linux/fs/namei.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namei.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * Some corrections by tytso.
   9 */
  10
  11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  12 * lookup logic.
  13 */
  14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/slab.h>
  21#include <linux/fs.h>
  22#include <linux/namei.h>
  23#include <linux/pagemap.h>
  24#include <linux/fsnotify.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/ima.h>
  28#include <linux/syscalls.h>
  29#include <linux/mount.h>
  30#include <linux/audit.h>
  31#include <linux/capability.h>
  32#include <linux/file.h>
  33#include <linux/fcntl.h>
  34#include <linux/device_cgroup.h>
  35#include <linux/fs_struct.h>
  36#include <linux/posix_acl.h>
  37#include <asm/uaccess.h>
  38
  39#include "internal.h"
  40#include "mount.h"
  41
  42/* [Feb-1997 T. Schoebel-Theuer]
  43 * Fundamental changes in the pathname lookup mechanisms (namei)
  44 * were necessary because of omirr.  The reason is that omirr needs
  45 * to know the _real_ pathname, not the user-supplied one, in case
  46 * of symlinks (and also when transname replacements occur).
  47 *
  48 * The new code replaces the old recursive symlink resolution with
  49 * an iterative one (in case of non-nested symlink chains).  It does
  50 * this with calls to <fs>_follow_link().
  51 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  52 * replaced with a single function lookup_dentry() that can handle all 
  53 * the special cases of the former code.
  54 *
  55 * With the new dcache, the pathname is stored at each inode, at least as
  56 * long as the refcount of the inode is positive.  As a side effect, the
  57 * size of the dcache depends on the inode cache and thus is dynamic.
  58 *
  59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  60 * resolution to correspond with current state of the code.
  61 *
  62 * Note that the symlink resolution is not *completely* iterative.
  63 * There is still a significant amount of tail- and mid- recursion in
  64 * the algorithm.  Also, note that <fs>_readlink() is not used in
  65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  66 * may return different results than <fs>_follow_link().  Many virtual
  67 * filesystems (including /proc) exhibit this behavior.
  68 */
  69
  70/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  72 * and the name already exists in form of a symlink, try to create the new
  73 * name indicated by the symlink. The old code always complained that the
  74 * name already exists, due to not following the symlink even if its target
  75 * is nonexistent.  The new semantics affects also mknod() and link() when
  76 * the name is a symlink pointing to a non-existent name.
  77 *
  78 * I don't know which semantics is the right one, since I have no access
  79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  81 * "old" one. Personally, I think the new semantics is much more logical.
  82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  83 * file does succeed in both HP-UX and SunOs, but not in Solaris
  84 * and in the old Linux semantics.
  85 */
  86
  87/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  88 * semantics.  See the comments in "open_namei" and "do_link" below.
  89 *
  90 * [10-Sep-98 Alan Modra] Another symlink change.
  91 */
  92
  93/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  94 *      inside the path - always follow.
  95 *      in the last component in creation/removal/renaming - never follow.
  96 *      if LOOKUP_FOLLOW passed - follow.
  97 *      if the pathname has trailing slashes - follow.
  98 *      otherwise - don't follow.
  99 * (applied in that order).
 100 *
 101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 103 * During the 2.4 we need to fix the userland stuff depending on it -
 104 * hopefully we will be able to get rid of that wart in 2.5. So far only
 105 * XEmacs seems to be relying on it...
 106 */
 107/*
 108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 109 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 110 * any extra contention...
 111 */
 112
 113/* In order to reduce some races, while at the same time doing additional
 114 * checking and hopefully speeding things up, we copy filenames to the
 115 * kernel data space before using them..
 116 *
 117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 118 * PATH_MAX includes the nul terminator --RR.
 119 */
 120void final_putname(struct filename *name)
 121{
 122        if (name->separate) {
 123                __putname(name->name);
 124                kfree(name);
 125        } else {
 126                __putname(name);
 127        }
 128}
 129
 130#define EMBEDDED_NAME_MAX       (PATH_MAX - sizeof(struct filename))
 131
 132static struct filename *
 133getname_flags(const char __user *filename, int flags, int *empty)
 134{
 135        struct filename *result, *err;
 136        int len;
 137        long max;
 138        char *kname;
 139
 140        result = audit_reusename(filename);
 141        if (result)
 142                return result;
 143
 144        result = __getname();
 145        if (unlikely(!result))
 146                return ERR_PTR(-ENOMEM);
 147
 148        /*
 149         * First, try to embed the struct filename inside the names_cache
 150         * allocation
 151         */
 152        kname = (char *)result + sizeof(*result);
 153        result->name = kname;
 154        result->separate = false;
 155        max = EMBEDDED_NAME_MAX;
 156
 157recopy:
 158        len = strncpy_from_user(kname, filename, max);
 159        if (unlikely(len < 0)) {
 160                err = ERR_PTR(len);
 161                goto error;
 162        }
 163
 164        /*
 165         * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 166         * separate struct filename so we can dedicate the entire
 167         * names_cache allocation for the pathname, and re-do the copy from
 168         * userland.
 169         */
 170        if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
 171                kname = (char *)result;
 172
 173                result = kzalloc(sizeof(*result), GFP_KERNEL);
 174                if (!result) {
 175                        err = ERR_PTR(-ENOMEM);
 176                        result = (struct filename *)kname;
 177                        goto error;
 178                }
 179                result->name = kname;
 180                result->separate = true;
 181                max = PATH_MAX;
 182                goto recopy;
 183        }
 184
 185        /* The empty path is special. */
 186        if (unlikely(!len)) {
 187                if (empty)
 188                        *empty = 1;
 189                err = ERR_PTR(-ENOENT);
 190                if (!(flags & LOOKUP_EMPTY))
 191                        goto error;
 192        }
 193
 194        err = ERR_PTR(-ENAMETOOLONG);
 195        if (unlikely(len >= PATH_MAX))
 196                goto error;
 197
 198        result->uptr = filename;
 199        audit_getname(result);
 200        return result;
 201
 202error:
 203        final_putname(result);
 204        return err;
 205}
 206
 207struct filename *
 208getname(const char __user * filename)
 209{
 210        return getname_flags(filename, 0, NULL);
 211}
 212EXPORT_SYMBOL(getname);
 213
 214#ifdef CONFIG_AUDITSYSCALL
 215void putname(struct filename *name)
 216{
 217        if (unlikely(!audit_dummy_context()))
 218                return audit_putname(name);
 219        final_putname(name);
 220}
 221#endif
 222
 223static int check_acl(struct inode *inode, int mask)
 224{
 225#ifdef CONFIG_FS_POSIX_ACL
 226        struct posix_acl *acl;
 227
 228        if (mask & MAY_NOT_BLOCK) {
 229                acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 230                if (!acl)
 231                        return -EAGAIN;
 232                /* no ->get_acl() calls in RCU mode... */
 233                if (acl == ACL_NOT_CACHED)
 234                        return -ECHILD;
 235                return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 236        }
 237
 238        acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
 239
 240        /*
 241         * A filesystem can force a ACL callback by just never filling the
 242         * ACL cache. But normally you'd fill the cache either at inode
 243         * instantiation time, or on the first ->get_acl call.
 244         *
 245         * If the filesystem doesn't have a get_acl() function at all, we'll
 246         * just create the negative cache entry.
 247         */
 248        if (acl == ACL_NOT_CACHED) {
 249                if (inode->i_op->get_acl) {
 250                        acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
 251                        if (IS_ERR(acl))
 252                                return PTR_ERR(acl);
 253                } else {
 254                        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
 255                        return -EAGAIN;
 256                }
 257        }
 258
 259        if (acl) {
 260                int error = posix_acl_permission(inode, acl, mask);
 261                posix_acl_release(acl);
 262                return error;
 263        }
 264#endif
 265
 266        return -EAGAIN;
 267}
 268
 269/*
 270 * This does the basic permission checking
 271 */
 272static int acl_permission_check(struct inode *inode, int mask)
 273{
 274        unsigned int mode = inode->i_mode;
 275
 276        if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 277                mode >>= 6;
 278        else {
 279                if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 280                        int error = check_acl(inode, mask);
 281                        if (error != -EAGAIN)
 282                                return error;
 283                }
 284
 285                if (in_group_p(inode->i_gid))
 286                        mode >>= 3;
 287        }
 288
 289        /*
 290         * If the DACs are ok we don't need any capability check.
 291         */
 292        if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 293                return 0;
 294        return -EACCES;
 295}
 296
 297/**
 298 * generic_permission -  check for access rights on a Posix-like filesystem
 299 * @inode:      inode to check access rights for
 300 * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 301 *
 302 * Used to check for read/write/execute permissions on a file.
 303 * We use "fsuid" for this, letting us set arbitrary permissions
 304 * for filesystem access without changing the "normal" uids which
 305 * are used for other things.
 306 *
 307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 308 * request cannot be satisfied (eg. requires blocking or too much complexity).
 309 * It would then be called again in ref-walk mode.
 310 */
 311int generic_permission(struct inode *inode, int mask)
 312{
 313        int ret;
 314
 315        /*
 316         * Do the basic permission checks.
 317         */
 318        ret = acl_permission_check(inode, mask);
 319        if (ret != -EACCES)
 320                return ret;
 321
 322        if (S_ISDIR(inode->i_mode)) {
 323                /* DACs are overridable for directories */
 324                if (inode_capable(inode, CAP_DAC_OVERRIDE))
 325                        return 0;
 326                if (!(mask & MAY_WRITE))
 327                        if (inode_capable(inode, CAP_DAC_READ_SEARCH))
 328                                return 0;
 329                return -EACCES;
 330        }
 331        /*
 332         * Read/write DACs are always overridable.
 333         * Executable DACs are overridable when there is
 334         * at least one exec bit set.
 335         */
 336        if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 337                if (inode_capable(inode, CAP_DAC_OVERRIDE))
 338                        return 0;
 339
 340        /*
 341         * Searching includes executable on directories, else just read.
 342         */
 343        mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 344        if (mask == MAY_READ)
 345                if (inode_capable(inode, CAP_DAC_READ_SEARCH))
 346                        return 0;
 347
 348        return -EACCES;
 349}
 350
 351/*
 352 * We _really_ want to just do "generic_permission()" without
 353 * even looking at the inode->i_op values. So we keep a cache
 354 * flag in inode->i_opflags, that says "this has not special
 355 * permission function, use the fast case".
 356 */
 357static inline int do_inode_permission(struct inode *inode, int mask)
 358{
 359        if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 360                if (likely(inode->i_op->permission))
 361                        return inode->i_op->permission(inode, mask);
 362
 363                /* This gets set once for the inode lifetime */
 364                spin_lock(&inode->i_lock);
 365                inode->i_opflags |= IOP_FASTPERM;
 366                spin_unlock(&inode->i_lock);
 367        }
 368        return generic_permission(inode, mask);
 369}
 370
 371/**
 372 * __inode_permission - Check for access rights to a given inode
 373 * @inode: Inode to check permission on
 374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 375 *
 376 * Check for read/write/execute permissions on an inode.
 377 *
 378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 379 *
 380 * This does not check for a read-only file system.  You probably want
 381 * inode_permission().
 382 */
 383int __inode_permission(struct inode *inode, int mask)
 384{
 385        int retval;
 386
 387        if (unlikely(mask & MAY_WRITE)) {
 388                /*
 389                 * Nobody gets write access to an immutable file.
 390                 */
 391                if (IS_IMMUTABLE(inode))
 392                        return -EACCES;
 393        }
 394
 395        retval = do_inode_permission(inode, mask);
 396        if (retval)
 397                return retval;
 398
 399        retval = devcgroup_inode_permission(inode, mask);
 400        if (retval)
 401                return retval;
 402
 403        return security_inode_permission(inode, mask);
 404}
 405
 406/**
 407 * sb_permission - Check superblock-level permissions
 408 * @sb: Superblock of inode to check permission on
 409 * @inode: Inode to check permission on
 410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 411 *
 412 * Separate out file-system wide checks from inode-specific permission checks.
 413 */
 414static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 415{
 416        if (unlikely(mask & MAY_WRITE)) {
 417                umode_t mode = inode->i_mode;
 418
 419                /* Nobody gets write access to a read-only fs. */
 420                if ((sb->s_flags & MS_RDONLY) &&
 421                    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 422                        return -EROFS;
 423        }
 424        return 0;
 425}
 426
 427/**
 428 * inode_permission - Check for access rights to a given inode
 429 * @inode: Inode to check permission on
 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 431 *
 432 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 433 * this, letting us set arbitrary permissions for filesystem access without
 434 * changing the "normal" UIDs which are used for other things.
 435 *
 436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 437 */
 438int inode_permission(struct inode *inode, int mask)
 439{
 440        int retval;
 441
 442        retval = sb_permission(inode->i_sb, inode, mask);
 443        if (retval)
 444                return retval;
 445        return __inode_permission(inode, mask);
 446}
 447
 448/**
 449 * path_get - get a reference to a path
 450 * @path: path to get the reference to
 451 *
 452 * Given a path increment the reference count to the dentry and the vfsmount.
 453 */
 454void path_get(const struct path *path)
 455{
 456        mntget(path->mnt);
 457        dget(path->dentry);
 458}
 459EXPORT_SYMBOL(path_get);
 460
 461/**
 462 * path_put - put a reference to a path
 463 * @path: path to put the reference to
 464 *
 465 * Given a path decrement the reference count to the dentry and the vfsmount.
 466 */
 467void path_put(const struct path *path)
 468{
 469        dput(path->dentry);
 470        mntput(path->mnt);
 471}
 472EXPORT_SYMBOL(path_put);
 473
 474/*
 475 * Path walking has 2 modes, rcu-walk and ref-walk (see
 476 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
 479 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 480 * got stuck, so ref-walk may continue from there. If this is not successful
 481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 482 * to restart the path walk from the beginning in ref-walk mode.
 483 */
 484
 485/**
 486 * unlazy_walk - try to switch to ref-walk mode.
 487 * @nd: nameidata pathwalk data
 488 * @dentry: child of nd->path.dentry or NULL
 489 * Returns: 0 on success, -ECHILD on failure
 490 *
 491 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
 492 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 493 * @nd or NULL.  Must be called from rcu-walk context.
 494 */
 495static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
 496{
 497        struct fs_struct *fs = current->fs;
 498        struct dentry *parent = nd->path.dentry;
 499
 500        BUG_ON(!(nd->flags & LOOKUP_RCU));
 501
 502        /*
 503         * After legitimizing the bastards, terminate_walk()
 504         * will do the right thing for non-RCU mode, and all our
 505         * subsequent exit cases should rcu_read_unlock()
 506         * before returning.  Do vfsmount first; if dentry
 507         * can't be legitimized, just set nd->path.dentry to NULL
 508         * and rely on dput(NULL) being a no-op.
 509         */
 510        if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
 511                return -ECHILD;
 512        nd->flags &= ~LOOKUP_RCU;
 513
 514        if (!lockref_get_not_dead(&parent->d_lockref)) {
 515                nd->path.dentry = NULL; 
 516                goto out;
 517        }
 518
 519        /*
 520         * For a negative lookup, the lookup sequence point is the parents
 521         * sequence point, and it only needs to revalidate the parent dentry.
 522         *
 523         * For a positive lookup, we need to move both the parent and the
 524         * dentry from the RCU domain to be properly refcounted. And the
 525         * sequence number in the dentry validates *both* dentry counters,
 526         * since we checked the sequence number of the parent after we got
 527         * the child sequence number. So we know the parent must still
 528         * be valid if the child sequence number is still valid.
 529         */
 530        if (!dentry) {
 531                if (read_seqcount_retry(&parent->d_seq, nd->seq))
 532                        goto out;
 533                BUG_ON(nd->inode != parent->d_inode);
 534        } else {
 535                if (!lockref_get_not_dead(&dentry->d_lockref))
 536                        goto out;
 537                if (read_seqcount_retry(&dentry->d_seq, nd->seq))
 538                        goto drop_dentry;
 539        }
 540
 541        /*
 542         * Sequence counts matched. Now make sure that the root is
 543         * still valid and get it if required.
 544         */
 545        if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 546                spin_lock(&fs->lock);
 547                if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
 548                        goto unlock_and_drop_dentry;
 549                path_get(&nd->root);
 550                spin_unlock(&fs->lock);
 551        }
 552
 553        rcu_read_unlock();
 554        return 0;
 555
 556unlock_and_drop_dentry:
 557        spin_unlock(&fs->lock);
 558drop_dentry:
 559        rcu_read_unlock();
 560        dput(dentry);
 561        goto drop_root_mnt;
 562out:
 563        rcu_read_unlock();
 564drop_root_mnt:
 565        if (!(nd->flags & LOOKUP_ROOT))
 566                nd->root.mnt = NULL;
 567        return -ECHILD;
 568}
 569
 570static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 571{
 572        return dentry->d_op->d_revalidate(dentry, flags);
 573}
 574
 575/**
 576 * complete_walk - successful completion of path walk
 577 * @nd:  pointer nameidata
 578 *
 579 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 580 * Revalidate the final result, unless we'd already done that during
 581 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 582 * success, -error on failure.  In case of failure caller does not
 583 * need to drop nd->path.
