, &cached_state, GFP_NOFS);
2673out:
2674        if (root != root->fs_info->tree_root)
2675                btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2676        if (trans)
2677                btrfs_end_transaction(trans, root);
2678
2679        if (ret || truncated) {
2680                u64 start, end;
2681
2682                if (truncated)
2683                        start = ordered_extent->file_offset + logical_len;
2684                else
2685                        start = ordered_extent->file_offset;
2686                end = ordered_extent->file_offset + ordered_extent->len - 1;
2687                clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2688
2689                /* Drop the cache for the part of the extent we didn't write. */
2690                btrfs_drop_extent_cache(inode, start, end, 0);
2691
2692                /*
2693                 * If the ordered extent had an IOERR or something else went
2694                 * wrong we need to return the space for this ordered extent
2695                 * back to the allocator.  We only free the extent in the
2696                 * truncated case if we didn't write out the extent at all.
2697                 */
2698                if ((ret || !logical_len) &&
2699                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2700                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2701                        btrfs_free_reserved_extent(root, ordered_extent->start,
2702                                                   ordered_extent->disk_len);
2703        }
2704
2705
2706        /*
2707         * This needs to be done to make sure anybody waiting knows we are done
2708         * updating everything for this ordered extent.
2709         */
2710        btrfs_remove_ordered_extent(inode, ordered_extent);
2711
2712        /* for snapshot-aware defrag */
2713        if (new) {
2714                if (ret) {
2715                        free_sa_defrag_extent(new);
2716                        atomic_dec(&root->fs_info->defrag_running);
2717                } else {
2718                        relink_file_extents(new);
2719                }
2720        }
2721
2722        /* once for us */
2723        btrfs_put_ordered_extent(ordered_extent);
2724        /* once for the tree */
2725        btrfs_put_ordered_extent(ordered_extent);
2726
2727        return ret;
2728}
2729
2730static void finish_ordered_fn(struct btrfs_work *work)
2731{
2732        struct btrfs_ordered_extent *ordered_extent;
2733        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2734        btrfs_finish_ordered_io(ordered_extent);
2735}
2736
2737static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2738                                struct extent_state *state, int uptodate)
2739{
2740        struct inode *inode = page->mapping->host;
2741        struct btrfs_root *root = BTRFS_I(inode)->root;
2742        struct btrfs_ordered_extent *ordered_extent = NULL;
2743        struct btrfs_workers *workers;
2744
2745        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2746
2747        ClearPagePrivate2(page);
2748        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2749                                            end - start + 1, uptodate))
2750                return 0;
2751
2752        ordered_extent->work.func = finish_ordered_fn;
2753        ordered_extent->work.flags = 0;
2754
2755        if (btrfs_is_free_space_inode(inode))
2756                workers = &root->fs_info->endio_freespace_worker;
2757        else
2758                workers = &root->fs_info->endio_write_workers;
2759        btrfs_queue_worker(workers, &ordered_extent->work);
2760
2761        return 0;
2762}
2763
2764/*
2765 * when reads are done, we need to check csums to verify the data is correct
2766 * if there's a match, we allow the bio to finish.  If not, the code in
2767 * extent_io.c will try to find good copies for us.
2768 */
2769static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2770                                      u64 phy_offset, struct page *page,
2771                                      u64 start, u64 end, int mirror)
2772{
2773        size_t offset = start - page_offset(page);
2774        struct inode *inode = page->mapping->host;
2775        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2776        char *kaddr;
2777        struct btrfs_root *root = BTRFS_I(inode)->root;
2778        u32 csum_expected;
2779        u32 csum = ~(u32)0;
2780        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2781                                      DEFAULT_RATELIMIT_BURST);
2782
2783        if (PageChecked(page)) {
2784                ClearPageChecked(page);
2785                goto good;
2786        }
2787
2788        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2789                goto good;
2790
2791        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2792            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2793                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2794                                  GFP_NOFS);
2795                return 0;
2796        }
2797
2798        phy_offset >>= inode->i_sb->s_blocksize_bits;
2799        csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2800
2801        kaddr = kmap_atomic(page);
2802        csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2803        btrfs_csum_final(csum, (char *)&csum);
2804        if (csum != csum_expected)
2805                goto zeroit;
2806
2807        kunmap_atomic(kaddr);
2808good:
2809        return 0;
2810
2811zeroit:
2812        if (__ratelimit(&_rs))
2813                btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2814                        btrfs_ino(page->mapping->host), start, csum, csum_expected);
2815        memset(kaddr + offset, 1, end - start + 1);
2816        flush_dcache_page(page);
2817        kunmap_atomic(kaddr);
2818        if (csum_expected == 0)
2819                return 0;
2820        return -EIO;
2821}
2822
2823struct delayed_iput {
2824        struct list_head list;
2825        struct inode *inode;
2826};
2827
2828/* JDM: If this is fs-wide, why can't we add a pointer to
2829 * btrfs_inode instead and avoid the allocation? */
2830void btrfs_add_delayed_iput(struct inode *inode)
2831{
2832        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2833        struct delayed_iput *delayed;
2834
2835        if (atomic_add_unless(&inode->i_count, -1, 1))
2836                return;
2837
2838        delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2839        delayed->inode = inode;
2840
2841        spin_lock(&fs_info->delayed_iput_lock);
2842        list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2843        spin_unlock(&fs_info->delayed_iput_lock);
2844}
2845
2846void btrfs_run_delayed_iputs(struct btrfs_root *root)
2847{
2848        LIST_HEAD(list);
2849        struct btrfs_fs_info *fs_info = root->fs_info;
2850        struct delayed_iput *delayed;
2851        int empty;
2852
2853        spin_lock(&fs_info->delayed_iput_lock);
2854        empty = list_empty(&fs_info->delayed_iputs);
2855        spin_unlock(&fs_info->delayed_iput_lock);
2856        if (empty)
2857                return;
2858
2859        spin_lock(&fs_info->delayed_iput_lock);
2860        list_splice_init(&fs_info->delayed_iputs, &list);
2861        spin_unlock(&fs_info->delayed_iput_lock);
2862
2863        while (!list_empty(&list)) {
2864                delayed = list_entry(list.next, struct delayed_iput, list);
2865                list_del(&delayed->list);
2866                iput(delayed->inode);
2867                kfree(delayed);
2868        }
2869}
2870
2871/*
2872 * This is called in transaction commit time. If there are no orphan
2873 * files in the subvolume, it removes orphan item and frees block_rsv
2874 * structure.
2875 */
2876void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2877                              struct btrfs_root *root)
2878{
2879        struct btrfs_block_rsv *block_rsv;
2880        int ret;
2881
2882        if (atomic_read(&root->orphan_inodes) ||
2883            root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2884                return;
2885
2886        spin_lock(&root->orphan_lock);
2887        if (atomic_read(&root->orphan_inodes)) {
2888                spin_unlock(&root->orphan_lock);
2889                return;
2890        }
2891
2892        if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2893                spin_unlock(&root->orphan_lock);
2894                return;
2895        }
2896
2897        block_rsv = root->orphan_block_rsv;
2898        root->orphan_block_rsv = NULL;
2899        spin_unlock(&root->orphan_lock);
2900
2901        if (root->orphan_item_inserted &&
2902            btrfs_root_refs(&root->root_item) > 0) {
2903                ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2904                                            root->root_key.objectid);
2905                if (ret)
2906                        btrfs_abort_transaction(trans, root, ret);
2907                else
2908                        root->orphan_item_inserted = 0;
2909        }
2910
2911        if (block_rsv) {
2912                WARN_ON(block_rsv->size > 0);
2913                btrfs_free_block_rsv(root, block_rsv);
2914        }
2915}
2916
2917/*
2918 * This creates an orphan entry for the given inode in case something goes
2919 * wrong in the middle of an unlink/truncate.
2920 *
2921 * NOTE: caller of this function should reserve 5 units of metadata for
2922 *       this function.
2923 */
2924int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2925{
2926        struct btrfs_root *root = BTRFS_I(inode)->root;
2927        struct btrfs_block_rsv *block_rsv = NULL;
2928        int reserve = 0;
2929        int insert = 0;
2930        int ret;
2931
2932        if (!root->orphan_block_rsv) {
2933                block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2934                if (!block_rsv)
2935                        return -ENOMEM;
2936        }
2937
2938        spin_lock(&root->orphan_lock);
2939        if (!root->orphan_block_rsv) {
2940                root->orphan_block_rsv = block_rsv;
2941        } else if (block_rsv) {
2942                btrfs_free_block_rsv(root, block_rsv);
2943                block_rsv = NULL;
2944        }
2945
2946        if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2947                              &BTRFS_I(inode)->runtime_flags)) {
2948#if 0
2949                /*
2950                 * For proper ENOSPC handling, we should do orphan
2951                 * cleanup when mounting. But this introduces backward
2952                 * compatibility issue.
2953                 */
2954                if (!xchg(&root->orphan_item_inserted, 1))
2955                        insert = 2;
2956                else
2957                        insert = 1;
2958#endif
2959                insert = 1;
2960                atomic_inc(&root->orphan_inodes);
2961        }
2962
2963        if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2964                              &BTRFS_I(inode)->runtime_flags))
2965                reserve = 1;
2966        spin_unlock(&root->orphan_lock);
2967
2968        /* grab metadata reservation from transaction handle */
2969        if (reserve) {
2970                ret = btrfs_orphan_reserve_metadata(trans, inode);
2971                BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2972        }
2973
2974        /* insert an orphan item to track this unlinked/truncated file */
2975        if (insert >= 1) {
2976                ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2977                if (ret) {
2978                        atomic_dec(&root->orphan_inodes);
2979                        if (reserve) {
2980                                clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2981                                          &BTRFS_I(inode)->runtime_flags);
2982                                btrfs_orphan_release_metadata(inode);
2983                        }
2984                        if (ret != -EEXIST) {
2985                                clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2986                                          &BTRFS_I(inode)->runtime_flags);
2987                                btrfs_abort_transaction(trans, root, ret);
2988                                return ret;
2989                        }
2990                }
2991                ret = 0;
2992        }
2993
2994        /* insert an orphan item to track subvolume contains orphan files */
2995        if (insert >= 2) {
2996                ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2997                                               root->root_key.objectid);
2998                if (ret && ret != -EEXIST) {
2999                        btrfs_abort_transaction(trans, root, ret);
3000                        return ret;
3001                }
3002        }
3003        return 0;
3004}
3005
3006/*
3007 * We have done the truncate/delete so we can go ahead and remove the orphan
3008 * item for this particular inode.
3009 */
3010static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3011                            struct inode *inode)
3012{
3013        struct btrfs_root *root = BTRFS_I(inode)->root;
3014        int delete_item = 0;
3015        int release_rsv = 0;
3016        int ret = 0;
3017
3018        spin_lock(&root->orphan_lock);
3019        if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3020                               &BTRFS_I(inode)->runtime_flags))
3021                delete_item = 1;
3022
3023        if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3024                               &BTRFS_I(inode)->runtime_flags))
3025                release_rsv = 1;
3026        spin_unlock(&root->orphan_lock);
3027
3028        if (delete_item) {
3029                atomic_dec(&root->orphan_inodes);
3030                if (trans)
3031                        ret = btrfs_del_orphan_item(trans, root,
3032                                                    btrfs_ino(inode));
3033        }
3034
3035        if (release_rsv)
3036                btrfs_orphan_release_metadata(inode);
3037
3038        return ret;
3039}
3040
3041/*
3042 * this cleans up any orphans that may be left on the list from the last use
3043 * of this root.
3044 */
3045int btrfs_orphan_cleanup(struct btrfs_root *root)
3046{
3047        struct btrfs_path *path;
3048        struct extent_buffer *leaf;
3049        struct btrfs_key key, found_key;
3050        struct btrfs_trans_handle *trans;
3051        struct inode *inode;
3052        u64 last_objectid = 0;
3053        int ret = 0, nr_unlink = 0, nr_truncate = 0;
3054
3055        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3056                return 0;
3057
3058        path = btrfs_alloc_path();
3059        if (!path) {
3060                ret = -ENOMEM;
3061                goto out;
3062        }
3063        path->reada = -1;
3064
3065        key.objectid = BTRFS_ORPHAN_OBJECTID;
3066        btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3067        key.offset = (u64)-1;
3068
3069        while (1) {
3070                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3071                if (ret < 0)
3072                        goto out;
3073
3074                /*
3075                 * if ret == 0 means we found what we were searching for, which
3076                 * is weird, but possible, so only screw with path if we didn't
3077                 * find the key and see if we have stuff that matches
3078                 */
3079                if (ret > 0) {
3080                        ret = 0;
3081                        if (path->slots[0] == 0)
3082                                break;
3083                        path->slots[0]--;
3084                }
3085
3086                /* pull out the item */
3087                leaf = path->nodes[0];
3088                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3089
3090                /* make sure the item matches what we want */
3091                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3092                        break;
3093                if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3094                        break;
3095
3096                /* release the path since we're done with it */
3097                btrfs_release_path(path);
3098
3099                /*
3100                 * this is where we are basically btrfs_lookup, without the
3101                 * crossing root thing.  we store the inode number in the
3102                 * offset of the orphan item.
3103                 */
3104
3105                if (found_key.offset == last_objectid) {
3106                        btrfs_err(root->fs_info,
3107                                "Error removing orphan entry, stopping orphan cleanup");
3108                        ret = -EINVAL;
3109                        goto out;
3110                }
3111
3112                last_objectid = found_key.offset;
3113
3114                found_key.objectid = found_key.offset;
3115                found_key.type = BTRFS_INODE_ITEM_KEY;
3116                found_key.offset = 0;
3117                inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3118                ret = PTR_ERR_OR_ZERO(inode);
3119                if (ret && ret != -ESTALE)
3120                        goto out;
3121
3122                if (ret == -ESTALE && root == root->fs_info->tree_root) {
3123                        struct btrfs_root *dead_root;
3124                        struct btrfs_fs_info *fs_info = root->fs_info;
3125                        int is_dead_root = 0;
3126
3127                        /*
3128                         * this is an orphan in the tree root. Currently these
3129                         * could come from 2 sources:
3130                         *  a) a snapshot deletion in progress
3131                         *  b) a free space cache inode
3132                         * We need to distinguish those two, as the snapshot
3133                         * orphan must not get deleted.
3134                         * find_dead_roots already ran before us, so if this
3135                         * is a snapshot deletion, we should find the root
3136                         * in the dead_roots list
3137                         */
3138                        spin_lock(&fs_info->trans_lock);
3139                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3140                                            root_list) {
3141                                if (dead_root->root_key.objectid ==
3142                                    found_key.objectid) {
3143                                        is_dead_root = 1;
3144                                        break;
3145                                }
3146                        }
3147                        spin_unlock(&fs_info->trans_lock);
3148                        if (is_dead_root) {
3149                                /* prevent this orphan from being found again */
3150                                key.offset = found_key.objectid - 1;
3151                                continue;
3152                        }
3153                }
3154                /*
3155                 * Inode is already gone but the orphan item is still there,
3156                 * kill the orphan item.
3157                 */
3158                if (ret == -ESTALE) {
3159                        trans = btrfs_start_transaction(root, 1);
3160                        if (IS_ERR(trans)) {
3161                                ret = PTR_ERR(trans);
3162                                goto out;
3163                        }
3164                        btrfs_debug(root->fs_info, "auto deleting %Lu",
3165                                found_key.objectid);
3166                        ret = btrfs_del_orphan_item(trans, root,
3167                                                    found_key.objectid);
3168                        btrfs_end_transaction(trans, root);
3169                        if (ret)
3170                                goto out;
3171                        continue;
3172                }
3173
3174                /*
3175                 * add this inode to the orphan list so btrfs_orphan_del does
3176                 * the proper thing when we hit it
3177                 */
3178                set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3179                        &BTRFS_I(inode)->runtime_flags);
3180                atomic_inc(&root->orphan_inodes);
3181
3182                /* if we have links, this was a truncate, lets do that */
3183                if (inode->i_nlink) {
3184                        if (WARN_ON(!S_ISREG(inode->i_mode))) {
3185                                iput(inode);
3186                                continue;
3187                        }
3188                        nr_truncate++;
3189
3190                        /* 1 for the orphan item deletion. */
3191                        trans = btrfs_start_transaction(root, 1);
3192                        if (IS_ERR(trans)) {
3193                                iput(inode);
3194                                ret = PTR_ERR(trans);
3195                                goto out;
3196                        }
3197                        ret = btrfs_orphan_add(trans, inode);
3198                        btrfs_end_transaction(trans, root);
3199                        if (ret) {
3200                                iput(inode);
3201                                goto out;
3202                        }
3203
3204                        ret = btrfs_truncate(inode);
3205                        if (ret)
3206                                btrfs_orphan_del(NULL, inode);
3207                } else {
3208                        nr_unlink++;
3209                }
3210
3211                /* this will do delete_inode and everything for us */
3212                iput(inode);
3213                if (ret)
3214                        goto out;
3215        }
3216        /* release the path since we're done with it */
3217        btrfs_release_path(path);
3218
3219        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3220
3221        if (root->orphan_block_rsv)
3222                btrfs_block_rsv_release(root, root->orphan_block_rsv,
3223                                        (u64)-1);
3224
3225        if (root->orphan_block_rsv || root->orphan_item_inserted) {
3226                trans = btrfs_join_transaction(root);
3227                if (!IS_ERR(trans))
3228                        btrfs_end_transaction(trans, root);
3229        }
3230
3231        if (nr_unlink)
3232                btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3233        if (nr_truncate)
3234                btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3235
3236out:
3237        if (ret)
3238                btrfs_crit(root->fs_info,
3239                        "could not do orphan cleanup %d", ret);
3240        btrfs_free_path(path);
3241        return ret;
3242}
3243
3244/*
3245 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3246 * don't find any xattrs, we know there can't be any acls.
3247 *
3248 * slot is the slot the inode is in, objectid is the objectid of the inode
3249 */
3250static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3251                                          int slot, u64 objectid)
3252{
3253        u32 nritems = btrfs_header_nritems(leaf);
3254        struct btrfs_key found_key;
3255        static u64 xattr_access = 0;
3256        static u64 xattr_default = 0;
3257        int scanned = 0;
3258
3259        if (!xattr_access) {
3260                xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3261                                        strlen(POSIX_ACL_XATTR_ACCESS));
3262                xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3263                                        strlen(POSIX_ACL_XATTR_DEFAULT));
3264        }
3265
3266        slot++;
3267        while (slot < nritems) {
3268                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3269
3270                /* we found a different objectid, there must not be acls */
3271                if (found_key.objectid != objectid)
3272                        return 0;
3273
3274                /* we found an xattr, assume we've got an acl */
3275                if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3276                        if (found_key.offset == xattr_access ||
3277                            found_key.offset == xattr_default)
3278                                return 1;
3279                }
3280
3281                /*
3282                 * we found a key greater than an xattr key, there can't
3283                 * be any acls later on
3284                 */
3285                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3286                        return 0;
3287
3288                slot++;
3289                scanned++;
3290
3291                /*
3292                 * it goes inode, inode backrefs, xattrs, extents,
3293                 * so if there are a ton of hard links to an inode there can
3294                 * be a lot of backrefs.  Don't waste time searching too hard,
3295                 * this is just an optimization
3296                 */
3297                if (scanned >= 8)
3298                        break;
3299        }
3300        /* we hit the end of the leaf before we found an xattr or
3301         * something larger than an xattr.  We have to assume the inode
3302         * has acls
3303         */
3304        return 1;
3305}
3306
3307/*
3308 * read an inode from the btree into the in-memory inode
3309 */
3310static void btrfs_read_locked_inode(struct inode *inode)
3311{
3312        struct btrfs_path *path;
3313        struct extent_buffer *leaf;
3314        struct btrfs_inode_item *inode_item;
3315        struct btrfs_timespec *tspec;
3316        struct btrfs_root *root = BTRFS_I(inode)->root;
3317        struct btrfs_key location;
3318        int maybe_acls;
3319        u32 rdev;
3320        int ret;
3321        bool filled = false;
3322
3323        ret = btrfs_fill_inode(inode, &rdev);
3324        if (!ret)
3325                filled = true;
3326
3327        path = btrfs_alloc_path();
3328        if (!path)
3329                goto make_bad;
3330
3331        path->leave_spinning = 1;
3332        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3333
3334        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3335        if (ret)
3336                goto make_bad;
3337
3338        leaf = path->nodes[0];
3339
3340        if (filled)
3341                goto cache_acl;
3342
3343        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3344                                    struct btrfs_inode_item);
3345        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3346        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3347        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3348        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3349        btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3350
3351        tspec = btrfs_inode_atime(inode_item);
3352        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3353        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3354
3355        tspec = btrfs_inode_mtime(inode_item);
3356        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3357        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3358
3359        tspec = btrfs_inode_ctime(inode_item);
3360        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3361        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3362
3363        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3364        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3365        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3366
3367        /*
3368         * If we were modified in the current generation and evicted from memory
3369         * and then re-read we need to do a full sync since we don't have any
3370         * idea about which extents were modified before we were evicted from
3371         * cache.
3372         */
3373        if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3374                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3375                        &BTRFS_I(inode)->runtime_flags);
3376
3377        inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3378        inode->i_generation = BTRFS_I(inode)->generation;
3379        inode->i_rdev = 0;
3380        rdev = btrfs_inode_rdev(leaf, inode_item);
3381
3382        BTRFS_I(inode)->index_cnt = (u64)-1;
3383        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3384cache_acl:
3385        /*
3386         * try to precache a NULL acl entry for files that don't have
3387         * any xattrs or acls
3388         */
3389        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3390                                           btrfs_ino(inode));
3391        if (!maybe_acls)
3392                cache_no_acl(inode);
3393
3394        btrfs_free_path(path);
3395
3396        switch (inode->i_mode & S_IFMT) {
3397        case S_IFREG:
3398                inode->i_mapping->a_ops = &btrfs_aops;
3399                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3400                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3401                inode->i_fop = &btrfs_file_operations;
3402                inode->i_op = &btrfs_file_inode_operations;
3403                break;
3404        case S_IFDIR:
3405                inode->i_fop = &btrfs_dir_file_operations;
3406                if (root == root->fs_info->tree_root)
3407                        inode->i_op = &btrfs_dir_ro_inode_operations;
3408                else
3409                        inode->i_op = &btrfs_dir_inode_operations;
3410                break;
3411        case S_IFLNK:
3412                inode->i_op = &btrfs_symlink_inode_operations;
3413                inode->i_mapping->a_ops = &btrfs_symlink_aops;
3414                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3415                break;
3416        default:
3417                inode->i_op = &btrfs_special_inode_operations;
3418                init_special_inode(inode, inode->i_mode, rdev);
3419                break;
3420        }
3421
3422        btrfs_update_iflags(inode);
3423        return;
3424
3425make_bad:
3426        btrfs_free_path(path);
3427        make_bad_inode(inode);
3428}
3429
3430/*
3431 * given a leaf and an inode, copy the inode fields into the leaf
3432 */
3433static void fill_inode_item(struct btrfs_trans_handle *trans,
3434                            struct extent_buffer *leaf,
3435                            struct btrfs_inode_item *item,
3436                            struct inode *inode)
3437{
3438        struct btrfs_map_token token;
3439
3440        btrfs_init_map_token(&token);
3441
3442        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3443        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3444        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3445                                   &token);
3446        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3447        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3448
3449        btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3450                                     inode->i_atime.tv_sec, &token);
3451        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3452                                      inode->i_atime.tv_nsec, &token);
3453
3454        btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3455                                     inode->i_mtime.tv_sec, &token);
3456        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3457                                      inode->i_mtime.tv_nsec, &token);
3458
3459        btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3460                                     inode->i_ctime.tv_sec, &token);
3461        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3462                                      inode->i_ctime.tv_nsec, &token);
3463
3464        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3465                                     &token);
3466        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3467                                         &token);
3468        btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3469        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3470        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3471        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3472        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3473}
3474
3475/*
3476 * copy everything in the in-memory inode into the btree.
