linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_inum.h"
  27#include "xfs_sb.h"
  28#include "xfs_ag.h"
  29#include "xfs_mount.h"
  30#include "xfs_inode.h"
  31#include "xfs_da_format.h"
  32#include "xfs_da_btree.h"
  33#include "xfs_dir2.h"
  34#include "xfs_attr_sf.h"
  35#include "xfs_attr.h"
  36#include "xfs_trans_space.h"
  37#include "xfs_trans.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_inode_item.h"
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
  42#include "xfs_bmap_util.h"
  43#include "xfs_error.h"
  44#include "xfs_quota.h"
  45#include "xfs_dinode.h"
  46#include "xfs_filestream.h"
  47#include "xfs_cksum.h"
  48#include "xfs_trace.h"
  49#include "xfs_icache.h"
  50#include "xfs_symlink.h"
  51#include "xfs_trans_priv.h"
  52#include "xfs_log.h"
  53#include "xfs_bmap_btree.h"
  54
  55kmem_zone_t *xfs_inode_zone;
  56
  57/*
  58 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  59 * freed from a file in a single transaction.
  60 */
  61#define XFS_ITRUNC_MAX_EXTENTS  2
  62
  63STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  64
  65/*
  66 * helper function to extract extent size hint from inode
  67 */
  68xfs_extlen_t
  69xfs_get_extsz_hint(
  70        struct xfs_inode        *ip)
  71{
  72        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  73                return ip->i_d.di_extsize;
  74        if (XFS_IS_REALTIME_INODE(ip))
  75                return ip->i_mount->m_sb.sb_rextsize;
  76        return 0;
  77}
  78
  79/*
  80 * This is a wrapper routine around the xfs_ilock() routine used to centralize
  81 * some grungy code.  It is used in places that wish to lock the inode solely
  82 * for reading the extents.  The reason these places can't just call
  83 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
  84 * extents from disk for a file in b-tree format.  If the inode is in b-tree
  85 * format, then we need to lock the inode exclusively until the extents are read
  86 * in.  Locking it exclusively all the time would limit our parallelism
  87 * unnecessarily, though.  What we do instead is check to see if the extents
  88 * have been read in yet, and only lock the inode exclusively if they have not.
  89 *
  90 * The function returns a value which should be given to the corresponding
  91 * xfs_iunlock_map_shared().  This value is the mode in which the lock was
  92 * actually taken.
  93 */
  94uint
  95xfs_ilock_map_shared(
  96        xfs_inode_t     *ip)
  97{
  98        uint    lock_mode;
  99
 100        if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
 101            ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
 102                lock_mode = XFS_ILOCK_EXCL;
 103        } else {
 104                lock_mode = XFS_ILOCK_SHARED;
 105        }
 106
 107        xfs_ilock(ip, lock_mode);
 108
 109        return lock_mode;
 110}
 111
 112/*
 113 * This is simply the unlock routine to go with xfs_ilock_map_shared().
 114 * All it does is call xfs_iunlock() with the given lock_mode.
 115 */
 116void
 117xfs_iunlock_map_shared(
 118        xfs_inode_t     *ip,
 119        unsigned int    lock_mode)
 120{
 121        xfs_iunlock(ip, lock_mode);
 122}
 123
 124/*
 125 * The xfs inode contains 2 locks: a multi-reader lock called the
 126 * i_iolock and a multi-reader lock called the i_lock.  This routine
 127 * allows either or both of the locks to be obtained.
 128 *
 129 * The 2 locks should always be ordered so that the IO lock is
 130 * obtained first in order to prevent deadlock.
 131 *
 132 * ip -- the inode being locked
 133 * lock_flags -- this parameter indicates the inode's locks
 134 *       to be locked.  It can be:
 135 *              XFS_IOLOCK_SHARED,
 136 *              XFS_IOLOCK_EXCL,
 137 *              XFS_ILOCK_SHARED,
 138 *              XFS_ILOCK_EXCL,
 139 *              XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
 140 *              XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
 141 *              XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
 142 *              XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
 143 */
 144void
 145xfs_ilock(
 146        xfs_inode_t             *ip,
 147        uint                    lock_flags)
 148{
 149        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 150
 151        /*
 152         * You can't set both SHARED and EXCL for the same lock,
 153         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 154         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 155         */
 156        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 157               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 158        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 159               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 160        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 161
 162        if (lock_flags & XFS_IOLOCK_EXCL)
 163                mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 164        else if (lock_flags & XFS_IOLOCK_SHARED)
 165                mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 166
 167        if (lock_flags & XFS_ILOCK_EXCL)
 168                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 169        else if (lock_flags & XFS_ILOCK_SHARED)
 170                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 171}
 172
 173/*
 174 * This is just like xfs_ilock(), except that the caller
 175 * is guaranteed not to sleep.  It returns 1 if it gets
 176 * the requested locks and 0 otherwise.  If the IO lock is
 177 * obtained but the inode lock cannot be, then the IO lock
 178 * is dropped before returning.
 179 *
 180 * ip -- the inode being locked
 181 * lock_flags -- this parameter indicates the inode's locks to be
 182 *       to be locked.  See the comment for xfs_ilock() for a list
 183 *       of valid values.
 184 */
 185int
 186xfs_ilock_nowait(
 187        xfs_inode_t             *ip,
 188        uint                    lock_flags)
 189{
 190        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 191
 192        /*
 193         * You can't set both SHARED and EXCL for the same lock,
 194         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 195         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 196         */
 197        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 198               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 199        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 200               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 201        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 202
 203        if (lock_flags & XFS_IOLOCK_EXCL) {
 204                if (!mrtryupdate(&ip->i_iolock))
 205                        goto out;
 206        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 207                if (!mrtryaccess(&ip->i_iolock))
 208                        goto out;
 209        }
 210        if (lock_flags & XFS_ILOCK_EXCL) {
 211                if (!mrtryupdate(&ip->i_lock))
 212                        goto out_undo_iolock;
 213        } else if (lock_flags & XFS_ILOCK_SHARED) {
 214                if (!mrtryaccess(&ip->i_lock))
 215                        goto out_undo_iolock;
 216        }
 217        return 1;
 218
 219 out_undo_iolock:
 220        if (lock_flags & XFS_IOLOCK_EXCL)
 221                mrunlock_excl(&ip->i_iolock);
 222        else if (lock_flags & XFS_IOLOCK_SHARED)
 223                mrunlock_shared(&ip->i_iolock);
 224 out:
 225        return 0;
 226}
 227
 228/*
 229 * xfs_iunlock() is used to drop the inode locks acquired with
 230 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 231 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 232 * that we know which locks to drop.
 233 *
 234 * ip -- the inode being unlocked
 235 * lock_flags -- this parameter indicates the inode's locks to be
 236 *       to be unlocked.  See the comment for xfs_ilock() for a list
 237 *       of valid values for this parameter.