 584 */
 585static int complete_walk(struct nameidata *nd)
 586{
 587        struct dentry *dentry = nd->path.dentry;
 588        int status;
 589
 590        if (nd->flags & LOOKUP_RCU) {
 591                nd->flags &= ~LOOKUP_RCU;
 592                if (!(nd->flags & LOOKUP_ROOT))
 593                        nd->root.mnt = NULL;
 594
 595                if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
 596                        rcu_read_unlock();
 597                        return -ECHILD;
 598                }
 599                if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
 600                        rcu_read_unlock();
 601                        mntput(nd->path.mnt);
 602                        return -ECHILD;
 603                }
 604                if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
 605                        rcu_read_unlock();
 606                        dput(dentry);
 607                        mntput(nd->path.mnt);
 608                        return -ECHILD;
 609                }
 610                rcu_read_unlock();
 611        }
 612
 613        if (likely(!(nd->flags & LOOKUP_JUMPED)))
 614                return 0;
 615
 616        if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 617                return 0;
 618
 619        status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 620        if (status > 0)
 621                return 0;
 622
 623        if (!status)
 624                status = -ESTALE;
 625
 626        path_put(&nd->path);
 627        return status;
 628}
 629
 630static __always_inline void set_root(struct nameidata *nd)
 631{
 632        if (!nd->root.mnt)
 633                get_fs_root(current->fs, &nd->root);
 634}
 635
 636static int link_path_walk(const char *, struct nameidata *);
 637
 638static __always_inline void set_root_rcu(struct nameidata *nd)
 639{
 640        if (!nd->root.mnt) {
 641                struct fs_struct *fs = current->fs;
 642                unsigned seq;
 643
 644                do {
 645                        seq = read_seqcount_begin(&fs->seq);
 646                        nd->root = fs->root;
 647                        nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 648                } while (read_seqcount_retry(&fs->seq, seq));
 649        }
 650}
 651
 652static void path_put_conditional(struct path *path, struct nameidata *nd)
 653{
 654        dput(path->dentry);
 655        if (path->mnt != nd->path.mnt)
 656                mntput(path->mnt);
 657}
 658
 659static inline void path_to_nameidata(const struct path *path,
 660                                        struct nameidata *nd)
 661{
 662        if (!(nd->flags & LOOKUP_RCU)) {
 663                dput(nd->path.dentry);
 664                if (nd->path.mnt != path->mnt)
 665                        mntput(nd->path.mnt);
 666        }
 667        nd->path.mnt = path->mnt;
 668        nd->path.dentry = path->dentry;
 669}
 670
 671/*
 672 * Helper to directly jump to a known parsed path from ->follow_link,
 673 * caller must have taken a reference to path beforehand.
 674 */
 675void nd_jump_link(struct nameidata *nd, struct path *path)
 676{
 677        path_put(&nd->path);
 678
 679        nd->path = *path;
 680        nd->inode = nd->path.dentry->d_inode;
 681        nd->flags |= LOOKUP_JUMPED;
 682}
 683
 684static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
 685{
 686        struct inode *inode = link->dentry->d_inode;
 687        if (inode->i_op->put_link)
 688                inode->i_op->put_link(link->dentry, nd, cookie);
 689        path_put(link);
 690}
 691
 692int sysctl_protected_symlinks __read_mostly = 0;
 693int sysctl_protected_hardlinks __read_mostly = 0;
 694
 695/**
 696 * may_follow_link - Check symlink following for unsafe situations
 697 * @link: The path of the symlink
 698 * @nd: nameidata pathwalk data
 699 *
 700 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 701 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 702 * in a sticky world-writable directory. This is to protect privileged
 703 * processes from failing races against path names that may change out
 704 * from under them by way of other users creating malicious symlinks.
 705 * It will permit symlinks to be followed only when outside a sticky
 706 * world-writable directory, or when the uid of the symlink and follower
 707 * match, or when the directory owner matches the symlink's owner.
 708 *
 709 * Returns 0 if following the symlink is allowed, -ve on error.
 710 */
 711static inline int may_follow_link(struct path *link, struct nameidata *nd)
 712{
 713        const struct inode *inode;
 714        const struct inode *parent;
 715
 716        if (!sysctl_protected_symlinks)
 717                return 0;
 718
 719        /* Allowed if owner and follower match. */
 720        inode = link->dentry->d_inode;
 721        if (uid_eq(current_cred()->fsuid, inode->i_uid))
 722                return 0;
 723
 724        /* Allowed if parent directory not sticky and world-writable. */
 725        parent = nd->path.dentry->d_inode;
 726        if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 727                return 0;
 728
 729        /* Allowed if parent directory and link owner match. */
 730        if (uid_eq(parent->i_uid, inode->i_uid))
 731                return 0;
 732
 733        audit_log_link_denied("follow_link", link);
 734        path_put_conditional(link, nd);
 735        path_put(&nd->path);
 736        return -EACCES;
 737}
 738
 739/**
 740 * safe_hardlink_source - Check for safe hardlink conditions
 741 * @inode: the source inode to hardlink from
 742 *
 743 * Return false if at least one of the following conditions:
 744 *    - inode is not a regular file
 745 *    - inode is setuid
 746 *    - inode is setgid and group-exec
 747 *    - access failure for read and write
 748 *
 749 * Otherwise returns true.
 750 */
 751static bool safe_hardlink_source(struct inode *inode)
 752{
 753        umode_t mode = inode->i_mode;
 754
 755        /* Special files should not get pinned to the filesystem. */
 756        if (!S_ISREG(mode))
 757                return false;
 758
 759        /* Setuid files should not get pinned to the filesystem. */
 760        if (mode & S_ISUID)
 761                return false;
 762
 763        /* Executable setgid files should not get pinned to the filesystem. */
 764        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 765                return false;
 766
 767        /* Hardlinking to unreadable or unwritable sources is dangerous. */
 768        if (inode_permission(inode, MAY_READ | MAY_WRITE))
 769                return false;
 770
 771        return true;
 772}
 773
 774/**
 775 * may_linkat - Check permissions for creating a hardlink
 776 * @link: the source to hardlink from
 777 *
 778 * Block hardlink when all of:
 779 *  - sysctl_protected_hardlinks enabled
 780 *  - fsuid does not match inode
 781 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 782 *  - not CAP_FOWNER
 783 *
 784 * Returns 0 if successful, -ve on error.
 785 */
 786static int may_linkat(struct path *link)
 787{
 788        const struct cred *cred;
 789        struct inode *inode;
 790
 791        if (!sysctl_protected_hardlinks)
 792                return 0;
 793
 794        cred = current_cred();
 795        inode = link->dentry->d_inode;
 796
 797        /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 798         * otherwise, it must be a safe source.
 799         */
 800        if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
 801            capable(CAP_FOWNER))
 802                return 0;
 803
 804        audit_log_link_denied("linkat", link);
 805        return -EPERM;
 806}
 807
 808static __always_inline int
 809follow_link(struct path *link, struct nameidata *nd, void **p)
 810{
 811        struct dentry *dentry = link->dentry;
 812        int error;
 813        char *s;
 814
 815        BUG_ON(nd->flags & LOOKUP_RCU);
 816
 817        if (link->mnt == nd->path.mnt)
 818                mntget(link->mnt);
 819
 820        error = -ELOOP;
 821        if (unlikely(current->total_link_count >= 40))
 822                goto out_put_nd_path;
 823
 824        cond_resched();
 825        current->total_link_count++;
 826
 827        touch_atime(link);
 828        nd_set_link(nd, NULL);
 829
 830        error = security_inode_follow_link(link->dentry, nd);
 831        if (error)
 832                goto out_put_nd_path;
 833
 834        nd->last_type = LAST_BIND;
 835        *p = dentry->d_inode->i_op->follow_link(dentry, nd);
 836        error = PTR_ERR(*p);
 837        if (IS_ERR(*p))
 838                goto out_put_nd_path;
 839
 840        error = 0;
 841        s = nd_get_link(nd);
 842        if (s) {
 843                if (unlikely(IS_ERR(s))) {
 844                        path_put(&nd->path);
 845                        put_link(nd, link, *p);
 846                        return PTR_ERR(s);
 847                }
 848                if (*s == '/') {
 849                        set_root(nd);
 850                        path_put(&nd->path);
 851                        nd->path = nd->root;
 852                        path_get(&nd->root);
 853                        nd->flags |= LOOKUP_JUMPED;
 854                }
 855                nd->inode = nd->path.dentry->d_inode;
 856                error = link_path_walk(s, nd);
 857                if (unlikely(error))
 858                        put_link(nd, link, *p);
 859        }
 860
 861        return error;
 862
 863out_put_nd_path:
 864        *p = NULL;
 865        path_put(&nd->path);
 866        path_put(link);
 867        return error;
 868}
 869
 870static int follow_up_rcu(struct path *path)
 871{
 872        struct mount *mnt = real_mount(path->mnt);
 873        struct mount *parent;
 874        struct dentry *mountpoint;
 875
 876        parent = mnt->mnt_parent;
 877        if (&parent->mnt == path->mnt)
 878                return 0;
 879        mountpoint = mnt->mnt_mountpoint;
 880        path->dentry = mountpoint;
 881        path->mnt = &parent->mnt;
 882        return 1;
 883}
 884
 885/*
 886 * follow_up - Find the mountpoint of path's vfsmount
 887 *
 888 * Given a path, find the mountpoint of its source file system.
 889 * Replace @path with the path of the mountpoint in the parent mount.
 890 * Up is towards /.
 891 *
 892 * Return 1 if we went up a level and 0 if we were already at the
 893 * root.
 894 */
 895int follow_up(struct path *path)
 896{
 897        struct mount *mnt = real_mount(path->mnt);
 898        struct mount *parent;
 899        struct dentry *mountpoint;
 900
 901        read_seqlock_excl(&mount_lock);
 902        parent = mnt->mnt_parent;
 903        if (parent == mnt) {
 904                read_sequnlock_excl(&mount_lock);
 905                return 0;
 906        }
 907        mntget(&parent->mnt);
 908        mountpoint = dget(mnt->mnt_mountpoint);
 909        read_sequnlock_excl(&mount_lock);
 910        dput(path->dentry);
 911        path->dentry = mountpoint;
 912        mntput(path->mnt);
 913        path->mnt = &parent->mnt;
 914        return 1;
 915}
 916
 917/*
 918 * Perform an automount
 919 * - return -EISDIR to tell follow_managed() to stop and return the path we
 920 *   were called with.
 921 */
 922static int follow_automount(struct path *path, unsigned flags,
 923                            bool *need_mntput)
 924{
 925        struct vfsmount *mnt;
 926        int err;
 927
 928        if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
 929                return -EREMOTE;
 930
 931        /* We don't want to mount if someone's just doing a stat -
 932         * unless they're stat'ing a directory and appended a '/' to
 933         * the name.
 934         *
 935         * We do, however, want to mount if someone wants to open or
 936         * create a file of any type under the mountpoint, wants to
 937         * traverse through the mountpoint or wants to open the
 938         * mounted directory.  Also, autofs may mark negative dentries
 939         * as being automount points.  These will need the attentions
 940         * of the daemon to instantiate them before they can be used.
 941         */
 942        if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
 943                     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
 944            path->dentry->d_inode)
 945                return -EISDIR;
 946
 947        current->total_link_count++;
 948        if (current->total_link_count >= 40)
 949                return -ELOOP;
 950
 951        mnt = path->dentry->d_op->d_automount(path);
 952        if (IS_ERR(mnt)) {
 953                /*
 954                 * The filesystem is allowed to return -EISDIR here to indicate
 955                 * it doesn't want to automount.  For instance, autofs would do
 956                 * this so that its userspace daemon can mount on this dentry.
 957                 *
 958                 * However, we can only permit this if it's a terminal point in
 959                 * the path being looked up; if it wasn't then the remainder of
 960                 * the path is inaccessible and we should say so.
 961                 */
 962                if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
 963                        return -EREMOTE;
 964                return PTR_ERR(mnt);
 965        }
 966
 967        if (!mnt) /* mount collision */
 968                return 0;
 969
 970        if (!*need_mntput) {
 971                /* lock_mount() may release path->mnt on error */
 972                mntget(path->mnt);
 973                *need_mntput = true;
 974        }
 975        err = finish_automount(mnt, path);
 976
 977        switch (err) {
 978        case -EBUSY:
 979                /* Someone else made a mount here whilst we were busy */
 980                return 0;
 981        case 0:
 982                path_put(path);
 983                path->mnt = mnt;
 984                path->dentry = dget(mnt->mnt_root);
 985                return 0;
 986        default:
 987                return err;
 988        }
 989
 990}
 991
 992/*
 993 * Handle a dentry that is managed in some way.
 994 * - Flagged for transit management (autofs)
 995 * - Flagged as mountpoint
 996 * - Flagged as automount point
 997 *
 998 * This may only be called in refwalk mode.
 999 *
1000 * Serialization is taken care of in namespace.c
1001 */
1002static int follow_managed(struct path *path, unsigned flags)
1003{
1004        struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1005        unsigned managed;
1006        bool need_mntput = false;
1007        int ret = 0;
1008
1009        /* Given that we're not holding a lock here, we retain the value in a
1010         * local variable for each dentry as we look at it so that we don't see
1011         * the components of that value change under us */
1012        while (managed = ACCESS_ONCE(path->dentry->d_flags),
1013               managed &= DCACHE_MANAGED_DENTRY,
1014               unlikely(managed != 0)) {
1015                /* Allow the filesystem to manage the transit without i_mutex
1016                 * being held. */
1017                if (managed & DCACHE_MANAGE_TRANSIT) {
1018                        BUG_ON(!path->dentry->d_op);
1019                        BUG_ON(!path->dentry->d_op->d_manage);
1020                        ret = path->dentry->d_op->d_manage(path->dentry, false);
1021                        if (ret < 0)
1022                                break;
1023                }
1024
1025                /* Transit to a mounted filesystem. */
1026                if (managed & DCACHE_MOUNTED) {
1027                        struct vfsmount *mounted = lookup_mnt(path);
1028                        if (mounted) {
1029                                dput(path->dentry);
1030                                if (need_mntput)
1031                                        mntput(path->mnt);
1032                                path->mnt = mounted;
1033                                path->dentry = dget(mounted->mnt_root);
1034                                need_mntput = true;
1035                                continue;
1036                        }
1037
1038                        /* Something is mounted on this dentry in another
1039                         * namespace and/or whatever was mounted there in this
1040                         * namespace got unmounted before lookup_mnt() could
1041                         * get it */
1042                }
1043
1044                /* Handle an automount point */
1045                if (managed & DCACHE_NEED_AUTOMOUNT) {
1046                        ret = follow_automount(path, flags, &need_mntput);
1047                        if (ret < 0)
1048                                break;
1049                        continue;
1050                }
1051
1052                /* We didn't change the current path point */
1053                break;
1054        }
1055
1056        if (need_mntput && path->mnt == mnt)
1057                mntput(path->mnt);
1058        if (ret == -EISDIR)
1059                ret = 0;
1060        return ret < 0 ? ret : need_mntput;
1061}
1062
1063int follow_down_one(struct path *path)
1064{
1065        struct vfsmount *mounted;
1066
1067        mounted = lookup_mnt(path);
1068        if (mounted) {
1069                dput(path->dentry);
1070                mntput(path->mnt);
1071                path->mnt = mounted;
1072                path->dentry = dget(mounted->mnt_root);
1073                return 1;
1074        }
1075        return 0;
1076}
1077
1078static inline bool managed_dentry_might_block(struct dentry *dentry)
1079{
1080        return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1081                dentry->d_op->d_manage(dentry, true) < 0);
1082}
1083
1084/*
1085 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1086 * we meet a managed dentry that would need blocking.
1087 */
1088static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1089                               struct inode **inode)
1090{
1091        for (;;) {
1092                struct mount *mounted;
1093                /*
1094                 * Don't forget we might have a non-mountpoint managed dentry
1095                 * that wants to block transit.
1096                 */
1097                if (unlikely(managed_dentry_might_block(path->dentry)))
1098                        return false;
1099
1100                if (!d_mountpoint(path->dentry))
1101                        break;
1102
1103                mounted = __lookup_mnt(path->mnt, path->dentry);
1104                if (!mounted)
1105                        break;
1106                path->mnt = &mounted->mnt;
1107                path->dentry = mounted->mnt.mnt_root;
1108                nd->flags |= LOOKUP_JUMPED;
1109                nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1110                /*
1111                 * Update the inode too. We don't need to re-check the
1112                 * dentry sequence number here after this d_inode read,
1113                 * because a mount-point is always pinned.