3477 */
3478static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3479                                struct btrfs_root *root, struct inode *inode)
3480{
3481        struct btrfs_inode_item *inode_item;
3482        struct btrfs_path *path;
3483        struct extent_buffer *leaf;
3484        int ret;
3485
3486        path = btrfs_alloc_path();
3487        if (!path)
3488                return -ENOMEM;
3489
3490        path->leave_spinning = 1;
3491        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3492                                 1);
3493        if (ret) {
3494                if (ret > 0)
3495                        ret = -ENOENT;
3496                goto failed;
3497        }
3498
3499        btrfs_unlock_up_safe(path, 1);
3500        leaf = path->nodes[0];
3501        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3502                                    struct btrfs_inode_item);
3503
3504        fill_inode_item(trans, leaf, inode_item, inode);
3505        btrfs_mark_buffer_dirty(leaf);
3506        btrfs_set_inode_last_trans(trans, inode);
3507        ret = 0;
3508failed:
3509        btrfs_free_path(path);
3510        return ret;
3511}
3512
3513/*
3514 * copy everything in the in-memory inode into the btree.
3515 */
3516noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3517                                struct btrfs_root *root, struct inode *inode)
3518{
3519        int ret;
3520
3521        /*
3522         * If the inode is a free space inode, we can deadlock during commit
3523         * if we put it into the delayed code.
3524         *
3525         * The data relocation inode should also be directly updated
3526         * without delay
3527         */
3528        if (!btrfs_is_free_space_inode(inode)
3529            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3530                btrfs_update_root_times(trans, root);
3531
3532                ret = btrfs_delayed_update_inode(trans, root, inode);
3533                if (!ret)
3534                        btrfs_set_inode_last_trans(trans, inode);
3535                return ret;
3536        }
3537
3538        return btrfs_update_inode_item(trans, root, inode);
3539}
3540
3541noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3542                                         struct btrfs_root *root,
3543                                         struct inode *inode)
3544{
3545        int ret;
3546
3547        ret = btrfs_update_inode(trans, root, inode);
3548        if (ret == -ENOSPC)
3549                return btrfs_update_inode_item(trans, root, inode);
3550        return ret;
3551}
3552
3553/*
3554 * unlink helper that gets used here in inode.c and in the tree logging
3555 * recovery code.  It remove a link in a directory with a given name, and
3556 * also drops the back refs in the inode to the directory
3557 */
3558static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3559                                struct btrfs_root *root,
3560                                struct inode *dir, struct inode *inode,
3561                                const char *name, int name_len)
3562{
3563        struct btrfs_path *path;
3564        int ret = 0;
3565        struct extent_buffer *leaf;
3566        struct btrfs_dir_item *di;
3567        struct btrfs_key key;
3568        u64 index;
3569        u64 ino = btrfs_ino(inode);
3570        u64 dir_ino = btrfs_ino(dir);
3571
3572        path = btrfs_alloc_path();
3573        if (!path) {
3574                ret = -ENOMEM;
3575                goto out;
3576        }
3577
3578        path->leave_spinning = 1;
3579        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3580                                    name, name_len, -1);
3581        if (IS_ERR(di)) {
3582                ret = PTR_ERR(di);
3583                goto err;
3584        }
3585        if (!di) {
3586                ret = -ENOENT;
3587                goto err;
3588        }
3589        leaf = path->nodes[0];
3590        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3591        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3592        if (ret)
3593                goto err;
3594        btrfs_release_path(path);
3595
3596        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3597                                  dir_ino, &index);
3598        if (ret) {
3599                btrfs_info(root->fs_info,
3600                        "failed to delete reference to %.*s, inode %llu parent %llu",
3601                        name_len, name, ino, dir_ino);
3602                btrfs_abort_transaction(trans, root, ret);
3603                goto err;
3604        }
3605
3606        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3607        if (ret) {
3608                btrfs_abort_transaction(trans, root, ret);
3609                goto err;
3610        }
3611
3612        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3613                                         inode, dir_ino);
3614        if (ret != 0 && ret != -ENOENT) {
3615                btrfs_abort_transaction(trans, root, ret);
3616                goto err;
3617        }
3618
3619        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3620                                           dir, index);
3621        if (ret == -ENOENT)
3622                ret = 0;
3623        else if (ret)
3624                btrfs_abort_transaction(trans, root, ret);
3625err:
3626        btrfs_free_path(path);
3627        if (ret)
3628                goto out;
3629
3630        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3631        inode_inc_iversion(inode);
3632        inode_inc_iversion(dir);
3633        inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3634        ret = btrfs_update_inode(trans, root, dir);
3635out:
3636        return ret;
3637}
3638
3639int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3640                       struct btrfs_root *root,
3641                       struct inode *dir, struct inode *inode,
3642                       const char *name, int name_len)
3643{
3644        int ret;
3645        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3646        if (!ret) {
3647                drop_nlink(inode);
3648                ret = btrfs_update_inode(trans, root, inode);
3649        }
3650        return ret;
3651}
3652
3653/*
3654 * helper to start transaction for unlink and rmdir.
3655 *
3656 * unlink and rmdir are special in btrfs, they do not always free space, so
3657 * if we cannot make our reservations the normal way try and see if there is
3658 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3659 * allow the unlink to occur.
3660 */
3661static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3662{
3663        struct btrfs_trans_handle *trans;
3664        struct btrfs_root *root = BTRFS_I(dir)->root;
3665        int ret;
3666
3667        /*
3668         * 1 for the possible orphan item
3669         * 1 for the dir item
3670         * 1 for the dir index
3671         * 1 for the inode ref
3672         * 1 for the inode
3673         */
3674        trans = btrfs_start_transaction(root, 5);
3675        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3676                return trans;
3677
3678        if (PTR_ERR(trans) == -ENOSPC) {
3679                u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3680
3681                trans = btrfs_start_transaction(root, 0);
3682                if (IS_ERR(trans))
3683                        return trans;
3684                ret = btrfs_cond_migrate_bytes(root->fs_info,
3685                                               &root->fs_info->trans_block_rsv,
3686                                               num_bytes, 5);
3687                if (ret) {
3688                        btrfs_end_transaction(trans, root);
3689                        return ERR_PTR(ret);
3690                }
3691                trans->block_rsv = &root->fs_info->trans_block_rsv;
3692                trans->bytes_reserved = num_bytes;
3693        }
3694        return trans;
3695}
3696
3697static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3698{
3699        struct btrfs_root *root = BTRFS_I(dir)->root;
3700        struct btrfs_trans_handle *trans;
3701        struct inode *inode = dentry->d_inode;
3702        int ret;
3703
3704        trans = __unlink_start_trans(dir);
3705        if (IS_ERR(trans))
3706                return PTR_ERR(trans);
3707
3708        btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3709
3710        ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3711                                 dentry->d_name.name, dentry->d_name.len);
3712        if (ret)
3713                goto out;
3714
3715        if (inode->i_nlink == 0) {
3716                ret = btrfs_orphan_add(trans, inode);
3717                if (ret)
3718                        goto out;
3719        }
3720
3721out:
3722        btrfs_end_transaction(trans, root);
3723        btrfs_btree_balance_dirty(root);
3724        return ret;
3725}
3726
3727int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3728                        struct btrfs_root *root,
3729                        struct inode *dir, u64 objectid,
3730                        const char *name, int name_len)
3731{
3732        struct btrfs_path *path;
3733        struct extent_buffer *leaf;
3734        struct btrfs_dir_item *di;
3735        struct btrfs_key key;
3736        u64 index;
3737        int ret;
3738        u64 dir_ino = btrfs_ino(dir);
3739
3740        path = btrfs_alloc_path();
3741        if (!path)
3742                return -ENOMEM;
3743
3744        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3745                                   name, name_len, -1);
3746        if (IS_ERR_OR_NULL(di)) {
3747                if (!di)
3748                        ret = -ENOENT;
3749                else
3750                        ret = PTR_ERR(di);
3751                goto out;
3752        }
3753
3754        leaf = path->nodes[0];
3755        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3756        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3757        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3758        if (ret) {
3759                btrfs_abort_transaction(trans, root, ret);
3760                goto out;
3761        }
3762        btrfs_release_path(path);
3763
3764        ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3765                                 objectid, root->root_key.objectid,
3766                                 dir_ino, &index, name, name_len);
3767        if (ret < 0) {
3768                if (ret != -ENOENT) {
3769                        btrfs_abort_transaction(trans, root, ret);
3770                        goto out;
3771                }
3772                di = btrfs_search_dir_index_item(root, path, dir_ino,
3773                                                 name, name_len);
3774                if (IS_ERR_OR_NULL(di)) {
3775                        if (!di)
3776                                ret = -ENOENT;
3777                        else
3778                                ret = PTR_ERR(di);
3779                        btrfs_abort_transaction(trans, root, ret);
3780                        goto out;
3781                }
3782
3783                leaf = path->nodes[0];
3784                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3785                btrfs_release_path(path);
3786                index = key.offset;
3787        }
3788        btrfs_release_path(path);
3789
3790        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3791        if (ret) {
3792                btrfs_abort_transaction(trans, root, ret);
3793                goto out;
3794        }
3795
3796        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3797        inode_inc_iversion(dir);
3798        dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3799        ret = btrfs_update_inode_fallback(trans, root, dir);
3800        if (ret)
3801                btrfs_abort_transaction(trans, root, ret);
3802out:
3803        btrfs_free_path(path);
3804        return ret;
3805}
3806
3807static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3808{
3809        struct inode *inode = dentry->d_inode;
3810        int err = 0;
3811        struct btrfs_root *root = BTRFS_I(dir)->root;
3812        struct btrfs_trans_handle *trans;
3813
3814        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3815                return -ENOTEMPTY;
3816        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3817                return -EPERM;
3818
3819        trans = __unlink_start_trans(dir);
3820        if (IS_ERR(trans))
3821                return PTR_ERR(trans);
3822
3823        if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3824                err = btrfs_unlink_subvol(trans, root, dir,
3825                                          BTRFS_I(inode)->location.objectid,
3826                                          dentry->d_name.name,
3827                                          dentry->d_name.len);
3828                goto out;
3829        }
3830
3831        err = btrfs_orphan_add(trans, inode);
3832        if (err)
3833                goto out;
3834
3835        /* now the directory is empty */
3836        err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3837                                 dentry->d_name.name, dentry->d_name.len);
3838        if (!err)
3839                btrfs_i_size_write(inode, 0);
3840out:
3841        btrfs_end_transaction(trans, root);
3842        btrfs_btree_balance_dirty(root);
3843
3844        return err;
3845}
3846
3847/*
3848 * this can truncate away extent items, csum items and directory items.
3849 * It starts at a high offset and removes keys until it can't find
3850 * any higher than new_size
3851 *
3852 * csum items that cross the new i_size are truncated to the new size
3853 * as well.
3854 *
3855 * min_type is the minimum key type to truncate down to.  If set to 0, this
3856 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3857 */
3858int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3859                               struct btrfs_root *root,
3860                               struct inode *inode,
3861                               u64 new_size, u32 min_type)
3862{
3863        struct btrfs_path *path;
3864        struct extent_buffer *leaf;
3865        struct btrfs_file_extent_item *fi;
3866        struct btrfs_key key;
3867        struct btrfs_key found_key;
3868        u64 extent_start = 0;
3869        u64 extent_num_bytes = 0;
3870        u64 extent_offset = 0;
3871        u64 item_end = 0;
3872        u64 last_size = (u64)-1;
3873        u32 found_type = (u8)-1;
3874        int found_extent;
3875        int del_item;
3876        int pending_del_nr = 0;
3877        int pending_del_slot = 0;
3878        int extent_type = -1;
3879        int ret;
3880        int err = 0;
3881        u64 ino = btrfs_ino(inode);
3882
3883        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3884
3885        path = btrfs_alloc_path();
3886        if (!path)
3887                return -ENOMEM;
3888        path->reada = -1;
3889
3890        /*
3891         * We want to drop from the next block forward in case this new size is
3892         * not block aligned since we will be keeping the last block of the
3893         * extent just the way it is.
3894         */
3895        if (root->ref_cows || root == root->fs_info->tree_root)
3896                btrfs_drop_extent_cache(inode, ALIGN(new_size,
3897                                        root->sectorsize), (u64)-1, 0);
3898
3899        /*
3900         * This function is also used to drop the items in the log tree before
3901         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3902         * it is used to drop the loged items. So we shouldn't kill the delayed
3903         * items.
3904         */
3905        if (min_type == 0 && root == BTRFS_I(inode)->root)
3906                btrfs_kill_delayed_inode_items(inode);
3907
3908        key.objectid = ino;
3909        key.offset = (u64)-1;
3910        key.type = (u8)-1;
3911
3912search_again:
3913        path->leave_spinning = 1;
3914        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3915        if (ret < 0) {
3916                err = ret;
3917                goto out;
3918        }
3919
3920        if (ret > 0) {
3921                /* there are no items in the tree for us to truncate, we're
3922                 * done
3923                 */
3924                if (path->slots[0] == 0)
3925                        goto out;
3926                path->slots[0]--;
3927        }
3928
3929        while (1) {
3930                fi = NULL;
3931                leaf = path->nodes[0];
3932                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3933                found_type = btrfs_key_type(&found_key);
3934
3935                if (found_key.objectid != ino)
3936                        break;
3937
3938                if (found_type < min_type)
3939                        break;
3940
3941                item_end = found_key.offset;
3942                if (found_type == BTRFS_EXTENT_DATA_KEY) {
3943                        fi = btrfs_item_ptr(leaf, path->slots[0],
3944                                            struct btrfs_file_extent_item);
3945                        extent_type = btrfs_file_extent_type(leaf, fi);
3946                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3947                                item_end +=
3948                                    btrfs_file_extent_num_bytes(leaf, fi);
3949                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3950                                item_end += btrfs_file_extent_inline_len(leaf,
3951                                                                         fi);
3952                        }
3953                        item_end--;
3954                }
3955                if (found_type > min_type) {
3956                        del_item = 1;
3957                } else {
3958                        if (item_end < new_size)
3959                                break;
3960                        if (found_key.offset >= new_size)
3961                                del_item = 1;
3962                        else
3963                                del_item = 0;
3964                }
3965                found_extent = 0;
3966                /* FIXME, shrink the extent if the ref count is only 1 */
3967                if (found_type != BTRFS_EXTENT_DATA_KEY)
3968                        goto delete;
3969
3970                if (del_item)
3971                        last_size = found_key.offset;
3972                else
3973                        last_size = new_size;
3974
3975                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3976                        u64 num_dec;
3977                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3978                        if (!del_item) {
3979                                u64 orig_num_bytes =
3980                                        btrfs_file_extent_num_bytes(leaf, fi);
3981                                extent_num_bytes = ALIGN(new_size -
3982                                                found_key.offset,
3983                                                root->sectorsize);
3984                                btrfs_set_file_extent_num_bytes(leaf, fi,
3985                                                         extent_num_bytes);
3986                                num_dec = (orig_num_bytes -
3987                                           extent_num_bytes);
3988                                if (root->ref_cows && extent_start != 0)
3989                                        inode_sub_bytes(inode, num_dec);
3990                                btrfs_mark_buffer_dirty(leaf);
3991                        } else {
3992                                extent_num_bytes =
3993                                        btrfs_file_extent_disk_num_bytes(leaf,
3994                                                                         fi);
3995                                extent_offset = found_key.offset -
3996                                        btrfs_file_extent_offset(leaf, fi);
3997
3998                                /* FIXME blocksize != 4096 */
3999                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4000                                if (extent_start != 0) {
4001                                        found_extent = 1;
4002                                        if (root->ref_cows)
4003                                                inode_sub_bytes(inode, num_dec);
4004                                }
4005                        }
4006                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4007                        /*
4008                         * we can't truncate inline items that have had
4009                         * special encodings
4010                         */
4011                        if (!del_item &&
4012                            btrfs_file_extent_compression(leaf, fi) == 0 &&
4013                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4014                            btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4015                                u32 size = new_size - found_key.offset;
4016
4017                                if (root->ref_cows) {
4018                                        inode_sub_bytes(inode, item_end + 1 -
4019                                                        new_size);
4020                                }
4021                                size =
4022                                    btrfs_file_extent_calc_inline_size(size);
4023                                btrfs_truncate_item(root, path, size, 1);
4024                        } else if (root->ref_cows) {
4025                                inode_sub_bytes(inode, item_end + 1 -
4026                                                found_key.offset);
4027                        }
4028                }
4029delete:
4030                if (del_item) {
4031                        if (!pending_del_nr) {
4032                                /* no pending yet, add ourselves */
4033                                pending_del_slot = path->slots[0];
4034                                pending_del_nr = 1;
4035                        } else if (pending_del_nr &&
4036                                   path->slots[0] + 1 == pending_del_slot) {
4037                                /* hop on the pending chunk */
4038                                pending_del_nr++;
4039                                pending_del_slot = path->slots[0];
4040                        } else {
4041                                BUG();
4042                        }
4043                } else {
4044                        break;
4045                }
4046                if (found_extent && (root->ref_cows ||
4047                                     root == root->fs_info->tree_root)) {
4048                        btrfs_set_path_blocking(path);
4049                        ret = btrfs_free_extent(trans, root, extent_start,
4050                                                extent_num_bytes, 0,
4051                                                btrfs_header_owner(leaf),
4052                                                ino, extent_offset, 0);
4053                        BUG_ON(ret);
4054                }
4055
4056                if (found_type == BTRFS_INODE_ITEM_KEY)
4057                        break;
4058
4059                if (path->slots[0] == 0 ||
4060                    path->slots[0] != pending_del_slot) {
4061                        if (pending_del_nr) {
4062                                ret = btrfs_del_items(trans, root, path,
4063                                                pending_del_slot,
4064                                                pending_del_nr);
4065                                if (ret) {
4066                                        btrfs_abort_transaction(trans,
4067                                                                root, ret);
4068                                        goto error;
4069                                }
4070                                pending_del_nr = 0;
4071                        }
4072                        btrfs_release_path(path);
4073                        goto search_again;
4074                } else {
4075                        path->slots[0]--;
4076                }
4077        }
4078out:
4079        if (pending_del_nr) {
4080                ret = btrfs_del_items(trans, root, path, pending_del_slot,
4081                                      pending_del_nr);
4082                if (ret)
4083                        btrfs_abort_transaction(trans, root, ret);
4084        }
4085error:
4086        if (last_size != (u64)-1)
4087                btrfs_ordered_update_i_size(inode, last_size, NULL);
4088        btrfs_free_path(path);
4089        return err;
4090}
4091
4092/*
4093 * btrfs_truncate_page - read, zero a chunk and write a page
4094 * @inode - inode that we're zeroing
4095 * @from - the offset to start zeroing
4096 * @len - the length to zero, 0 to zero the entire range respective to the
4097 *      offset
4098 * @front - zero up to the offset instead of from the offset on
4099 *
4100 * This will find the page for the "from" offset and cow the page and zero the
4101 * part we want to zero.  This is used with truncate and hole punching.
4102 */
4103int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4104                        int front)
4105{
4106        struct address_space *mapping = inode->i_mapping;
4107        struct btrfs_root *root = BTRFS_I(inode)->root;
4108        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4109        struct btrfs_ordered_extent *ordered;
4110        struct extent_state *cached_state = NULL;
4111        char *kaddr;
4112        u32 blocksize = root->sectorsize;
4113        pgoff_t index = from >> PAGE_CACHE_SHIFT;
4114        unsigned offset = from & (PAGE_CACHE_SIZE-1);
4115        struct page *page;
4116        gfp_t mask = btrfs_alloc_write_mask(mapping);
4117        int ret = 0;
4118        u64 page_start;
4119        u64 page_end;
4120
4121        if ((offset & (blocksize - 1)) == 0 &&
4122            (!len || ((len & (blocksize - 1)) == 0)))
4123                goto out;
4124        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4125        if (ret)
4126                goto out;
4127
4128again:
4129        page = find_or_create_page(mapping, index, mask);
4130        if (!page) {
4131                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4132                ret = -ENOMEM;
4133                goto out;
4134        }
4135
4136        page_start = page_offset(page);
4137        page_end = page_start + PAGE_CACHE_SIZE - 1;
4138
4139        if (!PageUptodate(page)) {
4140                ret = btrfs_readpage(NULL, page);
4141                lock_page(page);
4142                if (page->mapping != mapping) {
4143                        unlock_page(page);
4144                        page_cache_release(page);
4145                        goto again;
4146                }
4147                if (!PageUptodate(page)) {
4148                        ret = -EIO;
4149                        goto out_unlock;
4150                }
4151        }
4152        wait_on_page_writeback(page);
4153
4154        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4155        set_page_extent_mapped(page);
4156
4157        ordered = btrfs_lookup_ordered_extent(inode, page_start);
4158        if (ordered) {
4159                unlock_extent_cached(io_tree, page_start, page_end,
4160                                     &cached_state, GFP_NOFS);
4161                unlock_page(page);
4162                page_cache_release(page);
4163                btrfs_start_ordered_extent(inode, ordered, 1);
4164                btrfs_put_ordered_extent(ordered);
4165                goto again;
4166        }
4167
4168        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4169                          EXTENT_DIRTY | EXTENT_DELALLOC |
4170                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4171                          0, 0, &cached_state, GFP_NOFS);
4172
4173        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4174                                        &cached_state);
4175        if (ret) {
4176                unlock_extent_cached(io_tree, page_start, page_end,
4177                                     &cached_state, GFP_NOFS);
4178                goto out_unlock;
4179        }
4180
4181        if (offset != PAGE_CACHE_SIZE) {
4182                if (!len)
4183                        len = PAGE_CACHE_SIZE - offset;
4184                kaddr = kmap(page);
4185                if (front)
4186                        memset(kaddr, 0, offset);
4187                else
4188                        memset(kaddr + offset, 0, len);
4189                flush_dcache_page(page);
4190                kunmap(page);
4191        }
4192        ClearPageChecked(page);
4193        set_page_dirty(page);
4194        unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4195                             GFP_NOFS);
4196
4197out_unlock:
4198        if (ret)
4199                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4200        unlock_page(page);
4201        page_cache_release(page);
4202out:
4203        return ret;
4204}
4205
4206/*
4207 * This function puts in dummy file extents for the area we're creating a hole
4208 * for.  So if we are truncating this file to a larger size we need to insert
4209 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4210 * the range between oldsize and size
4211 */
4212int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4213{
4214        struct btrfs_trans_handle *trans;
4215        struct btrfs_root *root = BTRFS_I(inode)->root;
4216        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4217        struct extent_map *em = NULL;
4218        struct extent_state *cached_state = NULL;
4219        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4220        u64 hole_start = ALIGN(oldsize, root->sectorsize);
4221        u64 block_end = ALIGN(size, root->sectorsize);
4222        u64 last_byte;
4223        u64 cur_offset;
4224        u64 hole_size;
4225        int err = 0;
4226
4227        /*
4228         * If our size started in the middle of a page we need to zero out the
4229         * rest of the page before we expand the i_size, otherwise we could
4230         * expose stale data.