 238 *
 239 */
 240void
 241xfs_iunlock(
 242        xfs_inode_t             *ip,
 243        uint                    lock_flags)
 244{
 245        /*
 246         * You can't set both SHARED and EXCL for the same lock,
 247         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 248         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 249         */
 250        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 251               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 252        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 253               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 254        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
 255        ASSERT(lock_flags != 0);
 256
 257        if (lock_flags & XFS_IOLOCK_EXCL)
 258                mrunlock_excl(&ip->i_iolock);
 259        else if (lock_flags & XFS_IOLOCK_SHARED)
 260                mrunlock_shared(&ip->i_iolock);
 261
 262        if (lock_flags & XFS_ILOCK_EXCL)
 263                mrunlock_excl(&ip->i_lock);
 264        else if (lock_flags & XFS_ILOCK_SHARED)
 265                mrunlock_shared(&ip->i_lock);
 266
 267        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 268}
 269
 270/*
 271 * give up write locks.  the i/o lock cannot be held nested
 272 * if it is being demoted.
 273 */
 274void
 275xfs_ilock_demote(
 276        xfs_inode_t             *ip,
 277        uint                    lock_flags)
 278{
 279        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
 280        ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 281
 282        if (lock_flags & XFS_ILOCK_EXCL)
 283                mrdemote(&ip->i_lock);
 284        if (lock_flags & XFS_IOLOCK_EXCL)
 285                mrdemote(&ip->i_iolock);
 286
 287        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 288}
 289
 290#if defined(DEBUG) || defined(XFS_WARN)
 291int
 292xfs_isilocked(
 293        xfs_inode_t             *ip,
 294        uint                    lock_flags)
 295{
 296        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 297                if (!(lock_flags & XFS_ILOCK_SHARED))
 298                        return !!ip->i_lock.mr_writer;
 299                return rwsem_is_locked(&ip->i_lock.mr_lock);
 300        }
 301
 302        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 303                if (!(lock_flags & XFS_IOLOCK_SHARED))
 304                        return !!ip->i_iolock.mr_writer;
 305                return rwsem_is_locked(&ip->i_iolock.mr_lock);
 306        }
 307
 308        ASSERT(0);
 309        return 0;
 310}
 311#endif
 312
 313#ifdef DEBUG
 314int xfs_locked_n;
 315int xfs_small_retries;
 316int xfs_middle_retries;
 317int xfs_lots_retries;
 318int xfs_lock_delays;
 319#endif
 320
 321/*
 322 * Bump the subclass so xfs_lock_inodes() acquires each lock with
 323 * a different value
 324 */
 325static inline int
 326xfs_lock_inumorder(int lock_mode, int subclass)
 327{
 328        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
 329                lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
 330        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
 331                lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
 332
 333        return lock_mode;
 334}
 335
 336/*
 337 * The following routine will lock n inodes in exclusive mode.
 338 * We assume the caller calls us with the inodes in i_ino order.
 339 *
 340 * We need to detect deadlock where an inode that we lock
 341 * is in the AIL and we start waiting for another inode that is locked
 342 * by a thread in a long running transaction (such as truncate). This can
 343 * result in deadlock since the long running trans might need to wait
 344 * for the inode we just locked in order to push the tail and free space
 345 * in the log.
 346 */
 347void
 348xfs_lock_inodes(
 349        xfs_inode_t     **ips,
 350        int             inodes,
 351        uint            lock_mode)
 352{
 353        int             attempts = 0, i, j, try_lock;
 354        xfs_log_item_t  *lp;
 355
 356        ASSERT(ips && (inodes >= 2)); /* we need at least two */
 357
 358        try_lock = 0;
 359        i = 0;
 360
 361again:
 362        for (; i < inodes; i++) {
 363                ASSERT(ips[i]);
 364
 365                if (i && (ips[i] == ips[i-1]))  /* Already locked */
 366                        continue;
 367
 368                /*
 369                 * If try_lock is not set yet, make sure all locked inodes
 370                 * are not in the AIL.
 371                 * If any are, set try_lock to be used later.
 372                 */
 373
 374                if (!try_lock) {
 375                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 376                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 377                                if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 378                                        try_lock++;
 379                                }
 380                        }
 381                }
 382
 383                /*
 384                 * If any of the previous locks we have locked is in the AIL,
 385                 * we must TRY to get the second and subsequent locks. If
 386                 * we can't get any, we must release all we have
 387                 * and try again.
 388                 */
 389
 390                if (try_lock) {
 391                        /* try_lock must be 0 if i is 0. */
 392                        /*
 393                         * try_lock means we have an inode locked
 394                         * that is in the AIL.
 395                         */
 396                        ASSERT(i != 0);
 397                        if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
 398                                attempts++;
 399
 400                                /*
 401                                 * Unlock all previous guys and try again.
 402                                 * xfs_iunlock will try to push the tail
 403                                 * if the inode is in the AIL.
 404                                 */
 405
 406                                for(j = i - 1; j >= 0; j--) {
 407
 408                                        /*
 409                                         * Check to see if we've already
 410                                         * unlocked this one.
 411                                         * Not the first one going back,
 412                                         * and the inode ptr is the same.
 413                                         */
 414                                        if ((j != (i - 1)) && ips[j] ==
 415                                                                ips[j+1])
 416                                                continue;
 417
 418                                        xfs_iunlock(ips[j], lock_mode);
 419                                }
 420
 421                                if ((attempts % 5) == 0) {
 422                                        delay(1); /* Don't just spin the CPU */
 423#ifdef DEBUG
 424                                        xfs_lock_delays++;
 425#endif
 426                                }
 427                                i = 0;
 428                                try_lock = 0;
 429                                goto again;
 430                        }
 431                } else {
 432                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 433                }
 434        }
 435
 436#ifdef DEBUG
 437        if (attempts) {
 438                if (attempts < 5) xfs_small_retries++;
 439                else if (attempts < 100) xfs_middle_retries++;
 440                else xfs_lots_retries++;
 441        } else {
 442                xfs_locked_n++;
 443        }
 444#endif
 445}
 446
 447/*
 448 * xfs_lock_two_inodes() can only be used to lock one type of lock
 449 * at a time - the iolock or the ilock, but not both at once. If
 450 * we lock both at once, lockdep will report false positives saying
 451 * we have violated locking orders.
 452 */
 453void
 454xfs_lock_two_inodes(
 455        xfs_inode_t             *ip0,
 456        xfs_inode_t             *ip1,
 457        uint                    lock_mode)
 458{
 459        xfs_inode_t             *temp;
 460        int                     attempts = 0;
 461        xfs_log_item_t          *lp;
 462
 463        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
 464                ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
 465        ASSERT(ip0->i_ino != ip1->i_ino);
 466
 467        if (ip0->i_ino > ip1->i_ino) {
 468                temp = ip0;
 469                ip0 = ip1;
 470                ip1 = temp;
 471        }
 472
 473 again:
 474        xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 475
 476        /*
 477         * If the first lock we have locked is in the AIL, we must TRY to get
 478         * the second lock. If we can't get it, we must release the first one
 479         * and try again.