1114                 */
1115                *inode = path->dentry->d_inode;
1116        }
1117        return true;
1118}
1119
1120static void follow_mount_rcu(struct nameidata *nd)
1121{
1122        while (d_mountpoint(nd->path.dentry)) {
1123                struct mount *mounted;
1124                mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1125                if (!mounted)
1126                        break;
1127                nd->path.mnt = &mounted->mnt;
1128                nd->path.dentry = mounted->mnt.mnt_root;
1129                nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1130        }
1131}
1132
1133static int follow_dotdot_rcu(struct nameidata *nd)
1134{
1135        set_root_rcu(nd);
1136
1137        while (1) {
1138                if (nd->path.dentry == nd->root.dentry &&
1139                    nd->path.mnt == nd->root.mnt) {
1140                        break;
1141                }
1142                if (nd->path.dentry != nd->path.mnt->mnt_root) {
1143                        struct dentry *old = nd->path.dentry;
1144                        struct dentry *parent = old->d_parent;
1145                        unsigned seq;
1146
1147                        seq = read_seqcount_begin(&parent->d_seq);
1148                        if (read_seqcount_retry(&old->d_seq, nd->seq))
1149                                goto failed;
1150                        nd->path.dentry = parent;
1151                        nd->seq = seq;
1152                        break;
1153                }
1154                if (!follow_up_rcu(&nd->path))
1155                        break;
1156                nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1157        }
1158        follow_mount_rcu(nd);
1159        nd->inode = nd->path.dentry->d_inode;
1160        return 0;
1161
1162failed:
1163        nd->flags &= ~LOOKUP_RCU;
1164        if (!(nd->flags & LOOKUP_ROOT))
1165                nd->root.mnt = NULL;
1166        rcu_read_unlock();
1167        return -ECHILD;
1168}
1169
1170/*
1171 * Follow down to the covering mount currently visible to userspace.  At each
1172 * point, the filesystem owning that dentry may be queried as to whether the
1173 * caller is permitted to proceed or not.
1174 */
1175int follow_down(struct path *path)
1176{
1177        unsigned managed;
1178        int ret;
1179
1180        while (managed = ACCESS_ONCE(path->dentry->d_flags),
1181               unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1182                /* Allow the filesystem to manage the transit without i_mutex
1183                 * being held.
1184                 *
1185                 * We indicate to the filesystem if someone is trying to mount
1186                 * something here.  This gives autofs the chance to deny anyone
1187                 * other than its daemon the right to mount on its
1188                 * superstructure.
1189                 *
1190                 * The filesystem may sleep at this point.
1191                 */
1192                if (managed & DCACHE_MANAGE_TRANSIT) {
1193                        BUG_ON(!path->dentry->d_op);
1194                        BUG_ON(!path->dentry->d_op->d_manage);
1195                        ret = path->dentry->d_op->d_manage(
1196                                path->dentry, false);
1197                        if (ret < 0)
1198                                return ret == -EISDIR ? 0 : ret;
1199                }
1200
1201                /* Transit to a mounted filesystem. */
1202                if (managed & DCACHE_MOUNTED) {
1203                        struct vfsmount *mounted = lookup_mnt(path);
1204                        if (!mounted)
1205                                break;
1206                        dput(path->dentry);
1207                        mntput(path->mnt);
1208                        path->mnt = mounted;
1209                        path->dentry = dget(mounted->mnt_root);
1210                        continue;
1211                }
1212
1213                /* Don't handle automount points here */
1214                break;
1215        }
1216        return 0;
1217}
1218
1219/*
1220 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1221 */
1222static void follow_mount(struct path *path)
1223{
1224        while (d_mountpoint(path->dentry)) {
1225                struct vfsmount *mounted = lookup_mnt(path);
1226                if (!mounted)
1227                        break;
1228                dput(path->dentry);
1229                mntput(path->mnt);
1230                path->mnt = mounted;
1231                path->dentry = dget(mounted->mnt_root);
1232        }
1233}
1234
1235static void follow_dotdot(struct nameidata *nd)
1236{
1237        set_root(nd);
1238
1239        while(1) {
1240                struct dentry *old = nd->path.dentry;
1241
1242                if (nd->path.dentry == nd->root.dentry &&
1243                    nd->path.mnt == nd->root.mnt) {
1244                        break;
1245                }
1246                if (nd->path.dentry != nd->path.mnt->mnt_root) {
1247                        /* rare case of legitimate dget_parent()... */
1248                        nd->path.dentry = dget_parent(nd->path.dentry);
1249                        dput(old);
1250                        break;
1251                }
1252                if (!follow_up(&nd->path))
1253                        break;
1254        }
1255        follow_mount(&nd->path);
1256        nd->inode = nd->path.dentry->d_inode;
1257}
1258
1259/*
1260 * This looks up the name in dcache, possibly revalidates the old dentry and
1261 * allocates a new one if not found or not valid.  In the need_lookup argument
1262 * returns whether i_op->lookup is necessary.
1263 *
1264 * dir->d_inode->i_mutex must be held
1265 */
1266static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1267                                    unsigned int flags, bool *need_lookup)
1268{
1269        struct dentry *dentry;
1270        int error;
1271
1272        *need_lookup = false;
1273        dentry = d_lookup(dir, name);
1274        if (dentry) {
1275                if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1276                        error = d_revalidate(dentry, flags);
1277                        if (unlikely(error <= 0)) {
1278                                if (error < 0) {
1279                                        dput(dentry);
1280                                        return ERR_PTR(error);
1281                                } else if (!d_invalidate(dentry)) {
1282                                        dput(dentry);
1283                                        dentry = NULL;
1284                                }
1285                        }
1286                }
1287        }
1288
1289        if (!dentry) {
1290                dentry = d_alloc(dir, name);
1291                if (unlikely(!dentry))
1292                        return ERR_PTR(-ENOMEM);
1293
1294                *need_lookup = true;
1295        }
1296        return dentry;
1297}
1298
1299/*
1300 * Call i_op->lookup on the dentry.  The dentry must be negative and
1301 * unhashed.
1302 *
1303 * dir->d_inode->i_mutex must be held
1304 */
1305static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1306                                  unsigned int flags)
1307{
1308        struct dentry *old;
1309
1310        /* Don't create child dentry for a dead directory. */
1311        if (unlikely(IS_DEADDIR(dir))) {
1312                dput(dentry);
1313                return ERR_PTR(-ENOENT);
1314        }
1315
1316        old = dir->i_op->lookup(dir, dentry, flags);
1317        if (unlikely(old)) {
1318                dput(dentry);
1319                dentry = old;
1320        }
1321        return dentry;
1322}
1323
1324static struct dentry *__lookup_hash(struct qstr *name,
1325                struct dentry *base, unsigned int flags)
1326{
1327        bool need_lookup;
1328        struct dentry *dentry;
1329
1330        dentry = lookup_dcache(name, base, flags, &need_lookup);
1331        if (!need_lookup)
1332                return dentry;
1333
1334        return lookup_real(base->d_inode, dentry, flags);
1335}
1336
1337/*
1338 *  It's more convoluted than I'd like it to be, but... it's still fairly
1339 *  small and for now I'd prefer to have fast path as straight as possible.
1340 *  It _is_ time-critical.
1341 */
1342static int lookup_fast(struct nameidata *nd,
1343                       struct path *path, struct inode **inode)
1344{
1345        struct vfsmount *mnt = nd->path.mnt;
1346        struct dentry *dentry, *parent = nd->path.dentry;
1347        int need_reval = 1;
1348        int status = 1;
1349        int err;
1350
1351        /*
1352         * Rename seqlock is not required here because in the off chance
1353         * of a false negative due to a concurrent rename, we're going to
1354         * do the non-racy lookup, below.
1355         */
1356        if (nd->flags & LOOKUP_RCU) {
1357                unsigned seq;
1358                dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1359                if (!dentry)
1360                        goto unlazy;
1361
1362                /*
1363                 * This sequence count validates that the inode matches
1364                 * the dentry name information from lookup.
1365                 */
1366                *inode = dentry->d_inode;
1367                if (read_seqcount_retry(&dentry->d_seq, seq))
1368                        return -ECHILD;
1369
1370                /*
1371                 * This sequence count validates that the parent had no
1372                 * changes while we did the lookup of the dentry above.
1373                 *
1374                 * The memory barrier in read_seqcount_begin of child is
1375                 *  enough, we can use __read_seqcount_retry here.
1376                 */
1377                if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1378                        return -ECHILD;
1379                nd->seq = seq;
1380
1381                if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1382                        status = d_revalidate(dentry, nd->flags);
1383                        if (unlikely(status <= 0)) {
1384                                if (status != -ECHILD)
1385                                        need_reval = 0;
1386                                goto unlazy;
1387                        }
1388                }
1389                path->mnt = mnt;
1390                path->dentry = dentry;
1391                if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1392                        goto unlazy;
1393                if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1394                        goto unlazy;
1395                return 0;
1396unlazy:
1397                if (unlazy_walk(nd, dentry))
1398                        return -ECHILD;
1399        } else {
1400                dentry = __d_lookup(parent, &nd->last);
1401        }
1402
1403        if (unlikely(!dentry))
1404                goto need_lookup;
1405
1406        if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1407                status = d_revalidate(dentry, nd->flags);
1408        if (unlikely(status <= 0)) {
1409                if (status < 0) {
1410                        dput(dentry);
1411                        return status;
1412                }
1413                if (!d_invalidate(dentry)) {
1414                        dput(dentry);
1415                        goto need_lookup;
1416                }
1417        }
1418
1419        path->mnt = mnt;
1420        path->dentry = dentry;
1421        err = follow_managed(path, nd->flags);
1422        if (unlikely(err < 0)) {
1423                path_put_conditional(path, nd);
1424                return err;
1425        }
1426        if (err)
1427                nd->flags |= LOOKUP_JUMPED;
1428        *inode = path->dentry->d_inode;
1429        return 0;
1430
1431need_lookup:
1432        return 1;
1433}
1434
1435/* Fast lookup failed, do it the slow way */
1436static int lookup_slow(struct nameidata *nd, struct path *path)
1437{
1438        struct dentry *dentry, *parent;
1439        int err;
1440
1441        parent = nd->path.dentry;
1442        BUG_ON(nd->inode != parent->d_inode);
1443
1444        mutex_lock(&parent->d_inode->i_mutex);
1445        dentry = __lookup_hash(&nd->last, parent, nd->flags);
1446        mutex_unlock(&parent->d_inode->i_mutex);
1447        if (IS_ERR(dentry))
1448                return PTR_ERR(dentry);
1449        path->mnt = nd->path.mnt;
1450        path->dentry = dentry;
1451        err = follow_managed(path, nd->flags);
1452        if (unlikely(err < 0)) {
1453                path_put_conditional(path, nd);
1454                return err;
1455        }
1456        if (err)
1457                nd->flags |= LOOKUP_JUMPED;
1458        return 0;
1459}
1460
1461static inline int may_lookup(struct nameidata *nd)
1462{
1463        if (nd->flags & LOOKUP_RCU) {
1464                int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1465                if (err != -ECHILD)
1466                        return err;
1467                if (unlazy_walk(nd, NULL))
1468                        return -ECHILD;
1469        }
1470        return inode_permission(nd->inode, MAY_EXEC);
1471}
1472
1473static inline int handle_dots(struct nameidata *nd, int type)
1474{
1475        if (type == LAST_DOTDOT) {
1476                if (nd->flags & LOOKUP_RCU) {
1477                        if (follow_dotdot_rcu(nd))
1478                                return -ECHILD;
1479                } else
1480                        follow_dotdot(nd);
1481        }
1482        return 0;
1483}
1484
1485static void terminate_walk(struct nameidata *nd)
1486{
1487        if (!(nd->flags & LOOKUP_RCU)) {
1488                path_put(&nd->path);
1489        } else {
1490                nd->flags &= ~LOOKUP_RCU;
1491                if (!(nd->flags & LOOKUP_ROOT))
1492                        nd->root.mnt = NULL;
1493                rcu_read_unlock();
1494        }
1495}
1496
1497/*
1498 * Do we need to follow links? We _really_ want to be able
1499 * to do this check without having to look at inode->i_op,
1500 * so we keep a cache of "no, this doesn't need follow_link"
1501 * for the common case.
1502 */
1503static inline int should_follow_link(struct dentry *dentry, int follow)
1504{
1505        return unlikely(d_is_symlink(dentry)) ? follow : 0;
1506}
1507
1508static inline int walk_component(struct nameidata *nd, struct path *path,
1509                int follow)
1510{
1511        struct inode *inode;
1512        int err;
1513        /*
1514         * "." and ".." are special - ".." especially so because it has
1515         * to be able to know about the current root directory and
1516         * parent relationships.
1517         */
1518        if (unlikely(nd->last_type != LAST_NORM))
1519                return handle_dots(nd, nd->last_type);
1520        err = lookup_fast(nd, path, &inode);
1521        if (unlikely(err)) {
1522                if (err < 0)
1523                        goto out_err;
1524
1525                err = lookup_slow(nd, path);
1526                if (err < 0)
1527                        goto out_err;
1528
1529                inode = path->dentry->d_inode;
1530        }
1531        err = -ENOENT;
1532        if (!inode)
1533                goto out_path_put;
1534
1535        if (should_follow_link(path->dentry, follow)) {
1536                if (nd->flags & LOOKUP_RCU) {
1537                        if (unlikely(unlazy_walk(nd, path->dentry))) {
1538                                err = -ECHILD;
1539                                goto out_err;
1540                        }
1541                }
1542                BUG_ON(inode != path->dentry->d_inode);
1543                return 1;
1544        }
1545        path_to_nameidata(path, nd);
1546        nd->inode = inode;
1547        return 0;
1548
1549out_path_put:
1550        path_to_nameidata(path, nd);
1551out_err:
1552        terminate_walk(nd);
1553        return err;
1554}
1555
1556/*
1557 * This limits recursive symlink follows to 8, while
1558 * limiting consecutive symlinks to 40.
1559 *
1560 * Without that kind of total limit, nasty chains of consecutive
1561 * symlinks can cause almost arbitrarily long lookups.
1562 */
1563static inline int nested_symlink(struct path *path, struct nameidata *nd)
1564{
1565        int res;
1566
1567        if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1568                path_put_conditional(path, nd);
1569                path_put(&nd->path);
1570                return -ELOOP;
1571        }
1572        BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1573
1574        nd->depth++;
1575        current->link_count++;
1576
1577        do {
1578                struct path link = *path;
1579                void *cookie;
1580
1581                res = follow_link(&link, nd, &cookie);
1582                if (res)
1583                        break;
1584                res = walk_component(nd, path, LOOKUP_FOLLOW);
1585                put_link(nd, &link, cookie);
1586        } while (res > 0);
1587
1588        current->link_count--;
1589        nd->depth--;
1590        return res;
1591}
1592
1593/*
1594 * We can do the critical dentry name comparison and hashing
1595 * operations one word at a time, but we are limited to:
1596 *
1597 * - Architectures with fast unaligned word accesses. We could
1598 *   do a "get_unaligned()" if this helps and is sufficiently
1599 *   fast.
1600 *
1601 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1602 *   do not trap on the (extremely unlikely) case of a page
1603 *   crossing operation.
1604 *
1605 * - Furthermore, we need an efficient 64-bit compile for the
1606 *   64-bit case in order to generate the "number of bytes in
1607 *   the final mask". Again, that could be replaced with a
1608 *   efficient population count instruction or similar.