4231         */
4232        err = btrfs_truncate_page(inode, oldsize, 0, 0);
4233        if (err)
4234                return err;
4235
4236        if (size <= hole_start)
4237                return 0;
4238
4239        while (1) {
4240                struct btrfs_ordered_extent *ordered;
4241
4242                lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4243                                 &cached_state);
4244                ordered = btrfs_lookup_ordered_range(inode, hole_start,
4245                                                     block_end - hole_start);
4246                if (!ordered)
4247                        break;
4248                unlock_extent_cached(io_tree, hole_start, block_end - 1,
4249                                     &cached_state, GFP_NOFS);
4250                btrfs_start_ordered_extent(inode, ordered, 1);
4251                btrfs_put_ordered_extent(ordered);
4252        }
4253
4254        cur_offset = hole_start;
4255        while (1) {
4256                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4257                                block_end - cur_offset, 0);
4258                if (IS_ERR(em)) {
4259                        err = PTR_ERR(em);
4260                        em = NULL;
4261                        break;
4262                }
4263                last_byte = min(extent_map_end(em), block_end);
4264                last_byte = ALIGN(last_byte , root->sectorsize);
4265                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4266                        struct extent_map *hole_em;
4267                        hole_size = last_byte - cur_offset;
4268
4269                        trans = btrfs_start_transaction(root, 3);
4270                        if (IS_ERR(trans)) {
4271                                err = PTR_ERR(trans);
4272                                break;
4273                        }
4274
4275                        err = btrfs_drop_extents(trans, root, inode,
4276                                                 cur_offset,
4277                                                 cur_offset + hole_size, 1);
4278                        if (err) {
4279                                btrfs_abort_transaction(trans, root, err);
4280                                btrfs_end_transaction(trans, root);
4281                                break;
4282                        }
4283
4284                        err = btrfs_insert_file_extent(trans, root,
4285                                        btrfs_ino(inode), cur_offset, 0,
4286                                        0, hole_size, 0, hole_size,
4287                                        0, 0, 0);
4288                        if (err) {
4289                                btrfs_abort_transaction(trans, root, err);
4290                                btrfs_end_transaction(trans, root);
4291                                break;
4292                        }
4293
4294                        btrfs_drop_extent_cache(inode, cur_offset,
4295                                                cur_offset + hole_size - 1, 0);
4296                        hole_em = alloc_extent_map();
4297                        if (!hole_em) {
4298                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4299                                        &BTRFS_I(inode)->runtime_flags);
4300                                goto next;
4301                        }
4302                        hole_em->start = cur_offset;
4303                        hole_em->len = hole_size;
4304                        hole_em->orig_start = cur_offset;
4305
4306                        hole_em->block_start = EXTENT_MAP_HOLE;
4307                        hole_em->block_len = 0;
4308                        hole_em->orig_block_len = 0;
4309                        hole_em->ram_bytes = hole_size;
4310                        hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4311                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
4312                        hole_em->generation = trans->transid;
4313
4314                        while (1) {
4315                                write_lock(&em_tree->lock);
4316                                err = add_extent_mapping(em_tree, hole_em, 1);
4317                                write_unlock(&em_tree->lock);
4318                                if (err != -EEXIST)
4319                                        break;
4320                                btrfs_drop_extent_cache(inode, cur_offset,
4321                                                        cur_offset +
4322                                                        hole_size - 1, 0);
4323                        }
4324                        free_extent_map(hole_em);
4325next:
4326                        btrfs_update_inode(trans, root, inode);
4327                        btrfs_end_transaction(trans, root);
4328                }
4329                free_extent_map(em);
4330                em = NULL;
4331                cur_offset = last_byte;
4332                if (cur_offset >= block_end)
4333                        break;
4334        }
4335
4336        free_extent_map(em);
4337        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4338                             GFP_NOFS);
4339        return err;
4340}
4341
4342static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4343{
4344        struct btrfs_root *root = BTRFS_I(inode)->root;
4345        struct btrfs_trans_handle *trans;
4346        loff_t oldsize = i_size_read(inode);
4347        loff_t newsize = attr->ia_size;
4348        int mask = attr->ia_valid;
4349        int ret;
4350
4351        /*
4352         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4353         * special case where we need to update the times despite not having
4354         * these flags set.  For all other operations the VFS set these flags
4355         * explicitly if it wants a timestamp update.
4356         */
4357        if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4358                inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4359
4360        if (newsize > oldsize) {
4361                truncate_pagecache(inode, newsize);
4362                ret = btrfs_cont_expand(inode, oldsize, newsize);
4363                if (ret)
4364                        return ret;
4365
4366                trans = btrfs_start_transaction(root, 1);
4367                if (IS_ERR(trans))
4368                        return PTR_ERR(trans);
4369
4370                i_size_write(inode, newsize);
4371                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4372                ret = btrfs_update_inode(trans, root, inode);
4373                btrfs_end_transaction(trans, root);
4374        } else {
4375
4376                /*
4377                 * We're truncating a file that used to have good data down to
4378                 * zero. Make sure it gets into the ordered flush list so that
4379                 * any new writes get down to disk quickly.
4380                 */
4381                if (newsize == 0)
4382                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4383                                &BTRFS_I(inode)->runtime_flags);
4384
4385                /*
4386                 * 1 for the orphan item we're going to add
4387                 * 1 for the orphan item deletion.
4388                 */
4389                trans = btrfs_start_transaction(root, 2);
4390                if (IS_ERR(trans))
4391                        return PTR_ERR(trans);
4392
4393                /*
4394                 * We need to do this in case we fail at _any_ point during the
4395                 * actual truncate.  Once we do the truncate_setsize we could
4396                 * invalidate pages which forces any outstanding ordered io to
4397                 * be instantly completed which will give us extents that need
4398                 * to be truncated.  If we fail to get an orphan inode down we
4399                 * could have left over extents that were never meant to live,
4400                 * so we need to garuntee from this point on that everything
4401                 * will be consistent.
4402                 */
4403                ret = btrfs_orphan_add(trans, inode);
4404                btrfs_end_transaction(trans, root);
4405                if (ret)
4406                        return ret;
4407
4408                /* we don't support swapfiles, so vmtruncate shouldn't fail */
4409                truncate_setsize(inode, newsize);
4410
4411                /* Disable nonlocked read DIO to avoid the end less truncate */
4412                btrfs_inode_block_unlocked_dio(inode);
4413                inode_dio_wait(inode);
4414                btrfs_inode_resume_unlocked_dio(inode);
4415
4416                ret = btrfs_truncate(inode);
4417                if (ret && inode->i_nlink) {
4418                        int err;
4419
4420                        /*
4421                         * failed to truncate, disk_i_size is only adjusted down
4422                         * as we remove extents, so it should represent the true
4423                         * size of the inode, so reset the in memory size and
4424                         * delete our orphan entry.
4425                         */
4426                        trans = btrfs_join_transaction(root);
4427                        if (IS_ERR(trans)) {
4428                                btrfs_orphan_del(NULL, inode);
4429                                return ret;
4430                        }
4431                        i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4432                        err = btrfs_orphan_del(trans, inode);
4433                        if (err)
4434                                btrfs_abort_transaction(trans, root, err);
4435                        btrfs_end_transaction(trans, root);
4436                }
4437        }
4438
4439        return ret;
4440}
4441
4442static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4443{
4444        struct inode *inode = dentry->d_inode;
4445        struct btrfs_root *root = BTRFS_I(inode)->root;
4446        int err;
4447
4448        if (btrfs_root_readonly(root))
4449                return -EROFS;
4450
4451        err = inode_change_ok(inode, attr);
4452        if (err)
4453                return err;
4454
4455        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4456                err = btrfs_setsize(inode, attr);
4457                if (err)
4458                        return err;
4459        }
4460
4461        if (attr->ia_valid) {
4462                setattr_copy(inode, attr);
4463                inode_inc_iversion(inode);
4464                err = btrfs_dirty_inode(inode);
4465
4466                if (!err && attr->ia_valid & ATTR_MODE)
4467                        err = btrfs_acl_chmod(inode);
4468        }
4469
4470        return err;
4471}
4472
4473void btrfs_evict_inode(struct inode *inode)
4474{
4475        struct btrfs_trans_handle *trans;
4476        struct btrfs_root *root = BTRFS_I(inode)->root;
4477        struct btrfs_block_rsv *rsv, *global_rsv;
4478        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4479        int ret;
4480
4481        trace_btrfs_inode_evict(inode);
4482
4483        truncate_inode_pages(&inode->i_data, 0);
4484        if (inode->i_nlink &&
4485            ((btrfs_root_refs(&root->root_item) != 0 &&
4486              root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4487             btrfs_is_free_space_inode(inode)))
4488                goto no_delete;
4489
4490        if (is_bad_inode(inode)) {
4491                btrfs_orphan_del(NULL, inode);
4492                goto no_delete;
4493        }
4494        /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4495        btrfs_wait_ordered_range(inode, 0, (u64)-1);
4496
4497        if (root->fs_info->log_root_recovering) {
4498                BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4499                                 &BTRFS_I(inode)->runtime_flags));
4500                goto no_delete;
4501        }
4502
4503        if (inode->i_nlink > 0) {
4504                BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4505                       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4506                goto no_delete;
4507        }
4508
4509        ret = btrfs_commit_inode_delayed_inode(inode);
4510        if (ret) {
4511                btrfs_orphan_del(NULL, inode);
4512                goto no_delete;
4513        }
4514
4515        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4516        if (!rsv) {
4517                btrfs_orphan_del(NULL, inode);
4518                goto no_delete;
4519        }
4520        rsv->size = min_size;
4521        rsv->failfast = 1;
4522        global_rsv = &root->fs_info->global_block_rsv;
4523
4524        btrfs_i_size_write(inode, 0);
4525
4526        /*
4527         * This is a bit simpler than btrfs_truncate since we've already
4528         * reserved our space for our orphan item in the unlink, so we just
4529         * need to reserve some slack space in case we add bytes and update
4530         * inode item when doing the truncate.
4531         */
4532        while (1) {
4533                ret = btrfs_block_rsv_refill(root, rsv, min_size,
4534                                             BTRFS_RESERVE_FLUSH_LIMIT);
4535
4536                /*
4537                 * Try and steal from the global reserve since we will
4538                 * likely not use this space anyway, we want to try as
4539                 * hard as possible to get this to work.
4540                 */
4541                if (ret)
4542                        ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4543
4544                if (ret) {
4545                        btrfs_warn(root->fs_info,
4546                                "Could not get space for a delete, will truncate on mount %d",
4547                                ret);
4548                        btrfs_orphan_del(NULL, inode);
4549                        btrfs_free_block_rsv(root, rsv);
4550                        goto no_delete;
4551                }
4552
4553                trans = btrfs_join_transaction(root);
4554                if (IS_ERR(trans)) {
4555                        btrfs_orphan_del(NULL, inode);
4556                        btrfs_free_block_rsv(root, rsv);
4557                        goto no_delete;
4558                }
4559
4560                trans->block_rsv = rsv;
4561
4562                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4563                if (ret != -ENOSPC)
4564                        break;
4565
4566                trans->block_rsv = &root->fs_info->trans_block_rsv;
4567                btrfs_end_transaction(trans, root);
4568                trans = NULL;
4569                btrfs_btree_balance_dirty(root);
4570        }
4571
4572        btrfs_free_block_rsv(root, rsv);
4573
4574        /*
4575         * Errors here aren't a big deal, it just means we leave orphan items
4576         * in the tree.  They will be cleaned up on the next mount.
4577         */
4578        if (ret == 0) {
4579                trans->block_rsv = root->orphan_block_rsv;
4580                btrfs_orphan_del(trans, inode);
4581        } else {
4582                btrfs_orphan_del(NULL, inode);
4583        }
4584
4585        trans->block_rsv = &root->fs_info->trans_block_rsv;
4586        if (!(root == root->fs_info->tree_root ||
4587              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4588                btrfs_return_ino(root, btrfs_ino(inode));
4589
4590        btrfs_end_transaction(trans, root);
4591        btrfs_btree_balance_dirty(root);
4592no_delete:
4593        btrfs_remove_delayed_node(inode);
4594        clear_inode(inode);
4595        return;
4596}
4597
4598/*
4599 * this returns the key found in the dir entry in the location pointer.
4600 * If no dir entries were found, location->objectid is 0.
4601 */
4602static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4603                               struct btrfs_key *location)
4604{
4605        const char *name = dentry->d_name.name;
4606        int namelen = dentry->d_name.len;
4607        struct btrfs_dir_item *di;
4608        struct btrfs_path *path;
4609        struct btrfs_root *root = BTRFS_I(dir)->root;
4610        int ret = 0;
4611
4612        path = btrfs_alloc_path();
4613        if (!path)
4614                return -ENOMEM;
4615
4616        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4617                                    namelen, 0);
4618        if (IS_ERR(di))
4619                ret = PTR_ERR(di);
4620
4621        if (IS_ERR_OR_NULL(di))
4622                goto out_err;
4623
4624        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4625out:
4626        btrfs_free_path(path);
4627        return ret;
4628out_err:
4629        location->objectid = 0;
4630        goto out;
4631}
4632
4633/*
4634 * when we hit a tree root in a directory, the btrfs part of the inode
4635 * needs to be changed to reflect the root directory of the tree root.  This
4636 * is kind of like crossing a mount point.
4637 */
4638static int fixup_tree_root_location(struct btrfs_root *root,
4639                                    struct inode *dir,
4640                                    struct dentry *dentry,
4641                                    struct btrfs_key *location,
4642                                    struct btrfs_root **sub_root)
4643{
4644        struct btrfs_path *path;
4645        struct btrfs_root *new_root;
4646        struct btrfs_root_ref *ref;
4647        struct extent_buffer *leaf;
4648        int ret;
4649        int err = 0;
4650
4651        path = btrfs_alloc_path();
4652        if (!path) {
4653                err = -ENOMEM;
4654                goto out;
4655        }
4656
4657        err = -ENOENT;
4658        ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4659                                  BTRFS_I(dir)->root->root_key.objectid,
4660                                  location->objectid);
4661        if (ret) {
4662                if (ret < 0)
4663                        err = ret;
4664                goto out;
4665        }
4666
4667        leaf = path->nodes[0];
4668        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4669        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4670            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4671                goto out;
4672
4673        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4674                                   (unsigned long)(ref + 1),
4675                                   dentry->d_name.len);
4676        if (ret)
4677                goto out;
4678
4679        btrfs_release_path(path);
4680
4681        new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4682        if (IS_ERR(new_root)) {
4683                err = PTR_ERR(new_root);
4684                goto out;
4685        }
4686
4687        *sub_root = new_root;
4688        location->objectid = btrfs_root_dirid(&new_root->root_item);
4689        location->type = BTRFS_INODE_ITEM_KEY;
4690        location->offset = 0;
4691        err = 0;
4692out:
4693        btrfs_free_path(path);
4694        return err;
4695}
4696
4697static void inode_tree_add(struct inode *inode)
4698{
4699        struct btrfs_root *root = BTRFS_I(inode)->root;
4700        struct btrfs_inode *entry;
4701        struct rb_node **p;
4702        struct rb_node *parent;
4703        struct rb_node *new = &BTRFS_I(inode)->rb_node;
4704        u64 ino = btrfs_ino(inode);
4705
4706        if (inode_unhashed(inode))
4707                return;
4708        parent = NULL;
4709        spin_lock(&root->inode_lock);
4710        p = &root->inode_tree.rb_node;
4711        while (*p) {
4712                parent = *p;
4713                entry = rb_entry(parent, struct btrfs_inode, rb_node);
4714
4715                if (ino < btrfs_ino(&entry->vfs_inode))
4716                        p = &parent->rb_left;
4717                else if (ino > btrfs_ino(&entry->vfs_inode))
4718                        p = &parent->rb_right;
4719                else {
4720                        WARN_ON(!(entry->vfs_inode.i_state &
4721                                  (I_WILL_FREE | I_FREEING)));
4722                        rb_replace_node(parent, new, &root->inode_tree);
4723                        RB_CLEAR_NODE(parent);
4724                        spin_unlock(&root->inode_lock);
4725                        return;
4726                }
4727        }
4728        rb_link_node(new, parent, p);
4729        rb_insert_color(new, &root->inode_tree);
4730        spin_unlock(&root->inode_lock);
4731}
4732
4733static void inode_tree_del(struct inode *inode)
4734{
4735        struct btrfs_root *root = BTRFS_I(inode)->root;
4736        int empty = 0;
4737
4738        spin_lock(&root->inode_lock);
4739        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4740                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4741                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4742                empty = RB_EMPTY_ROOT(&root->inode_tree);
4743        }
4744        spin_unlock(&root->inode_lock);
4745
4746        if (empty && btrfs_root_refs(&root->root_item) == 0) {
4747                synchronize_srcu(&root->fs_info->subvol_srcu);
4748                spin_lock(&root->inode_lock);
4749                empty = RB_EMPTY_ROOT(&root->inode_tree);
4750                spin_unlock(&root->inode_lock);
4751                if (empty)
4752                        btrfs_add_dead_root(root);
4753        }
4754}
4755
4756void btrfs_invalidate_inodes(struct btrfs_root *root)
4757{
4758        struct rb_node *node;
4759        struct rb_node *prev;
4760        struct btrfs_inode *entry;
4761        struct inode *inode;
4762        u64 objectid = 0;
4763
4764        WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4765
4766        spin_lock(&root->inode_lock);
4767again:
4768        node = root->inode_tree.rb_node;
4769        prev = NULL;
4770        while (node) {
4771                prev = node;
4772                entry = rb_entry(node, struct btrfs_inode, rb_node);
4773
4774                if (objectid < btrfs_ino(&entry->vfs_inode))
4775                        node = node->rb_left;
4776                else if (objectid > btrfs_ino(&entry->vfs_inode))
4777                        node = node->rb_right;
4778                else
4779                        break;
4780        }
4781        if (!node) {
4782                while (prev) {
4783                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4784                        if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4785                                node = prev;
4786                                break;
4787                        }
4788                        prev = rb_next(prev);
4789                }
4790        }
4791        while (node) {
4792                entry = rb_entry(node, struct btrfs_inode, rb_node);
4793                objectid = btrfs_ino(&entry->vfs_inode) + 1;
4794                inode = igrab(&entry->vfs_inode);
4795                if (inode) {
4796                        spin_unlock(&root->inode_lock);
4797                        if (atomic_read(&inode->i_count) > 1)
4798                                d_prune_aliases(inode);
4799                        /*
4800                         * btrfs_drop_inode will have it removed from
4801                         * the inode cache when its usage count
4802                         * hits zero.
4803                         */
4804                        iput(inode);
4805                        cond_resched();
4806                        spin_lock(&root->inode_lock);
4807                        goto again;
4808                }
4809
4810                if (cond_resched_lock(&root->inode_lock))
4811                        goto again;
4812
4813                node = rb_next(node);
4814        }
4815        spin_unlock(&root->inode_lock);
4816}
4817
4818static int btrfs_init_locked_inode(struct inode *inode, void *p)
4819{
4820        struct btrfs_iget_args *args = p;
4821        inode->i_ino = args->ino;
4822        BTRFS_I(inode)->root = args->root;
4823        return 0;
4824}
4825
4826static int btrfs_find_actor(struct inode *inode, void *opaque)
4827{
4828        struct btrfs_iget_args *args = opaque;
4829        return args->ino == btrfs_ino(inode) &&
4830                args->root == BTRFS_I(inode)->root;
4831}
4832
4833static struct inode *btrfs_iget_locked(struct super_block *s,
4834                                       u64 objectid,
4835                                       struct btrfs_root *root)
4836{
4837        struct inode *inode;
4838        struct btrfs_iget_args args;
4839        unsigned long hashval = btrfs_inode_hash(objectid, root);
4840
4841        args.ino = objectid;
4842        args.root = root;
4843
4844        inode = iget5_locked(s, hashval, btrfs_find_actor,
4845                             btrfs_init_locked_inode,
4846                             (void *)&args);
4847        return inode;
4848}
4849
4850/* Get an inode object given its location and corresponding root.
4851 * Returns in *is_new if the inode was read from disk
4852 */
4853struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4854                         struct btrfs_root *root, int *new)
4855{
4856        struct inode *inode;
4857
4858        inode = btrfs_iget_locked(s, location->objectid, root);
4859        if (!inode)
4860                return ERR_PTR(-ENOMEM);
4861
4862        if (inode->i_state & I_NEW) {
4863                BTRFS_I(inode)->root = root;
4864                memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4865                btrfs_read_locked_inode(inode);
4866                if (!is_bad_inode(inode)) {
4867                        inode_tree_add(inode);
4868                        unlock_new_inode(inode);
4869                        if (new)
4870                                *new = 1;
4871                } else {
4872                        unlock_new_inode(inode);
4873                        iput(inode);
4874                        inode = ERR_PTR(-ESTALE);
4875                }
4876        }
4877
4878        return inode;
4879}
4880
4881static struct inode *new_simple_dir(struct super_block *s,
4882                                    struct btrfs_key *key,
4883                                    struct btrfs_root *root)
4884{
4885        struct inode *inode = new_inode(s);
4886
4887        if (!inode)
4888                return ERR_PTR(-ENOMEM);
4889
4890        BTRFS_I(inode)->root = root;
4891        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4892        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4893
4894        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4895        inode->i_op = &btrfs_dir_ro_inode_operations;
4896        inode->i_fop = &simple_dir_operations;
4897        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4898        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4899
4900        return inode;
4901}
4902
4903struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4904{
4905        struct inode *inode;
4906        struct btrfs_root *root = BTRFS_I(dir)->root;
4907        struct btrfs_root *sub_root = root;
4908        struct btrfs_key location;
4909        int index;
4910        int ret = 0;
4911
4912        if (dentry->d_name.len > BTRFS_NAME_LEN)
4913                return ERR_PTR(-ENAMETOOLONG);
4914
4915        ret = btrfs_inode_by_name(dir, dentry, &location);
4916        if (ret < 0)
4917                return ERR_PTR(ret);
4918
4919        if (location.objectid == 0)
4920                return NULL;
4921
4922        if (location.type == BTRFS_INODE_ITEM_KEY) {
4923                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4924                return inode;
4925        }
4926
4927        BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4928
4929        index = srcu_read_lock(&root->fs_info->subvol_srcu);
4930        ret = fixup_tree_root_location(root, dir, dentry,
4931                                       &location, &sub_root);
4932        if (ret < 0) {
4933                if (ret != -ENOENT)
4934                        inode = ERR_PTR(ret);
4935                else
4936                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
4937        } else {
4938                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4939        }
4940        srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4941
4942        if (!IS_ERR(inode) && root != sub_root) {
4943                down_read(&root->fs_info->cleanup_work_sem);
4944                if (!(inode->i_sb->s_flags & MS_RDONLY))
4945                        ret = btrfs_orphan_cleanup(sub_root);
4946                up_read(&root->fs_info->cleanup_work_sem);
4947                if (ret) {
4948                        iput(inode);
4949                        inode = ERR_PTR(ret);
4950                }
4951        }
4952
4953        return inode;
4954}
4955
4956static int btrfs_dentry_delete(const struct dentry *dentry)
4957{
4958        struct btrfs_root *root;
4959        struct inode *inode = dentry->d_inode;
4960
4961        if (!inode && !IS_ROOT(dentry))
4962                inode = dentry->d_parent->d_inode;
4963
4964        if (inode) {
4965                root = BTRFS_I(inode)->root;
4966                if (btrfs_root_refs(&root->root_item) == 0)
4967                        return 1;
4968
4969                if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4970                        return 1;
4971        }
4972        return 0;
4973}
4974
4975static void btrfs_dentry_release(struct dentry *dentry)
4976{
4977        if (dentry->d_fsdata)
4978                kfree(dentry->d_fsdata);
4979}
4980
4981static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4982                                   unsigned int flags)
4983{
4984        struct dentry *ret;
4985
4986        ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4987        return ret;
4988}
4989
4990unsigned char btrfs_filetype_table[] = {
4991        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4992};
4993
4994static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
4995{
4996        struct inode *inode = file_inode(file);
4997        struct btrfs_root *root = BTRFS_I(inode)->root;
4998        struct btrfs_item *item;
4999        struct btrfs_dir_item *di;
5000        struct btrfs_key key;
5001        struct btrfs_key found_key;
5002        struct btrfs_path *path;
5003        struct list_head ins_list;
5004        struct list_head del_list;
5005        int ret;
5006        struct extent_buffer *leaf;
5007        int slot;
5008        unsigned char d_type;
5009        int over = 0;
5010        u32 di_cur;
5011        u32 di_total;
5012        u32 di_len;
5013        int key_type = BTRFS_DIR_INDEX_KEY;
5014        char tmp_name[32];
5015        char *name_ptr;
5016        int name_len;
5017        int is_curr = 0;        /* ctx->pos points to the current index? */
5018
5019        /* FIXME, use a real flag for deciding about the key type */
5020        if (root->fs_info->tree_root == root)
5021                key_type = BTRFS_DIR_ITEM_KEY;
5022
5023        if (!dir_emit_dots(file, ctx))
5024                return 0;
5025
5026        path = btrfs_alloc_path();
5027        if (!path)
5028                return -ENOMEM;
5029
5030        path->reada = 1;
5031
5032        if (key_type == BTRFS_DIR_INDEX_KEY) {
5033                INIT_LIST_HEAD(&ins_list);
5034                INIT_LIST_HEAD(&del_list);
5035                btrfs_get_delayed_items(inode, &ins_list, &del_list);
5036        }
5037
5038        btrfs_set_key_type(&key, key_type);
5039        key.offset = ctx->pos;
5040        key.objectid = btrfs_ino(inode);
5041
5042        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5043        if (ret < 0)
5044                goto err;
5045
5046        while (1) {
5047                leaf = path->nodes[0];
5048                slot = path->slots[0];
5049                if (slot >= btrfs_header_nritems(leaf)) {
5050                        ret = btrfs_next_leaf(root, path);
5051                        if (ret < 0)
5052                                goto err;
5053                        else if (ret > 0)
5054                                break;
5055                        continue;
5056                }
5057
5058                item = btrfs_item_nr(slot);
5059                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5060
5061                if (found_key.objectid != key.objectid)
5062                        break;
5063                if (btrfs_key_type(&found_key) != key_type)
5064                        break;
5065                if (found_key.offset < ctx->pos)
5066                        goto next;
5067                if (key_type == BTRFS_DIR_INDEX_KEY &&
5068                    btrfs_should_delete_dir_index(&del_list,
5069                                                  found_key.offset))
5070                        goto next;
5071
5072                ctx->pos = found_key.offset;
5073                is_curr = 1;
5074
5075                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5076                di_cur = 0;
5077                di_total = btrfs_item_size(leaf, item);
5078
5079                while (di_cur < di_total) {
5080                        struct btrfs_key location;
5081
5082                        if (verify_dir_item(root, leaf, di))
5083                                break;
5084
5085                        name_len = btrfs_dir_name_len(leaf, di);
5086                        if (name_len <= sizeof(tmp_name)) {
5087                                name_ptr = tmp_name;
5088                        } else {
5089                                name_ptr = kmalloc(name_len, GFP_NOFS);
5090                                if (!name_ptr) {
5091                                        ret = -ENOMEM;
5092                                        goto err;
5093                                }
5094                        }
5095                        read_extent_buffer(leaf, name_ptr,
5096                                           (unsigned long)(di + 1), name_len);
5097
5098                        d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5099                        btrfs_dir_item_key_to_cpu(leaf, di, &location);
5100
5101
5102                        /* is this a reference to our own snapshot? If so
5103                         * skip it.