 480         */
 481        lp = (xfs_log_item_t *)ip0->i_itemp;
 482        if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 483                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 484                        xfs_iunlock(ip0, lock_mode);
 485                        if ((++attempts % 5) == 0)
 486                                delay(1); /* Don't just spin the CPU */
 487                        goto again;
 488                }
 489        } else {
 490                xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 491        }
 492}
 493
 494
 495void
 496__xfs_iflock(
 497        struct xfs_inode        *ip)
 498{
 499        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 500        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 501
 502        do {
 503                prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 504                if (xfs_isiflocked(ip))
 505                        io_schedule();
 506        } while (!xfs_iflock_nowait(ip));
 507
 508        finish_wait(wq, &wait.wait);
 509}
 510
 511STATIC uint
 512_xfs_dic2xflags(
 513        __uint16_t              di_flags)
 514{
 515        uint                    flags = 0;
 516
 517        if (di_flags & XFS_DIFLAG_ANY) {
 518                if (di_flags & XFS_DIFLAG_REALTIME)
 519                        flags |= XFS_XFLAG_REALTIME;
 520                if (di_flags & XFS_DIFLAG_PREALLOC)
 521                        flags |= XFS_XFLAG_PREALLOC;
 522                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 523                        flags |= XFS_XFLAG_IMMUTABLE;
 524                if (di_flags & XFS_DIFLAG_APPEND)
 525                        flags |= XFS_XFLAG_APPEND;
 526                if (di_flags & XFS_DIFLAG_SYNC)
 527                        flags |= XFS_XFLAG_SYNC;
 528                if (di_flags & XFS_DIFLAG_NOATIME)
 529                        flags |= XFS_XFLAG_NOATIME;
 530                if (di_flags & XFS_DIFLAG_NODUMP)
 531                        flags |= XFS_XFLAG_NODUMP;
 532                if (di_flags & XFS_DIFLAG_RTINHERIT)
 533                        flags |= XFS_XFLAG_RTINHERIT;
 534                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 535                        flags |= XFS_XFLAG_PROJINHERIT;
 536                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 537                        flags |= XFS_XFLAG_NOSYMLINKS;
 538                if (di_flags & XFS_DIFLAG_EXTSIZE)
 539                        flags |= XFS_XFLAG_EXTSIZE;
 540                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 541                        flags |= XFS_XFLAG_EXTSZINHERIT;
 542                if (di_flags & XFS_DIFLAG_NODEFRAG)
 543                        flags |= XFS_XFLAG_NODEFRAG;
 544                if (di_flags & XFS_DIFLAG_FILESTREAM)
 545                        flags |= XFS_XFLAG_FILESTREAM;
 546        }
 547
 548        return flags;
 549}
 550
 551uint
 552xfs_ip2xflags(
 553        xfs_inode_t             *ip)
 554{
 555        xfs_icdinode_t          *dic = &ip->i_d;
 556
 557        return _xfs_dic2xflags(dic->di_flags) |
 558                                (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 559}
 560
 561uint
 562xfs_dic2xflags(
 563        xfs_dinode_t            *dip)
 564{
 565        return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 566                                (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 567}
 568
 569/*
 570 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 571 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 572 * ci_name->name will point to a the actual name (caller must free) or
 573 * will be set to NULL if an exact match is found.
 574 */
 575int
 576xfs_lookup(
 577        xfs_inode_t             *dp,
 578        struct xfs_name         *name,
 579        xfs_inode_t             **ipp,
 580        struct xfs_name         *ci_name)
 581{
 582        xfs_ino_t               inum;
 583        int                     error;
 584        uint                    lock_mode;
 585
 586        trace_xfs_lookup(dp, name);
 587
 588        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 589                return XFS_ERROR(EIO);
 590
 591        lock_mode = xfs_ilock_map_shared(dp);
 592        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 593        xfs_iunlock_map_shared(dp, lock_mode);
 594
 595        if (error)
 596                goto out;
 597
 598        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 599        if (error)
 600                goto out_free_name;
 601
 602        return 0;
 603
 604out_free_name:
 605        if (ci_name)
 606                kmem_free(ci_name->name);
 607out:
 608        *ipp = NULL;
 609        return error;
 610}
 611
 612/*
 613 * Allocate an inode on disk and return a copy of its in-core version.
 614 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 615 * appropriately within the inode.  The uid and gid for the inode are
 616 * set according to the contents of the given cred structure.
 617 *
 618 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 619 * has a free inode available, call xfs_iget() to obtain the in-core
 620 * version of the allocated inode.  Finally, fill in the inode and
 621 * log its initial contents.  In this case, ialloc_context would be
 622 * set to NULL.
 623 *
 624 * If xfs_dialloc() does not have an available inode, it will replenish
 625 * its supply by doing an allocation. Since we can only do one
 626 * allocation within a transaction without deadlocks, we must commit
 627 * the current transaction before returning the inode itself.
 628 * In this case, therefore, we will set ialloc_context and return.
 629 * The caller should then commit the current transaction, start a new
 630 * transaction, and call xfs_ialloc() again to actually get the inode.
 631 *
 632 * To ensure that some other process does not grab the inode that
 633 * was allocated during the first call to xfs_ialloc(), this routine
 634 * also returns the [locked] bp pointing to the head of the freelist
 635 * as ialloc_context.  The caller should hold this buffer across
 636 * the commit and pass it back into this routine on the second call.
 637 *
 638 * If we are allocating quota inodes, we do not have a parent inode
 639 * to attach to or associate with (i.e. pip == NULL) because they
 640 * are not linked into the directory structure - they are attached
 641 * directly to the superblock - and so have no parent.
 642 */
 643int
 644xfs_ialloc(
 645        xfs_trans_t     *tp,
 646        xfs_inode_t     *pip,
 647        umode_t         mode,
 648        xfs_nlink_t     nlink,
 649        xfs_dev_t       rdev,
 650        prid_t          prid,
 651        int             okalloc,
 652        xfs_buf_t       **ialloc_context,
 653        xfs_inode_t     **ipp)
 654{
 655        struct xfs_mount *mp = tp->t_mountp;
 656        xfs_ino_t       ino;
 657        xfs_inode_t     *ip;
 658        uint            flags;
 659        int             error;
 660        timespec_t      tv;
 661        int             filestreams = 0;
 662
 663        /*
 664         * Call the space management code to pick
 665         * the on-disk inode to be allocated.
 666         */
 667        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 668                            ialloc_context, &ino);
 669        if (error)
 670                return error;
 671        if (*ialloc_context || ino == NULLFSINO) {
 672                *ipp = NULL;
 673                return 0;
 674        }
 675        ASSERT(*ialloc_context == NULL);
 676
 677        /*
 678         * Get the in-core inode with the lock held exclusively.
 679         * This is because we're setting fields here we need
 680         * to prevent others from looking at until we're done.
 681         */
 682        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 683                         XFS_ILOCK_EXCL, &ip);
 684        if (error)
 685                return error;
 686        ASSERT(ip != NULL);
 687
 688        ip->i_d.di_mode = mode;
 689        ip->i_d.di_onlink = 0;
 690        ip->i_d.di_nlink = nlink;
 691        ASSERT(ip->i_d.di_nlink == nlink);
 692        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 693        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 694        xfs_set_projid(ip, prid);
 695        memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 696
 697        /*
 698         * If the superblock version is up to where we support new format
 699         * inodes and this is currently an old format inode, then change
 700         * the inode version number now.  This way we only do the conversion
 701         * here rather than here and in the flush/logging code.