1609 */
1610#ifdef CONFIG_DCACHE_WORD_ACCESS
1611
1612#include <asm/word-at-a-time.h>
1613
1614#ifdef CONFIG_64BIT
1615
1616static inline unsigned int fold_hash(unsigned long hash)
1617{
1618        hash += hash >> (8*sizeof(int));
1619        return hash;
1620}
1621
1622#else   /* 32-bit case */
1623
1624#define fold_hash(x) (x)
1625
1626#endif
1627
1628unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1629{
1630        unsigned long a, mask;
1631        unsigned long hash = 0;
1632
1633        for (;;) {
1634                a = load_unaligned_zeropad(name);
1635                if (len < sizeof(unsigned long))
1636                        break;
1637                hash += a;
1638                hash *= 9;
1639                name += sizeof(unsigned long);
1640                len -= sizeof(unsigned long);
1641                if (!len)
1642                        goto done;
1643        }
1644        mask = bytemask_from_count(len);
1645        hash += mask & a;
1646done:
1647        return fold_hash(hash);
1648}
1649EXPORT_SYMBOL(full_name_hash);
1650
1651/*
1652 * Calculate the length and hash of the path component, and
1653 * return the length of the component;
1654 */
1655static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1656{
1657        unsigned long a, b, adata, bdata, mask, hash, len;
1658        const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1659
1660        hash = a = 0;
1661        len = -sizeof(unsigned long);
1662        do {
1663                hash = (hash + a) * 9;
1664                len += sizeof(unsigned long);
1665                a = load_unaligned_zeropad(name+len);
1666                b = a ^ REPEAT_BYTE('/');
1667        } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1668
1669        adata = prep_zero_mask(a, adata, &constants);
1670        bdata = prep_zero_mask(b, bdata, &constants);
1671
1672        mask = create_zero_mask(adata | bdata);
1673
1674        hash += a & zero_bytemask(mask);
1675        *hashp = fold_hash(hash);
1676
1677        return len + find_zero(mask);
1678}
1679
1680#else
1681
1682unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1683{
1684        unsigned long hash = init_name_hash();
1685        while (len--)
1686                hash = partial_name_hash(*name++, hash);
1687        return end_name_hash(hash);
1688}
1689EXPORT_SYMBOL(full_name_hash);
1690
1691/*
1692 * We know there's a real path component here of at least
1693 * one character.
1694 */
1695static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1696{
1697        unsigned long hash = init_name_hash();
1698        unsigned long len = 0, c;
1699
1700        c = (unsigned char)*name;
1701        do {
1702                len++;
1703                hash = partial_name_hash(c, hash);
1704                c = (unsigned char)name[len];
1705        } while (c && c != '/');
1706        *hashp = end_name_hash(hash);
1707        return len;
1708}
1709
1710#endif
1711
1712/*
1713 * Name resolution.
1714 * This is the basic name resolution function, turning a pathname into
1715 * the final dentry. We expect 'base' to be positive and a directory.
1716 *
1717 * Returns 0 and nd will have valid dentry and mnt on success.
1718 * Returns error and drops reference to input namei data on failure.
1719 */
1720static int link_path_walk(const char *name, struct nameidata *nd)
1721{
1722        struct path next;
1723        int err;
1724        
1725        while (*name=='/')
1726                name++;
1727        if (!*name)
1728                return 0;
1729
1730        /* At this point we know we have a real path component. */
1731        for(;;) {
1732                struct qstr this;
1733                long len;
1734                int type;
1735
1736                err = may_lookup(nd);
1737                if (err)
1738                        break;
1739
1740                len = hash_name(name, &this.hash);
1741                this.name = name;
1742                this.len = len;
1743
1744                type = LAST_NORM;
1745                if (name[0] == '.') switch (len) {
1746                        case 2:
1747                                if (name[1] == '.') {
1748                                        type = LAST_DOTDOT;
1749                                        nd->flags |= LOOKUP_JUMPED;
1750                                }
1751                                break;
1752                        case 1:
1753                                type = LAST_DOT;
1754                }
1755                if (likely(type == LAST_NORM)) {
1756                        struct dentry *parent = nd->path.dentry;
1757                        nd->flags &= ~LOOKUP_JUMPED;
1758                        if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1759                                err = parent->d_op->d_hash(parent, &this);
1760                                if (err < 0)
1761                                        break;
1762                        }
1763                }
1764
1765                nd->last = this;
1766                nd->last_type = type;
1767
1768                if (!name[len])
1769                        return 0;
1770                /*
1771                 * If it wasn't NUL, we know it was '/'. Skip that
1772                 * slash, and continue until no more slashes.
1773                 */
1774                do {
1775                        len++;
1776                } while (unlikely(name[len] == '/'));
1777                if (!name[len])
1778                        return 0;
1779
1780                name += len;
1781
1782                err = walk_component(nd, &next, LOOKUP_FOLLOW);
1783                if (err < 0)
1784                        return err;
1785
1786                if (err) {
1787                        err = nested_symlink(&next, nd);
1788                        if (err)
1789                                return err;
1790                }
1791                if (!d_is_directory(nd->path.dentry)) {
1792                        err = -ENOTDIR; 
1793                        break;
1794                }
1795        }
1796        terminate_walk(nd);
1797        return err;
1798}
1799
1800static int path_init(int dfd, const char *name, unsigned int flags,
1801                     struct nameidata *nd, struct file **fp)
1802{
1803        int retval = 0;
1804
1805        nd->last_type = LAST_ROOT; /* if there are only slashes... */
1806        nd->flags = flags | LOOKUP_JUMPED;
1807        nd->depth = 0;
1808        if (flags & LOOKUP_ROOT) {
1809                struct dentry *root = nd->root.dentry;
1810                struct inode *inode = root->d_inode;
1811                if (*name) {
1812                        if (!d_is_directory(root))
1813                                return -ENOTDIR;
1814                        retval = inode_permission(inode, MAY_EXEC);
1815                        if (retval)
1816                                return retval;
1817                }
1818                nd->path = nd->root;
1819                nd->inode = inode;
1820                if (flags & LOOKUP_RCU) {
1821                        rcu_read_lock();
1822                        nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1823                        nd->m_seq = read_seqbegin(&mount_lock);
1824                } else {
1825                        path_get(&nd->path);
1826                }
1827                return 0;
1828        }
1829
1830        nd->root.mnt = NULL;
1831
1832        nd->m_seq = read_seqbegin(&mount_lock);
1833        if (*name=='/') {
1834                if (flags & LOOKUP_RCU) {
1835                        rcu_read_lock();
1836                        set_root_rcu(nd);
1837                } else {
1838                        set_root(nd);
1839                        path_get(&nd->root);
1840                }
1841                nd->path = nd->root;
1842        } else if (dfd == AT_FDCWD) {
1843                if (flags & LOOKUP_RCU) {
1844                        struct fs_struct *fs = current->fs;
1845                        unsigned seq;
1846
1847                        rcu_read_lock();
1848
1849                        do {
1850                                seq = read_seqcount_begin(&fs->seq);
1851                                nd->path = fs->pwd;
1852                                nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1853                        } while (read_seqcount_retry(&fs->seq, seq));
1854                } else {
1855                        get_fs_pwd(current->fs, &nd->path);
1856                }
1857        } else {
1858                /* Caller must check execute permissions on the starting path component */
1859                struct fd f = fdget_raw(dfd);
1860                struct dentry *dentry;
1861
1862                if (!f.file)
1863                        return -EBADF;
1864
1865                dentry = f.file->f_path.dentry;
1866
1867                if (*name) {
1868                        if (!d_is_directory(dentry)) {
1869                                fdput(f);
1870                                return -ENOTDIR;
1871                        }
1872                }
1873
1874                nd->path = f.file->f_path;
1875                if (flags & LOOKUP_RCU) {
1876                        if (f.need_put)
1877                                *fp = f.file;
1878                        nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1879                        rcu_read_lock();
1880                } else {
1881                        path_get(&nd->path);
1882                        fdput(f);
1883                }
1884        }
1885
1886        nd->inode = nd->path.dentry->d_inode;
1887        return 0;
1888}
1889
1890static inline int lookup_last(struct nameidata *nd, struct path *path)
1891{
1892        if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1893                nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1894
1895        nd->flags &= ~LOOKUP_PARENT;
1896        return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1897}
1898
1899/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1900static int path_lookupat(int dfd, const char *name,
1901                                unsigned int flags, struct nameidata *nd)
1902{
1903        struct file *base = NULL;
1904        struct path path;
1905        int err;
1906
1907        /*
1908         * Path walking is largely split up into 2 different synchronisation
1909         * schemes, rcu-walk and ref-walk (explained in
1910         * Documentation/filesystems/path-lookup.txt). These share much of the
1911         * path walk code, but some things particularly setup, cleanup, and
1912         * following mounts are sufficiently divergent that functions are
1913         * duplicated. Typically there is a function foo(), and its RCU
1914         * analogue, foo_rcu().
1915         *
1916         * -ECHILD is the error number of choice (just to avoid clashes) that
1917         * is returned if some aspect of an rcu-walk fails. Such an error must
1918         * be handled by restarting a traditional ref-walk (which will always
1919         * be able to complete).
1920         */
1921        err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1922
1923        if (unlikely(err))
1924                return err;
1925
1926        current->total_link_count = 0;
1927        err = link_path_walk(name, nd);
1928
1929        if (!err && !(flags & LOOKUP_PARENT)) {
1930                err = lookup_last(nd, &path);
1931                while (err > 0) {
1932                        void *cookie;
1933                        struct path link = path;
1934                        err = may_follow_link(&link, nd);
1935                        if (unlikely(err))
1936                                break;
1937                        nd->flags |= LOOKUP_PARENT;
1938                        err = follow_link(&link, nd, &cookie);
1939                        if (err)
1940                                break;
1941                        err = lookup_last(nd, &path);
1942                        put_link(nd, &link, cookie);
1943                }
1944        }
1945
1946        if (!err)
1947                err = complete_walk(nd);
1948
1949        if (!err && nd->flags & LOOKUP_DIRECTORY) {
1950                if (!d_is_directory(nd->path.dentry)) {
1951                        path_put(&nd->path);
1952                        err = -ENOTDIR;
1953                }
1954        }
1955
1956        if (base)
1957                fput(base);
1958
1959        if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1960                path_put(&nd->root);
1961                nd->root.mnt = NULL;
1962        }
1963        return err;
1964}
1965
1966static int filename_lookup(int dfd, struct filename *name,
1967                                unsigned int flags, struct nameidata *nd)
1968{
1969        int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1970        if (unlikely(retval == -ECHILD))
1971                retval = path_lookupat(dfd, name->name, flags, nd);
1972        if (unlikely(retval == -ESTALE))
1973                retval = path_lookupat(dfd, name->name,
1974                                                flags | LOOKUP_REVAL, nd);
1975
1976        if (likely(!retval))
1977                audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1978        return retval;
1979}
1980
1981static int do_path_lookup(int dfd, const char *name,
1982                                unsigned int flags, struct nameidata *nd)
1983{
1984        struct filename filename = { .name = name };
1985
1986        return filename_lookup(dfd, &filename, flags, nd);
1987}
1988
1989/* does lookup, returns the object with parent locked */
1990struct dentry *kern_path_locked(const char *name, struct path *path)
1991{
1992        struct nameidata nd;
1993        struct dentry *d;
1994        int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1995        if (err)
1996                return ERR_PTR(err);
1997        if (nd.last_type != LAST_NORM) {
1998                path_put(&nd.path);
1999                return ERR_PTR(-EINVAL);
2000        }
2001        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2002        d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2003        if (IS_ERR(d)) {
2004                mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2005                path_put(&nd.path);
2006                return d;
2007        }
2008        *path = nd.path;
2009        return d;
2010}
2011
2012int kern_path(const char *name, unsigned int flags, struct path *path)
2013{
2014        struct nameidata nd;
2015        int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2016        if (!res)
2017                *path = nd.path;
2018        return res;
2019}
2020
2021/**
2022 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2023 * @dentry:  pointer to dentry of the base directory
2024 * @mnt: pointer to vfs mount of the base directory
2025 * @name: pointer to file name
2026 * @flags: lookup flags
2027 * @path: pointer to struct path to fill
2028 */
2029int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2030                    const char *name, unsigned int flags,
2031                    struct path *path)
2032{
2033        struct nameidata nd;
2034        int err;
2035        nd.root.dentry = dentry;
2036        nd.root.mnt = mnt;
2037        BUG_ON(flags & LOOKUP_PARENT);
2038        /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2039        err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2040        if (!err)
2041                *path = nd.path;
2042        return err;
2043}
2044
2045/*
2046 * Restricted form of lookup. Doesn't follow links, single-component only,
2047 * needs parent already locked. Doesn't follow mounts.
2048 * SMP-safe.
2049 */
2050static struct dentry *lookup_hash(struct nameidata *nd)
2051{
2052        return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2053}
2054
2055/**
2056 * lookup_one_len - filesystem helper to lookup single pathname component
2057 * @name:       pathname component to lookup
2058 * @base:       base directory to lookup from
2059 * @len:        maximum length @len should be interpreted to
2060 *
2061 * Note that this routine is purely a helper for filesystem usage and should
2062 * not be called by generic code.  Also note that by using this function the
2063 * nameidata argument is passed to the filesystem methods and a filesystem
2064 * using this helper needs to be prepared for that.
2065 */
2066struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2067{
2068        struct qstr this;
2069        unsigned int c;
2070        int err;
2071
2072        WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2073
2074        this.name = name;
2075        this.len = len;
2076        this.hash = full_name_hash(name, len);
2077        if (!len)
2078                return ERR_PTR(-EACCES);
2079
2080        if (unlikely(name[0] == '.')) {
2081                if (len < 2 || (len == 2 && name[1] == '.'))
2082                        return ERR_PTR(-EACCES);
2083        }
2084
2085        while (len--) {
2086                c = *(const unsigned char *)name++;
2087                if (c == '/' || c == '\0')
2088                        return ERR_PTR(-EACCES);
2089        }
2090        /*
2091         * See if the low-level filesystem might want
2092         * to use its own hash..
2093         */
2094        if (base->d_flags & DCACHE_OP_HASH) {
2095                int err = base->d_op->d_hash(base, &this);
2096                if (err < 0)
2097                        return ERR_PTR(err);
2098        }
2099
2100        err = inode_permission(base->d_inode, MAY_EXEC);
2101        if (err)
2102                return ERR_PTR(err);
2103
2104        return __lookup_hash(&this, base, 0);
2105}
2106
2107int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2108                 struct path *path, int *empty)
2109{
2110        struct nameidata nd;
2111        struct filename *tmp = getname_flags(name, flags, empty);
2112        int err = PTR_ERR(tmp);
2113        if (!IS_ERR(tmp)) {
2114
2115                BUG_ON(flags & LOOKUP_PARENT);
2116
2117                err = filename_lookup(dfd, tmp, flags, &nd);
2118                putname(tmp);
2119                if (!err)
2120                        *path = nd.path;
2121        }
2122        return err;
2123}
2124
2125int user_path_at(int dfd, const char __user *name, unsigned flags,
2126                 struct path *path)
2127{
2128        return user_path_at_empty(dfd, name, flags, path, NULL);
2129}
2130
2131/*
2132 * NB: most callers don't do anything directly with the reference to the
2133 *     to struct filename, but the nd->last pointer points into the name string
2134 *     allocated by getname. So we must hold the reference to it until all
2135 *     path-walking is complete.
2136 */
2137static struct filename *
2138user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2139                 unsigned int flags)
2140{
2141        struct filename *s = getname(path);
2142        int error;
2143
2144        /* only LOOKUP_REVAL is allowed in extra flags */
2145        flags &= LOOKUP_REVAL;
2146
2147        if (IS_ERR(s))
2148                return s;
2149
2150        error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2151        if (error) {
2152                putname(s);
2153                return ERR_PTR(error);
2154        }
2155
2156        return s;
2157}
2158
2159/**
2160 * mountpoint_last - look up last component for umount
2161 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2162 * @path: pointer to container for result
2163 *
2164 * This is a special lookup_last function just for umount. In this case, we
2165 * need to resolve the path without doing any revalidation.
2166 *
2167 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2168 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2169 * in almost all cases, this lookup will be served out of the dcache. The only
2170 * cases where it won't are if nd->last refers to a symlink or the path is
2171 * bogus and it doesn't exist.
2172 *
2173 * Returns:
2174 * -error: if there was an error during lookup. This includes -ENOENT if the
2175 *         lookup found a negative dentry. The nd->path reference will also be
2176 *         put in this case.
2177 *
2178 * 0:      if we successfully resolved nd->path and found it to not to be a
2179 *         symlink that needs to be followed. "path" will also be populated.
2180 *         The nd->path reference will also be put.
2181 *
2182 * 1:      if we successfully resolved nd->last and found it to be a symlink
2183 *         that needs to be followed. "path" will be populated with the path
2184 *         to the link, and nd->path will *not* be put.
2185 */
2186static int
2187mountpoint_last(struct nameidata *nd, struct path *path)
2188{
2189        int error = 0;
2190        struct dentry *dentry;
2191        struct dentry *dir = nd->path.dentry;
2192
2193        /* If we're in rcuwalk, drop out of it to handle last component */
2194        if (nd->flags & LOOKUP_RCU) {
2195                if (unlazy_walk(nd, NULL)) {
2196                        error = -ECHILD;
2197                        goto out;
2198                }
2199        }
2200
2201        nd->flags &= ~LOOKUP_PARENT;
2202
2203        if (unlikely(nd->last_type != LAST_NORM)) {
2204                error = handle_dots(nd, nd->last_type);
2205                if (error)
2206                        goto out;
2207                dentry = dget(nd->path.dentry);
2208                goto done;
2209        }
2210
2211        mutex_lock(&dir->d_inode->i_mutex);
2212        dentry = d_lookup(dir, &nd->last);
2213        if (!dentry) {
2214                /*
2215                 * No cached dentry. Mounted dentries are pinned in the cache,
2216                 * so that means that this dentry is probably a symlink or the
2217                 * path doesn't actually point to a mounted dentry.