5104                         *
5105                         * In contrast to old kernels, we insert the snapshot's
5106                         * dir item and dir index after it has been created, so
5107                         * we won't find a reference to our own snapshot. We
5108                         * still keep the following code for backward
5109                         * compatibility.
5110                         */
5111                        if (location.type == BTRFS_ROOT_ITEM_KEY &&
5112                            location.objectid == root->root_key.objectid) {
5113                                over = 0;
5114                                goto skip;
5115                        }
5116                        over = !dir_emit(ctx, name_ptr, name_len,
5117                                       location.objectid, d_type);
5118
5119skip:
5120                        if (name_ptr != tmp_name)
5121                                kfree(name_ptr);
5122
5123                        if (over)
5124                                goto nopos;
5125                        di_len = btrfs_dir_name_len(leaf, di) +
5126                                 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5127                        di_cur += di_len;
5128                        di = (struct btrfs_dir_item *)((char *)di + di_len);
5129                }
5130next:
5131                path->slots[0]++;
5132        }
5133
5134        if (key_type == BTRFS_DIR_INDEX_KEY) {
5135                if (is_curr)
5136                        ctx->pos++;
5137                ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5138                if (ret)
5139                        goto nopos;
5140        }
5141
5142        /* Reached end of directory/root. Bump pos past the last item. */
5143        ctx->pos++;
5144
5145        /*
5146         * Stop new entries from being returned after we return the last
5147         * entry.
5148         *
5149         * New directory entries are assigned a strictly increasing
5150         * offset.  This means that new entries created during readdir
5151         * are *guaranteed* to be seen in the future by that readdir.
5152         * This has broken buggy programs which operate on names as
5153         * they're returned by readdir.  Until we re-use freed offsets
5154         * we have this hack to stop new entries from being returned
5155         * under the assumption that they'll never reach this huge
5156         * offset.
5157         *
5158         * This is being careful not to overflow 32bit loff_t unless the
5159         * last entry requires it because doing so has broken 32bit apps
5160         * in the past.
5161         */
5162        if (key_type == BTRFS_DIR_INDEX_KEY) {
5163                if (ctx->pos >= INT_MAX)
5164                        ctx->pos = LLONG_MAX;
5165                else
5166                        ctx->pos = INT_MAX;
5167        }
5168nopos:
5169        ret = 0;
5170err:
5171        if (key_type == BTRFS_DIR_INDEX_KEY)
5172                btrfs_put_delayed_items(&ins_list, &del_list);
5173        btrfs_free_path(path);
5174        return ret;
5175}
5176
5177int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5178{
5179        struct btrfs_root *root = BTRFS_I(inode)->root;
5180        struct btrfs_trans_handle *trans;
5181        int ret = 0;
5182        bool nolock = false;
5183
5184        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5185                return 0;
5186
5187        if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5188                nolock = true;
5189
5190        if (wbc->sync_mode == WB_SYNC_ALL) {
5191                if (nolock)
5192                        trans = btrfs_join_transaction_nolock(root);
5193                else
5194                        trans = btrfs_join_transaction(root);
5195                if (IS_ERR(trans))
5196                        return PTR_ERR(trans);
5197                ret = btrfs_commit_transaction(trans, root);
5198        }
5199        return ret;
5200}
5201
5202/*
5203 * This is somewhat expensive, updating the tree every time the
5204 * inode changes.  But, it is most likely to find the inode in cache.
5205 * FIXME, needs more benchmarking...there are no reasons other than performance
5206 * to keep or drop this code.
5207 */
5208static int btrfs_dirty_inode(struct inode *inode)
5209{
5210        struct btrfs_root *root = BTRFS_I(inode)->root;
5211        struct btrfs_trans_handle *trans;
5212        int ret;
5213
5214        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5215                return 0;
5216
5217        trans = btrfs_join_transaction(root);
5218        if (IS_ERR(trans))
5219                return PTR_ERR(trans);
5220
5221        ret = btrfs_update_inode(trans, root, inode);
5222        if (ret && ret == -ENOSPC) {
5223                /* whoops, lets try again with the full transaction */
5224                btrfs_end_transaction(trans, root);
5225                trans = btrfs_start_transaction(root, 1);
5226                if (IS_ERR(trans))
5227                        return PTR_ERR(trans);
5228
5229                ret = btrfs_update_inode(trans, root, inode);
5230        }
5231        btrfs_end_transaction(trans, root);
5232        if (BTRFS_I(inode)->delayed_node)
5233                btrfs_balance_delayed_items(root);
5234
5235        return ret;
5236}
5237
5238/*
5239 * This is a copy of file_update_time.  We need this so we can return error on
5240 * ENOSPC for updating the inode in the case of file write and mmap writes.
5241 */
5242static int btrfs_update_time(struct inode *inode, struct timespec *now,
5243                             int flags)
5244{
5245        struct btrfs_root *root = BTRFS_I(inode)->root;
5246
5247        if (btrfs_root_readonly(root))
5248                return -EROFS;
5249
5250        if (flags & S_VERSION)
5251                inode_inc_iversion(inode);
5252        if (flags & S_CTIME)
5253                inode->i_ctime = *now;
5254        if (flags & S_MTIME)
5255                inode->i_mtime = *now;
5256        if (flags & S_ATIME)
5257                inode->i_atime = *now;
5258        return btrfs_dirty_inode(inode);
5259}
5260
5261/*
5262 * find the highest existing sequence number in a directory
5263 * and then set the in-memory index_cnt variable to reflect
5264 * free sequence numbers
5265 */
5266static int btrfs_set_inode_index_count(struct inode *inode)
5267{
5268        struct btrfs_root *root = BTRFS_I(inode)->root;
5269        struct btrfs_key key, found_key;
5270        struct btrfs_path *path;
5271        struct extent_buffer *leaf;
5272        int ret;
5273
5274        key.objectid = btrfs_ino(inode);
5275        btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5276        key.offset = (u64)-1;
5277
5278        path = btrfs_alloc_path();
5279        if (!path)
5280                return -ENOMEM;
5281
5282        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5283        if (ret < 0)
5284                goto out;
5285        /* FIXME: we should be able to handle this */
5286        if (ret == 0)
5287                goto out;
5288        ret = 0;
5289
5290        /*
5291         * MAGIC NUMBER EXPLANATION:
5292         * since we search a directory based on f_pos we have to start at 2
5293         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5294         * else has to start at 2
5295         */
5296        if (path->slots[0] == 0) {
5297                BTRFS_I(inode)->index_cnt = 2;
5298                goto out;
5299        }
5300
5301        path->slots[0]--;
5302
5303        leaf = path->nodes[0];
5304        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5305
5306        if (found_key.objectid != btrfs_ino(inode) ||
5307            btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5308                BTRFS_I(inode)->index_cnt = 2;
5309                goto out;
5310        }
5311
5312        BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5313out:
5314        btrfs_free_path(path);
5315        return ret;
5316}
5317
5318/*
5319 * helper to find a free sequence number in a given directory.  This current
5320 * code is very simple, later versions will do smarter things in the btree
5321 */
5322int btrfs_set_inode_index(struct inode *dir, u64 *index)
5323{
5324        int ret = 0;
5325
5326        if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5327                ret = btrfs_inode_delayed_dir_index_count(dir);
5328                if (ret) {
5329                        ret = btrfs_set_inode_index_count(dir);
5330                        if (ret)
5331                                return ret;
5332                }
5333        }
5334
5335        *index = BTRFS_I(dir)->index_cnt;
5336        BTRFS_I(dir)->index_cnt++;
5337
5338        return ret;
5339}
5340
5341static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5342                                     struct btrfs_root *root,
5343                                     struct inode *dir,
5344                                     const char *name, int name_len,
5345                                     u64 ref_objectid, u64 objectid,
5346                                     umode_t mode, u64 *index)
5347{
5348        struct inode *inode;
5349        struct btrfs_inode_item *inode_item;
5350        struct btrfs_key *location;
5351        struct btrfs_path *path;
5352        struct btrfs_inode_ref *ref;
5353        struct btrfs_key key[2];
5354        u32 sizes[2];
5355        unsigned long ptr;
5356        int ret;
5357        int owner;
5358
5359        path = btrfs_alloc_path();
5360        if (!path)
5361                return ERR_PTR(-ENOMEM);
5362
5363        inode = new_inode(root->fs_info->sb);
5364        if (!inode) {
5365                btrfs_free_path(path);
5366                return ERR_PTR(-ENOMEM);
5367        }
5368
5369        /*
5370         * we have to initialize this early, so we can reclaim the inode
5371         * number if we fail afterwards in this function.
5372         */
5373        inode->i_ino = objectid;
5374
5375        if (dir) {
5376                trace_btrfs_inode_request(dir);
5377
5378                ret = btrfs_set_inode_index(dir, index);
5379                if (ret) {
5380                        btrfs_free_path(path);
5381                        iput(inode);
5382                        return ERR_PTR(ret);
5383                }
5384        }
5385        /*
5386         * index_cnt is ignored for everything but a dir,
5387         * btrfs_get_inode_index_count has an explanation for the magic
5388         * number
5389         */
5390        BTRFS_I(inode)->index_cnt = 2;
5391        BTRFS_I(inode)->root = root;
5392        BTRFS_I(inode)->generation = trans->transid;
5393        inode->i_generation = BTRFS_I(inode)->generation;
5394
5395        /*
5396         * We could have gotten an inode number from somebody who was fsynced
5397         * and then removed in this same transaction, so let's just set full
5398         * sync since it will be a full sync anyway and this will blow away the
5399         * old info in the log.
5400         */
5401        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5402
5403        if (S_ISDIR(mode))
5404                owner = 0;
5405        else
5406                owner = 1;
5407
5408        key[0].objectid = objectid;
5409        btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5410        key[0].offset = 0;
5411
5412        /*
5413         * Start new inodes with an inode_ref. This is slightly more
5414         * efficient for small numbers of hard links since they will
5415         * be packed into one item. Extended refs will kick in if we
5416         * add more hard links than can fit in the ref item.
5417         */
5418        key[1].objectid = objectid;
5419        btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5420        key[1].offset = ref_objectid;
5421
5422        sizes[0] = sizeof(struct btrfs_inode_item);
5423        sizes[1] = name_len + sizeof(*ref);
5424
5425        path->leave_spinning = 1;
5426        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5427        if (ret != 0)
5428                goto fail;
5429
5430        inode_init_owner(inode, dir, mode);
5431        inode_set_bytes(inode, 0);
5432        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5433        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5434                                  struct btrfs_inode_item);
5435        memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5436                             sizeof(*inode_item));
5437        fill_inode_item(trans, path->nodes[0], inode_item, inode);
5438
5439        ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5440                             struct btrfs_inode_ref);
5441        btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5442        btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5443        ptr = (unsigned long)(ref + 1);
5444        write_extent_buffer(path->nodes[0], name, ptr, name_len);
5445
5446        btrfs_mark_buffer_dirty(path->nodes[0]);
5447        btrfs_free_path(path);
5448
5449        location = &BTRFS_I(inode)->location;
5450        location->objectid = objectid;
5451        location->offset = 0;
5452        btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5453
5454        btrfs_inherit_iflags(inode, dir);
5455
5456        if (S_ISREG(mode)) {
5457                if (btrfs_test_opt(root, NODATASUM))
5458                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5459                if (btrfs_test_opt(root, NODATACOW))
5460                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5461                                BTRFS_INODE_NODATASUM;
5462        }
5463
5464        btrfs_insert_inode_hash(inode);
5465        inode_tree_add(inode);
5466
5467        trace_btrfs_inode_new(inode);
5468        btrfs_set_inode_last_trans(trans, inode);
5469
5470        btrfs_update_root_times(trans, root);
5471
5472        return inode;
5473fail:
5474        if (dir)
5475                BTRFS_I(dir)->index_cnt--;
5476        btrfs_free_path(path);
5477        iput(inode);
5478        return ERR_PTR(ret);
5479}
5480
5481static inline u8 btrfs_inode_type(struct inode *inode)
5482{
5483        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5484}
5485
5486/*
5487 * utility function to add 'inode' into 'parent_inode' with
5488 * a give name and a given sequence number.
5489 * if 'add_backref' is true, also insert a backref from the
5490 * inode to the parent directory.
5491 */
5492int btrfs_add_link(struct btrfs_trans_handle *trans,
5493                   struct inode *parent_inode, struct inode *inode,
5494                   const char *name, int name_len, int add_backref, u64 index)
5495{
5496        int ret = 0;
5497        struct btrfs_key key;
5498        struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5499        u64 ino = btrfs_ino(inode);
5500        u64 parent_ino = btrfs_ino(parent_inode);
5501
5502        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5503                memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5504        } else {
5505                key.objectid = ino;
5506                btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5507                key.offset = 0;
5508        }
5509
5510        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5511                ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5512                                         key.objectid, root->root_key.objectid,
5513                                         parent_ino, index, name, name_len);
5514        } else if (add_backref) {
5515                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5516                                             parent_ino, index);
5517        }
5518
5519        /* Nothing to clean up yet */
5520        if (ret)
5521                return ret;
5522
5523        ret = btrfs_insert_dir_item(trans, root, name, name_len,
5524                                    parent_inode, &key,
5525                                    btrfs_inode_type(inode), index);
5526        if (ret == -EEXIST || ret == -EOVERFLOW)
5527                goto fail_dir_item;
5528        else if (ret) {
5529                btrfs_abort_transaction(trans, root, ret);
5530                return ret;
5531        }
5532
5533        btrfs_i_size_write(parent_inode, parent_inode->i_size +
5534                           name_len * 2);
5535        inode_inc_iversion(parent_inode);
5536        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5537        ret = btrfs_update_inode(trans, root, parent_inode);
5538        if (ret)
5539                btrfs_abort_transaction(trans, root, ret);
5540        return ret;
5541
5542fail_dir_item:
5543        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5544                u64 local_index;
5545                int err;
5546                err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5547                                 key.objectid, root->root_key.objectid,
5548                                 parent_ino, &local_index, name, name_len);
5549
5550        } else if (add_backref) {
5551                u64 local_index;
5552                int err;
5553
5554                err = btrfs_del_inode_ref(trans, root, name, name_len,
5555                                          ino, parent_ino, &local_index);
5556        }
5557        return ret;
5558}
5559
5560static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5561                            struct inode *dir, struct dentry *dentry,
5562                            struct inode *inode, int backref, u64 index)
5563{
5564        int err = btrfs_add_link(trans, dir, inode,
5565                                 dentry->d_name.name, dentry->d_name.len,
5566                                 backref, index);
5567        if (err > 0)
5568                err = -EEXIST;
5569        return err;
5570}
5571
5572static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5573                        umode_t mode, dev_t rdev)
5574{
5575        struct btrfs_trans_handle *trans;
5576        struct btrfs_root *root = BTRFS_I(dir)->root;
5577        struct inode *inode = NULL;
5578        int err;
5579        int drop_inode = 0;
5580        u64 objectid;
5581        u64 index = 0;
5582
5583        if (!new_valid_dev(rdev))
5584                return -EINVAL;
5585
5586        /*
5587         * 2 for inode item and ref
5588         * 2 for dir items
5589         * 1 for xattr if selinux is on
5590         */
5591        trans = btrfs_start_transaction(root, 5);
5592        if (IS_ERR(trans))
5593                return PTR_ERR(trans);
5594
5595        err = btrfs_find_free_ino(root, &objectid);
5596        if (err)
5597                goto out_unlock;
5598
5599        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5600                                dentry->d_name.len, btrfs_ino(dir), objectid,
5601                                mode, &index);
5602        if (IS_ERR(inode)) {
5603                err = PTR_ERR(inode);
5604                goto out_unlock;
5605        }
5606
5607        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5608        if (err) {
5609                drop_inode = 1;
5610                goto out_unlock;
5611        }
5612
5613        /*
5614        * If the active LSM wants to access the inode during
5615        * d_instantiate it needs these. Smack checks to see
5616        * if the filesystem supports xattrs by looking at the
5617        * ops vector.
5618        */
5619
5620        inode->i_op = &btrfs_special_inode_operations;
5621        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5622        if (err)
5623                drop_inode = 1;
5624        else {
5625                init_special_inode(inode, inode->i_mode, rdev);
5626                btrfs_update_inode(trans, root, inode);
5627                d_instantiate(dentry, inode);
5628        }
5629out_unlock:
5630        btrfs_end_transaction(trans, root);
5631        btrfs_btree_balance_dirty(root);
5632        if (drop_inode) {
5633                inode_dec_link_count(inode);
5634                iput(inode);
5635        }
5636        return err;
5637}
5638
5639static int btrfs_create(struct inode *dir, struct dentry *dentry,
5640                        umode_t mode, bool excl)
5641{
5642        struct btrfs_trans_handle *trans;
5643        struct btrfs_root *root = BTRFS_I(dir)->root;
5644        struct inode *inode = NULL;
5645        int drop_inode_on_err = 0;
5646        int err;
5647        u64 objectid;
5648        u64 index = 0;
5649
5650        /*
5651         * 2 for inode item and ref
5652         * 2 for dir items
5653         * 1 for xattr if selinux is on
5654         */
5655        trans = btrfs_start_transaction(root, 5);
5656        if (IS_ERR(trans))
5657                return PTR_ERR(trans);
5658
5659        err = btrfs_find_free_ino(root, &objectid);
5660        if (err)
5661                goto out_unlock;
5662
5663        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5664                                dentry->d_name.len, btrfs_ino(dir), objectid,
5665                                mode, &index);
5666        if (IS_ERR(inode)) {
5667                err = PTR_ERR(inode);
5668                goto out_unlock;
5669        }
5670        drop_inode_on_err = 1;
5671
5672        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5673        if (err)
5674                goto out_unlock;
5675
5676        err = btrfs_update_inode(trans, root, inode);
5677        if (err)
5678                goto out_unlock;
5679
5680        /*
5681        * If the active LSM wants to access the inode during
5682        * d_instantiate it needs these. Smack checks to see
5683        * if the filesystem supports xattrs by looking at the
5684        * ops vector.
5685        */
5686        inode->i_fop = &btrfs_file_operations;
5687        inode->i_op = &btrfs_file_inode_operations;
5688
5689        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5690        if (err)
5691                goto out_unlock;
5692
5693        inode->i_mapping->a_ops = &btrfs_aops;
5694        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5695        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5696        d_instantiate(dentry, inode);
5697
5698out_unlock:
5699        btrfs_end_transaction(trans, root);
5700        if (err && drop_inode_on_err) {
5701                inode_dec_link_count(inode);
5702                iput(inode);
5703        }
5704        btrfs_btree_balance_dirty(root);
5705        return err;
5706}
5707
5708static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5709                      struct dentry *dentry)
5710{
5711        struct btrfs_trans_handle *trans;
5712        struct btrfs_root *root = BTRFS_I(dir)->root;
5713        struct inode *inode = old_dentry->d_inode;
5714        u64 index;
5715        int err;
5716        int drop_inode = 0;
5717
5718        /* do not allow sys_link's with other subvols of the same device */
5719        if (root->objectid != BTRFS_I(inode)->root->objectid)
5720                return -EXDEV;
5721
5722        if (inode->i_nlink >= BTRFS_LINK_MAX)
5723                return -EMLINK;
5724
5725        err = btrfs_set_inode_index(dir, &index);
5726        if (err)
5727                goto fail;
5728
5729        /*
5730         * 2 items for inode and inode ref
5731         * 2 items for dir items
5732         * 1 item for parent inode
5733         */
5734        trans = btrfs_start_transaction(root, 5);
5735        if (IS_ERR(trans)) {
5736                err = PTR_ERR(trans);
5737                goto fail;
5738        }
5739
5740        inc_nlink(inode);
5741        inode_inc_iversion(inode);
5742        inode->i_ctime = CURRENT_TIME;
5743        ihold(inode);
5744        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5745
5746        err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5747
5748        if (err) {
5749                drop_inode = 1;
5750        } else {
5751                struct dentry *parent = dentry->d_parent;
5752                err = btrfs_update_inode(trans, root, inode);
5753                if (err)
5754                        goto fail;
5755                d_instantiate(dentry, inode);
5756                btrfs_log_new_name(trans, inode, NULL, parent);
5757        }
5758
5759        btrfs_end_transaction(trans, root);
5760fail:
5761        if (drop_inode) {
5762                inode_dec_link_count(inode);
5763                iput(inode);
5764        }
5765        btrfs_btree_balance_dirty(root);
5766        return err;
5767}
5768
5769static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5770{
5771        struct inode *inode = NULL;
5772        struct btrfs_trans_handle *trans;
5773        struct btrfs_root *root = BTRFS_I(dir)->root;
5774        int err = 0;
5775        int drop_on_err = 0;
5776        u64 objectid = 0;
5777        u64 index = 0;
5778
5779        /*
5780         * 2 items for inode and ref
5781         * 2 items for dir items
5782         * 1 for xattr if selinux is on
5783         */
5784        trans = btrfs_start_transaction(root, 5);
5785        if (IS_ERR(trans))
5786                return PTR_ERR(trans);
5787
5788        err = btrfs_find_free_ino(root, &objectid);
5789        if (err)
5790                goto out_fail;
5791
5792        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5793                                dentry->d_name.len, btrfs_ino(dir), objectid,
5794                                S_IFDIR | mode, &index);
5795        if (IS_ERR(inode)) {
5796                err = PTR_ERR(inode);
5797                goto out_fail;
5798        }
5799
5800        drop_on_err = 1;
5801
5802        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5803        if (err)
5804                goto out_fail;
5805
5806        inode->i_op = &btrfs_dir_inode_operations;
5807        inode->i_fop = &btrfs_dir_file_operations;
5808
5809        btrfs_i_size_write(inode, 0);
5810        err = btrfs_update_inode(trans, root, inode);
5811        if (err)
5812                goto out_fail;
5813
5814        err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5815                             dentry->d_name.len, 0, index);
5816        if (err)
5817                goto out_fail;
5818
5819        d_instantiate(dentry, inode);
5820        drop_on_err = 0;
5821
5822out_fail:
5823        btrfs_end_transaction(trans, root);
5824        if (drop_on_err)
5825                iput(inode);
5826        btrfs_btree_balance_dirty(root);
5827        return err;
5828}
5829
5830/* helper for btfs_get_extent.  Given an existing extent in the tree,
5831 * and an extent that you want to insert, deal with overlap and insert
5832 * the new extent into the tree.