 702         */
 703        if (xfs_sb_version_hasnlink(&mp->m_sb) &&
 704            ip->i_d.di_version == 1) {
 705                ip->i_d.di_version = 2;
 706                /*
 707                 * We've already zeroed the old link count, the projid field,
 708                 * and the pad field.
 709                 */
 710        }
 711
 712        /*
 713         * Project ids won't be stored on disk if we are using a version 1 inode.
 714         */
 715        if ((prid != 0) && (ip->i_d.di_version == 1))
 716                xfs_bump_ino_vers2(tp, ip);
 717
 718        if (pip && XFS_INHERIT_GID(pip)) {
 719                ip->i_d.di_gid = pip->i_d.di_gid;
 720                if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
 721                        ip->i_d.di_mode |= S_ISGID;
 722                }
 723        }
 724
 725        /*
 726         * If the group ID of the new file does not match the effective group
 727         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 728         * (and only if the irix_sgid_inherit compatibility variable is set).
 729         */
 730        if ((irix_sgid_inherit) &&
 731            (ip->i_d.di_mode & S_ISGID) &&
 732            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
 733                ip->i_d.di_mode &= ~S_ISGID;
 734        }
 735
 736        ip->i_d.di_size = 0;
 737        ip->i_d.di_nextents = 0;
 738        ASSERT(ip->i_d.di_nblocks == 0);
 739
 740        nanotime(&tv);
 741        ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
 742        ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
 743        ip->i_d.di_atime = ip->i_d.di_mtime;
 744        ip->i_d.di_ctime = ip->i_d.di_mtime;
 745
 746        /*
 747         * di_gen will have been taken care of in xfs_iread.
 748         */
 749        ip->i_d.di_extsize = 0;
 750        ip->i_d.di_dmevmask = 0;
 751        ip->i_d.di_dmstate = 0;
 752        ip->i_d.di_flags = 0;
 753
 754        if (ip->i_d.di_version == 3) {
 755                ASSERT(ip->i_d.di_ino == ino);
 756                ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
 757                ip->i_d.di_crc = 0;
 758                ip->i_d.di_changecount = 1;
 759                ip->i_d.di_lsn = 0;
 760                ip->i_d.di_flags2 = 0;
 761                memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
 762                ip->i_d.di_crtime = ip->i_d.di_mtime;
 763        }
 764
 765
 766        flags = XFS_ILOG_CORE;
 767        switch (mode & S_IFMT) {
 768        case S_IFIFO:
 769        case S_IFCHR:
 770        case S_IFBLK:
 771        case S_IFSOCK:
 772                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 773                ip->i_df.if_u2.if_rdev = rdev;
 774                ip->i_df.if_flags = 0;
 775                flags |= XFS_ILOG_DEV;
 776                break;
 777        case S_IFREG:
 778                /*
 779                 * we can't set up filestreams until after the VFS inode
 780                 * is set up properly.
 781                 */
 782                if (pip && xfs_inode_is_filestream(pip))
 783                        filestreams = 1;
 784                /* fall through */
 785        case S_IFDIR:
 786                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 787                        uint    di_flags = 0;
 788
 789                        if (S_ISDIR(mode)) {
 790                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 791                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 792                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 793                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 794                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 795                                }
 796                        } else if (S_ISREG(mode)) {
 797                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 798                                        di_flags |= XFS_DIFLAG_REALTIME;
 799                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 800                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 801                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 802                                }
 803                        }
 804                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 805                            xfs_inherit_noatime)
 806                                di_flags |= XFS_DIFLAG_NOATIME;
 807                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 808                            xfs_inherit_nodump)
 809                                di_flags |= XFS_DIFLAG_NODUMP;
 810                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 811                            xfs_inherit_sync)
 812                                di_flags |= XFS_DIFLAG_SYNC;
 813                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 814                            xfs_inherit_nosymlinks)
 815                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 816                        if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 817                                di_flags |= XFS_DIFLAG_PROJINHERIT;
 818                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 819                            xfs_inherit_nodefrag)
 820                                di_flags |= XFS_DIFLAG_NODEFRAG;
 821                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 822                                di_flags |= XFS_DIFLAG_FILESTREAM;
 823                        ip->i_d.di_flags |= di_flags;
 824                }
 825                /* FALLTHROUGH */
 826        case S_IFLNK:
 827                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 828                ip->i_df.if_flags = XFS_IFEXTENTS;
 829                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 830                ip->i_df.if_u1.if_extents = NULL;
 831                break;
 832        default:
 833                ASSERT(0);
 834        }
 835        /*
 836         * Attribute fork settings for new inode.
 837         */
 838        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 839        ip->i_d.di_anextents = 0;
 840
 841        /*
 842         * Log the new values stuffed into the inode.
 843         */
 844        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 845        xfs_trans_log_inode(tp, ip, flags);
 846
 847        /* now that we have an i_mode we can setup inode ops and unlock */
 848        xfs_setup_inode(ip);
 849
 850        /* now we have set up the vfs inode we can associate the filestream */
 851        if (filestreams) {
 852                error = xfs_filestream_associate(pip, ip);
 853                if (error < 0)
 854                        return -error;
 855                if (!error)
 856                        xfs_iflags_set(ip, XFS_IFILESTREAM);
 857        }
 858
 859        *ipp = ip;
 860        return 0;
 861}
 862
 863/*
 864 * Allocates a new inode from disk and return a pointer to the
 865 * incore copy. This routine will internally commit the current
 866 * transaction and allocate a new one if the Space Manager needed
 867 * to do an allocation to replenish the inode free-list.
 868 *
 869 * This routine is designed to be called from xfs_create and
 870 * xfs_create_dir.
 871 *
 872 */
 873int
 874xfs_dir_ialloc(
 875        xfs_trans_t     **tpp,          /* input: current transaction;
 876                                           output: may be a new transaction. */
 877        xfs_inode_t     *dp,            /* directory within whose allocate
 878                                           the inode. */
 879        umode_t         mode,
 880        xfs_nlink_t     nlink,
 881        xfs_dev_t       rdev,
 882        prid_t          prid,           /* project id */
 883        int             okalloc,        /* ok to allocate new space */
 884        xfs_inode_t     **ipp,          /* pointer to inode; it will be
 885                                           locked. */
 886        int             *committed)
 887
 888{
 889        xfs_trans_t     *tp;
 890        xfs_trans_t     *ntp;
 891        xfs_inode_t     *ip;
 892        xfs_buf_t       *ialloc_context = NULL;
 893        int             code;
 894        void            *dqinfo;
 895        uint            tflags;
 896
 897        tp = *tpp;
 898        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 899
 900        /*
 901         * xfs_ialloc will return a pointer to an incore inode if
 902         * the Space Manager has an available inode on the free
 903         * list. Otherwise, it will do an allocation and replenish
 904         * the freelist.  Since we can only do one allocation per
 905         * transaction without deadlocks, we will need to commit the
 906         * current transaction and start a new one.  We will then
 907         * need to call xfs_ialloc again to get the inode.
 908         *
 909         * If xfs_ialloc did an allocation to replenish the freelist,
 910         * it returns the bp containing the head of the freelist as
 911         * ialloc_context. We will hold a lock on it across the
 912         * transaction commit so that no other process can steal
 913         * the inode(s) that we've just allocated.