2218                 */
2219                dentry = d_alloc(dir, &nd->last);
2220                if (!dentry) {
2221                        error = -ENOMEM;
2222                        mutex_unlock(&dir->d_inode->i_mutex);
2223                        goto out;
2224                }
2225                dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2226                error = PTR_ERR(dentry);
2227                if (IS_ERR(dentry)) {
2228                        mutex_unlock(&dir->d_inode->i_mutex);
2229                        goto out;
2230                }
2231        }
2232        mutex_unlock(&dir->d_inode->i_mutex);
2233
2234done:
2235        if (!dentry->d_inode) {
2236                error = -ENOENT;
2237                dput(dentry);
2238                goto out;
2239        }
2240        path->dentry = dentry;
2241        path->mnt = mntget(nd->path.mnt);
2242        if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2243                return 1;
2244        follow_mount(path);
2245        error = 0;
2246out:
2247        terminate_walk(nd);
2248        return error;
2249}
2250
2251/**
2252 * path_mountpoint - look up a path to be umounted
2253 * @dfd:        directory file descriptor to start walk from
2254 * @name:       full pathname to walk
2255 * @path:       pointer to container for result
2256 * @flags:      lookup flags
2257 *
2258 * Look up the given name, but don't attempt to revalidate the last component.
2259 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2260 */
2261static int
2262path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2263{
2264        struct file *base = NULL;
2265        struct nameidata nd;
2266        int err;
2267
2268        err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2269        if (unlikely(err))
2270                return err;
2271
2272        current->total_link_count = 0;
2273        err = link_path_walk(name, &nd);
2274        if (err)
2275                goto out;
2276
2277        err = mountpoint_last(&nd, path);
2278        while (err > 0) {
2279                void *cookie;
2280                struct path link = *path;
2281                err = may_follow_link(&link, &nd);
2282                if (unlikely(err))
2283                        break;
2284                nd.flags |= LOOKUP_PARENT;
2285                err = follow_link(&link, &nd, &cookie);
2286                if (err)
2287                        break;
2288                err = mountpoint_last(&nd, path);
2289                put_link(&nd, &link, cookie);
2290        }
2291out:
2292        if (base)
2293                fput(base);
2294
2295        if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2296                path_put(&nd.root);
2297
2298        return err;
2299}
2300
2301static int
2302filename_mountpoint(int dfd, struct filename *s, struct path *path,
2303                        unsigned int flags)
2304{
2305        int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2306        if (unlikely(error == -ECHILD))
2307                error = path_mountpoint(dfd, s->name, path, flags);
2308        if (unlikely(error == -ESTALE))
2309                error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2310        if (likely(!error))
2311                audit_inode(s, path->dentry, 0);
2312        return error;
2313}
2314
2315/**
2316 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2317 * @dfd:        directory file descriptor
2318 * @name:       pathname from userland
2319 * @flags:      lookup flags
2320 * @path:       pointer to container to hold result
2321 *
2322 * A umount is a special case for path walking. We're not actually interested
2323 * in the inode in this situation, and ESTALE errors can be a problem. We
2324 * simply want track down the dentry and vfsmount attached at the mountpoint
2325 * and avoid revalidating the last component.
2326 *
2327 * Returns 0 and populates "path" on success.
2328 */
2329int
2330user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2331                        struct path *path)
2332{
2333        struct filename *s = getname(name);
2334        int error;
2335        if (IS_ERR(s))
2336                return PTR_ERR(s);
2337        error = filename_mountpoint(dfd, s, path, flags);
2338        putname(s);
2339        return error;
2340}
2341
2342int
2343kern_path_mountpoint(int dfd, const char *name, struct path *path,
2344                        unsigned int flags)
2345{
2346        struct filename s = {.name = name};
2347        return filename_mountpoint(dfd, &s, path, flags);
2348}
2349EXPORT_SYMBOL(kern_path_mountpoint);
2350
2351/*
2352 * It's inline, so penalty for filesystems that don't use sticky bit is
2353 * minimal.
2354 */
2355static inline int check_sticky(struct inode *dir, struct inode *inode)
2356{
2357        kuid_t fsuid = current_fsuid();
2358
2359        if (!(dir->i_mode & S_ISVTX))
2360                return 0;
2361        if (uid_eq(inode->i_uid, fsuid))
2362                return 0;
2363        if (uid_eq(dir->i_uid, fsuid))
2364                return 0;
2365        return !inode_capable(inode, CAP_FOWNER);
2366}
2367
2368/*
2369 *      Check whether we can remove a link victim from directory dir, check
2370 *  whether the type of victim is right.
2371 *  1. We can't do it if dir is read-only (done in permission())
2372 *  2. We should have write and exec permissions on dir
2373 *  3. We can't remove anything from append-only dir
2374 *  4. We can't do anything with immutable dir (done in permission())
2375 *  5. If the sticky bit on dir is set we should either
2376 *      a. be owner of dir, or
2377 *      b. be owner of victim, or
2378 *      c. have CAP_FOWNER capability
2379 *  6. If the victim is append-only or immutable we can't do antyhing with
2380 *     links pointing to it.
2381 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2382 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2383 *  9. We can't remove a root or mountpoint.
2384 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2385 *     nfs_async_unlink().
2386 */
2387static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2388{
2389        struct inode *inode = victim->d_inode;
2390        int error;
2391
2392        if (d_is_negative(victim))
2393                return -ENOENT;
2394        BUG_ON(!inode);
2395
2396        BUG_ON(victim->d_parent->d_inode != dir);
2397        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2398
2399        error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2400        if (error)
2401                return error;
2402        if (IS_APPEND(dir))
2403                return -EPERM;
2404
2405        if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2406            IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2407                return -EPERM;
2408        if (isdir) {
2409                if (!d_is_directory(victim) && !d_is_autodir(victim))
2410                        return -ENOTDIR;
2411                if (IS_ROOT(victim))
2412                        return -EBUSY;
2413        } else if (d_is_directory(victim) || d_is_autodir(victim))
2414                return -EISDIR;
2415        if (IS_DEADDIR(dir))
2416                return -ENOENT;
2417        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2418                return -EBUSY;
2419        return 0;
2420}
2421
2422/*      Check whether we can create an object with dentry child in directory
2423 *  dir.
2424 *  1. We can't do it if child already exists (open has special treatment for
2425 *     this case, but since we are inlined it's OK)
2426 *  2. We can't do it if dir is read-only (done in permission())
2427 *  3. We should have write and exec permissions on dir
2428 *  4. We can't do it if dir is immutable (done in permission())
2429 */
2430static inline int may_create(struct inode *dir, struct dentry *child)
2431{
2432        audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2433        if (child->d_inode)
2434                return -EEXIST;
2435        if (IS_DEADDIR(dir))
2436                return -ENOENT;
2437        return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2438}
2439
2440/*
2441 * p1 and p2 should be directories on the same fs.
2442 */
2443struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2444{
2445        struct dentry *p;
2446
2447        if (p1 == p2) {
2448                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2449                return NULL;
2450        }
2451
2452        mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2453
2454        p = d_ancestor(p2, p1);
2455        if (p) {
2456                mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2457                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2458                return p;
2459        }
2460
2461        p = d_ancestor(p1, p2);
2462        if (p) {
2463                mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2464                mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2465                return p;
2466        }
2467
2468        mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2469        mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2470        return NULL;
2471}
2472
2473void unlock_rename(struct dentry *p1, struct dentry *p2)
2474{
2475        mutex_unlock(&p1->d_inode->i_mutex);
2476        if (p1 != p2) {
2477                mutex_unlock(&p2->d_inode->i_mutex);
2478                mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2479        }
2480}
2481
2482int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2483                bool want_excl)
2484{
2485        int error = may_create(dir, dentry);
2486        if (error)
2487                return error;
2488
2489        if (!dir->i_op->create)
2490                return -EACCES; /* shouldn't it be ENOSYS? */
2491        mode &= S_IALLUGO;
2492        mode |= S_IFREG;
2493        error = security_inode_create(dir, dentry, mode);
2494        if (error)
2495                return error;
2496        error = dir->i_op->create(dir, dentry, mode, want_excl);
2497        if (!error)
2498                fsnotify_create(dir, dentry);
2499        return error;
2500}
2501
2502static int may_open(struct path *path, int acc_mode, int flag)
2503{
2504        struct dentry *dentry = path->dentry;
2505        struct inode *inode = dentry->d_inode;
2506        int error;
2507
2508        /* O_PATH? */
2509        if (!acc_mode)
2510                return 0;
2511
2512        if (!inode)
2513                return -ENOENT;
2514
2515        switch (inode->i_mode & S_IFMT) {
2516        case S_IFLNK:
2517                return -ELOOP;
2518        case S_IFDIR:
2519                if (acc_mode & MAY_WRITE)
2520                        return -EISDIR;
2521                break;
2522        case S_IFBLK:
2523        case S_IFCHR:
2524                if (path->mnt->mnt_flags & MNT_NODEV)
2525                        return -EACCES;
2526                /*FALLTHRU*/
2527        case S_IFIFO:
2528        case S_IFSOCK:
2529                flag &= ~O_TRUNC;
2530                break;
2531        }
2532
2533        error = inode_permission(inode, acc_mode);
2534        if (error)
2535                return error;
2536
2537        /*
2538         * An append-only file must be opened in append mode for writing.
2539         */
2540        if (IS_APPEND(inode)) {
2541                if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2542                        return -EPERM;
2543                if (flag & O_TRUNC)
2544                        return -EPERM;
2545        }
2546
2547        /* O_NOATIME can only be set by the owner or superuser */
2548        if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2549                return -EPERM;
2550
2551        return 0;
2552}
2553
2554static int handle_truncate(struct file *filp)
2555{
2556        struct path *path = &filp->f_path;
2557        struct inode *inode = path->dentry->d_inode;
2558        int error = get_write_access(inode);
2559        if (error)
2560                return error;
2561        /*
2562         * Refuse to truncate files with mandatory locks held on them.
2563         */
2564        error = locks_verify_locked(inode);
2565        if (!error)
2566                error = security_path_truncate(path);
2567        if (!error) {
2568                error = do_truncate(path->dentry, 0,
2569                                    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2570                                    filp);
2571        }
2572        put_write_access(inode);
2573        return error;
2574}
2575
2576static inline int open_to_namei_flags(int flag)
2577{
2578        if ((flag & O_ACCMODE) == 3)
2579                flag--;
2580        return flag;
2581}
2582
2583static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2584{
2585        int error = security_path_mknod(dir, dentry, mode, 0);
2586        if (error)
2587                return error;
2588
2589        error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2590        if (error)
2591                return error;
2592
2593        return security_inode_create(dir->dentry->d_inode, dentry, mode);
2594}
2595
2596/*
2597 * Attempt to atomically look up, create and open a file from a negative
2598 * dentry.
2599 *
2600 * Returns 0 if successful.  The file will have been created and attached to
2601 * @file by the filesystem calling finish_open().
2602 *
2603 * Returns 1 if the file was looked up only or didn't need creating.  The
2604 * caller will need to perform the open themselves.  @path will have been
2605 * updated to point to the new dentry.  This may be negative.
2606 *
2607 * Returns an error code otherwise.
2608 */
2609static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2610                        struct path *path, struct file *file,
2611                        const struct open_flags *op,
2612                        bool got_write, bool need_lookup,
2613                        int *opened)
2614{
2615        struct inode *dir =  nd->path.dentry->d_inode;
2616        unsigned open_flag = open_to_namei_flags(op->open_flag);
2617        umode_t mode;
2618        int error;
2619        int acc_mode;
2620        int create_error = 0;
2621        struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2622        bool excl;
2623
2624        BUG_ON(dentry->d_inode);
2625
2626        /* Don't create child dentry for a dead directory. */
2627        if (unlikely(IS_DEADDIR(dir))) {
2628                error = -ENOENT;
2629                goto out;
2630        }
2631
2632        mode = op->mode;
2633        if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2634                mode &= ~current_umask();
2635
2636        excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2637        if (excl)
2638                open_flag &= ~O_TRUNC;
2639
2640        /*
2641         * Checking write permission is tricky, bacuse we don't know if we are
2642         * going to actually need it: O_CREAT opens should work as long as the
2643         * file exists.  But checking existence breaks atomicity.  The trick is
2644         * to check access and if not granted clear O_CREAT from the flags.
2645         *
2646         * Another problem is returing the "right" error value (e.g. for an
2647         * O_EXCL open we want to return EEXIST not EROFS).
2648         */
2649        if (((open_flag & (O_CREAT | O_TRUNC)) ||
2650            (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2651                if (!(open_flag & O_CREAT)) {
2652                        /*
2653                         * No O_CREATE -> atomicity not a requirement -> fall
2654                         * back to lookup + open
2655                         */
2656                        goto no_open;
2657                } else if (open_flag & (O_EXCL | O_TRUNC)) {
2658                        /* Fall back and fail with the right error */
2659                        create_error = -EROFS;
2660                        goto no_open;
2661                } else {
2662                        /* No side effects, safe to clear O_CREAT */
2663                        create_error = -EROFS;
2664                        open_flag &= ~O_CREAT;
2665                }
2666        }
2667
2668        if (open_flag & O_CREAT) {
2669                error = may_o_create(&nd->path, dentry, mode);
2670                if (error) {
2671                        create_error = error;
2672                        if (open_flag & O_EXCL)
2673                                goto no_open;
2674                        open_flag &= ~O_CREAT;
2675                }
2676        }
2677
2678        if (nd->flags & LOOKUP_DIRECTORY)
2679                open_flag |= O_DIRECTORY;
2680
2681        file->f_path.dentry = DENTRY_NOT_SET;
2682        file->f_path.mnt = nd->path.mnt;
2683        error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2684                                      opened);
2685        if (error < 0) {
2686                if (create_error && error == -ENOENT)
2687                        error = create_error;
2688                goto out;
2689        }
2690
2691        if (error) {    /* returned 1, that is */
2692                if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2693                        error = -EIO;
2694                        goto out;
2695                }
2696                if (file->f_path.dentry) {
2697                        dput(dentry);
2698                        dentry = file->f_path.dentry;
2699                }
2700                if (*opened & FILE_CREATED)
2701                        fsnotify_create(dir, dentry);
2702                if (!dentry->d_inode) {
2703                        WARN_ON(*opened & FILE_CREATED);
2704                        if (create_error) {
2705                                error = create_error;
2706                                goto out;
2707                        }
2708                } else {
2709                        if (excl && !(*opened & FILE_CREATED)) {
2710                                error = -EEXIST;
2711                                goto out;
2712                        }
2713                }
2714                goto looked_up;
2715        }
2716
2717        /*
2718         * We didn't have the inode before the open, so check open permission
2719         * here.
2720         */
2721        acc_mode = op->acc_mode;
2722        if (*opened & FILE_CREATED) {
2723                WARN_ON(!(open_flag & O_CREAT));
2724                fsnotify_create(dir, dentry);
2725                acc_mode = MAY_OPEN;
2726        }
2727        error = may_open(&file->f_path, acc_mode, open_flag);
2728        if (error)
2729                fput(file);
2730
2731out:
2732        dput(dentry);
2733        return error;
2734
2735no_open:
2736        if (need_lookup) {
2737                dentry = lookup_real(dir, dentry, nd->flags);
2738                if (IS_ERR(dentry))
2739                        return PTR_ERR(dentry);
2740
2741                if (create_error) {
2742                        int open_flag = op->open_flag;
2743
2744                        error = create_error;
2745                        if ((open_flag & O_EXCL)) {
2746                                if (!dentry->d_inode)
2747                                        goto out;
2748                        } else if (!dentry->d_inode) {
2749                                goto out;
2750                        } else if ((open_flag & O_TRUNC) &&
2751                                   S_ISREG(dentry->d_inode->i_mode)) {
2752                                goto out;
2753                        }
2754                        /* will fail later, go on to get the right error */
2755                }
2756        }
2757looked_up:
2758        path->dentry = dentry;
2759        path->mnt = nd->path.mnt;
2760        return 1;
2761}
2762
2763/*
2764 * Look up and maybe create and open the last component.
2765 *
2766 * Must be called with i_mutex held on parent.
2767 *
2768 * Returns 0 if the file was successfully atomically created (if necessary) and
2769 * opened.  In this case the file will be returned attached to @file.