5833 */
5834static int merge_extent_mapping(struct extent_map_tree *em_tree,
5835                                struct extent_map *existing,
5836                                struct extent_map *em,
5837                                u64 map_start, u64 map_len)
5838{
5839        u64 start_diff;
5840
5841        BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5842        start_diff = map_start - em->start;
5843        em->start = map_start;
5844        em->len = map_len;
5845        if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5846            !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5847                em->block_start += start_diff;
5848                em->block_len -= start_diff;
5849        }
5850        return add_extent_mapping(em_tree, em, 0);
5851}
5852
5853static noinline int uncompress_inline(struct btrfs_path *path,
5854                                      struct inode *inode, struct page *page,
5855                                      size_t pg_offset, u64 extent_offset,
5856                                      struct btrfs_file_extent_item *item)
5857{
5858        int ret;
5859        struct extent_buffer *leaf = path->nodes[0];
5860        char *tmp;
5861        size_t max_size;
5862        unsigned long inline_size;
5863        unsigned long ptr;
5864        int compress_type;
5865
5866        WARN_ON(pg_offset != 0);
5867        compress_type = btrfs_file_extent_compression(leaf, item);
5868        max_size = btrfs_file_extent_ram_bytes(leaf, item);
5869        inline_size = btrfs_file_extent_inline_item_len(leaf,
5870                                        btrfs_item_nr(path->slots[0]));
5871        tmp = kmalloc(inline_size, GFP_NOFS);
5872        if (!tmp)
5873                return -ENOMEM;
5874        ptr = btrfs_file_extent_inline_start(item);
5875
5876        read_extent_buffer(leaf, tmp, ptr, inline_size);
5877
5878        max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5879        ret = btrfs_decompress(compress_type, tmp, page,
5880                               extent_offset, inline_size, max_size);
5881        if (ret) {
5882                char *kaddr = kmap_atomic(page);
5883                unsigned long copy_size = min_t(u64,
5884                                  PAGE_CACHE_SIZE - pg_offset,
5885                                  max_size - extent_offset);
5886                memset(kaddr + pg_offset, 0, copy_size);
5887                kunmap_atomic(kaddr);
5888        }
5889        kfree(tmp);
5890        return 0;
5891}
5892
5893/*
5894 * a bit scary, this does extent mapping from logical file offset to the disk.
5895 * the ugly parts come from merging extents from the disk with the in-ram
5896 * representation.  This gets more complex because of the data=ordered code,
5897 * where the in-ram extents might be locked pending data=ordered completion.
5898 *
5899 * This also copies inline extents directly into the page.
5900 */
5901
5902struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5903                                    size_t pg_offset, u64 start, u64 len,
5904                                    int create)
5905{
5906        int ret;
5907        int err = 0;
5908        u64 bytenr;
5909        u64 extent_start = 0;
5910        u64 extent_end = 0;
5911        u64 objectid = btrfs_ino(inode);
5912        u32 found_type;
5913        struct btrfs_path *path = NULL;
5914        struct btrfs_root *root = BTRFS_I(inode)->root;
5915        struct btrfs_file_extent_item *item;
5916        struct extent_buffer *leaf;
5917        struct btrfs_key found_key;
5918        struct extent_map *em = NULL;
5919        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5920        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5921        struct btrfs_trans_handle *trans = NULL;
5922        int compress_type;
5923
5924again:
5925        read_lock(&em_tree->lock);
5926        em = lookup_extent_mapping(em_tree, start, len);
5927        if (em)
5928                em->bdev = root->fs_info->fs_devices->latest_bdev;
5929        read_unlock(&em_tree->lock);
5930
5931        if (em) {
5932                if (em->start > start || em->start + em->len <= start)
5933                        free_extent_map(em);
5934                else if (em->block_start == EXTENT_MAP_INLINE && page)
5935                        free_extent_map(em);
5936                else
5937                        goto out;
5938        }
5939        em = alloc_extent_map();
5940        if (!em) {
5941                err = -ENOMEM;
5942                goto out;
5943        }
5944        em->bdev = root->fs_info->fs_devices->latest_bdev;
5945        em->start = EXTENT_MAP_HOLE;
5946        em->orig_start = EXTENT_MAP_HOLE;
5947        em->len = (u64)-1;
5948        em->block_len = (u64)-1;
5949
5950        if (!path) {
5951                path = btrfs_alloc_path();
5952                if (!path) {
5953                        err = -ENOMEM;
5954                        goto out;
5955                }
5956                /*
5957                 * Chances are we'll be called again, so go ahead and do
5958                 * readahead
5959                 */
5960                path->reada = 1;
5961        }
5962
5963        ret = btrfs_lookup_file_extent(trans, root, path,
5964                                       objectid, start, trans != NULL);
5965        if (ret < 0) {
5966                err = ret;
5967                goto out;
5968        }
5969
5970        if (ret != 0) {
5971                if (path->slots[0] == 0)
5972                        goto not_found;
5973                path->slots[0]--;
5974        }
5975
5976        leaf = path->nodes[0];
5977        item = btrfs_item_ptr(leaf, path->slots[0],
5978                              struct btrfs_file_extent_item);
5979        /* are we inside the extent that was found? */
5980        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5981        found_type = btrfs_key_type(&found_key);
5982        if (found_key.objectid != objectid ||
5983            found_type != BTRFS_EXTENT_DATA_KEY) {
5984                /*
5985                 * If we backup past the first extent we want to move forward
5986                 * and see if there is an extent in front of us, otherwise we'll
5987                 * say there is a hole for our whole search range which can
5988                 * cause problems.
5989                 */
5990                extent_end = start;
5991                goto next;
5992        }
5993
5994        found_type = btrfs_file_extent_type(leaf, item);
5995        extent_start = found_key.offset;
5996        compress_type = btrfs_file_extent_compression(leaf, item);
5997        if (found_type == BTRFS_FILE_EXTENT_REG ||
5998            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5999                extent_end = extent_start +
6000                       btrfs_file_extent_num_bytes(leaf, item);
6001        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6002                size_t size;
6003                size = btrfs_file_extent_inline_len(leaf, item);
6004                extent_end = ALIGN(extent_start + size, root->sectorsize);
6005        }
6006next:
6007        if (start >= extent_end) {
6008                path->slots[0]++;
6009                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6010                        ret = btrfs_next_leaf(root, path);
6011                        if (ret < 0) {
6012                                err = ret;
6013                                goto out;
6014                        }
6015                        if (ret > 0)
6016                                goto not_found;
6017                        leaf = path->nodes[0];
6018                }
6019                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6020                if (found_key.objectid != objectid ||
6021                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6022                        goto not_found;
6023                if (start + len <= found_key.offset)
6024                        goto not_found;
6025                em->start = start;
6026                em->orig_start = start;
6027                em->len = found_key.offset - start;
6028                goto not_found_em;
6029        }
6030
6031        em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6032        if (found_type == BTRFS_FILE_EXTENT_REG ||
6033            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6034                em->start = extent_start;
6035                em->len = extent_end - extent_start;
6036                em->orig_start = extent_start -
6037                                 btrfs_file_extent_offset(leaf, item);
6038                em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6039                                                                      item);
6040                bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6041                if (bytenr == 0) {
6042                        em->block_start = EXTENT_MAP_HOLE;
6043                        goto insert;
6044                }
6045                if (compress_type != BTRFS_COMPRESS_NONE) {
6046                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6047                        em->compress_type = compress_type;
6048                        em->block_start = bytenr;
6049                        em->block_len = em->orig_block_len;
6050                } else {
6051                        bytenr += btrfs_file_extent_offset(leaf, item);
6052                        em->block_start = bytenr;
6053                        em->block_len = em->len;
6054                        if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6055                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6056                }
6057                goto insert;
6058        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6059                unsigned long ptr;
6060                char *map;
6061                size_t size;
6062                size_t extent_offset;
6063                size_t copy_size;
6064
6065                em->block_start = EXTENT_MAP_INLINE;
6066                if (!page || create) {
6067                        em->start = extent_start;
6068                        em->len = extent_end - extent_start;
6069                        goto out;
6070                }
6071
6072                size = btrfs_file_extent_inline_len(leaf, item);
6073                extent_offset = page_offset(page) + pg_offset - extent_start;
6074                copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6075                                size - extent_offset);
6076                em->start = extent_start + extent_offset;
6077                em->len = ALIGN(copy_size, root->sectorsize);
6078                em->orig_block_len = em->len;
6079                em->orig_start = em->start;
6080                if (compress_type) {
6081                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6082                        em->compress_type = compress_type;
6083                }
6084                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6085                if (create == 0 && !PageUptodate(page)) {
6086                        if (btrfs_file_extent_compression(leaf, item) !=
6087                            BTRFS_COMPRESS_NONE) {
6088                                ret = uncompress_inline(path, inode, page,
6089                                                        pg_offset,
6090                                                        extent_offset, item);
6091                                BUG_ON(ret); /* -ENOMEM */
6092                        } else {
6093                                map = kmap(page);
6094                                read_extent_buffer(leaf, map + pg_offset, ptr,
6095                                                   copy_size);
6096                                if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6097                                        memset(map + pg_offset + copy_size, 0,
6098                                               PAGE_CACHE_SIZE - pg_offset -
6099                                               copy_size);
6100                                }
6101                                kunmap(page);
6102                        }
6103                        flush_dcache_page(page);
6104                } else if (create && PageUptodate(page)) {
6105                        BUG();
6106                        if (!trans) {
6107                                kunmap(page);
6108                                free_extent_map(em);
6109                                em = NULL;
6110
6111                                btrfs_release_path(path);
6112                                trans = btrfs_join_transaction(root);
6113
6114                                if (IS_ERR(trans))
6115                                        return ERR_CAST(trans);
6116                                goto again;
6117                        }
6118                        map = kmap(page);
6119                        write_extent_buffer(leaf, map + pg_offset, ptr,
6120                                            copy_size);
6121                        kunmap(page);
6122                        btrfs_mark_buffer_dirty(leaf);
6123                }
6124                set_extent_uptodate(io_tree, em->start,
6125                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
6126                goto insert;
6127        } else {
6128                WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6129        }
6130not_found:
6131        em->start = start;
6132        em->orig_start = start;
6133        em->len = len;
6134not_found_em:
6135        em->block_start = EXTENT_MAP_HOLE;
6136        set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6137insert:
6138        btrfs_release_path(path);
6139        if (em->start > start || extent_map_end(em) <= start) {
6140                btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6141                        em->start, em->len, start, len);
6142                err = -EIO;
6143                goto out;
6144        }
6145
6146        err = 0;
6147        write_lock(&em_tree->lock);
6148        ret = add_extent_mapping(em_tree, em, 0);
6149        /* it is possible that someone inserted the extent into the tree
6150         * while we had the lock dropped.  It is also possible that
6151         * an overlapping map exists in the tree
6152         */
6153        if (ret == -EEXIST) {
6154                struct extent_map *existing;
6155
6156                ret = 0;
6157
6158                existing = lookup_extent_mapping(em_tree, start, len);
6159                if (existing && (existing->start > start ||
6160                    existing->start + existing->len <= start)) {
6161                        free_extent_map(existing);
6162                        existing = NULL;
6163                }
6164                if (!existing) {
6165                        existing = lookup_extent_mapping(em_tree, em->start,
6166                                                         em->len);
6167                        if (existing) {
6168                                err = merge_extent_mapping(em_tree, existing,
6169                                                           em, start,
6170                                                           root->sectorsize);
6171                                free_extent_map(existing);
6172                                if (err) {
6173                                        free_extent_map(em);
6174                                        em = NULL;
6175                                }
6176                        } else {
6177                                err = -EIO;
6178                                free_extent_map(em);
6179                                em = NULL;
6180                        }
6181                } else {
6182                        free_extent_map(em);
6183                        em = existing;
6184                        err = 0;
6185                }
6186        }
6187        write_unlock(&em_tree->lock);
6188out:
6189
6190        trace_btrfs_get_extent(root, em);
6191
6192        if (path)
6193                btrfs_free_path(path);
6194        if (trans) {
6195                ret = btrfs_end_transaction(trans, root);
6196                if (!err)
6197                        err = ret;
6198        }
6199        if (err) {
6200                free_extent_map(em);
6201                return ERR_PTR(err);
6202        }
6203        BUG_ON(!em); /* Error is always set */
6204        return em;
6205}
6206
6207struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6208                                           size_t pg_offset, u64 start, u64 len,
6209                                           int create)
6210{
6211        struct extent_map *em;
6212        struct extent_map *hole_em = NULL;
6213        u64 range_start = start;
6214        u64 end;
6215        u64 found;
6216        u64 found_end;
6217        int err = 0;
6218
6219        em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6220        if (IS_ERR(em))
6221                return em;
6222        if (em) {
6223                /*
6224                 * if our em maps to
6225                 * -  a hole or
6226                 * -  a pre-alloc extent,
6227                 * there might actually be delalloc bytes behind it.
6228                 */
6229                if (em->block_start != EXTENT_MAP_HOLE &&
6230                    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6231                        return em;
6232                else
6233                        hole_em = em;
6234        }
6235
6236        /* check to see if we've wrapped (len == -1 or similar) */
6237        end = start + len;
6238        if (end < start)
6239                end = (u64)-1;
6240        else
6241                end -= 1;
6242
6243        em = NULL;
6244
6245        /* ok, we didn't find anything, lets look for delalloc */
6246        found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6247                                 end, len, EXTENT_DELALLOC, 1);
6248        found_end = range_start + found;
6249        if (found_end < range_start)
6250                found_end = (u64)-1;
6251
6252        /*
6253         * we didn't find anything useful, return
6254         * the original results from get_extent()
6255         */
6256        if (range_start > end || found_end <= start) {
6257                em = hole_em;
6258                hole_em = NULL;
6259                goto out;
6260        }
6261
6262        /* adjust the range_start to make sure it doesn't
6263         * go backwards from the start they passed in
6264         */
6265        range_start = max(start, range_start);
6266        found = found_end - range_start;
6267
6268        if (found > 0) {
6269                u64 hole_start = start;
6270                u64 hole_len = len;
6271
6272                em = alloc_extent_map();
6273                if (!em) {
6274                        err = -ENOMEM;
6275                        goto out;
6276                }
6277                /*
6278                 * when btrfs_get_extent can't find anything it
6279                 * returns one huge hole
6280                 *
6281                 * make sure what it found really fits our range, and
6282                 * adjust to make sure it is based on the start from
6283                 * the caller
6284                 */
6285                if (hole_em) {
6286                        u64 calc_end = extent_map_end(hole_em);
6287
6288                        if (calc_end <= start || (hole_em->start > end)) {
6289                                free_extent_map(hole_em);
6290                                hole_em = NULL;
6291                        } else {
6292                                hole_start = max(hole_em->start, start);
6293                                hole_len = calc_end - hole_start;
6294                        }
6295                }
6296                em->bdev = NULL;
6297                if (hole_em && range_start > hole_start) {
6298                        /* our hole starts before our delalloc, so we
6299                         * have to return just the parts of the hole
6300                         * that go until  the delalloc starts
6301                         */
6302                        em->len = min(hole_len,
6303                                      range_start - hole_start);
6304                        em->start = hole_start;
6305                        em->orig_start = hole_start;
6306                        /*
6307                         * don't adjust block start at all,
6308                         * it is fixed at EXTENT_MAP_HOLE
6309                         */
6310                        em->block_start = hole_em->block_start;
6311                        em->block_len = hole_len;
6312                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6313                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6314                } else {
6315                        em->start = range_start;
6316                        em->len = found;
6317                        em->orig_start = range_start;
6318                        em->block_start = EXTENT_MAP_DELALLOC;
6319                        em->block_len = found;
6320                }
6321        } else if (hole_em) {
6322                return hole_em;
6323        }
6324out:
6325
6326        free_extent_map(hole_em);
6327        if (err) {
6328                free_extent_map(em);
6329                return ERR_PTR(err);
6330        }
6331        return em;
6332}
6333
6334static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6335                                                  u64 start, u64 len)
6336{
6337        struct btrfs_root *root = BTRFS_I(inode)->root;
6338        struct extent_map *em;
6339        struct btrfs_key ins;
6340        u64 alloc_hint;
6341        int ret;
6342
6343        alloc_hint = get_extent_allocation_hint(inode, start, len);
6344        ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6345                                   alloc_hint, &ins, 1);
6346        if (ret)
6347                return ERR_PTR(ret);
6348
6349        em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6350                              ins.offset, ins.offset, ins.offset, 0);
6351        if (IS_ERR(em)) {
6352                btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6353                return em;
6354        }
6355
6356        ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6357                                           ins.offset, ins.offset, 0);
6358        if (ret) {
6359                btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6360                free_extent_map(em);
6361                return ERR_PTR(ret);
6362        }
6363
6364        return em;
6365}
6366
6367/*
6368 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6369 * block must be cow'd
6370 */
6371noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6372                              u64 *orig_start, u64 *orig_block_len,
6373                              u64 *ram_bytes)
6374{
6375        struct btrfs_trans_handle *trans;
6376        struct btrfs_path *path;
6377        int ret;
6378        struct extent_buffer *leaf;
6379        struct btrfs_root *root = BTRFS_I(inode)->root;
6380        struct btrfs_file_extent_item *fi;
6381        struct btrfs_key key;
6382        u64 disk_bytenr;
6383        u64 backref_offset;
6384        u64 extent_end;
6385        u64 num_bytes;
6386        int slot;
6387        int found_type;
6388        bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6389        path = btrfs_alloc_path();
6390        if (!path)
6391                return -ENOMEM;
6392
6393        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6394                                       offset, 0);
6395        if (ret < 0)
6396                goto out;
6397
6398        slot = path->slots[0];
6399        if (ret == 1) {
6400                if (slot == 0) {
6401                        /* can't find the item, must cow */
6402                        ret = 0;
6403                        goto out;
6404                }
6405                slot--;
6406        }
6407        ret = 0;
6408        leaf = path->nodes[0];
6409        btrfs_item_key_to_cpu(leaf, &key, slot);
6410        if (key.objectid != btrfs_ino(inode) ||
6411            key.type != BTRFS_EXTENT_DATA_KEY) {
6412                /* not our file or wrong item type, must cow */
6413                goto out;
6414        }
6415
6416        if (key.offset > offset) {
6417                /* Wrong offset, must cow */
6418                goto out;
6419        }
6420
6421        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6422        found_type = btrfs_file_extent_type(leaf, fi);
6423        if (found_type != BTRFS_FILE_EXTENT_REG &&
6424            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6425                /* not a regular extent, must cow */
6426                goto out;
6427        }
6428
6429        if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6430                goto out;
6431
6432        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6433        if (disk_bytenr == 0)
6434                goto out;
6435
6436        if (btrfs_file_extent_compression(leaf, fi) ||
6437            btrfs_file_extent_encryption(leaf, fi) ||
6438            btrfs_file_extent_other_encoding(leaf, fi))
6439                goto out;
6440
6441        backref_offset = btrfs_file_extent_offset(leaf, fi);
6442
6443        if (orig_start) {
6444                *orig_start = key.offset - backref_offset;
6445                *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6446                *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6447        }
6448
6449        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6450
6451        if (btrfs_extent_readonly(root, disk_bytenr))
6452                goto out;
6453        btrfs_release_path(path);
6454
6455        /*
6456         * look for other files referencing this extent, if we
6457         * find any we must cow
6458         */
6459        trans = btrfs_join_transaction(root);
6460        if (IS_ERR(trans)) {
6461                ret = 0;
6462                goto out;
6463        }
6464
6465        ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6466                                    key.offset - backref_offset, disk_bytenr);
6467        btrfs_end_transaction(trans, root);
6468        if (ret) {
6469                ret = 0;
6470                goto out;
6471        }
6472
6473        /*
6474         * adjust disk_bytenr and num_bytes to cover just the bytes
6475         * in this extent we are about to write.  If there
6476         * are any csums in that range we have to cow in order
6477         * to keep the csums correct
6478         */
6479        disk_bytenr += backref_offset;
6480        disk_bytenr += offset - key.offset;
6481        num_bytes = min(offset + *len, extent_end) - offset;
6482        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6483                                goto out;
6484        /*
6485         * all of the above have passed, it is safe to overwrite this extent
6486         * without cow
6487         */
6488        *len = num_bytes;
6489        ret = 1;
6490out:
6491        btrfs_free_path(path);
6492        return ret;
6493}
6494
6495static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6496                              struct extent_state **cached_state, int writing)
6497{
6498        struct btrfs_ordered_extent *ordered;
6499        int ret = 0;
6500
6501        while (1) {
6502                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6503                                 0, cached_state);
6504                /*
6505                 * We're concerned with the entire range that we're going to be
6506                 * doing DIO to, so we need to make sure theres no ordered
6507                 * extents in this range.
6508                 */
6509                ordered = btrfs_lookup_ordered_range(inode, lockstart,
6510                                                     lockend - lockstart + 1);
6511
6512                /*
6513                 * We need to make sure there are no buffered pages in this
6514                 * range either, we could have raced between the invalidate in
6515                 * generic_file_direct_write and locking the extent.  The
6516                 * invalidate needs to happen so that reads after a write do not
6517                 * get stale data.
6518                 */
6519                if (!ordered && (!writing ||
6520                    !test_range_bit(&BTRFS_I(inode)->io_tree,
6521                                    lockstart, lockend, EXTENT_UPTODATE, 0,
6522                                    *cached_state)))
6523                        break;
6524
6525                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6526                                     cached_state, GFP_NOFS);
6527
6528                if (ordered) {
6529                        btrfs_start_ordered_extent(inode, ordered, 1);
6530                        btrfs_put_ordered_extent(ordered);
6531                } else {
6532                        /* Screw you mmap */
6533                        ret = filemap_write_and_wait_range(inode->i_mapping,
6534                                                           lockstart,
6535                                                           lockend);
6536                        if (ret)
6537                                break;
6538
6539                        /*
6540                         * If we found a page that couldn't be invalidated just
6541                         * fall back to buffered.