 914         */
 915        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 916                          &ialloc_context, &ip);
 917
 918        /*
 919         * Return an error if we were unable to allocate a new inode.
 920         * This should only happen if we run out of space on disk or
 921         * encounter a disk error.
 922         */
 923        if (code) {
 924                *ipp = NULL;
 925                return code;
 926        }
 927        if (!ialloc_context && !ip) {
 928                *ipp = NULL;
 929                return XFS_ERROR(ENOSPC);
 930        }
 931
 932        /*
 933         * If the AGI buffer is non-NULL, then we were unable to get an
 934         * inode in one operation.  We need to commit the current
 935         * transaction and call xfs_ialloc() again.  It is guaranteed
 936         * to succeed the second time.
 937         */
 938        if (ialloc_context) {
 939                struct xfs_trans_res tres;
 940
 941                /*
 942                 * Normally, xfs_trans_commit releases all the locks.
 943                 * We call bhold to hang on to the ialloc_context across
 944                 * the commit.  Holding this buffer prevents any other
 945                 * processes from doing any allocations in this
 946                 * allocation group.
 947                 */
 948                xfs_trans_bhold(tp, ialloc_context);
 949                /*
 950                 * Save the log reservation so we can use
 951                 * them in the next transaction.
 952                 */
 953                tres.tr_logres = xfs_trans_get_log_res(tp);
 954                tres.tr_logcount = xfs_trans_get_log_count(tp);
 955
 956                /*
 957                 * We want the quota changes to be associated with the next
 958                 * transaction, NOT this one. So, detach the dqinfo from this
 959                 * and attach it to the next transaction.
 960                 */
 961                dqinfo = NULL;
 962                tflags = 0;
 963                if (tp->t_dqinfo) {
 964                        dqinfo = (void *)tp->t_dqinfo;
 965                        tp->t_dqinfo = NULL;
 966                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
 967                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
 968                }
 969
 970                ntp = xfs_trans_dup(tp);
 971                code = xfs_trans_commit(tp, 0);
 972                tp = ntp;
 973                if (committed != NULL) {
 974                        *committed = 1;
 975                }
 976                /*
 977                 * If we get an error during the commit processing,
 978                 * release the buffer that is still held and return
 979                 * to the caller.
 980                 */
 981                if (code) {
 982                        xfs_buf_relse(ialloc_context);
 983                        if (dqinfo) {
 984                                tp->t_dqinfo = dqinfo;
 985                                xfs_trans_free_dqinfo(tp);
 986                        }
 987                        *tpp = ntp;
 988                        *ipp = NULL;
 989                        return code;
 990                }
 991
 992                /*
 993                 * transaction commit worked ok so we can drop the extra ticket
 994                 * reference that we gained in xfs_trans_dup()
 995                 */
 996                xfs_log_ticket_put(tp->t_ticket);
 997                tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
 998                code = xfs_trans_reserve(tp, &tres, 0, 0);
 999
1000                /*
1001                 * Re-attach the quota info that we detached from prev trx.
1002                 */
1003                if (dqinfo) {
1004                        tp->t_dqinfo = dqinfo;
1005                        tp->t_flags |= tflags;
1006                }
1007
1008                if (code) {
1009                        xfs_buf_relse(ialloc_context);
1010                        *tpp = ntp;
1011                        *ipp = NULL;
1012                        return code;
1013                }
1014                xfs_trans_bjoin(tp, ialloc_context);
1015
1016                /*
1017                 * Call ialloc again. Since we've locked out all
1018                 * other allocations in this allocation group,
1019                 * this call should always succeed.
1020                 */
1021                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1022                                  okalloc, &ialloc_context, &ip);
1023
1024                /*
1025                 * If we get an error at this point, return to the caller
1026                 * so that the current transaction can be aborted.
1027                 */
1028                if (code) {
1029                        *tpp = tp;
1030                        *ipp = NULL;
1031                        return code;
1032                }
1033                ASSERT(!ialloc_context && ip);
1034
1035        } else {
1036                if (committed != NULL)
1037                        *committed = 0;
1038        }
1039
1040        *ipp = ip;
1041        *tpp = tp;
1042
1043        return 0;
1044}
1045
1046/*
1047 * Decrement the link count on an inode & log the change.
1048 * If this causes the link count to go to zero, initiate the
1049 * logging activity required to truncate a file.
1050 */
1051int                             /* error */
1052xfs_droplink(
1053        xfs_trans_t *tp,
1054        xfs_inode_t *ip)
1055{
1056        int     error;
1057
1058        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1059
1060        ASSERT (ip->i_d.di_nlink > 0);
1061        ip->i_d.di_nlink--;
1062        drop_nlink(VFS_I(ip));
1063        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1064
1065        error = 0;
1066        if (ip->i_d.di_nlink == 0) {
1067                /*
1068                 * We're dropping the last link to this file.
1069                 * Move the on-disk inode to the AGI unlinked list.
1070                 * From xfs_inactive() we will pull the inode from
1071                 * the list and free it.
1072                 */
1073                error = xfs_iunlink(tp, ip);
1074        }
1075        return error;
1076}
1077
1078/*
1079 * This gets called when the inode's version needs to be changed from 1 to 2.
1080 * Currently this happens when the nlink field overflows the old 16-bit value
1081 * or when chproj is called to change the project for the first time.
1082 * As a side effect the superblock version will also get rev'd
1083 * to contain the NLINK bit.
1084 */
1085void
1086xfs_bump_ino_vers2(
1087        xfs_trans_t     *tp,
1088        xfs_inode_t     *ip)
1089{
1090        xfs_mount_t     *mp;
1091
1092        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1093        ASSERT(ip->i_d.di_version == 1);
1094
1095        ip->i_d.di_version = 2;
1096        ip->i_d.di_onlink = 0;
1097        memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1098        mp = tp->t_mountp;
1099        if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1100                spin_lock(&mp->m_sb_lock);
1101                if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1102                        xfs_sb_version_addnlink(&mp->m_sb);
1103                        spin_unlock(&mp->m_sb_lock);
1104                        xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1105                } else {
1106                        spin_unlock(&mp->m_sb_lock);
1107                }
1108        }
1109        /* Caller must log the inode */
1110}
1111
1112/*
1113 * Increment the link count on an inode & log the change.
1114 */
1115int
1116xfs_bumplink(
1117        xfs_trans_t *tp,
1118        xfs_inode_t *ip)
1119{
1120        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1121
1122        ASSERT(ip->i_d.di_nlink > 0);
1123        ip->i_d.di_nlink++;
1124        inc_nlink(VFS_I(ip));
1125        if ((ip->i_d.di_version == 1) &&
1126            (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1127                /*
1128                 * The inode has increased its number of links beyond
1129                 * what can fit in an old format inode.  It now needs
1130                 * to be converted to a version 2 inode with a 32 bit
1131                 * link count.  If this is the first inode in the file
1132                 * system to do this, then we need to bump the superblock
1133                 * version number as well.