2770 *
2771 * Returns 1 if the file was not completely opened at this time, though lookups
2772 * and creations will have been performed and the dentry returned in @path will
2773 * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2774 * specified then a negative dentry may be returned.
2775 *
2776 * An error code is returned otherwise.
2777 *
2778 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2779 * cleared otherwise prior to returning.
2780 */
2781static int lookup_open(struct nameidata *nd, struct path *path,
2782                        struct file *file,
2783                        const struct open_flags *op,
2784                        bool got_write, int *opened)
2785{
2786        struct dentry *dir = nd->path.dentry;
2787        struct inode *dir_inode = dir->d_inode;
2788        struct dentry *dentry;
2789        int error;
2790        bool need_lookup;
2791
2792        *opened &= ~FILE_CREATED;
2793        dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2794        if (IS_ERR(dentry))
2795                return PTR_ERR(dentry);
2796
2797        /* Cached positive dentry: will open in f_op->open */
2798        if (!need_lookup && dentry->d_inode)
2799                goto out_no_open;
2800
2801        if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2802                return atomic_open(nd, dentry, path, file, op, got_write,
2803                                   need_lookup, opened);
2804        }
2805
2806        if (need_lookup) {
2807                BUG_ON(dentry->d_inode);
2808
2809                dentry = lookup_real(dir_inode, dentry, nd->flags);
2810                if (IS_ERR(dentry))
2811                        return PTR_ERR(dentry);
2812        }
2813
2814        /* Negative dentry, just create the file */
2815        if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2816                umode_t mode = op->mode;
2817                if (!IS_POSIXACL(dir->d_inode))
2818                        mode &= ~current_umask();
2819                /*
2820                 * This write is needed to ensure that a
2821                 * rw->ro transition does not occur between
2822                 * the time when the file is created and when
2823                 * a permanent write count is taken through
2824                 * the 'struct file' in finish_open().
2825                 */
2826                if (!got_write) {
2827                        error = -EROFS;
2828                        goto out_dput;
2829                }
2830                *opened |= FILE_CREATED;
2831                error = security_path_mknod(&nd->path, dentry, mode, 0);
2832                if (error)
2833                        goto out_dput;
2834                error = vfs_create(dir->d_inode, dentry, mode,
2835                                   nd->flags & LOOKUP_EXCL);
2836                if (error)
2837                        goto out_dput;
2838        }
2839out_no_open:
2840        path->dentry = dentry;
2841        path->mnt = nd->path.mnt;
2842        return 1;
2843
2844out_dput:
2845        dput(dentry);
2846        return error;
2847}
2848
2849/*
2850 * Handle the last step of open()
2851 */
2852static int do_last(struct nameidata *nd, struct path *path,
2853                   struct file *file, const struct open_flags *op,
2854                   int *opened, struct filename *name)
2855{
2856        struct dentry *dir = nd->path.dentry;
2857        int open_flag = op->open_flag;
2858        bool will_truncate = (open_flag & O_TRUNC) != 0;
2859        bool got_write = false;
2860        int acc_mode = op->acc_mode;
2861        struct inode *inode;
2862        bool symlink_ok = false;
2863        struct path save_parent = { .dentry = NULL, .mnt = NULL };
2864        bool retried = false;
2865        int error;
2866
2867        nd->flags &= ~LOOKUP_PARENT;
2868        nd->flags |= op->intent;
2869
2870        if (nd->last_type != LAST_NORM) {
2871                error = handle_dots(nd, nd->last_type);
2872                if (error)
2873                        return error;
2874                goto finish_open;
2875        }
2876
2877        if (!(open_flag & O_CREAT)) {
2878                if (nd->last.name[nd->last.len])
2879                        nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2880                if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2881                        symlink_ok = true;
2882                /* we _can_ be in RCU mode here */
2883                error = lookup_fast(nd, path, &inode);
2884                if (likely(!error))
2885                        goto finish_lookup;
2886
2887                if (error < 0)
2888                        goto out;
2889
2890                BUG_ON(nd->inode != dir->d_inode);
2891        } else {
2892                /* create side of things */
2893                /*
2894                 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2895                 * has been cleared when we got to the last component we are
2896                 * about to look up
2897                 */
2898                error = complete_walk(nd);
2899                if (error)
2900                        return error;
2901
2902                audit_inode(name, dir, LOOKUP_PARENT);
2903                error = -EISDIR;
2904                /* trailing slashes? */
2905                if (nd->last.name[nd->last.len])
2906                        goto out;
2907        }
2908
2909retry_lookup:
2910        if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2911                error = mnt_want_write(nd->path.mnt);
2912                if (!error)
2913                        got_write = true;
2914                /*
2915                 * do _not_ fail yet - we might not need that or fail with
2916                 * a different error; let lookup_open() decide; we'll be
2917                 * dropping this one anyway.
2918                 */
2919        }
2920        mutex_lock(&dir->d_inode->i_mutex);
2921        error = lookup_open(nd, path, file, op, got_write, opened);
2922        mutex_unlock(&dir->d_inode->i_mutex);
2923
2924        if (error <= 0) {
2925                if (error)
2926                        goto out;
2927
2928                if ((*opened & FILE_CREATED) ||
2929                    !S_ISREG(file_inode(file)->i_mode))
2930                        will_truncate = false;
2931
2932                audit_inode(name, file->f_path.dentry, 0);
2933                goto opened;
2934        }
2935
2936        if (*opened & FILE_CREATED) {
2937                /* Don't check for write permission, don't truncate */
2938                open_flag &= ~O_TRUNC;
2939                will_truncate = false;
2940                acc_mode = MAY_OPEN;
2941                path_to_nameidata(path, nd);
2942                goto finish_open_created;
2943        }
2944
2945        /*
2946         * create/update audit record if it already exists.
2947         */
2948        if (d_is_positive(path->dentry))
2949                audit_inode(name, path->dentry, 0);
2950
2951        /*
2952         * If atomic_open() acquired write access it is dropped now due to
2953         * possible mount and symlink following (this might be optimized away if
2954         * necessary...)
2955         */
2956        if (got_write) {
2957                mnt_drop_write(nd->path.mnt);
2958                got_write = false;
2959        }
2960
2961        error = -EEXIST;
2962        if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2963                goto exit_dput;
2964
2965        error = follow_managed(path, nd->flags);
2966        if (error < 0)
2967                goto exit_dput;
2968
2969        if (error)
2970                nd->flags |= LOOKUP_JUMPED;
2971
2972        BUG_ON(nd->flags & LOOKUP_RCU);
2973        inode = path->dentry->d_inode;
2974finish_lookup:
2975        /* we _can_ be in RCU mode here */
2976        error = -ENOENT;
2977        if (d_is_negative(path->dentry)) {
2978                path_to_nameidata(path, nd);
2979                goto out;
2980        }
2981
2982        if (should_follow_link(path->dentry, !symlink_ok)) {
2983                if (nd->flags & LOOKUP_RCU) {
2984                        if (unlikely(unlazy_walk(nd, path->dentry))) {
2985                                error = -ECHILD;
2986                                goto out;
2987                        }
2988                }
2989                BUG_ON(inode != path->dentry->d_inode);
2990                return 1;
2991        }
2992
2993        if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2994                path_to_nameidata(path, nd);
2995        } else {
2996                save_parent.dentry = nd->path.dentry;
2997                save_parent.mnt = mntget(path->mnt);
2998                nd->path.dentry = path->dentry;
2999
3000        }
3001        nd->inode = inode;
3002        /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3003finish_open:
3004        error = complete_walk(nd);
3005        if (error) {
3006                path_put(&save_parent);
3007                return error;
3008        }
3009        audit_inode(name, nd->path.dentry, 0);
3010        error = -EISDIR;
3011        if ((open_flag & O_CREAT) &&
3012            (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
3013                goto out;
3014        error = -ENOTDIR;
3015        if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
3016                goto out;
3017        if (!S_ISREG(nd->inode->i_mode))
3018                will_truncate = false;
3019
3020        if (will_truncate) {
3021                error = mnt_want_write(nd->path.mnt);
3022                if (error)
3023                        goto out;
3024                got_write = true;
3025        }
3026finish_open_created:
3027        error = may_open(&nd->path, acc_mode, open_flag);
3028        if (error)
3029                goto out;
3030        file->f_path.mnt = nd->path.mnt;
3031        error = finish_open(file, nd->path.dentry, NULL, opened);
3032        if (error) {
3033                if (error == -EOPENSTALE)
3034                        goto stale_open;
3035                goto out;
3036        }
3037opened:
3038        error = open_check_o_direct(file);
3039        if (error)
3040                goto exit_fput;
3041        error = ima_file_check(file, op->acc_mode);
3042        if (error)
3043                goto exit_fput;
3044
3045        if (will_truncate) {
3046                error = handle_truncate(file);
3047                if (error)
3048                        goto exit_fput;
3049        }
3050out:
3051        if (got_write)
3052                mnt_drop_write(nd->path.mnt);
3053        path_put(&save_parent);
3054        terminate_walk(nd);
3055        return error;
3056
3057exit_dput:
3058        path_put_conditional(path, nd);
3059        goto out;
3060exit_fput:
3061        fput(file);
3062        goto out;
3063
3064stale_open:
3065        /* If no saved parent or already retried then can't retry */
3066        if (!save_parent.dentry || retried)
3067                goto out;
3068
3069        BUG_ON(save_parent.dentry != dir);
3070        path_put(&nd->path);
3071        nd->path = save_parent;
3072        nd->inode = dir->d_inode;
3073        save_parent.mnt = NULL;
3074        save_parent.dentry = NULL;
3075        if (got_write) {
3076                mnt_drop_write(nd->path.mnt);
3077                got_write = false;
3078        }
3079        retried = true;
3080        goto retry_lookup;
3081}
3082
3083static int do_tmpfile(int dfd, struct filename *pathname,
3084                struct nameidata *nd, int flags,
3085                const struct open_flags *op,
3086                struct file *file, int *opened)
3087{
3088        static const struct qstr name = QSTR_INIT("/", 1);
3089        struct dentry *dentry, *child;
3090        struct inode *dir;
3091        int error = path_lookupat(dfd, pathname->name,
3092                                  flags | LOOKUP_DIRECTORY, nd);
3093        if (unlikely(error))
3094                return error;
3095        error = mnt_want_write(nd->path.mnt);
3096        if (unlikely(error))
3097                goto out;
3098        /* we want directory to be writable */
3099        error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3100        if (error)
3101                goto out2;
3102        dentry = nd->path.dentry;
3103        dir = dentry->d_inode;
3104        if (!dir->i_op->tmpfile) {
3105                error = -EOPNOTSUPP;
3106                goto out2;
3107        }
3108        child = d_alloc(dentry, &name);
3109        if (unlikely(!child)) {
3110                error = -ENOMEM;
3111                goto out2;
3112        }
3113        nd->flags &= ~LOOKUP_DIRECTORY;
3114        nd->flags |= op->intent;
3115        dput(nd->path.dentry);
3116        nd->path.dentry = child;
3117        error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3118        if (error)
3119                goto out2;
3120        audit_inode(pathname, nd->path.dentry, 0);
3121        error = may_open(&nd->path, op->acc_mode, op->open_flag);
3122        if (error)
3123                goto out2;
3124        file->f_path.mnt = nd->path.mnt;
3125        error = finish_open(file, nd->path.dentry, NULL, opened);
3126        if (error)
3127                goto out2;
3128        error = open_check_o_direct(file);
3129        if (error) {
3130                fput(file);
3131        } else if (!(op->open_flag & O_EXCL)) {
3132                struct inode *inode = file_inode(file);
3133                spin_lock(&inode->i_lock);
3134                inode->i_state |= I_LINKABLE;
3135                spin_unlock(&inode->i_lock);
3136        }
3137out2:
3138        mnt_drop_write(nd->path.mnt);
3139out:
3140        path_put(&nd->path);
3141        return error;
3142}
3143
3144static struct file *path_openat(int dfd, struct filename *pathname,
3145                struct nameidata *nd, const struct open_flags *op, int flags)
3146{
3147        struct file *base = NULL;
3148        struct file *file;
3149        struct path path;
3150        int opened = 0;
3151        int error;
3152
3153        file = get_empty_filp();
3154        if (IS_ERR(file))
3155                return file;
3156
3157        file->f_flags = op->open_flag;
3158
3159        if (unlikely(file->f_flags & __O_TMPFILE)) {
3160                error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3161                goto out;
3162        }
3163
3164        error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3165        if (unlikely(error))
3166                goto out;
3167
3168        current->total_link_count = 0;
3169        error = link_path_walk(pathname->name, nd);
3170        if (unlikely(error))
3171                goto out;
3172
3173        error = do_last(nd, &path, file, op, &opened, pathname);
3174        while (unlikely(error > 0)) { /* trailing symlink */
3175                struct path link = path;
3176                void *cookie;
3177                if (!(nd->flags & LOOKUP_FOLLOW)) {
3178                        path_put_conditional(&path, nd);
3179                        path_put(&nd->path);
3180                        error = -ELOOP;
3181                        break;
3182                }
3183                error = may_follow_link(&link, nd);
3184                if (unlikely(error))
3185                        break;
3186                nd->flags |= LOOKUP_PARENT;
3187                nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3188                error = follow_link(&link, nd, &cookie);
3189                if (unlikely(error))
3190                        break;
3191                error = do_last(nd, &path, file, op, &opened, pathname);
3192                put_link(nd, &link, cookie);
3193        }
3194out:
3195        if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3196                path_put(&nd->root);
3197        if (base)
3198                fput(base);
3199        if (!(opened & FILE_OPENED)) {
3200                BUG_ON(!error);
3201                put_filp(file);
3202        }
3203        if (unlikely(error)) {
3204                if (error == -EOPENSTALE) {
3205                        if (flags & LOOKUP_RCU)
3206                                error = -ECHILD;
3207                        else
3208                                error = -ESTALE;
3209                }
3210                file = ERR_PTR(error);
3211        }
3212        return file;
3213}
3214
3215struct file *do_filp_open(int dfd, struct filename *pathname,
3216                const struct open_flags *op)
3217{
3218        struct nameidata nd;
3219        int flags = op->lookup_flags;
3220        struct file *filp;
3221
3222        filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3223        if (unlikely(filp == ERR_PTR(-ECHILD)))
3224                filp = path_openat(dfd, pathname, &nd, op, flags);
3225        if (unlikely(filp == ERR_PTR(-ESTALE)))
3226                filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3227        return filp;
3228}
3229
3230struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3231                const char *name, const struct open_flags *op)
3232{
3233        struct nameidata nd;
3234        struct file *file;
3235        struct filename filename = { .name = name };
3236        int flags = op->lookup_flags | LOOKUP_ROOT;
3237
3238        nd.root.mnt = mnt;
3239        nd.root.dentry = dentry;
3240
3241        if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3242                return ERR_PTR(-ELOOP);
3243
3244        file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3245        if (unlikely(file == ERR_PTR(-ECHILD)))
3246                file = path_openat(-1, &filename, &nd, op, flags);
3247        if (unlikely(file == ERR_PTR(-ESTALE)))
3248                file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3249        return file;
3250}
3251
3252struct dentry *kern_path_create(int dfd, const char *pathname,
3253                                struct path *path, unsigned int lookup_flags)
3254{
3255        struct dentry *dentry = ERR_PTR(-EEXIST);
3256        struct nameidata nd;
3257        int err2;
3258        int error;
3259        bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3260
3261        /*
3262         * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3263         * other flags passed in are ignored!
3264         */
3265        lookup_flags &= LOOKUP_REVAL;
3266
3267        error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3268        if (error)
3269                return ERR_PTR(error);
3270
3271        /*
3272         * Yucky last component or no last component at all?
3273         * (foo/., foo/.., /////)
3274         */
3275        if (nd.last_type != LAST_NORM)
3276                goto out;
3277        nd.flags &= ~LOOKUP_PARENT;
3278        nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3279
3280        /* don't fail immediately if it's r/o, at least try to report other errors */
3281        err2 = mnt_want_write(nd.path.mnt);
3282        /*
3283         * Do the final lookup.
3284         */
3285        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3286        dentry = lookup_hash(&nd);
3287        if (IS_ERR(dentry))
3288                goto unlock;
3289
3290        error = -EEXIST;
3291        if (d_is_positive(dentry))
3292                goto fail;
3293
3294        /*
3295         * Special case - lookup gave negative, but... we had foo/bar/
3296         * From the vfs_mknod() POV we just have a negative dentry -
3297         * all is fine. Let's be bastards - you had / on the end, you've
3298         * been asking for (non-existent) directory. -ENOENT for you.