6542                         */
6543                        ret = invalidate_inode_pages2_range(inode->i_mapping,
6544                                        lockstart >> PAGE_CACHE_SHIFT,
6545                                        lockend >> PAGE_CACHE_SHIFT);
6546                        if (ret)
6547                                break;
6548                }
6549
6550                cond_resched();
6551        }
6552
6553        return ret;
6554}
6555
6556static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6557                                           u64 len, u64 orig_start,
6558                                           u64 block_start, u64 block_len,
6559                                           u64 orig_block_len, u64 ram_bytes,
6560                                           int type)
6561{
6562        struct extent_map_tree *em_tree;
6563        struct extent_map *em;
6564        struct btrfs_root *root = BTRFS_I(inode)->root;
6565        int ret;
6566
6567        em_tree = &BTRFS_I(inode)->extent_tree;
6568        em = alloc_extent_map();
6569        if (!em)
6570                return ERR_PTR(-ENOMEM);
6571
6572        em->start = start;
6573        em->orig_start = orig_start;
6574        em->mod_start = start;
6575        em->mod_len = len;
6576        em->len = len;
6577        em->block_len = block_len;
6578        em->block_start = block_start;
6579        em->bdev = root->fs_info->fs_devices->latest_bdev;
6580        em->orig_block_len = orig_block_len;
6581        em->ram_bytes = ram_bytes;
6582        em->generation = -1;
6583        set_bit(EXTENT_FLAG_PINNED, &em->flags);
6584        if (type == BTRFS_ORDERED_PREALLOC)
6585                set_bit(EXTENT_FLAG_FILLING, &em->flags);
6586
6587        do {
6588                btrfs_drop_extent_cache(inode, em->start,
6589                                em->start + em->len - 1, 0);
6590                write_lock(&em_tree->lock);
6591                ret = add_extent_mapping(em_tree, em, 1);
6592                write_unlock(&em_tree->lock);
6593        } while (ret == -EEXIST);
6594
6595        if (ret) {
6596                free_extent_map(em);
6597                return ERR_PTR(ret);
6598        }
6599
6600        return em;
6601}
6602
6603
6604static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6605                                   struct buffer_head *bh_result, int create)
6606{
6607        struct extent_map *em;
6608        struct btrfs_root *root = BTRFS_I(inode)->root;
6609        struct extent_state *cached_state = NULL;
6610        u64 start = iblock << inode->i_blkbits;
6611        u64 lockstart, lockend;
6612        u64 len = bh_result->b_size;
6613        int unlock_bits = EXTENT_LOCKED;
6614        int ret = 0;
6615
6616        if (create)
6617                unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6618        else
6619                len = min_t(u64, len, root->sectorsize);
6620
6621        lockstart = start;
6622        lockend = start + len - 1;
6623
6624        /*
6625         * If this errors out it's because we couldn't invalidate pagecache for
6626         * this range and we need to fallback to buffered.
6627         */
6628        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6629                return -ENOTBLK;
6630
6631        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6632        if (IS_ERR(em)) {
6633                ret = PTR_ERR(em);
6634                goto unlock_err;
6635        }
6636
6637        /*
6638         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6639         * io.  INLINE is special, and we could probably kludge it in here, but
6640         * it's still buffered so for safety lets just fall back to the generic
6641         * buffered path.
6642         *
6643         * For COMPRESSED we _have_ to read the entire extent in so we can
6644         * decompress it, so there will be buffering required no matter what we
6645         * do, so go ahead and fallback to buffered.
6646         *
6647         * We return -ENOTBLK because thats what makes DIO go ahead and go back
6648         * to buffered IO.  Don't blame me, this is the price we pay for using
6649         * the generic code.
6650         */
6651        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6652            em->block_start == EXTENT_MAP_INLINE) {
6653                free_extent_map(em);
6654                ret = -ENOTBLK;
6655                goto unlock_err;
6656        }
6657
6658        /* Just a good old fashioned hole, return */
6659        if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6660                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6661                free_extent_map(em);
6662                goto unlock_err;
6663        }
6664
6665        /*
6666         * We don't allocate a new extent in the following cases
6667         *
6668         * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6669         * existing extent.
6670         * 2) The extent is marked as PREALLOC.  We're good to go here and can
6671         * just use the extent.
6672         *
6673         */
6674        if (!create) {
6675                len = min(len, em->len - (start - em->start));
6676                lockstart = start + len;
6677                goto unlock;
6678        }
6679
6680        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6681            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6682             em->block_start != EXTENT_MAP_HOLE)) {
6683                int type;
6684                int ret;
6685                u64 block_start, orig_start, orig_block_len, ram_bytes;
6686
6687                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6688                        type = BTRFS_ORDERED_PREALLOC;
6689                else
6690                        type = BTRFS_ORDERED_NOCOW;
6691                len = min(len, em->len - (start - em->start));
6692                block_start = em->block_start + (start - em->start);
6693
6694                if (can_nocow_extent(inode, start, &len, &orig_start,
6695                                     &orig_block_len, &ram_bytes) == 1) {
6696                        if (type == BTRFS_ORDERED_PREALLOC) {
6697                                free_extent_map(em);
6698                                em = create_pinned_em(inode, start, len,
6699                                                       orig_start,
6700                                                       block_start, len,
6701                                                       orig_block_len,
6702                                                       ram_bytes, type);
6703                                if (IS_ERR(em))
6704                                        goto unlock_err;
6705                        }
6706
6707                        ret = btrfs_add_ordered_extent_dio(inode, start,
6708                                           block_start, len, len, type);
6709                        if (ret) {
6710                                free_extent_map(em);
6711                                goto unlock_err;
6712                        }
6713                        goto unlock;
6714                }
6715        }
6716
6717        /*
6718         * this will cow the extent, reset the len in case we changed
6719         * it above
6720         */
6721        len = bh_result->b_size;
6722        free_extent_map(em);
6723        em = btrfs_new_extent_direct(inode, start, len);
6724        if (IS_ERR(em)) {
6725                ret = PTR_ERR(em);
6726                goto unlock_err;
6727        }
6728        len = min(len, em->len - (start - em->start));
6729unlock:
6730        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6731                inode->i_blkbits;
6732        bh_result->b_size = len;
6733        bh_result->b_bdev = em->bdev;
6734        set_buffer_mapped(bh_result);
6735        if (create) {
6736                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6737                        set_buffer_new(bh_result);
6738
6739                /*
6740                 * Need to update the i_size under the extent lock so buffered
6741                 * readers will get the updated i_size when we unlock.
6742                 */
6743                if (start + len > i_size_read(inode))
6744                        i_size_write(inode, start + len);
6745
6746                spin_lock(&BTRFS_I(inode)->lock);
6747                BTRFS_I(inode)->outstanding_extents++;
6748                spin_unlock(&BTRFS_I(inode)->lock);
6749
6750                ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6751                                     lockstart + len - 1, EXTENT_DELALLOC, NULL,
6752                                     &cached_state, GFP_NOFS);
6753                BUG_ON(ret);
6754        }
6755
6756        /*
6757         * In the case of write we need to clear and unlock the entire range,
6758         * in the case of read we need to unlock only the end area that we
6759         * aren't using if there is any left over space.
6760         */
6761        if (lockstart < lockend) {
6762                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6763                                 lockend, unlock_bits, 1, 0,
6764                                 &cached_state, GFP_NOFS);
6765        } else {
6766                free_extent_state(cached_state);
6767        }
6768
6769        free_extent_map(em);
6770
6771        return 0;
6772
6773unlock_err:
6774        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6775                         unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6776        return ret;
6777}
6778
6779static void btrfs_endio_direct_read(struct bio *bio, int err)
6780{
6781        struct btrfs_dio_private *dip = bio->bi_private;
6782        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6783        struct bio_vec *bvec = bio->bi_io_vec;
6784        struct inode *inode = dip->inode;
6785        struct btrfs_root *root = BTRFS_I(inode)->root;
6786        struct bio *dio_bio;
6787        u32 *csums = (u32 *)dip->csum;
6788        int index = 0;
6789        u64 start;
6790
6791        start = dip->logical_offset;
6792        do {
6793                if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6794                        struct page *page = bvec->bv_page;
6795                        char *kaddr;
6796                        u32 csum = ~(u32)0;
6797                        unsigned long flags;
6798
6799                        local_irq_save(flags);
6800                        kaddr = kmap_atomic(page);
6801                        csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6802                                               csum, bvec->bv_len);
6803                        btrfs_csum_final(csum, (char *)&csum);
6804                        kunmap_atomic(kaddr);
6805                        local_irq_restore(flags);
6806
6807                        flush_dcache_page(bvec->bv_page);
6808                        if (csum != csums[index]) {
6809                                btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6810                                          btrfs_ino(inode), start, csum,
6811                                          csums[index]);
6812                                err = -EIO;
6813                        }
6814                }
6815
6816                start += bvec->bv_len;
6817                bvec++;
6818                index++;
6819        } while (bvec <= bvec_end);
6820
6821        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6822                      dip->logical_offset + dip->bytes - 1);
6823        dio_bio = dip->dio_bio;
6824
6825        kfree(dip);
6826
6827        /* If we had a csum failure make sure to clear the uptodate flag */
6828        if (err)
6829                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6830        dio_end_io(dio_bio, err);
6831        bio_put(bio);
6832}
6833
6834static void btrfs_endio_direct_write(struct bio *bio, int err)
6835{
6836        struct btrfs_dio_private *dip = bio->bi_private;
6837        struct inode *inode = dip->inode;
6838        struct btrfs_root *root = BTRFS_I(inode)->root;
6839        struct btrfs_ordered_extent *ordered = NULL;
6840        u64 ordered_offset = dip->logical_offset;
6841        u64 ordered_bytes = dip->bytes;
6842        struct bio *dio_bio;
6843        int ret;
6844
6845        if (err)
6846                goto out_done;
6847again:
6848        ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6849                                                   &ordered_offset,
6850                                                   ordered_bytes, !err);
6851        if (!ret)
6852                goto out_test;
6853
6854        ordered->work.func = finish_ordered_fn;
6855        ordered->work.flags = 0;
6856        btrfs_queue_worker(&root->fs_info->endio_write_workers,
6857                           &ordered->work);
6858out_test:
6859        /*
6860         * our bio might span multiple ordered extents.  If we haven't
6861         * completed the accounting for the whole dio, go back and try again
6862         */
6863        if (ordered_offset < dip->logical_offset + dip->bytes) {
6864                ordered_bytes = dip->logical_offset + dip->bytes -
6865                        ordered_offset;
6866                ordered = NULL;
6867                goto again;
6868        }
6869out_done:
6870        dio_bio = dip->dio_bio;
6871
6872        kfree(dip);
6873
6874        /* If we had an error make sure to clear the uptodate flag */
6875        if (err)
6876                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6877        dio_end_io(dio_bio, err);
6878        bio_put(bio);
6879}
6880
6881static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6882                                    struct bio *bio, int mirror_num,
6883                                    unsigned long bio_flags, u64 offset)
6884{
6885        int ret;
6886        struct btrfs_root *root = BTRFS_I(inode)->root;
6887        ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6888        BUG_ON(ret); /* -ENOMEM */
6889        return 0;
6890}
6891
6892static void btrfs_end_dio_bio(struct bio *bio, int err)
6893{
6894        struct btrfs_dio_private *dip = bio->bi_private;
6895
6896        if (err) {
6897                printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6898                      "sector %#Lx len %u err no %d\n",
6899                      btrfs_ino(dip->inode), bio->bi_rw,
6900                      (unsigned long long)bio->bi_sector, bio->bi_size, err);
6901                dip->errors = 1;
6902
6903                /*
6904                 * before atomic variable goto zero, we must make sure
6905                 * dip->errors is perceived to be set.
6906                 */
6907                smp_mb__before_atomic_dec();
6908        }
6909
6910        /* if there are more bios still pending for this dio, just exit */
6911        if (!atomic_dec_and_test(&dip->pending_bios))
6912                goto out;
6913
6914        if (dip->errors) {
6915                bio_io_error(dip->orig_bio);
6916        } else {
6917                set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
6918                bio_endio(dip->orig_bio, 0);
6919        }
6920out:
6921        bio_put(bio);
6922}
6923
6924static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6925                                       u64 first_sector, gfp_t gfp_flags)
6926{
6927        int nr_vecs = bio_get_nr_vecs(bdev);
6928        return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6929}
6930
6931static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6932                                         int rw, u64 file_offset, int skip_sum,
6933                                         int async_submit)
6934{
6935        struct btrfs_dio_private *dip = bio->bi_private;
6936        int write = rw & REQ_WRITE;
6937        struct btrfs_root *root = BTRFS_I(inode)->root;
6938        int ret;
6939
6940        if (async_submit)
6941                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6942
6943        bio_get(bio);
6944
6945        if (!write) {
6946                ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6947                if (ret)
6948                        goto err;
6949        }
6950
6951        if (skip_sum)
6952                goto map;
6953
6954        if (write && async_submit) {
6955                ret = btrfs_wq_submit_bio(root->fs_info,
6956                                   inode, rw, bio, 0, 0,
6957                                   file_offset,
6958                                   __btrfs_submit_bio_start_direct_io,
6959                                   __btrfs_submit_bio_done);
6960                goto err;
6961        } else if (write) {
6962                /*
6963                 * If we aren't doing async submit, calculate the csum of the
6964                 * bio now.
6965                 */
6966                ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6967                if (ret)
6968                        goto err;
6969        } else if (!skip_sum) {
6970                ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6971                                                file_offset);
6972                if (ret)
6973                        goto err;
6974        }
6975
6976map:
6977        ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6978err:
6979        bio_put(bio);
6980        return ret;
6981}
6982
6983static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6984                                    int skip_sum)
6985{
6986        struct inode *inode = dip->inode;
6987        struct btrfs_root *root = BTRFS_I(inode)->root;
6988        struct bio *bio;
6989        struct bio *orig_bio = dip->orig_bio;
6990        struct bio_vec *bvec = orig_bio->bi_io_vec;
6991        u64 start_sector = orig_bio->bi_sector;
6992        u64 file_offset = dip->logical_offset;
6993        u64 submit_len = 0;
6994        u64 map_length;
6995        int nr_pages = 0;
6996        int ret = 0;
6997        int async_submit = 0;
6998
6999        map_length = orig_bio->bi_size;
7000        ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7001                              &map_length, NULL, 0);
7002        if (ret) {
7003                bio_put(orig_bio);
7004                return -EIO;
7005        }
7006
7007        if (map_length >= orig_bio->bi_size) {
7008                bio = orig_bio;
7009                goto submit;
7010        }
7011
7012        /* async crcs make it difficult to collect full stripe writes. */
7013        if (btrfs_get_alloc_profile(root, 1) &
7014            (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7015                async_submit = 0;
7016        else
7017                async_submit = 1;
7018
7019        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7020        if (!bio)
7021                return -ENOMEM;
7022        bio->bi_private = dip;
7023        bio->bi_end_io = btrfs_end_dio_bio;
7024        atomic_inc(&dip->pending_bios);
7025
7026        while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7027                if (unlikely(map_length < submit_len + bvec->bv_len ||
7028                    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7029                                 bvec->bv_offset) < bvec->bv_len)) {
7030                        /*
7031                         * inc the count before we submit the bio so
7032                         * we know the end IO handler won't happen before
7033                         * we inc the count. Otherwise, the dip might get freed
7034                         * before we're done setting it up
7035                         */
7036                        atomic_inc(&dip->pending_bios);
7037                        ret = __btrfs_submit_dio_bio(bio, inode, rw,
7038                                                     file_offset, skip_sum,
7039                                                     async_submit);
7040                        if (ret) {
7041                                bio_put(bio);
7042                                atomic_dec(&dip->pending_bios);
7043                                goto out_err;
7044                        }
7045
7046                        start_sector += submit_len >> 9;
7047                        file_offset += submit_len;
7048
7049                        submit_len = 0;
7050                        nr_pages = 0;
7051
7052                        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7053                                                  start_sector, GFP_NOFS);
7054                        if (!bio)
7055                                goto out_err;
7056                        bio->bi_private = dip;
7057                        bio->bi_end_io = btrfs_end_dio_bio;
7058
7059                        map_length = orig_bio->bi_size;
7060                        ret = btrfs_map_block(root->fs_info, rw,
7061                                              start_sector << 9,
7062                                              &map_length, NULL, 0);
7063                        if (ret) {
7064                                bio_put(bio);
7065                                goto out_err;
7066                        }
7067                } else {
7068                        submit_len += bvec->bv_len;
7069                        nr_pages++;
7070                        bvec++;
7071                }
7072        }
7073
7074submit:
7075        ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7076                                     async_submit);
7077        if (!ret)
7078                return 0;
7079
7080        bio_put(bio);
7081out_err:
7082        dip->errors = 1;
7083        /*
7084         * before atomic variable goto zero, we must
7085         * make sure dip->errors is perceived to be set.
7086         */
7087        smp_mb__before_atomic_dec();
7088        if (atomic_dec_and_test(&dip->pending_bios))
7089                bio_io_error(dip->orig_bio);
7090
7091        /* bio_end_io() will handle error, so we needn't return it */
7092        return 0;
7093}
7094
7095static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7096                                struct inode *inode, loff_t file_offset)
7097{
7098        struct btrfs_root *root = BTRFS_I(inode)->root;
7099        struct btrfs_dio_private *dip;
7100        struct bio *io_bio;
7101        int skip_sum;
7102        int sum_len;
7103        int write = rw & REQ_WRITE;
7104        int ret = 0;
7105        u16 csum_size;
7106
7107        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7108
7109        io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7110        if (!io_bio) {
7111                ret = -ENOMEM;
7112                goto free_ordered;
7113        }
7114
7115        if (!skip_sum && !write) {
7116                csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7117                sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7118                sum_len *= csum_size;
7119        } else {
7120                sum_len = 0;
7121        }
7122
7123        dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7124        if (!dip) {
7125                ret = -ENOMEM;
7126                goto free_io_bio;
7127        }
7128
7129        dip->private = dio_bio->bi_private;
7130        dip->inode = inode;
7131        dip->logical_offset = file_offset;
7132        dip->bytes = dio_bio->bi_size;
7133        dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7134        io_bio->bi_private = dip;
7135        dip->errors = 0;
7136        dip->orig_bio = io_bio;
7137        dip->dio_bio = dio_bio;
7138        atomic_set(&dip->pending_bios, 0);
7139
7140        if (write)
7141                io_bio->bi_end_io = btrfs_endio_direct_write;
7142        else
7143                io_bio->bi_end_io = btrfs_endio_direct_read;
7144
7145        ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7146        if (!ret)
7147                return;
7148
7149free_io_bio:
7150        bio_put(io_bio);
7151
7152free_ordered:
7153        /*
7154         * If this is a write, we need to clean up the reserved space and kill
7155         * the ordered extent.
7156         */
7157        if (write) {
7158                struct btrfs_ordered_extent *ordered;
7159                ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7160                if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7161                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7162                        btrfs_free_reserved_extent(root, ordered->start,
7163                                                   ordered->disk_len);
7164                btrfs_put_ordered_extent(ordered);
7165                btrfs_put_ordered_extent(ordered);
7166        }
7167        bio_endio(dio_bio, ret);
7168}
7169
7170static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7171                        const struct iovec *iov, loff_t offset,
7172                        unsigned long nr_segs)
7173{
7174        int seg;
7175        int i;
7176        size_t size;
7177        unsigned long addr;
7178        unsigned blocksize_mask = root->sectorsize - 1;
7179        ssize_t retval = -EINVAL;
7180        loff_t end = offset;
7181
7182        if (offset & blocksize_mask)
7183                goto out;
7184
7185        /* Check the memory alignment.  Blocks cannot straddle pages */
7186        for (seg = 0; seg < nr_segs; seg++) {
7187                addr = (unsigned long)iov[seg].iov_base;
7188                size = iov[seg].iov_len;
7189                end += size;
7190                if ((addr & blocksize_mask) || (size & blocksize_mask))
7191                        goto out;
7192
7193                /* If this is a write we don't need to check anymore */
7194                if (rw & WRITE)
7195                        continue;
7196
7197                /*
7198                 * Check to make sure we don't have duplicate iov_base's in this
7199                 * iovec, if so return EINVAL, otherwise we'll get csum errors
7200                 * when reading back.
7201                 */
7202                for (i = seg + 1; i < nr_segs; i++) {
7203                        if (iov[seg].iov_base == iov[i].iov_base)
7204                                goto out;
7205                }
7206        }
7207        retval = 0;
7208out:
7209        return retval;
7210}
7211
7212static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7213                        const struct iovec *iov, loff_t offset,
7214                        unsigned long nr_segs)
7215{
7216        struct file *file = iocb->ki_filp;
7217        struct inode *inode = file->f_mapping->host;
7218        size_t count = 0;
7219        int flags = 0;
7220        bool wakeup = true;
7221        bool relock = false;
7222        ssize_t ret;
7223
7224        if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7225                            offset, nr_segs))
7226                return 0;
7227
7228        atomic_inc(&inode->i_dio_count);
7229        smp_mb__after_atomic_inc();
7230
7231        /*
7232         * The generic stuff only does filemap_write_and_wait_range, which isn't
7233         * enough if we've written compressed pages to this area, so we need to
7234         * call btrfs_wait_ordered_range to make absolutely sure that any
7235         * outstanding dirty pages are on disk.
7236         */
7237        count = iov_length(iov, nr_segs);
7238        ret = btrfs_wait_ordered_range(inode, offset, count);
7239        if (ret)
7240                return ret;
7241
7242        if (rw & WRITE) {
7243                /*
7244                 * If the write DIO is beyond the EOF, we need update
7245                 * the isize, but it is protected by i_mutex. So we can
7246                 * not unlock the i_mutex at this case.
7247                 */
7248                if (offset + count <= inode->i_size) {
7249                        mutex_unlock(&inode->i_mutex);
7250                        relock = true;
7251                }
7252                ret = btrfs_delalloc_reserve_space(inode, count);
7253                if (ret)
7254                        goto out;
7255        } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7256                                     &BTRFS_I(inode)->runtime_flags))) {
7257                inode_dio_done(inode);
7258                flags = DIO_LOCKING | DIO_SKIP_HOLES;
7259                wakeup = false;
7260        }
7261
7262        ret = __blockdev_direct_IO(rw, iocb, inode,
7263                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7264                        iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7265                        btrfs_submit_direct, flags);
7266        if (rw & WRITE) {
7267                if (ret < 0 && ret != -EIOCBQUEUED)
7268                        btrfs_delalloc_release_space(inode, count);
7269                else if (ret >= 0 && (size_t)ret < count)
7270                        btrfs_delalloc_release_space(inode,
7271                                                     count - (size_t)ret);
7272                else
7273                        btrfs_delalloc_release_metadata(inode, 0);
7274        }
7275out:
7276        if (wakeup)
7277                inode_dio_done(inode);
7278        if (relock)
7279                mutex_lock(&inode->i_mutex);
7280
7281        return ret;
7282}
7283
7284#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
7285
7286static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7287                __u64 start, __u64 len)
7288{
7289        int     ret;
7290
7291        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7292        if (ret)
7293                return ret;
7294
7295        return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7296}
7297
7298int btrfs_readpage(struct file *file, struct page *page)
7299{
7300        struct extent_io_tree *tree;
7301        tree = &BTRFS_I(page->mapping->host)->io_tree;
7302        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7303}
7304
7305static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7306{
7307        struct extent_io_tree *tree;
7308
7309
7310        if (current->flags & PF_MEMALLOC) {
7311                redirty_page_for_writepage(wbc, page);
7312                unlock_page(page);
7313                return 0;
7314        }
7315        tree = &BTRFS_I(page->mapping->host)->io_tree;
7316        return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7317}
7318
7319static int btrfs_writepages(struct address_space *mapping,
7320                            struct writeback_control *wbc)
7321{
7322        struct extent_io_tree *tree;
7323
7324        tree = &BTRFS_I(mapping->host)->io_tree;
7325        return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7326}
7327
7328static int
7329btrfs_readpages(struct file *file, struct address_space *mapping,
7330                struct list_head *pages, unsigned nr_pages)
7331{
7332        struct extent_io_tree *tree;
7333        tree = &BTRFS_I(mapping->host)->io_tree;
7334        return extent_readpages(tree, mapping, pages, nr_pages,
7335                                btrfs_get_extent);
7336}
7337static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7338{
7339        struct extent_io_tree *tree;
7340        struct extent_map_tree *map;
7341        int ret;
7342
7343        tree = &BTRFS_I(page->mapping->host)->io_tree;
7344        map = &BTRFS_I(page->mapping->host)->extent_tree;
7345        ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7346        if (ret == 1) {
7347                ClearPagePrivate(page);
7348                set_page_private(page, 0);
7349                page_cache_release(page);
7350        }
7351        return ret;
7352}
7353
7354static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7355{
7356        if (PageWriteback(page) || PageDirty(page))
7357                return 0;
7358        return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7359}
7360
7361static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7362                                 unsigned int length)
7363{
7364        struct inode *inode = page->mapping->host;
7365        struct extent_io_tree *tree;
7366        struct btrfs_ordered_extent *ordered;
7367        struct extent_state *cached_state = NULL;
7368        u64 page_start = page_offset(page);
7369        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7370
7371        /*
7372         * we have the page locked, so new writeback can't start,
7373         * and the dirty bit won't be cleared while we are here.