1134                 */
1135                xfs_bump_ino_vers2(tp, ip);
1136        }
1137
1138        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1139        return 0;
1140}
1141
1142int
1143xfs_create(
1144        xfs_inode_t             *dp,
1145        struct xfs_name         *name,
1146        umode_t                 mode,
1147        xfs_dev_t               rdev,
1148        xfs_inode_t             **ipp)
1149{
1150        int                     is_dir = S_ISDIR(mode);
1151        struct xfs_mount        *mp = dp->i_mount;
1152        struct xfs_inode        *ip = NULL;
1153        struct xfs_trans        *tp = NULL;
1154        int                     error;
1155        xfs_bmap_free_t         free_list;
1156        xfs_fsblock_t           first_block;
1157        bool                    unlock_dp_on_error = false;
1158        uint                    cancel_flags;
1159        int                     committed;
1160        prid_t                  prid;
1161        struct xfs_dquot        *udqp = NULL;
1162        struct xfs_dquot        *gdqp = NULL;
1163        struct xfs_dquot        *pdqp = NULL;
1164        struct xfs_trans_res    tres;
1165        uint                    resblks;
1166
1167        trace_xfs_create(dp, name);
1168
1169        if (XFS_FORCED_SHUTDOWN(mp))
1170                return XFS_ERROR(EIO);
1171
1172        if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1173                prid = xfs_get_projid(dp);
1174        else
1175                prid = XFS_PROJID_DEFAULT;
1176
1177        /*
1178         * Make sure that we have allocated dquot(s) on disk.
1179         */
1180        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1181                                        xfs_kgid_to_gid(current_fsgid()), prid,
1182                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1183                                        &udqp, &gdqp, &pdqp);
1184        if (error)
1185                return error;
1186
1187        if (is_dir) {
1188                rdev = 0;
1189                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1190                tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1191                tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1192                tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1193        } else {
1194                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1195                tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1196                tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1197                tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1198        }
1199
1200        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1201
1202        /*
1203         * Initially assume that the file does not exist and
1204         * reserve the resources for that case.  If that is not
1205         * the case we'll drop the one we have and get a more
1206         * appropriate transaction later.
1207         */
1208        tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1209        error = xfs_trans_reserve(tp, &tres, resblks, 0);
1210        if (error == ENOSPC) {
1211                /* flush outstanding delalloc blocks and retry */
1212                xfs_flush_inodes(mp);
1213                error = xfs_trans_reserve(tp, &tres, resblks, 0);
1214        }
1215        if (error == ENOSPC) {
1216                /* No space at all so try a "no-allocation" reservation */
1217                resblks = 0;
1218                error = xfs_trans_reserve(tp, &tres, 0, 0);
1219        }
1220        if (error) {
1221                cancel_flags = 0;
1222                goto out_trans_cancel;
1223        }
1224
1225        xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1226        unlock_dp_on_error = true;
1227
1228        xfs_bmap_init(&free_list, &first_block);
1229
1230        /*
1231         * Reserve disk quota and the inode.
1232         */
1233        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1234                                                pdqp, resblks, 1, 0);
1235        if (error)
1236                goto out_trans_cancel;
1237
1238        error = xfs_dir_canenter(tp, dp, name, resblks);
1239        if (error)
1240                goto out_trans_cancel;
1241
1242        /*
1243         * A newly created regular or special file just has one directory
1244         * entry pointing to them, but a directory also the "." entry
1245         * pointing to itself.
1246         */
1247        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1248                               prid, resblks > 0, &ip, &committed);
1249        if (error) {
1250                if (error == ENOSPC)
1251                        goto out_trans_cancel;
1252                goto out_trans_abort;
1253        }
1254
1255        /*
1256         * Now we join the directory inode to the transaction.  We do not do it
1257         * earlier because xfs_dir_ialloc might commit the previous transaction
1258         * (and release all the locks).  An error from here on will result in
1259         * the transaction cancel unlocking dp so don't do it explicitly in the
1260         * error path.
1261         */
1262        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1263        unlock_dp_on_error = false;
1264
1265        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1266                                        &first_block, &free_list, resblks ?
1267                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1268        if (error) {
1269                ASSERT(error != ENOSPC);
1270                goto out_trans_abort;
1271        }
1272        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1273        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1274
1275        if (is_dir) {
1276                error = xfs_dir_init(tp, ip, dp);
1277                if (error)
1278                        goto out_bmap_cancel;
1279
1280                error = xfs_bumplink(tp, dp);
1281                if (error)
1282                        goto out_bmap_cancel;
1283        }
1284
1285        /*
1286         * If this is a synchronous mount, make sure that the
1287         * create transaction goes to disk before returning to
1288         * the user.
1289         */
1290        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1291                xfs_trans_set_sync(tp);
1292
1293        /*
1294         * Attach the dquot(s) to the inodes and modify them incore.
1295         * These ids of the inode couldn't have changed since the new
1296         * inode has been locked ever since it was created.
1297         */
1298        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1299
1300        error = xfs_bmap_finish(&tp, &free_list, &committed);
1301        if (error)
1302                goto out_bmap_cancel;
1303
1304        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1305        if (error)
1306                goto out_release_inode;
1307
1308        xfs_qm_dqrele(udqp);
1309        xfs_qm_dqrele(gdqp);
1310        xfs_qm_dqrele(pdqp);
1311
1312        *ipp = ip;
1313        return 0;
1314
1315 out_bmap_cancel:
1316        xfs_bmap_cancel(&free_list);
1317 out_trans_abort:
1318        cancel_flags |= XFS_TRANS_ABORT;
1319 out_trans_cancel:
1320        xfs_trans_cancel(tp, cancel_flags);
1321 out_release_inode:
1322        /*
1323         * Wait until after the current transaction is aborted to
1324         * release the inode.  This prevents recursive transactions
1325         * and deadlocks from xfs_inactive.
1326         */
1327        if (ip)
1328                IRELE(ip);
1329
1330        xfs_qm_dqrele(udqp);
1331        xfs_qm_dqrele(gdqp);
1332        xfs_qm_dqrele(pdqp);
1333
1334        if (unlock_dp_on_error)
1335                xfs_iunlock(dp, XFS_ILOCK_EXCL);
1336        return error;
1337}
1338
1339int
1340xfs_link(
1341        xfs_inode_t             *tdp,
1342        xfs_inode_t             *sip,
1343        struct xfs_name         *target_name)
1344{
1345        xfs_mount_t             *mp = tdp->i_mount;
1346        xfs_trans_t             *tp;
1347        int                     error;
1348        xfs_bmap_free_t         free_list;
1349        xfs_fsblock_t           first_block;
1350        int                     cancel_flags;
1351        int                     committed;
1352        int                     resblks;
1353
1354        trace_xfs_link(tdp, target_name);
1355
1356        ASSERT(!S_ISDIR(sip->i_d.di_mode));
1357
1358        if (XFS_FORCED_SHUTDOWN(mp))
1359                return XFS_ERROR(EIO);
1360
1361        error = xfs_qm_dqattach(sip, 0);
1362        if (error)
1363                goto std_return;
1364
1365        error = xfs_qm_dqattach(tdp, 0);
1366        if (error)
1367                goto std_return;
1368
1369        tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1370        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1371        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1372        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1373        if (error == ENOSPC) {
1374                resblks = 0;
1375                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1376        }
1377        if (error) {
1378                cancel_flags = 0;
1379                goto error_return;
1380        }
1381
1382        xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1383
1384        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1385        xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1386
1387        /*
1388         * If we are using project inheritance, we only allow hard link
1389         * creation in our tree when the project IDs are the same; else
1390         * the tree quota mechanism could be circumvented.