3299         */
3300        if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3301                error = -ENOENT;
3302                goto fail;
3303        }
3304        if (unlikely(err2)) {
3305                error = err2;
3306                goto fail;
3307        }
3308        *path = nd.path;
3309        return dentry;
3310fail:
3311        dput(dentry);
3312        dentry = ERR_PTR(error);
3313unlock:
3314        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3315        if (!err2)
3316                mnt_drop_write(nd.path.mnt);
3317out:
3318        path_put(&nd.path);
3319        return dentry;
3320}
3321EXPORT_SYMBOL(kern_path_create);
3322
3323void done_path_create(struct path *path, struct dentry *dentry)
3324{
3325        dput(dentry);
3326        mutex_unlock(&path->dentry->d_inode->i_mutex);
3327        mnt_drop_write(path->mnt);
3328        path_put(path);
3329}
3330EXPORT_SYMBOL(done_path_create);
3331
3332struct dentry *user_path_create(int dfd, const char __user *pathname,
3333                                struct path *path, unsigned int lookup_flags)
3334{
3335        struct filename *tmp = getname(pathname);
3336        struct dentry *res;
3337        if (IS_ERR(tmp))
3338                return ERR_CAST(tmp);
3339        res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3340        putname(tmp);
3341        return res;
3342}
3343EXPORT_SYMBOL(user_path_create);
3344
3345int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3346{
3347        int error = may_create(dir, dentry);
3348
3349        if (error)
3350                return error;
3351
3352        if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3353                return -EPERM;
3354
3355        if (!dir->i_op->mknod)
3356                return -EPERM;
3357
3358        error = devcgroup_inode_mknod(mode, dev);
3359        if (error)
3360                return error;
3361
3362        error = security_inode_mknod(dir, dentry, mode, dev);
3363        if (error)
3364                return error;
3365
3366        error = dir->i_op->mknod(dir, dentry, mode, dev);
3367        if (!error)
3368                fsnotify_create(dir, dentry);
3369        return error;
3370}
3371
3372static int may_mknod(umode_t mode)
3373{
3374        switch (mode & S_IFMT) {
3375        case S_IFREG:
3376        case S_IFCHR:
3377        case S_IFBLK:
3378        case S_IFIFO:
3379        case S_IFSOCK:
3380        case 0: /* zero mode translates to S_IFREG */
3381                return 0;
3382        case S_IFDIR:
3383                return -EPERM;
3384        default:
3385                return -EINVAL;
3386        }
3387}
3388
3389SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3390                unsigned, dev)
3391{
3392        struct dentry *dentry;
3393        struct path path;
3394        int error;
3395        unsigned int lookup_flags = 0;
3396
3397        error = may_mknod(mode);
3398        if (error)
3399                return error;
3400retry:
3401        dentry = user_path_create(dfd, filename, &path, lookup_flags);
3402        if (IS_ERR(dentry))
3403                return PTR_ERR(dentry);
3404
3405        if (!IS_POSIXACL(path.dentry->d_inode))
3406                mode &= ~current_umask();
3407        error = security_path_mknod(&path, dentry, mode, dev);
3408        if (error)
3409                goto out;
3410        switch (mode & S_IFMT) {
3411                case 0: case S_IFREG:
3412                        error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3413                        break;
3414                case S_IFCHR: case S_IFBLK:
3415                        error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3416                                        new_decode_dev(dev));
3417                        break;
3418                case S_IFIFO: case S_IFSOCK:
3419                        error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3420                        break;
3421        }
3422out:
3423        done_path_create(&path, dentry);
3424        if (retry_estale(error, lookup_flags)) {
3425                lookup_flags |= LOOKUP_REVAL;
3426                goto retry;
3427        }
3428        return error;
3429}
3430
3431SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3432{
3433        return sys_mknodat(AT_FDCWD, filename, mode, dev);
3434}
3435
3436int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3437{
3438        int error = may_create(dir, dentry);
3439        unsigned max_links = dir->i_sb->s_max_links;
3440
3441        if (error)
3442                return error;
3443
3444        if (!dir->i_op->mkdir)
3445                return -EPERM;
3446
3447        mode &= (S_IRWXUGO|S_ISVTX);
3448        error = security_inode_mkdir(dir, dentry, mode);
3449        if (error)
3450                return error;
3451
3452        if (max_links && dir->i_nlink >= max_links)
3453                return -EMLINK;
3454
3455        error = dir->i_op->mkdir(dir, dentry, mode);
3456        if (!error)
3457                fsnotify_mkdir(dir, dentry);
3458        return error;
3459}
3460
3461SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3462{
3463        struct dentry *dentry;
3464        struct path path;
3465        int error;
3466        unsigned int lookup_flags = LOOKUP_DIRECTORY;
3467
3468retry:
3469        dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3470        if (IS_ERR(dentry))
3471                return PTR_ERR(dentry);
3472
3473        if (!IS_POSIXACL(path.dentry->d_inode))
3474                mode &= ~current_umask();
3475        error = security_path_mkdir(&path, dentry, mode);
3476        if (!error)
3477                error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3478        done_path_create(&path, dentry);
3479        if (retry_estale(error, lookup_flags)) {
3480                lookup_flags |= LOOKUP_REVAL;
3481                goto retry;
3482        }
3483        return error;
3484}
3485
3486SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3487{
3488        return sys_mkdirat(AT_FDCWD, pathname, mode);
3489}
3490
3491/*
3492 * The dentry_unhash() helper will try to drop the dentry early: we
3493 * should have a usage count of 1 if we're the only user of this
3494 * dentry, and if that is true (possibly after pruning the dcache),
3495 * then we drop the dentry now.
3496 *
3497 * A low-level filesystem can, if it choses, legally
3498 * do a
3499 *
3500 *      if (!d_unhashed(dentry))
3501 *              return -EBUSY;
3502 *
3503 * if it cannot handle the case of removing a directory
3504 * that is still in use by something else..
3505 */
3506void dentry_unhash(struct dentry *dentry)
3507{
3508        shrink_dcache_parent(dentry);
3509        spin_lock(&dentry->d_lock);
3510        if (dentry->d_lockref.count == 1)
3511                __d_drop(dentry);
3512        spin_unlock(&dentry->d_lock);
3513}
3514
3515int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3516{
3517        int error = may_delete(dir, dentry, 1);
3518
3519        if (error)
3520                return error;
3521
3522        if (!dir->i_op->rmdir)
3523                return -EPERM;
3524
3525        dget(dentry);
3526        mutex_lock(&dentry->d_inode->i_mutex);
3527
3528        error = -EBUSY;
3529        if (d_mountpoint(dentry))
3530                goto out;
3531
3532        error = security_inode_rmdir(dir, dentry);
3533        if (error)
3534                goto out;
3535
3536        shrink_dcache_parent(dentry);
3537        error = dir->i_op->rmdir(dir, dentry);
3538        if (error)
3539                goto out;
3540
3541        dentry->d_inode->i_flags |= S_DEAD;
3542        dont_mount(dentry);
3543
3544out:
3545        mutex_unlock(&dentry->d_inode->i_mutex);
3546        dput(dentry);
3547        if (!error)
3548                d_delete(dentry);
3549        return error;
3550}
3551
3552static long do_rmdir(int dfd, const char __user *pathname)
3553{
3554        int error = 0;
3555        struct filename *name;
3556        struct dentry *dentry;
3557        struct nameidata nd;
3558        unsigned int lookup_flags = 0;
3559retry:
3560        name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3561        if (IS_ERR(name))
3562                return PTR_ERR(name);
3563
3564        switch(nd.last_type) {
3565        case LAST_DOTDOT:
3566                error = -ENOTEMPTY;
3567                goto exit1;
3568        case LAST_DOT:
3569                error = -EINVAL;
3570                goto exit1;
3571        case LAST_ROOT:
3572                error = -EBUSY;
3573                goto exit1;
3574        }
3575
3576        nd.flags &= ~LOOKUP_PARENT;
3577        error = mnt_want_write(nd.path.mnt);
3578        if (error)
3579                goto exit1;
3580
3581        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3582        dentry = lookup_hash(&nd);
3583        error = PTR_ERR(dentry);
3584        if (IS_ERR(dentry))
3585                goto exit2;
3586        if (!dentry->d_inode) {
3587                error = -ENOENT;
3588                goto exit3;
3589        }
3590        error = security_path_rmdir(&nd.path, dentry);
3591        if (error)
3592                goto exit3;
3593        error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3594exit3:
3595        dput(dentry);
3596exit2:
3597        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3598        mnt_drop_write(nd.path.mnt);
3599exit1:
3600        path_put(&nd.path);
3601        putname(name);
3602        if (retry_estale(error, lookup_flags)) {
3603                lookup_flags |= LOOKUP_REVAL;
3604                goto retry;
3605        }
3606        return error;
3607}
3608
3609SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3610{
3611        return do_rmdir(AT_FDCWD, pathname);
3612}
3613
3614/**
3615 * vfs_unlink - unlink a filesystem object
3616 * @dir:        parent directory
3617 * @dentry:     victim
3618 * @delegated_inode: returns victim inode, if the inode is delegated.
3619 *
3620 * The caller must hold dir->i_mutex.
3621 *
3622 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3623 * return a reference to the inode in delegated_inode.  The caller
3624 * should then break the delegation on that inode and retry.  Because
3625 * breaking a delegation may take a long time, the caller should drop
3626 * dir->i_mutex before doing so.
3627 *
3628 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3629 * be appropriate for callers that expect the underlying filesystem not
3630 * to be NFS exported.
3631 */
3632int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3633{
3634        struct inode *target = dentry->d_inode;
3635        int error = may_delete(dir, dentry, 0);
3636
3637        if (error)
3638                return error;
3639
3640        if (!dir->i_op->unlink)
3641                return -EPERM;
3642
3643        mutex_lock(&target->i_mutex);
3644        if (d_mountpoint(dentry))
3645                error = -EBUSY;
3646        else {
3647                error = security_inode_unlink(dir, dentry);
3648                if (!error) {
3649                        error = try_break_deleg(target, delegated_inode);
3650                        if (error)
3651                                goto out;
3652                        error = dir->i_op->unlink(dir, dentry);
3653                        if (!error)
3654                                dont_mount(dentry);
3655                }
3656        }
3657out:
3658        mutex_unlock(&target->i_mutex);
3659
3660        /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3661        if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3662                fsnotify_link_count(target);
3663                d_delete(dentry);
3664        }
3665
3666        return error;
3667}
3668
3669/*
3670 * Make sure that the actual truncation of the file will occur outside its
3671 * directory's i_mutex.  Truncate can take a long time if there is a lot of
3672 * writeout happening, and we don't want to prevent access to the directory
3673 * while waiting on the I/O.
3674 */
3675static long do_unlinkat(int dfd, const char __user *pathname)
3676{
3677        int error;
3678        struct filename *name;
3679        struct dentry *dentry;
3680        struct nameidata nd;
3681        struct inode *inode = NULL;
3682        struct inode *delegated_inode = NULL;
3683        unsigned int lookup_flags = 0;
3684retry:
3685        name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3686        if (IS_ERR(name))
3687                return PTR_ERR(name);
3688
3689        error = -EISDIR;
3690        if (nd.last_type != LAST_NORM)
3691                goto exit1;
3692
3693        nd.flags &= ~LOOKUP_PARENT;
3694        error = mnt_want_write(nd.path.mnt);
3695        if (error)
3696                goto exit1;
3697retry_deleg:
3698        mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3699        dentry = lookup_hash(&nd);
3700        error = PTR_ERR(dentry);
3701        if (!IS_ERR(dentry)) {
3702                /* Why not before? Because we want correct error value */
3703                if (nd.last.name[nd.last.len])
3704                        goto slashes;
3705                inode = dentry->d_inode;
3706                if (d_is_negative(dentry))
3707                        goto slashes;
3708                ihold(inode);
3709                error = security_path_unlink(&nd.path, dentry);
3710                if (error)
3711                        goto exit2;
3712                error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3713exit2:
3714                dput(dentry);
3715        }
3716        mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3717        if (inode)
3718                iput(inode);    /* truncate the inode here */
3719        inode = NULL;
3720        if (delegated_inode) {
3721                error = break_deleg_wait(&delegated_inode);
3722                if (!error)
3723                        goto retry_deleg;
3724        }
3725        mnt_drop_write(nd.path.mnt);
3726exit1:
3727        path_put(&nd.path);
3728        putname(name);
3729        if (retry_estale(error, lookup_flags)) {
3730                lookup_flags |= LOOKUP_REVAL;
3731                inode = NULL;
3732                goto retry;
3733        }
3734        return error;
3735
3736slashes:
3737        if (d_is_negative(dentry))
3738                error = -ENOENT;
3739        else if (d_is_directory(dentry) || d_is_autodir(dentry))
3740                error = -EISDIR;
3741        else
3742                error = -ENOTDIR;
3743        goto exit2;
3744}
3745
3746SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3747{
3748        if ((flag & ~AT_REMOVEDIR) != 0)
3749                return -EINVAL;
3750
3751        if (flag & AT_REMOVEDIR)
3752                return do_rmdir(dfd, pathname);
3753
3754        return do_unlinkat(dfd, pathname);
3755}
3756
3757SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3758{
3759        return do_unlinkat(AT_FDCWD, pathname);
3760}
3761
3762int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3763{
3764        int error = may_create(dir, dentry);
3765
3766        if (error)
3767                return error;
3768
3769        if (!dir->i_op->symlink)
3770                return -EPERM;
3771
3772        error = security_inode_symlink(dir, dentry, oldname);
3773        if (error)
3774                return error;
3775
3776        error = dir->i_op->symlink(dir, dentry, oldname);
3777        if (!error)
3778                fsnotify_create(dir, dentry);
3779        return error;
3780}
3781
3782SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3783                int, newdfd, const char __user *, newname)
3784{
3785        int error;
3786        struct filename *from;
3787        struct dentry *dentry;
3788        struct path path;
3789        unsigned int lookup_flags = 0;
3790
3791        from = getname(oldname);
3792        if (IS_ERR(from))
3793                return PTR_ERR(from);
3794retry:
3795        dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3796        error = PTR_ERR(dentry);
3797        if (IS_ERR(dentry))
3798                goto out_putname;
3799
3800        error = security_path_symlink(&path, dentry, from->name);
3801        if (!error)
3802                error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3803        done_path_create(&path, dentry);
3804        if (retry_estale(error, lookup_flags)) {
3805                lookup_flags |= LOOKUP_REVAL;
3806                goto retry;
3807        }
3808out_putname:
3809        putname(from);
3810        return error;
3811}
3812
3813SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3814{
3815        return sys_symlinkat(oldname, AT_FDCWD, newname);
3816}
3817
3818/**
3819 * vfs_link - create a new link
3820 * @old_dentry: object to be linked
3821 * @dir:        new parent
3822 * @new_dentry: where to create the new link
3823 * @delegated_inode: returns inode needing a delegation break
3824 *
3825 * The caller must hold dir->i_mutex
3826 *
3827 * If vfs_link discovers a delegation on the to-be-linked file in need
3828 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3829 * inode in delegated_inode.  The caller should then break the delegation
3830 * and retry.  Because breaking a delegation may take a long time, the
3831 * caller should drop the i_mutex before doing so.
3832 *
3833 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3834 * be appropriate for callers that expect the underlying filesystem not
3835 * to be NFS exported.
3836 */
3837int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3838{
3839        struct inode *inode = old_dentry->d_inode;
3840        unsigned max_links = dir->i_sb->s_max_links;
3841        int error;
3842
3843        if (!inode)
3844                return -ENOENT;
3845
3846        error = may_create(dir, new_dentry);
3847        if (error)
3848                return error;
3849
3850        if (dir->i_sb != inode->i_sb)
3851                return -EXDEV;
3852
3853        /*
3854         * A link to an append-only or immutable file cannot be created.
3855         */
3856        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3857                return -EPERM;
3858        if (!dir->i_op->link)
3859                return -EPERM;
3860        if (S_ISDIR(inode->i_mode))
3861                return -EPERM;
3862
3863        error = security_inode_link(old_dentry, dir, new_dentry);
3864        if (error)
3865                return error;
3866
3867        mutex_lock(&inode->i_mutex);
3868        /* Make sure we don't allow creating hardlink to an unlinked file */
3869        if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3870                error =  -ENOENT;
3871        else if (max_links && inode->i_nlink >= max_links)
3872                error = -EMLINK;
3873        else {
3874                error = try_break_deleg(inode, delegated_inode);
3875                if (!error)
3876                        error = dir->i_op->link(old_dentry, dir, new_dentry);
3877        }
3878
3879        if (!error && (inode->i_state & I_LINKABLE)) {
3880                spin_lock(&inode->i_lock);
3881                inode->i_state &= ~I_LINKABLE;
3882                spin_unlock(&inode->i_lock);
3883        }
3884        mutex_unlock(&inode->i_mutex);
3885        if (!error)
3886                fsnotify_link(dir, inode, new_dentry);
3887        return error;
3888}
3889
3890/*
3891 * Hardlinks are often used in delicate situations.  We avoid
3892 * security-related surprises by not following symlinks on the
3893 * newname.  --KAB
3894 *
3895 * We don't follow them on the oldname either to be compatible
3896 * with linux 2.0, and to avoid hard-linking to directories
3897 * and other special files.  --ADM
3898 */
3899SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3900                int, newdfd, const char __user *, newname, int, flags)
3901{
3902        struct dentry *new_dentry;
3903        struct path old_path, new_path;
3904        struct inode *delegated_inode = NULL;
3905        int how = 0;
3906        int error;
3907
3908        if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3909                return -EINVAL;
3910        /*
3911         * To use null names we require CAP_DAC_READ_SEARCH
3912         * This ensures that not everyone will be able to create
3913         * handlink using the passed filedescriptor.