7374         *
7375         * Wait for IO on this page so that we can safely clear
7376         * the PagePrivate2 bit and do ordered accounting
7377         */
7378        wait_on_page_writeback(page);
7379
7380        tree = &BTRFS_I(inode)->io_tree;
7381        if (offset) {
7382                btrfs_releasepage(page, GFP_NOFS);
7383                return;
7384        }
7385        lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7386        ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7387        if (ordered) {
7388                /*
7389                 * IO on this page will never be started, so we need
7390                 * to account for any ordered extents now
7391                 */
7392                clear_extent_bit(tree, page_start, page_end,
7393                                 EXTENT_DIRTY | EXTENT_DELALLOC |
7394                                 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7395                                 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7396                /*
7397                 * whoever cleared the private bit is responsible
7398                 * for the finish_ordered_io
7399                 */
7400                if (TestClearPagePrivate2(page)) {
7401                        struct btrfs_ordered_inode_tree *tree;
7402                        u64 new_len;
7403
7404                        tree = &BTRFS_I(inode)->ordered_tree;
7405
7406                        spin_lock_irq(&tree->lock);
7407                        set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7408                        new_len = page_start - ordered->file_offset;
7409                        if (new_len < ordered->truncated_len)
7410                                ordered->truncated_len = new_len;
7411                        spin_unlock_irq(&tree->lock);
7412
7413                        if (btrfs_dec_test_ordered_pending(inode, &ordered,
7414                                                           page_start,
7415                                                           PAGE_CACHE_SIZE, 1))
7416                                btrfs_finish_ordered_io(ordered);
7417                }
7418                btrfs_put_ordered_extent(ordered);
7419                cached_state = NULL;
7420                lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7421        }
7422        clear_extent_bit(tree, page_start, page_end,
7423                 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7424                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7425                 &cached_state, GFP_NOFS);
7426        __btrfs_releasepage(page, GFP_NOFS);
7427
7428        ClearPageChecked(page);
7429        if (PagePrivate(page)) {
7430                ClearPagePrivate(page);
7431                set_page_private(page, 0);
7432                page_cache_release(page);
7433        }
7434}
7435
7436/*
7437 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7438 * called from a page fault handler when a page is first dirtied. Hence we must
7439 * be careful to check for EOF conditions here. We set the page up correctly
7440 * for a written page which means we get ENOSPC checking when writing into
7441 * holes and correct delalloc and unwritten extent mapping on filesystems that
7442 * support these features.
7443 *
7444 * We are not allowed to take the i_mutex here so we have to play games to
7445 * protect against truncate races as the page could now be beyond EOF.  Because
7446 * vmtruncate() writes the inode size before removing pages, once we have the
7447 * page lock we can determine safely if the page is beyond EOF. If it is not
7448 * beyond EOF, then the page is guaranteed safe against truncation until we
7449 * unlock the page.
7450 */
7451int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7452{
7453        struct page *page = vmf->page;
7454        struct inode *inode = file_inode(vma->vm_file);
7455        struct btrfs_root *root = BTRFS_I(inode)->root;
7456        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7457        struct btrfs_ordered_extent *ordered;
7458        struct extent_state *cached_state = NULL;
7459        char *kaddr;
7460        unsigned long zero_start;
7461        loff_t size;
7462        int ret;
7463        int reserved = 0;
7464        u64 page_start;
7465        u64 page_end;
7466
7467        sb_start_pagefault(inode->i_sb);
7468        ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7469        if (!ret) {
7470                ret = file_update_time(vma->vm_file);
7471                reserved = 1;
7472        }
7473        if (ret) {
7474                if (ret == -ENOMEM)
7475                        ret = VM_FAULT_OOM;
7476                else /* -ENOSPC, -EIO, etc */
7477                        ret = VM_FAULT_SIGBUS;
7478                if (reserved)
7479                        goto out;
7480                goto out_noreserve;
7481        }
7482
7483        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7484again:
7485        lock_page(page);
7486        size = i_size_read(inode);
7487        page_start = page_offset(page);
7488        page_end = page_start + PAGE_CACHE_SIZE - 1;
7489
7490        if ((page->mapping != inode->i_mapping) ||
7491            (page_start >= size)) {
7492                /* page got truncated out from underneath us */
7493                goto out_unlock;
7494        }
7495        wait_on_page_writeback(page);
7496
7497        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7498        set_page_extent_mapped(page);
7499
7500        /*
7501         * we can't set the delalloc bits if there are pending ordered
7502         * extents.  Drop our locks and wait for them to finish
7503         */
7504        ordered = btrfs_lookup_ordered_extent(inode, page_start);
7505        if (ordered) {
7506                unlock_extent_cached(io_tree, page_start, page_end,
7507                                     &cached_state, GFP_NOFS);
7508                unlock_page(page);
7509                btrfs_start_ordered_extent(inode, ordered, 1);
7510                btrfs_put_ordered_extent(ordered);
7511                goto again;
7512        }
7513
7514        /*
7515         * XXX - page_mkwrite gets called every time the page is dirtied, even
7516         * if it was already dirty, so for space accounting reasons we need to
7517         * clear any delalloc bits for the range we are fixing to save.  There
7518         * is probably a better way to do this, but for now keep consistent with
7519         * prepare_pages in the normal write path.
7520         */
7521        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7522                          EXTENT_DIRTY | EXTENT_DELALLOC |
7523                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7524                          0, 0, &cached_state, GFP_NOFS);
7525
7526        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7527                                        &cached_state);
7528        if (ret) {
7529                unlock_extent_cached(io_tree, page_start, page_end,
7530                                     &cached_state, GFP_NOFS);
7531                ret = VM_FAULT_SIGBUS;
7532                goto out_unlock;
7533        }
7534        ret = 0;
7535
7536        /* page is wholly or partially inside EOF */
7537        if (page_start + PAGE_CACHE_SIZE > size)
7538                zero_start = size & ~PAGE_CACHE_MASK;
7539        else
7540                zero_start = PAGE_CACHE_SIZE;
7541
7542        if (zero_start != PAGE_CACHE_SIZE) {
7543                kaddr = kmap(page);
7544                memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7545                flush_dcache_page(page);
7546                kunmap(page);
7547        }
7548        ClearPageChecked(page);
7549        set_page_dirty(page);
7550        SetPageUptodate(page);
7551
7552        BTRFS_I(inode)->last_trans = root->fs_info->generation;
7553        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7554        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7555
7556        unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7557
7558out_unlock:
7559        if (!ret) {
7560                sb_end_pagefault(inode->i_sb);
7561                return VM_FAULT_LOCKED;
7562        }
7563        unlock_page(page);
7564out:
7565        btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7566out_noreserve:
7567        sb_end_pagefault(inode->i_sb);
7568        return ret;
7569}
7570
7571static int btrfs_truncate(struct inode *inode)
7572{
7573        struct btrfs_root *root = BTRFS_I(inode)->root;
7574        struct btrfs_block_rsv *rsv;
7575        int ret = 0;
7576        int err = 0;
7577        struct btrfs_trans_handle *trans;
7578        u64 mask = root->sectorsize - 1;
7579        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7580
7581        ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7582                                       (u64)-1);
7583        if (ret)
7584                return ret;
7585
7586        /*
7587         * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7588         * 3 things going on here
7589         *
7590         * 1) We need to reserve space for our orphan item and the space to
7591         * delete our orphan item.  Lord knows we don't want to have a dangling
7592         * orphan item because we didn't reserve space to remove it.
7593         *
7594         * 2) We need to reserve space to update our inode.
7595         *
7596         * 3) We need to have something to cache all the space that is going to
7597         * be free'd up by the truncate operation, but also have some slack
7598         * space reserved in case it uses space during the truncate (thank you
7599         * very much snapshotting).
7600         *
7601         * And we need these to all be seperate.  The fact is we can use alot of
7602         * space doing the truncate, and we have no earthly idea how much space
7603         * we will use, so we need the truncate reservation to be seperate so it
7604         * doesn't end up using space reserved for updating the inode or
7605         * removing the orphan item.  We also need to be able to stop the
7606         * transaction and start a new one, which means we need to be able to
7607         * update the inode several times, and we have no idea of knowing how
7608         * many times that will be, so we can't just reserve 1 item for the
7609         * entirety of the opration, so that has to be done seperately as well.
7610         * Then there is the orphan item, which does indeed need to be held on
7611         * to for the whole operation, and we need nobody to touch this reserved
7612         * space except the orphan code.
7613         *
7614         * So that leaves us with
7615         *
7616         * 1) root->orphan_block_rsv - for the orphan deletion.
7617         * 2) rsv - for the truncate reservation, which we will steal from the
7618         * transaction reservation.
7619         * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7620         * updating the inode.
7621         */
7622        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7623        if (!rsv)
7624                return -ENOMEM;
7625        rsv->size = min_size;
7626        rsv->failfast = 1;
7627
7628        /*
7629         * 1 for the truncate slack space
7630         * 1 for updating the inode.
7631         */
7632        trans = btrfs_start_transaction(root, 2);
7633        if (IS_ERR(trans)) {
7634                err = PTR_ERR(trans);
7635                goto out;
7636        }
7637
7638        /* Migrate the slack space for the truncate to our reserve */
7639        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7640                                      min_size);
7641        BUG_ON(ret);
7642
7643        /*
7644         * setattr is responsible for setting the ordered_data_close flag,
7645         * but that is only tested during the last file release.  That
7646         * could happen well after the next commit, leaving a great big
7647         * window where new writes may get lost if someone chooses to write
7648         * to this file after truncating to zero
7649         *
7650         * The inode doesn't have any dirty data here, and so if we commit
7651         * this is a noop.  If someone immediately starts writing to the inode
7652         * it is very likely we'll catch some of their writes in this
7653         * transaction, and the commit will find this file on the ordered
7654         * data list with good things to send down.
7655         *
7656         * This is a best effort solution, there is still a window where
7657         * using truncate to replace the contents of the file will
7658         * end up with a zero length file after a crash.
7659         */
7660        if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7661                                           &BTRFS_I(inode)->runtime_flags))
7662                btrfs_add_ordered_operation(trans, root, inode);
7663
7664        /*
7665         * So if we truncate and then write and fsync we normally would just
7666         * write the extents that changed, which is a problem if we need to
7667         * first truncate that entire inode.  So set this flag so we write out
7668         * all of the extents in the inode to the sync log so we're completely
7669         * safe.
7670         */
7671        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7672        trans->block_rsv = rsv;
7673
7674        while (1) {
7675                ret = btrfs_truncate_inode_items(trans, root, inode,
7676                                                 inode->i_size,
7677                                                 BTRFS_EXTENT_DATA_KEY);
7678                if (ret != -ENOSPC) {
7679                        err = ret;
7680                        break;
7681                }
7682
7683                trans->block_rsv = &root->fs_info->trans_block_rsv;
7684                ret = btrfs_update_inode(trans, root, inode);
7685                if (ret) {
7686                        err = ret;
7687                        break;
7688                }
7689
7690                btrfs_end_transaction(trans, root);
7691                btrfs_btree_balance_dirty(root);
7692
7693                trans = btrfs_start_transaction(root, 2);
7694                if (IS_ERR(trans)) {
7695                        ret = err = PTR_ERR(trans);
7696                        trans = NULL;
7697                        break;
7698                }
7699
7700                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7701                                              rsv, min_size);
7702                BUG_ON(ret);    /* shouldn't happen */
7703                trans->block_rsv = rsv;
7704        }
7705
7706        if (ret == 0 && inode->i_nlink > 0) {
7707                trans->block_rsv = root->orphan_block_rsv;
7708                ret = btrfs_orphan_del(trans, inode);
7709                if (ret)
7710                        err = ret;
7711        }
7712
7713        if (trans) {
7714                trans->block_rsv = &root->fs_info->trans_block_rsv;
7715                ret = btrfs_update_inode(trans, root, inode);
7716                if (ret && !err)
7717                        err = ret;
7718
7719                ret = btrfs_end_transaction(trans, root);
7720                btrfs_btree_balance_dirty(root);
7721        }
7722
7723out:
7724        btrfs_free_block_rsv(root, rsv);
7725
7726        if (ret && !err)
7727                err = ret;
7728
7729        return err;
7730}
7731
7732/*
7733 * create a new subvolume directory/inode (helper for the ioctl).
7734 */
7735int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7736                             struct btrfs_root *new_root, u64 new_dirid)
7737{
7738        struct inode *inode;
7739        int err;
7740        u64 index = 0;
7741
7742        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7743                                new_dirid, new_dirid,
7744                                S_IFDIR | (~current_umask() & S_IRWXUGO),
7745                                &index);
7746        if (IS_ERR(inode))
7747                return PTR_ERR(inode);
7748        inode->i_op = &btrfs_dir_inode_operations;
7749        inode->i_fop = &btrfs_dir_file_operations;
7750
7751        set_nlink(inode, 1);
7752        btrfs_i_size_write(inode, 0);
7753
7754        err = btrfs_update_inode(trans, new_root, inode);
7755
7756        iput(inode);
7757        return err;
7758}
7759
7760struct inode *btrfs_alloc_inode(struct super_block *sb)
7761{
7762        struct btrfs_inode *ei;
7763        struct inode *inode;
7764
7765        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7766        if (!ei)
7767                return NULL;
7768
7769        ei->root = NULL;
7770        ei->generation = 0;
7771        ei->last_trans = 0;
7772        ei->last_sub_trans = 0;
7773        ei->logged_trans = 0;
7774        ei->delalloc_bytes = 0;
7775        ei->disk_i_size = 0;
7776        ei->flags = 0;
7777        ei->csum_bytes = 0;
7778        ei->index_cnt = (u64)-1;
7779        ei->last_unlink_trans = 0;
7780        ei->last_log_commit = 0;
7781
7782        spin_lock_init(&ei->lock);
7783        ei->outstanding_extents = 0;
7784        ei->reserved_extents = 0;
7785
7786        ei->runtime_flags = 0;
7787        ei->force_compress = BTRFS_COMPRESS_NONE;
7788
7789        ei->delayed_node = NULL;
7790
7791        inode = &ei->vfs_inode;
7792        extent_map_tree_init(&ei->extent_tree);
7793        extent_io_tree_init(&ei->io_tree, &inode->i_data);
7794        extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7795        ei->io_tree.track_uptodate = 1;
7796        ei->io_failure_tree.track_uptodate = 1;
7797        atomic_set(&ei->sync_writers, 0);
7798        mutex_init(&ei->log_mutex);
7799        mutex_init(&ei->delalloc_mutex);
7800        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7801        INIT_LIST_HEAD(&ei->delalloc_inodes);
7802        INIT_LIST_HEAD(&ei->ordered_operations);
7803        RB_CLEAR_NODE(&ei->rb_node);
7804
7805        return inode;
7806}
7807
7808#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7809void btrfs_test_destroy_inode(struct inode *inode)
7810{
7811        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7812        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7813}
7814#endif
7815
7816static void btrfs_i_callback(struct rcu_head *head)
7817{
7818        struct inode *inode = container_of(head, struct inode, i_rcu);
7819        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7820}
7821
7822void btrfs_destroy_inode(struct inode *inode)
7823{
7824        struct btrfs_ordered_extent *ordered;
7825        struct btrfs_root *root = BTRFS_I(inode)->root;
7826
7827        WARN_ON(!hlist_empty(&inode->i_dentry));
7828        WARN_ON(inode->i_data.nrpages);
7829        WARN_ON(BTRFS_I(inode)->outstanding_extents);
7830        WARN_ON(BTRFS_I(inode)->reserved_extents);
7831        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7832        WARN_ON(BTRFS_I(inode)->csum_bytes);
7833
7834        /*
7835         * This can happen where we create an inode, but somebody else also
7836         * created the same inode and we need to destroy the one we already
7837         * created.
7838         */
7839        if (!root)
7840                goto free;
7841
7842        /*
7843         * Make sure we're properly removed from the ordered operation
7844         * lists.
7845         */
7846        smp_mb();
7847        if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7848                spin_lock(&root->fs_info->ordered_root_lock);
7849                list_del_init(&BTRFS_I(inode)->ordered_operations);
7850                spin_unlock(&root->fs_info->ordered_root_lock);
7851        }
7852
7853        if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7854                     &BTRFS_I(inode)->runtime_flags)) {
7855                btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7856                        btrfs_ino(inode));
7857                atomic_dec(&root->orphan_inodes);
7858        }
7859
7860        while (1) {
7861                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7862                if (!ordered)
7863                        break;
7864                else {
7865                        btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7866                                ordered->file_offset, ordered->len);
7867                        btrfs_remove_ordered_extent(inode, ordered);
7868                        btrfs_put_ordered_extent(ordered);
7869                        btrfs_put_ordered_extent(ordered);
7870                }
7871        }
7872        inode_tree_del(inode);
7873        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7874free:
7875        call_rcu(&inode->i_rcu, btrfs_i_callback);
7876}
7877
7878int btrfs_drop_inode(struct inode *inode)
7879{
7880        struct btrfs_root *root = BTRFS_I(inode)->root;
7881
7882        if (root == NULL)
7883                return 1;
7884
7885        /* the snap/subvol tree is on deleting */
7886        if (btrfs_root_refs(&root->root_item) == 0)
7887                return 1;
7888        else
7889                return generic_drop_inode(inode);
7890}
7891
7892static void init_once(void *foo)
7893{
7894        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7895
7896        inode_init_once(&ei->vfs_inode);
7897}
7898
7899void btrfs_destroy_cachep(void)
7900{
7901        /*
7902         * Make sure all delayed rcu free inodes are flushed before we
7903         * destroy cache.
7904         */
7905        rcu_barrier();
7906        if (btrfs_inode_cachep)
7907                kmem_cache_destroy(btrfs_inode_cachep);
7908        if (btrfs_trans_handle_cachep)
7909                kmem_cache_destroy(btrfs_trans_handle_cachep);
7910        if (btrfs_transaction_cachep)
7911                kmem_cache_destroy(btrfs_transaction_cachep);
7912        if (btrfs_path_cachep)
7913                kmem_cache_destroy(btrfs_path_cachep);
7914        if (btrfs_free_space_cachep)
7915                kmem_cache_destroy(btrfs_free_space_cachep);
7916        if (btrfs_delalloc_work_cachep)
7917                kmem_cache_destroy(btrfs_delalloc_work_cachep);
7918}
7919
7920int btrfs_init_cachep(void)
7921{
7922        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7923                        sizeof(struct btrfs_inode), 0,
7924                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7925        if (!btrfs_inode_cachep)
7926                goto fail;
7927
7928        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7929                        sizeof(struct btrfs_trans_handle), 0,
7930                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7931        if (!btrfs_trans_handle_cachep)
7932                goto fail;
7933
7934        btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7935                        sizeof(struct btrfs_transaction), 0,
7936                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7937        if (!btrfs_transaction_cachep)
7938                goto fail;
7939
7940        btrfs_path_cachep = kmem_cache_create("btrfs_path",
7941                        sizeof(struct btrfs_path), 0,
7942                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7943        if (!btrfs_path_cachep)
7944                goto fail;
7945
7946        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7947                        sizeof(struct btrfs_free_space), 0,
7948                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7949        if (!btrfs_free_space_cachep)
7950                goto fail;
7951
7952        btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7953                        sizeof(struct btrfs_delalloc_work), 0,
7954                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7955                        NULL);
7956        if (!btrfs_delalloc_work_cachep)
7957                goto fail;
7958
7959        return 0;
7960fail:
7961        btrfs_destroy_cachep();
7962        return -ENOMEM;
7963}
7964
7965static int btrfs_getattr(struct vfsmount *mnt,
7966                         struct dentry *dentry, struct kstat *stat)
7967{
7968        u64 delalloc_bytes;
7969        struct inode *inode = dentry->d_inode;
7970        u32 blocksize = inode->i_sb->s_blocksize;
7971
7972        generic_fillattr(inode, stat);
7973        stat->dev = BTRFS_I(inode)->root->anon_dev;
7974        stat->blksize = PAGE_CACHE_SIZE;
7975
7976        spin_lock(&BTRFS_I(inode)->lock);
7977        delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7978        spin_unlock(&BTRFS_I(inode)->lock);
7979        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7980                        ALIGN(delalloc_bytes, blocksize)) >> 9;
7981        return 0;
7982}
7983
7984static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7985                           struct inode *new_dir, struct dentry *new_dentry)
7986{
7987        struct btrfs_trans_handle *trans;
7988        struct btrfs_root *root = BTRFS_I(old_dir)->root;
7989        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7990        struct inode *new_inode = new_dentry->d_inode;
7991        struct inode *old_inode = old_dentry->d_inode;
7992        struct timespec ctime = CURRENT_TIME;
7993        u64 index = 0;
7994        u64 root_objectid;
7995        int ret;
7996        u64 old_ino = btrfs_ino(old_inode);
7997
7998        if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7999                return -EPERM;
8000
8001        /* we only allow rename subvolume link between subvolumes */
8002        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8003                return -EXDEV;
8004
8005        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8006            (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8007                return -ENOTEMPTY;
8008
8009        if (S_ISDIR(old_inode->i_mode) && new_inode &&
8010            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8011                return -ENOTEMPTY;
8012
8013
8014        /* check for collisions, even if the  name isn't there */
8015        ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8016                             new_dentry->d_name.name,
8017                             new_dentry->d_name.len);
8018
8019        if (ret) {
8020                if (ret == -EEXIST) {
8021                        /* we shouldn't get
8022                         * eexist without a new_inode */
8023                        if (WARN_ON(!new_inode)) {
8024                                return ret;
8025                        }
8026                } else {
8027                        /* maybe -EOVERFLOW */
8028                        return ret;
8029                }
8030        }
8031        ret = 0;
8032
8033        /*
8034         * we're using rename to replace one file with another.
8035         * and the replacement file is large.  Start IO on it now so
8036         * we don't add too much work to the end of the transaction
8037         */
8038        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8039            old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8040                filemap_flush(old_inode->i_mapping);
8041
8042        /* close the racy window with snapshot create/destroy ioctl */
8043        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8044                down_read(&root->fs_info->subvol_sem);
8045        /*
8046         * We want to reserve the absolute worst case amount of items.  So if
8047         * both inodes are subvols and we need to unlink them then that would
8048         * require 4 item modifications, but if they are both normal inodes it
8049         * would require 5 item modifications, so we'll assume their normal
8050         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8051         * should cover the worst case number of items we'll modify.
8052         */
8053        trans = btrfs_start_transaction(root, 11);
8054        if (IS_ERR(trans)) {
8055                ret = PTR_ERR(trans);
8056                goto out_notrans;
8057        }
8058
8059        if (dest != root)
8060                btrfs_record_root_in_trans(trans, dest);
8061
8062        ret = btrfs_set_inode_index(new_dir, &index);
8063        if (ret)
8064                goto out_fail;
8065
8066        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8067                /* force full log commit if subvolume involved. */
8068                root->fs_info->last_trans_log_full_commit = trans->transid;
8069        } else {
8070                ret = btrfs_insert_inode_ref(trans, dest,
8071                                             new_dentry->d_name.name,
8072                                             new_dentry->d_name.len,
8073                                             old_ino,
8074                                             btrfs_ino(new_dir), index);
8075                if (ret)
8076                        goto out_fail;
8077                /*
8078                 * this is an ugly little race, but the rename is required
8079                 * to make sure that if we crash, the inode is either at the
8080                 * old name or the new one.  pinning the log transaction lets
8081                 * us make sure we don't allow a log commit to come in after
8082                 * we unlink the name but before we add the new name back in.