1391         */
1392        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1393                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1394                error = XFS_ERROR(EXDEV);
1395                goto error_return;
1396        }
1397
1398        error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1399        if (error)
1400                goto error_return;
1401
1402        xfs_bmap_init(&free_list, &first_block);
1403
1404        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1405                                        &first_block, &free_list, resblks);
1406        if (error)
1407                goto abort_return;
1408        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1409        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1410
1411        error = xfs_bumplink(tp, sip);
1412        if (error)
1413                goto abort_return;
1414
1415        /*
1416         * If this is a synchronous mount, make sure that the
1417         * link transaction goes to disk before returning to
1418         * the user.
1419         */
1420        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1421                xfs_trans_set_sync(tp);
1422        }
1423
1424        error = xfs_bmap_finish (&tp, &free_list, &committed);
1425        if (error) {
1426                xfs_bmap_cancel(&free_list);
1427                goto abort_return;
1428        }
1429
1430        return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1431
1432 abort_return:
1433        cancel_flags |= XFS_TRANS_ABORT;
1434 error_return:
1435        xfs_trans_cancel(tp, cancel_flags);
1436 std_return:
1437        return error;
1438}
1439
1440/*
1441 * Free up the underlying blocks past new_size.  The new size must be smaller
1442 * than the current size.  This routine can be used both for the attribute and
1443 * data fork, and does not modify the inode size, which is left to the caller.
1444 *
1445 * The transaction passed to this routine must have made a permanent log
1446 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1447 * given transaction and start new ones, so make sure everything involved in
1448 * the transaction is tidy before calling here.  Some transaction will be
1449 * returned to the caller to be committed.  The incoming transaction must
1450 * already include the inode, and both inode locks must be held exclusively.
1451 * The inode must also be "held" within the transaction.  On return the inode
1452 * will be "held" within the returned transaction.  This routine does NOT
1453 * require any disk space to be reserved for it within the transaction.
1454 *
1455 * If we get an error, we must return with the inode locked and linked into the
1456 * current transaction. This keeps things simple for the higher level code,
1457 * because it always knows that the inode is locked and held in the transaction
1458 * that returns to it whether errors occur or not.  We don't mark the inode
1459 * dirty on error so that transactions can be easily aborted if possible.
1460 */
1461int
1462xfs_itruncate_extents(
1463        struct xfs_trans        **tpp,
1464        struct xfs_inode        *ip,
1465        int                     whichfork,
1466        xfs_fsize_t             new_size)
1467{
1468        struct xfs_mount        *mp = ip->i_mount;
1469        struct xfs_trans        *tp = *tpp;
1470        struct xfs_trans        *ntp;
1471        xfs_bmap_free_t         free_list;
1472        xfs_fsblock_t           first_block;
1473        xfs_fileoff_t           first_unmap_block;
1474        xfs_fileoff_t           last_block;
1475        xfs_filblks_t           unmap_len;
1476        int                     committed;
1477        int                     error = 0;
1478        int                     done = 0;
1479
1480        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1481        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1482               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1483        ASSERT(new_size <= XFS_ISIZE(ip));
1484        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1485        ASSERT(ip->i_itemp != NULL);
1486        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1487        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1488
1489        trace_xfs_itruncate_extents_start(ip, new_size);
1490
1491        /*
1492         * Since it is possible for space to become allocated beyond
1493         * the end of the file (in a crash where the space is allocated
1494         * but the inode size is not yet updated), simply remove any
1495         * blocks which show up between the new EOF and the maximum
1496         * possible file size.  If the first block to be removed is
1497         * beyond the maximum file size (ie it is the same as last_block),
1498         * then there is nothing to do.
1499         */
1500        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1501        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1502        if (first_unmap_block == last_block)
1503                return 0;
1504
1505        ASSERT(first_unmap_block < last_block);
1506        unmap_len = last_block - first_unmap_block + 1;
1507        while (!done) {
1508                xfs_bmap_init(&free_list, &first_block);
1509                error = xfs_bunmapi(tp, ip,
1510                                    first_unmap_block, unmap_len,
1511                                    xfs_bmapi_aflag(whichfork),
1512                                    XFS_ITRUNC_MAX_EXTENTS,
1513                                    &first_block, &free_list,
1514                                    &done);
1515                if (error)
1516                        goto out_bmap_cancel;
1517
1518                /*
1519                 * Duplicate the transaction that has the permanent
1520                 * reservation and commit the old transaction.
1521                 */
1522                error = xfs_bmap_finish(&tp, &free_list, &committed);
1523                if (committed)
1524                        xfs_trans_ijoin(tp, ip, 0);
1525                if (error)
1526                        goto out_bmap_cancel;
1527
1528                if (committed) {
1529                        /*
1530                         * Mark the inode dirty so it will be logged and
1531                         * moved forward in the log as part of every commit.
1532                         */
1533                        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1534                }
1535
1536                ntp = xfs_trans_dup(tp);
1537                error = xfs_trans_commit(tp, 0);
1538                tp = ntp;
1539
1540                xfs_trans_ijoin(tp, ip, 0);
1541
1542                if (error)
1543                        goto out;
1544
1545                /*
1546                 * Transaction commit worked ok so we can drop the extra ticket
1547                 * reference that we gained in xfs_trans_dup()
1548                 */
1549                xfs_log_ticket_put(tp->t_ticket);
1550                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1551                if (error)
1552                        goto out;
1553        }
1554
1555        /*
1556         * Always re-log the inode so that our permanent transaction can keep
1557         * on rolling it forward in the log.
1558         */
1559        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1560
1561        trace_xfs_itruncate_extents_end(ip, new_size);
1562
1563out:
1564        *tpp = tp;
1565        return error;
1566out_bmap_cancel:
1567        /*
1568         * If the bunmapi call encounters an error, return to the caller where
1569         * the transaction can be properly aborted.  We just need to make sure
1570         * we're not holding any resources that we were not when we came in.
1571         */
1572        xfs_bmap_cancel(&free_list);
1573        goto out;
1574}
1575
1576int
1577xfs_release(
1578        xfs_inode_t     *ip)
1579{
1580        xfs_mount_t     *mp = ip->i_mount;
1581        int             error;
1582
1583        if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1584                return 0;
1585
1586        /* If this is a read-only mount, don't do this (would generate I/O) */
1587        if (mp->m_flags & XFS_MOUNT_RDONLY)
1588                return 0;
1589
1590        if (!XFS_FORCED_SHUTDOWN(mp)) {
1591                int truncated;
1592
1593                /*
1594                 * If we are using filestreams, and we have an unlinked
1595                 * file that we are processing the last close on, then nothing
1596                 * will be able to reopen and write to this file. Purge this
1597                 * inode from the filestreams cache so that it doesn't delay
1598                 * teardown of the inode.