3914         */
3915        if (flags & AT_EMPTY_PATH) {
3916                if (!capable(CAP_DAC_READ_SEARCH))
3917                        return -ENOENT;
3918                how = LOOKUP_EMPTY;
3919        }
3920
3921        if (flags & AT_SYMLINK_FOLLOW)
3922                how |= LOOKUP_FOLLOW;
3923retry:
3924        error = user_path_at(olddfd, oldname, how, &old_path);
3925        if (error)
3926                return error;
3927
3928        new_dentry = user_path_create(newdfd, newname, &new_path,
3929                                        (how & LOOKUP_REVAL));
3930        error = PTR_ERR(new_dentry);
3931        if (IS_ERR(new_dentry))
3932                goto out;
3933
3934        error = -EXDEV;
3935        if (old_path.mnt != new_path.mnt)
3936                goto out_dput;
3937        error = may_linkat(&old_path);
3938        if (unlikely(error))
3939                goto out_dput;
3940        error = security_path_link(old_path.dentry, &new_path, new_dentry);
3941        if (error)
3942                goto out_dput;
3943        error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3944out_dput:
3945        done_path_create(&new_path, new_dentry);
3946        if (delegated_inode) {
3947                error = break_deleg_wait(&delegated_inode);
3948                if (!error)
3949                        goto retry;
3950        }
3951        if (retry_estale(error, how)) {
3952                how |= LOOKUP_REVAL;
3953                goto retry;
3954        }
3955out:
3956        path_put(&old_path);
3957
3958        return error;
3959}
3960
3961SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3962{
3963        return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3964}
3965
3966/*
3967 * The worst of all namespace operations - renaming directory. "Perverted"
3968 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3969 * Problems:
3970 *      a) we can get into loop creation. Check is done in is_subdir().
3971 *      b) race potential - two innocent renames can create a loop together.
3972 *         That's where 4.4 screws up. Current fix: serialization on
3973 *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3974 *         story.
3975 *      c) we have to lock _four_ objects - parents and victim (if it exists),
3976 *         and source (if it is not a directory).
3977 *         And that - after we got ->i_mutex on parents (until then we don't know
3978 *         whether the target exists).  Solution: try to be smart with locking
3979 *         order for inodes.  We rely on the fact that tree topology may change
3980 *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
3981 *         move will be locked.  Thus we can rank directories by the tree
3982 *         (ancestors first) and rank all non-directories after them.
3983 *         That works since everybody except rename does "lock parent, lookup,
3984 *         lock child" and rename is under ->s_vfs_rename_mutex.
3985 *         HOWEVER, it relies on the assumption that any object with ->lookup()
3986 *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
3987 *         we'd better make sure that there's no link(2) for them.
3988 *      d) conversion from fhandle to dentry may come in the wrong moment - when
3989 *         we are removing the target. Solution: we will have to grab ->i_mutex
3990 *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3991 *         ->i_mutex on parents, which works but leads to some truly excessive
3992 *         locking].
3993 */
3994static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3995                          struct inode *new_dir, struct dentry *new_dentry)
3996{
3997        int error = 0;
3998        struct inode *target = new_dentry->d_inode;
3999        unsigned max_links = new_dir->i_sb->s_max_links;
4000
4001        /*
4002         * If we are going to change the parent - check write permissions,
4003         * we'll need to flip '..'.
4004         */
4005        if (new_dir != old_dir) {
4006                error = inode_permission(old_dentry->d_inode, MAY_WRITE);
4007                if (error)
4008                        return error;
4009        }
4010
4011        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4012        if (error)
4013                return error;
4014
4015        dget(new_dentry);
4016        if (target)
4017                mutex_lock(&target->i_mutex);
4018
4019        error = -EBUSY;
4020        if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4021                goto out;
4022
4023        error = -EMLINK;
4024        if (max_links && !target && new_dir != old_dir &&
4025            new_dir->i_nlink >= max_links)
4026                goto out;
4027
4028        if (target)
4029                shrink_dcache_parent(new_dentry);
4030        error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4031        if (error)
4032                goto out;
4033
4034        if (target) {
4035                target->i_flags |= S_DEAD;
4036                dont_mount(new_dentry);
4037        }
4038out:
4039        if (target)
4040                mutex_unlock(&target->i_mutex);
4041        dput(new_dentry);
4042        if (!error)
4043                if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4044                        d_move(old_dentry,new_dentry);
4045        return error;
4046}
4047
4048static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4049                            struct inode *new_dir, struct dentry *new_dentry,
4050                            struct inode **delegated_inode)
4051{
4052        struct inode *target = new_dentry->d_inode;
4053        struct inode *source = old_dentry->d_inode;
4054        int error;
4055
4056        error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4057        if (error)
4058                return error;
4059
4060        dget(new_dentry);
4061        lock_two_nondirectories(source, target);
4062
4063        error = -EBUSY;
4064        if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4065                goto out;
4066
4067        error = try_break_deleg(source, delegated_inode);
4068        if (error)
4069                goto out;
4070        if (target) {
4071                error = try_break_deleg(target, delegated_inode);
4072                if (error)
4073                        goto out;
4074        }
4075        error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4076        if (error)
4077                goto out;
4078
4079        if (target)
4080                dont_mount(new_dentry);
4081        if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4082                d_move(old_dentry, new_dentry);
4083out:
4084        unlock_two_nondirectories(source, target);
4085        dput(new_dentry);
4086        return error;
4087}
4088
4089/**
4090 * vfs_rename - rename a filesystem object
4091 * @old_dir:    parent of source
4092 * @old_dentry: source
4093 * @new_dir:    parent of destination
4094 * @new_dentry: destination
4095 * @delegated_inode: returns an inode needing a delegation break
4096 *
4097 * The caller must hold multiple mutexes--see lock_rename()).
4098 *
4099 * If vfs_rename discovers a delegation in need of breaking at either
4100 * the source or destination, it will return -EWOULDBLOCK and return a
4101 * reference to the inode in delegated_inode.  The caller should then
4102 * break the delegation and retry.  Because breaking a delegation may
4103 * take a long time, the caller should drop all locks before doing
4104 * so.
4105 *
4106 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4107 * be appropriate for callers that expect the underlying filesystem not
4108 * to be NFS exported.
4109 */
4110int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4111               struct inode *new_dir, struct dentry *new_dentry,
4112               struct inode **delegated_inode)
4113{
4114        int error;
4115        int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4116        const unsigned char *old_name;
4117
4118        if (old_dentry->d_inode == new_dentry->d_inode)
4119                return 0;
4120 
4121        error = may_delete(old_dir, old_dentry, is_dir);
4122        if (error)
4123                return error;
4124
4125        if (!new_dentry->d_inode)
4126                error = may_create(new_dir, new_dentry);
4127        else
4128                error = may_delete(new_dir, new_dentry, is_dir);
4129        if (error)
4130                return error;
4131
4132        if (!old_dir->i_op->rename)
4133                return -EPERM;
4134
4135        old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4136
4137        if (is_dir)
4138                error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4139        else
4140                error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4141        if (!error)
4142                fsnotify_move(old_dir, new_dir, old_name, is_dir,
4143                              new_dentry->d_inode, old_dentry);
4144        fsnotify_oldname_free(old_name);
4145
4146        return error;
4147}
4148
4149SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4150                int, newdfd, const char __user *, newname)
4151{
4152        struct dentry *old_dir, *new_dir;
4153        struct dentry *old_dentry, *new_dentry;
4154        struct dentry *trap;
4155        struct nameidata oldnd, newnd;
4156        struct inode *delegated_inode = NULL;
4157        struct filename *from;
4158        struct filename *to;
4159        unsigned int lookup_flags = 0;
4160        bool should_retry = false;
4161        int error;
4162retry:
4163        from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4164        if (IS_ERR(from)) {
4165                error = PTR_ERR(from);
4166                goto exit;
4167        }
4168
4169        to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4170        if (IS_ERR(to)) {
4171                error = PTR_ERR(to);
4172                goto exit1;
4173        }
4174
4175        error = -EXDEV;
4176        if (oldnd.path.mnt != newnd.path.mnt)
4177                goto exit2;
4178
4179        old_dir = oldnd.path.dentry;
4180        error = -EBUSY;
4181        if (oldnd.last_type != LAST_NORM)
4182                goto exit2;
4183
4184        new_dir = newnd.path.dentry;
4185        if (newnd.last_type != LAST_NORM)
4186                goto exit2;
4187
4188        error = mnt_want_write(oldnd.path.mnt);
4189        if (error)
4190                goto exit2;
4191
4192        oldnd.flags &= ~LOOKUP_PARENT;
4193        newnd.flags &= ~LOOKUP_PARENT;
4194        newnd.flags |= LOOKUP_RENAME_TARGET;
4195
4196retry_deleg:
4197        trap = lock_rename(new_dir, old_dir);
4198
4199        old_dentry = lookup_hash(&oldnd);
4200        error = PTR_ERR(old_dentry);
4201        if (IS_ERR(old_dentry))
4202                goto exit3;
4203        /* source must exist */
4204        error = -ENOENT;
4205        if (d_is_negative(old_dentry))
4206                goto exit4;
4207        /* unless the source is a directory trailing slashes give -ENOTDIR */
4208        if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4209                error = -ENOTDIR;
4210                if (oldnd.last.name[oldnd.last.len])
4211                        goto exit4;
4212                if (newnd.last.name[newnd.last.len])
4213                        goto exit4;
4214        }
4215        /* source should not be ancestor of target */
4216        error = -EINVAL;
4217        if (old_dentry == trap)
4218                goto exit4;
4219        new_dentry = lookup_hash(&newnd);
4220        error = PTR_ERR(new_dentry);
4221        if (IS_ERR(new_dentry))
4222                goto exit4;
4223        /* target should not be an ancestor of source */
4224        error = -ENOTEMPTY;
4225        if (new_dentry == trap)
4226                goto exit5;
4227
4228        error = security_path_rename(&oldnd.path, old_dentry,
4229                                     &newnd.path, new_dentry);
4230        if (error)
4231                goto exit5;
4232        error = vfs_rename(old_dir->d_inode, old_dentry,
4233                                   new_dir->d_inode, new_dentry,
4234                                   &delegated_inode);
4235exit5:
4236        dput(new_dentry);
4237exit4:
4238        dput(old_dentry);
4239exit3:
4240        unlock_rename(new_dir, old_dir);
4241        if (delegated_inode) {
4242                error = break_deleg_wait(&delegated_inode);
4243                if (!error)
4244                        goto retry_deleg;
4245        }
4246        mnt_drop_write(oldnd.path.mnt);
4247exit2:
4248        if (retry_estale(error, lookup_flags))
4249                should_retry = true;
4250        path_put(&newnd.path);
4251        putname(to);
4252exit1:
4253        path_put(&oldnd.path);
4254        putname(from);
4255        if (should_retry) {
4256                should_retry = false;
4257                lookup_flags |= LOOKUP_REVAL;
4258                goto retry;
4259        }
4260exit:
4261        return error;
4262}
4263
4264SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4265{
4266        return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4267}
4268
4269int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4270{
4271        int len;
4272
4273        len = PTR_ERR(link);
4274        if (IS_ERR(link))
4275                goto out;
4276
4277        len = strlen(link);
4278        if (len > (unsigned) buflen)
4279                len = buflen;
4280        if (copy_to_user(buffer, link, len))
4281                len = -EFAULT;
4282out:
4283        return len;
4284}
4285
4286/*
4287 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4288 * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4289 * using) it for any given inode is up to filesystem.
4290 */
4291int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4292{
4293        struct nameidata nd;
4294        void *cookie;
4295        int res;
4296
4297        nd.depth = 0;
4298        cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4299        if (IS_ERR(cookie))
4300                return PTR_ERR(cookie);
4301
4302        res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4303        if (dentry->d_inode->i_op->put_link)
4304                dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4305        return res;
4306}
4307
4308/* get the link contents into pagecache */
4309static char *page_getlink(struct dentry * dentry, struct page **ppage)
4310{
4311        char *kaddr;
4312        struct page *page;
4313        struct address_space *mapping = dentry->d_inode->i_mapping;
4314        page = read_mapping_page(mapping, 0, NULL);
4315        if (IS_ERR(page))
4316                return (char*)page;
4317        *ppage = page;
4318        kaddr = kmap(page);
4319        nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4320        return kaddr;
4321}
4322
4323int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4324{
4325        struct page *page = NULL;
4326        char *s = page_getlink(dentry, &page);
4327        int res = vfs_readlink(dentry,buffer,buflen,s);
4328        if (page) {
4329                kunmap(page);
4330                page_cache_release(page);
4331        }
4332        return res;
4333}
4334
4335void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4336{
4337        struct page *page = NULL;
4338        nd_set_link(nd, page_getlink(dentry, &page));
4339        return page;
4340}
4341
4342void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4343{
4344        struct page *page = cookie;
4345
4346        if (page) {
4347                kunmap(page);
4348                page_cache_release(page);
4349        }
4350}
4351
4352/*
4353 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4354 */
4355int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4356{
4357        struct address_space *mapping = inode->i_mapping;
4358        struct page *page;
4359        void *fsdata;
4360        int err;
4361        char *kaddr;
4362        unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4363        if (nofs)
4364                flags |= AOP_FLAG_NOFS;
4365
4366retry:
4367        err = pagecache_write_begin(NULL, mapping, 0, len-1,
4368                                flags, &page, &fsdata);
4369        if (err)
4370                goto fail;
4371
4372        kaddr = kmap_atomic(page);
4373        memcpy(kaddr, symname, len-1);
4374        kunmap_atomic(kaddr);
4375
4376        err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4377                                                        page, fsdata);
4378        if (err < 0)
4379                goto fail;
4380        if (err < len-1)
4381                goto retry;
4382
4383        mark_inode_dirty(inode);
4384        return 0;
4385fail:
4386        return err;
4387}
4388
4389int page_symlink(struct inode *inode, const char *symname, int len)
4390{
4391        return __page_symlink(inode, symname, len,
4392                        !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4393}
4394
4395const struct inode_operations page_symlink_inode_operations = {
4396        .readlink       = generic_readlink,
4397        .follow_link    = page_follow_link_light,
4398        .put_link       = page_put_link,
4399};
4400
4401EXPORT_SYMBOL(user_path_at);
4402EXPORT_SYMBOL(follow_down_one);
4403EXPORT_SYMBOL(follow_down);
4404EXPORT_SYMBOL(follow_up);
4405EXPORT_SYMBOL(get_write_access); /* nfsd */
4406EXPORT_SYMBOL(lock_rename);
4407EXPORT_SYMBOL(lookup_one_len);
4408EXPORT_SYMBOL(page_follow_link_light);
4409EXPORT_SYMBOL(page_put_link);
4410EXPORT_SYMBOL(page_readlink);
4411EXPORT_SYMBOL(__page_symlink);
4412EXPORT_SYMBOL(page_symlink);
4413EXPORT_SYMBOL(page_symlink_inode_operations);
4414EXPORT_SYMBOL(kern_path);
4415EXPORT_SYMBOL(vfs_path_lookup);
4416EXPORT_SYMBOL(inode_permission);
4417EXPORT_SYMBOL(unlock_rename);
4418EXPORT_SYMBOL(vfs_create);
4419EXPORT_SYMBOL(vfs_link);
4420EXPORT_SYMBOL(vfs_mkdir);
4421EXPORT_SYMBOL(vfs_mknod);
4422EXPORT_SYMBOL(generic_permission);
4423EXPORT_SYMBOL(vfs_readlink);
4424EXPORT_SYMBOL(vfs_rename);
4425EXPORT_SYMBOL(vfs_rmdir);
4426EXPORT_SYMBOL(vfs_symlink);
4427EXPORT_SYMBOL(vfs_unlink);
4428EXPORT_SYMBOL(dentry_unhash);
4429EXPORT_SYMBOL(generic_readlink);
4430