8083                 */
8084                btrfs_pin_log_trans(root);
8085        }
8086        /*
8087         * make sure the inode gets flushed if it is replacing
8088         * something.
8089         */
8090        if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8091                btrfs_add_ordered_operation(trans, root, old_inode);
8092
8093        inode_inc_iversion(old_dir);
8094        inode_inc_iversion(new_dir);
8095        inode_inc_iversion(old_inode);
8096        old_dir->i_ctime = old_dir->i_mtime = ctime;
8097        new_dir->i_ctime = new_dir->i_mtime = ctime;
8098        old_inode->i_ctime = ctime;
8099
8100        if (old_dentry->d_parent != new_dentry->d_parent)
8101                btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8102
8103        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8104                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8105                ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8106                                        old_dentry->d_name.name,
8107                                        old_dentry->d_name.len);
8108        } else {
8109                ret = __btrfs_unlink_inode(trans, root, old_dir,
8110                                        old_dentry->d_inode,
8111                                        old_dentry->d_name.name,
8112                                        old_dentry->d_name.len);
8113                if (!ret)
8114                        ret = btrfs_update_inode(trans, root, old_inode);
8115        }
8116        if (ret) {
8117                btrfs_abort_transaction(trans, root, ret);
8118                goto out_fail;
8119        }
8120
8121        if (new_inode) {
8122                inode_inc_iversion(new_inode);
8123                new_inode->i_ctime = CURRENT_TIME;
8124                if (unlikely(btrfs_ino(new_inode) ==
8125                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8126                        root_objectid = BTRFS_I(new_inode)->location.objectid;
8127                        ret = btrfs_unlink_subvol(trans, dest, new_dir,
8128                                                root_objectid,
8129                                                new_dentry->d_name.name,
8130                                                new_dentry->d_name.len);
8131                        BUG_ON(new_inode->i_nlink == 0);
8132                } else {
8133                        ret = btrfs_unlink_inode(trans, dest, new_dir,
8134                                                 new_dentry->d_inode,
8135                                                 new_dentry->d_name.name,
8136                                                 new_dentry->d_name.len);
8137                }
8138                if (!ret && new_inode->i_nlink == 0)
8139                        ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8140                if (ret) {
8141                        btrfs_abort_transaction(trans, root, ret);
8142                        goto out_fail;
8143                }
8144        }
8145
8146        ret = btrfs_add_link(trans, new_dir, old_inode,
8147                             new_dentry->d_name.name,
8148                             new_dentry->d_name.len, 0, index);
8149        if (ret) {
8150                btrfs_abort_transaction(trans, root, ret);
8151                goto out_fail;
8152        }
8153
8154        if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8155                struct dentry *parent = new_dentry->d_parent;
8156                btrfs_log_new_name(trans, old_inode, old_dir, parent);
8157                btrfs_end_log_trans(root);
8158        }
8159out_fail:
8160        btrfs_end_transaction(trans, root);
8161out_notrans:
8162        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8163                up_read(&root->fs_info->subvol_sem);
8164
8165        return ret;
8166}
8167
8168static void btrfs_run_delalloc_work(struct btrfs_work *work)
8169{
8170        struct btrfs_delalloc_work *delalloc_work;
8171        struct inode *inode;
8172
8173        delalloc_work = container_of(work, struct btrfs_delalloc_work,
8174                                     work);
8175        inode = delalloc_work->inode;
8176        if (delalloc_work->wait) {
8177                btrfs_wait_ordered_range(inode, 0, (u64)-1);
8178        } else {
8179                filemap_flush(inode->i_mapping);
8180                if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8181                             &BTRFS_I(inode)->runtime_flags))
8182                        filemap_flush(inode->i_mapping);
8183        }
8184
8185        if (delalloc_work->delay_iput)
8186                btrfs_add_delayed_iput(inode);
8187        else
8188                iput(inode);
8189        complete(&delalloc_work->completion);
8190}
8191
8192struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8193                                                    int wait, int delay_iput)
8194{
8195        struct btrfs_delalloc_work *work;
8196
8197        work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8198        if (!work)
8199                return NULL;
8200
8201        init_completion(&work->completion);
8202        INIT_LIST_HEAD(&work->list);
8203        work->inode = inode;
8204        work->wait = wait;
8205        work->delay_iput = delay_iput;
8206        work->work.func = btrfs_run_delalloc_work;
8207
8208        return work;
8209}
8210
8211void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8212{
8213        wait_for_completion(&work->completion);
8214        kmem_cache_free(btrfs_delalloc_work_cachep, work);
8215}
8216
8217/*
8218 * some fairly slow code that needs optimization. This walks the list
8219 * of all the inodes with pending delalloc and forces them to disk.
8220 */
8221static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8222{
8223        struct btrfs_inode *binode;
8224        struct inode *inode;
8225        struct btrfs_delalloc_work *work, *next;
8226        struct list_head works;
8227        struct list_head splice;
8228        int ret = 0;
8229
8230        INIT_LIST_HEAD(&works);
8231        INIT_LIST_HEAD(&splice);
8232
8233        spin_lock(&root->delalloc_lock);
8234        list_splice_init(&root->delalloc_inodes, &splice);
8235        while (!list_empty(&splice)) {
8236                binode = list_entry(splice.next, struct btrfs_inode,
8237                                    delalloc_inodes);
8238
8239                list_move_tail(&binode->delalloc_inodes,
8240                               &root->delalloc_inodes);
8241                inode = igrab(&binode->vfs_inode);
8242                if (!inode) {
8243                        cond_resched_lock(&root->delalloc_lock);
8244                        continue;
8245                }
8246                spin_unlock(&root->delalloc_lock);
8247
8248                work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8249                if (unlikely(!work)) {
8250                        if (delay_iput)
8251                                btrfs_add_delayed_iput(inode);
8252                        else
8253                                iput(inode);
8254                        ret = -ENOMEM;
8255                        goto out;
8256                }
8257                list_add_tail(&work->list, &works);
8258                btrfs_queue_worker(&root->fs_info->flush_workers,
8259                                   &work->work);
8260
8261                cond_resched();
8262                spin_lock(&root->delalloc_lock);
8263        }
8264        spin_unlock(&root->delalloc_lock);
8265
8266        list_for_each_entry_safe(work, next, &works, list) {
8267                list_del_init(&work->list);
8268                btrfs_wait_and_free_delalloc_work(work);
8269        }
8270        return 0;
8271out:
8272        list_for_each_entry_safe(work, next, &works, list) {
8273                list_del_init(&work->list);
8274                btrfs_wait_and_free_delalloc_work(work);
8275        }
8276
8277        if (!list_empty_careful(&splice)) {
8278                spin_lock(&root->delalloc_lock);
8279                list_splice_tail(&splice, &root->delalloc_inodes);
8280                spin_unlock(&root->delalloc_lock);
8281        }
8282        return ret;
8283}
8284
8285int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8286{
8287        int ret;
8288
8289        if (root->fs_info->sb->s_flags & MS_RDONLY)
8290                return -EROFS;
8291
8292        ret = __start_delalloc_inodes(root, delay_iput);
8293        /*
8294         * the filemap_flush will queue IO into the worker threads, but
8295         * we have to make sure the IO is actually started and that
8296         * ordered extents get created before we return
8297         */
8298        atomic_inc(&root->fs_info->async_submit_draining);
8299        while (atomic_read(&root->fs_info->nr_async_submits) ||
8300              atomic_read(&root->fs_info->async_delalloc_pages)) {
8301                wait_event(root->fs_info->async_submit_wait,
8302                   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8303                    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8304        }
8305        atomic_dec(&root->fs_info->async_submit_draining);
8306        return ret;
8307}
8308
8309int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
8310{
8311        struct btrfs_root *root;
8312        struct list_head splice;
8313        int ret;
8314
8315        if (fs_info->sb->s_flags & MS_RDONLY)
8316                return -EROFS;
8317
8318        INIT_LIST_HEAD(&splice);
8319
8320        spin_lock(&fs_info->delalloc_root_lock);
8321        list_splice_init(&fs_info->delalloc_roots, &splice);
8322        while (!list_empty(&splice)) {
8323                root = list_first_entry(&splice, struct btrfs_root,
8324                                        delalloc_root);
8325                root = btrfs_grab_fs_root(root);
8326                BUG_ON(!root);
8327                list_move_tail(&root->delalloc_root,
8328                               &fs_info->delalloc_roots);
8329                spin_unlock(&fs_info->delalloc_root_lock);
8330
8331                ret = __start_delalloc_inodes(root, delay_iput);
8332                btrfs_put_fs_root(root);
8333                if (ret)
8334                        goto out;
8335
8336                spin_lock(&fs_info->delalloc_root_lock);
8337        }
8338        spin_unlock(&fs_info->delalloc_root_lock);
8339
8340        atomic_inc(&fs_info->async_submit_draining);
8341        while (atomic_read(&fs_info->nr_async_submits) ||
8342              atomic_read(&fs_info->async_delalloc_pages)) {
8343                wait_event(fs_info->async_submit_wait,
8344                   (atomic_read(&fs_info->nr_async_submits) == 0 &&
8345                    atomic_read(&fs_info->async_delalloc_pages) == 0));
8346        }
8347        atomic_dec(&fs_info->async_submit_draining);
8348        return 0;
8349out:
8350        if (!list_empty_careful(&splice)) {
8351                spin_lock(&fs_info->delalloc_root_lock);
8352                list_splice_tail(&splice, &fs_info->delalloc_roots);
8353                spin_unlock(&fs_info->delalloc_root_lock);
8354        }
8355        return ret;
8356}
8357
8358static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8359                         const char *symname)
8360{
8361        struct btrfs_trans_handle *trans;
8362        struct btrfs_root *root = BTRFS_I(dir)->root;
8363        struct btrfs_path *path;
8364        struct btrfs_key key;
8365        struct inode *inode = NULL;
8366        int err;
8367        int drop_inode = 0;
8368        u64 objectid;
8369        u64 index = 0;
8370        int name_len;
8371        int datasize;
8372        unsigned long ptr;
8373        struct btrfs_file_extent_item *ei;
8374        struct extent_buffer *leaf;
8375
8376        name_len = strlen(symname);
8377        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8378                return -ENAMETOOLONG;
8379
8380        /*
8381         * 2 items for inode item and ref
8382         * 2 items for dir items
8383         * 1 item for xattr if selinux is on
8384         */
8385        trans = btrfs_start_transaction(root, 5);
8386        if (IS_ERR(trans))
8387                return PTR_ERR(trans);
8388
8389        err = btrfs_find_free_ino(root, &objectid);
8390        if (err)
8391                goto out_unlock;
8392
8393        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8394                                dentry->d_name.len, btrfs_ino(dir), objectid,
8395                                S_IFLNK|S_IRWXUGO, &index);
8396        if (IS_ERR(inode)) {
8397                err = PTR_ERR(inode);
8398                goto out_unlock;
8399        }
8400
8401        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8402        if (err) {
8403                drop_inode = 1;
8404                goto out_unlock;
8405        }
8406
8407        /*
8408        * If the active LSM wants to access the inode during
8409        * d_instantiate it needs these. Smack checks to see
8410        * if the filesystem supports xattrs by looking at the
8411        * ops vector.
8412        */
8413        inode->i_fop = &btrfs_file_operations;
8414        inode->i_op = &btrfs_file_inode_operations;
8415
8416        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8417        if (err)
8418                drop_inode = 1;
8419        else {
8420                inode->i_mapping->a_ops = &btrfs_aops;
8421                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8422                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8423        }
8424        if (drop_inode)
8425                goto out_unlock;
8426
8427        path = btrfs_alloc_path();
8428        if (!path) {
8429                err = -ENOMEM;
8430                drop_inode = 1;
8431                goto out_unlock;
8432        }
8433        key.objectid = btrfs_ino(inode);
8434        key.offset = 0;
8435        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8436        datasize = btrfs_file_extent_calc_inline_size(name_len);
8437        err = btrfs_insert_empty_item(trans, root, path, &key,
8438                                      datasize);
8439        if (err) {
8440                drop_inode = 1;
8441                btrfs_free_path(path);
8442                goto out_unlock;
8443        }
8444        leaf = path->nodes[0];
8445        ei = btrfs_item_ptr(leaf, path->slots[0],
8446                            struct btrfs_file_extent_item);
8447        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8448        btrfs_set_file_extent_type(leaf, ei,
8449                                   BTRFS_FILE_EXTENT_INLINE);
8450        btrfs_set_file_extent_encryption(leaf, ei, 0);
8451        btrfs_set_file_extent_compression(leaf, ei, 0);
8452        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8453        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8454
8455        ptr = btrfs_file_extent_inline_start(ei);
8456        write_extent_buffer(leaf, symname, ptr, name_len);
8457        btrfs_mark_buffer_dirty(leaf);
8458        btrfs_free_path(path);
8459
8460        inode->i_op = &btrfs_symlink_inode_operations;
8461        inode->i_mapping->a_ops = &btrfs_symlink_aops;
8462        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8463        inode_set_bytes(inode, name_len);
8464        btrfs_i_size_write(inode, name_len);
8465        err = btrfs_update_inode(trans, root, inode);
8466        if (err)
8467                drop_inode = 1;
8468
8469out_unlock:
8470        if (!err)
8471                d_instantiate(dentry, inode);
8472        btrfs_end_transaction(trans, root);
8473        if (drop_inode) {
8474                inode_dec_link_count(inode);
8475                iput(inode);
8476        }
8477        btrfs_btree_balance_dirty(root);
8478        return err;
8479}
8480
8481static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8482                                       u64 start, u64 num_bytes, u64 min_size,
8483                                       loff_t actual_len, u64 *alloc_hint,
8484                                       struct btrfs_trans_handle *trans)
8485{
8486        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8487        struct extent_map *em;
8488        struct btrfs_root *root = BTRFS_I(inode)->root;
8489        struct btrfs_key ins;
8490        u64 cur_offset = start;
8491        u64 i_size;
8492        u64 cur_bytes;
8493        int ret = 0;
8494        bool own_trans = true;
8495
8496        if (trans)
8497                own_trans = false;
8498        while (num_bytes > 0) {
8499                if (own_trans) {
8500                        trans = btrfs_start_transaction(root, 3);
8501                        if (IS_ERR(trans)) {
8502                                ret = PTR_ERR(trans);
8503                                break;
8504                        }
8505                }
8506
8507                cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8508                cur_bytes = max(cur_bytes, min_size);
8509                ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8510                                           *alloc_hint, &ins, 1);
8511                if (ret) {
8512                        if (own_trans)
8513                                btrfs_end_transaction(trans, root);
8514                        break;
8515                }
8516
8517                ret = insert_reserved_file_extent(trans, inode,
8518                                                  cur_offset, ins.objectid,
8519                                                  ins.offset, ins.offset,
8520                                                  ins.offset, 0, 0, 0,
8521                                                  BTRFS_FILE_EXTENT_PREALLOC);
8522                if (ret) {
8523                        btrfs_free_reserved_extent(root, ins.objectid,
8524                                                   ins.offset);
8525                        btrfs_abort_transaction(trans, root, ret);
8526                        if (own_trans)
8527                                btrfs_end_transaction(trans, root);
8528                        break;
8529                }
8530                btrfs_drop_extent_cache(inode, cur_offset,
8531                                        cur_offset + ins.offset -1, 0);
8532
8533                em = alloc_extent_map();
8534                if (!em) {
8535                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8536                                &BTRFS_I(inode)->runtime_flags);
8537                        goto next;
8538                }
8539
8540                em->start = cur_offset;
8541                em->orig_start = cur_offset;
8542                em->len = ins.offset;
8543                em->block_start = ins.objectid;
8544                em->block_len = ins.offset;
8545                em->orig_block_len = ins.offset;
8546                em->ram_bytes = ins.offset;
8547                em->bdev = root->fs_info->fs_devices->latest_bdev;
8548                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8549                em->generation = trans->transid;
8550
8551                while (1) {
8552                        write_lock(&em_tree->lock);
8553                        ret = add_extent_mapping(em_tree, em, 1);
8554                        write_unlock(&em_tree->lock);
8555                        if (ret != -EEXIST)
8556                                break;
8557                        btrfs_drop_extent_cache(inode, cur_offset,
8558                                                cur_offset + ins.offset - 1,
8559                                                0);
8560                }
8561                free_extent_map(em);
8562next:
8563                num_bytes -= ins.offset;
8564                cur_offset += ins.offset;
8565                *alloc_hint = ins.objectid + ins.offset;
8566
8567                inode_inc_iversion(inode);
8568                inode->i_ctime = CURRENT_TIME;
8569                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8570                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8571                    (actual_len > inode->i_size) &&
8572                    (cur_offset > inode->i_size)) {
8573                        if (cur_offset > actual_len)
8574                                i_size = actual_len;
8575                        else
8576                                i_size = cur_offset;
8577                        i_size_write(inode, i_size);
8578                        btrfs_ordered_update_i_size(inode, i_size, NULL);
8579                }
8580
8581                ret = btrfs_update_inode(trans, root, inode);
8582
8583                if (ret) {
8584                        btrfs_abort_transaction(trans, root, ret);
8585                        if (own_trans)
8586                                btrfs_end_transaction(trans, root);
8587                        break;
8588                }
8589
8590                if (own_trans)
8591                        btrfs_end_transaction(trans, root);
8592        }
8593        return ret;
8594}
8595
8596int btrfs_prealloc_file_range(struct inode *inode, int mode,
8597                              u64 start, u64 num_bytes, u64 min_size,
8598                              loff_t actual_len, u64 *alloc_hint)
8599{
8600        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8601                                           min_size, actual_len, alloc_hint,
8602                                           NULL);
8603}
8604
8605int btrfs_prealloc_file_range_trans(struct inode *inode,
8606                                    struct btrfs_trans_handle *trans, int mode,
8607                                    u64 start, u64 num_bytes, u64 min_size,
8608                                    loff_t actual_len, u64 *alloc_hint)
8609{
8610        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8611                                           min_size, actual_len, alloc_hint, trans);
8612}
8613
8614static int btrfs_set_page_dirty(struct page *page)
8615{
8616        return __set_page_dirty_nobuffers(page);
8617}
8618
8619static int btrfs_permission(struct inode *inode, int mask)
8620{
8621        struct btrfs_root *root = BTRFS_I(inode)->root;
8622        umode_t mode = inode->i_mode;
8623
8624        if (mask & MAY_WRITE &&
8625            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8626                if (btrfs_root_readonly(root))
8627                        return -EROFS;
8628                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8629                        return -EACCES;
8630        }
8631        return generic_permission(inode, mask);
8632}
8633
8634static const struct inode_operations btrfs_dir_inode_operations = {
8635        .getattr        = btrfs_getattr,
8636        .lookup         = btrfs_lookup,
8637        .create         = btrfs_create,
8638        .unlink         = btrfs_unlink,
8639        .link           = btrfs_link,
8640        .mkdir          = btrfs_mkdir,
8641        .rmdir          = btrfs_rmdir,
8642        .rename         = btrfs_rename,
8643        .symlink        = btrfs_symlink,
8644        .setattr        = btrfs_setattr,
8645        .mknod          = btrfs_mknod,
8646        .setxattr       = btrfs_setxattr,
8647        .getxattr       = btrfs_getxattr,
8648        .listxattr      = btrfs_listxattr,
8649        .removexattr    = btrfs_removexattr,
8650        .permission     = btrfs_permission,
8651        .get_acl        = btrfs_get_acl,
8652        .update_time    = btrfs_update_time,
8653};
8654static const struct inode_operations btrfs_dir_ro_inode_operations = {
8655        .lookup         = btrfs_lookup,
8656        .permission     = btrfs_permission,
8657        .get_acl        = btrfs_get_acl,
8658        .update_time    = btrfs_update_time,
8659};
8660
8661static const struct file_operations btrfs_dir_file_operations = {
8662        .llseek         = generic_file_llseek,
8663        .read           = generic_read_dir,
8664        .iterate        = btrfs_real_readdir,
8665        .unlocked_ioctl = btrfs_ioctl,
8666#ifdef CONFIG_COMPAT
8667        .compat_ioctl   = btrfs_ioctl,
8668#endif
8669        .release        = btrfs_release_file,
8670        .fsync          = btrfs_sync_file,
8671};
8672
8673static struct extent_io_ops btrfs_extent_io_ops = {
8674        .fill_delalloc = run_delalloc_range,
8675        .submit_bio_hook = btrfs_submit_bio_hook,
8676        .merge_bio_hook = btrfs_merge_bio_hook,
8677        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8678        .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8679        .writepage_start_hook = btrfs_writepage_start_hook,
8680        .set_bit_hook = btrfs_set_bit_hook,
8681        .clear_bit_hook = btrfs_clear_bit_hook,
8682        .merge_extent_hook = btrfs_merge_extent_hook,
8683        .split_extent_hook = btrfs_split_extent_hook,
8684};
8685
8686/*
8687 * btrfs doesn't support the bmap operation because swapfiles
8688 * use bmap to make a mapping of extents in the file.  They assume
8689 * these extents won't change over the life of the file and they
8690 * use the bmap result to do IO directly to the drive.
8691 *
8692 * the btrfs bmap call would return logical addresses that aren't
8693 * suitable for IO and they also will change frequently as COW
8694 * operations happen.  So, swapfile + btrfs == corruption.
8695 *
8696 * For now we're avoiding this by dropping bmap.
8697 */
8698static const struct address_space_operations btrfs_aops = {
8699        .readpage       = btrfs_readpage,
8700        .writepage      = btrfs_writepage,
8701        .writepages     = btrfs_writepages,
8702        .readpages      = btrfs_readpages,
8703        .direct_IO      = btrfs_direct_IO,
8704        .invalidatepage = btrfs_invalidatepage,
8705        .releasepage    = btrfs_releasepage,
8706        .set_page_dirty = btrfs_set_page_dirty,
8707        .error_remove_page = generic_error_remove_page,
8708};
8709
8710static const struct address_space_operations btrfs_symlink_aops = {
8711        .readpage       = btrfs_readpage,
8712        .writepage      = btrfs_writepage,
8713        .invalidatepage = btrfs_invalidatepage,
8714        .releasepage    = btrfs_releasepage,
8715};
8716
8717static const struct inode_operations btrfs_file_inode_operations = {
8718        .getattr        = btrfs_getattr,
8719        .setattr        = btrfs_setattr,
8720        .setxattr       = btrfs_setxattr,
8721        .getxattr       = btrfs_getxattr,
8722        .listxattr      = btrfs_listxattr,
8723        .removexattr    = btrfs_removexattr,
8724        .permission     = btrfs_permission,
8725        .fiemap         = btrfs_fiemap,
8726        .get_acl        = btrfs_get_acl,
8727        .update_time    = btrfs_update_time,
8728};
8729static const struct inode_operations btrfs_special_inode_operations = {
8730        .getattr        = btrfs_getattr,
8731        .setattr        = btrfs_setattr,
8732        .permission     = btrfs_permission,
8733        .setxattr       = btrfs_setxattr,
8734        .getxattr       = btrfs_getxattr,
8735        .listxattr      = btrfs_listxattr,
8736        .removexattr    = btrfs_removexattr,
8737        .get_acl        = btrfs_get_acl,
8738        .update_time    = btrfs_update_time,
8739};
8740static const struct inode_operations btrfs_symlink_inode_operations = {
8741        .readlink       = generic_readlink,
8742        .follow_link    = page_follow_link_light,
8743        .put_link       = page_put_link,
8744        .getattr        = btrfs_getattr,
8745        .setattr        = btrfs_setattr,
8746        .permission     = btrfs_permission,
8747        .setxattr       = btrfs_setxattr,
8748        .getxattr       = btrfs_getxattr,
8749        .listxattr      = btrfs_listxattr,
8750        .removexattr    = btrfs_removexattr,
8751        .get_acl        = btrfs_get_acl,
8752        .update_time    = btrfs_update_time,
8753};
8754
8755const struct dentry_operations btrfs_dentry_operations = {
8756        .d_delete       = btrfs_dentry_delete,
8757        .d_release      = btrfs_dentry_release,
8758};
8759