1599                 */
1600                if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1601                        xfs_filestream_deassociate(ip);
1602
1603                /*
1604                 * If we previously truncated this file and removed old data
1605                 * in the process, we want to initiate "early" writeout on
1606                 * the last close.  This is an attempt to combat the notorious
1607                 * NULL files problem which is particularly noticeable from a
1608                 * truncate down, buffered (re-)write (delalloc), followed by
1609                 * a crash.  What we are effectively doing here is
1610                 * significantly reducing the time window where we'd otherwise
1611                 * be exposed to that problem.
1612                 */
1613                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1614                if (truncated) {
1615                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1616                        if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1617                                error = -filemap_flush(VFS_I(ip)->i_mapping);
1618                                if (error)
1619                                        return error;
1620                        }
1621                }
1622        }
1623
1624        if (ip->i_d.di_nlink == 0)
1625                return 0;
1626
1627        if (xfs_can_free_eofblocks(ip, false)) {
1628
1629                /*
1630                 * If we can't get the iolock just skip truncating the blocks
1631                 * past EOF because we could deadlock with the mmap_sem
1632                 * otherwise.  We'll get another chance to drop them once the
1633                 * last reference to the inode is dropped, so we'll never leak
1634                 * blocks permanently.
1635                 *
1636                 * Further, check if the inode is being opened, written and
1637                 * closed frequently and we have delayed allocation blocks
1638                 * outstanding (e.g. streaming writes from the NFS server),
1639                 * truncating the blocks past EOF will cause fragmentation to
1640                 * occur.
1641                 *
1642                 * In this case don't do the truncation, either, but we have to
1643                 * be careful how we detect this case. Blocks beyond EOF show
1644                 * up as i_delayed_blks even when the inode is clean, so we
1645                 * need to truncate them away first before checking for a dirty
1646                 * release. Hence on the first dirty close we will still remove
1647                 * the speculative allocation, but after that we will leave it
1648                 * in place.
1649                 */
1650                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651                        return 0;
1652
1653                error = xfs_free_eofblocks(mp, ip, true);
1654                if (error && error != EAGAIN)
1655                        return error;
1656
1657                /* delalloc blocks after truncation means it really is dirty */
1658                if (ip->i_delayed_blks)
1659                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1660        }
1661        return 0;
1662}
1663
1664/*
1665 * xfs_inactive_truncate
1666 *
1667 * Called to perform a truncate when an inode becomes unlinked.
1668 */
1669STATIC int
1670xfs_inactive_truncate(
1671        struct xfs_inode *ip)
1672{
1673        struct xfs_mount        *mp = ip->i_mount;
1674        struct xfs_trans        *tp;
1675        int                     error;
1676
1677        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1678        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1679        if (error) {
1680                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1681                xfs_trans_cancel(tp, 0);
1682                return error;
1683        }
1684
1685        xfs_ilock(ip, XFS_ILOCK_EXCL);
1686        xfs_trans_ijoin(tp, ip, 0);
1687
1688        /*
1689         * Log the inode size first to prevent stale data exposure in the event
1690         * of a system crash before the truncate completes. See the related
1691         * comment in xfs_setattr_size() for details.
1692         */
1693        ip->i_d.di_size = 0;
1694        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1695
1696        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1697        if (error)
1698                goto error_trans_cancel;
1699
1700        ASSERT(ip->i_d.di_nextents == 0);
1701
1702        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1703        if (error)
1704                goto error_unlock;
1705
1706        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1707        return 0;
1708
1709error_trans_cancel:
1710        xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1711error_unlock:
1712        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713        return error;
1714}
1715
1716/*
1717 * xfs_inactive_ifree()
1718 *
1719 * Perform the inode free when an inode is unlinked.
1720 */
1721STATIC int
1722xfs_inactive_ifree(
1723        struct xfs_inode *ip)
1724{
1725        xfs_bmap_free_t         free_list;
1726        xfs_fsblock_t           first_block;
1727        int                     committed;
1728        struct xfs_mount        *mp = ip->i_mount;
1729        struct xfs_trans        *tp;
1730        int                     error;
1731
1732        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1733        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1734        if (error) {
1735                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1736                xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1737                return error;
1738        }
1739
1740        xfs_ilock(ip, XFS_ILOCK_EXCL);
1741        xfs_trans_ijoin(tp, ip, 0);
1742
1743        xfs_bmap_init(&free_list, &first_block);
1744        error = xfs_ifree(tp, ip, &free_list);
1745        if (error) {
1746                /*
1747                 * If we fail to free the inode, shut down.  The cancel
1748                 * might do that, we need to make sure.  Otherwise the
1749                 * inode might be lost for a long time or forever.
1750                 */
1751                if (!XFS_FORCED_SHUTDOWN(mp)) {
1752                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1753                                __func__, error);
1754                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1755                }
1756                xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1757                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1758                return error;
1759        }
1760
1761        /*
1762         * Credit the quota account(s). The inode is gone.
1763         */
1764        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1765
1766        /*
1767         * Just ignore errors at this point.  There is nothing we can
1768         * do except to try to keep going. Make sure it's not a silent
1769         * error.
1770         */
1771        error = xfs_bmap_finish(&tp,  &free_list, &committed);
1772        if (error)
1773                xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1774                        __func__, error);
1775        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1776        if (error)
1777                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1778                        __func__, error);
1779
1780        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781        return 0;
1782}
1783
1784/*
1785 * xfs_inactive
1786 *
1787 * This is called when the vnode reference count for the vnode
1788 * goes to zero.  If the file has been unlinked, then it must
1789 * now be truncated.  Also, we clear all of the read-ahead state
1790 * kept for the inode here since the file is now closed.
1791 */
1792void
1793xfs_inactive(
1794        xfs_inode_t     *ip)
1795{
1796        struct xfs_mount        *mp;
1797        int                     error;
1798        int                     truncate = 0;
1799
1800        /*
1801         * If the inode is already free, then there can be nothing
1802         * to clean up here.
1803         */
1804        if (ip->i_d.di_mode == 0) {
1805                ASSERT(ip->i_df.if_real_bytes == 0);
1806                ASSERT(ip->i_df.if_broot_bytes == 0);
1807                return;
1808        }
1809
1810        mp = ip->i_mount;
1811
1812        /* If this is a read-only mount, don't do this (would generate I/O) */
1813        if (mp->m_flags & XFS_MOUNT_RDONLY)
1814                return;
1815
1816        if (ip->i_d.di_nlink != 0) {
1817                /*
1818                 * force is true because we are evicting an inode from the
1819                 * cache. Post-eof blocks must be freed, lest we end up with
1820                 * broken free space accounting.
1821                 */
1822                if (xfs_can_free_eofblocks(ip, true))
1823                        xfs_free_eofblocks(mp, ip, false);
1824
1825                return;
1826        }
1827
1828        if (S_ISREG(ip->i_d.di_mode) &&
1829            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1830             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1831                truncate = 1;
1832
1833        error = xfs_qm_dqattach(ip, 0);
1834        if (error)
1835                return;
1836
1837        if (S_ISLNK(ip->i_d.di_mode))
1838                error = xfs_inactive_symlink(ip);
1839        else if (truncate)
1840                error = xfs_inactive_truncate(ip);
1841        if (error)
1842                return;
1843
1844        /*
1845         * If there are attributes associated with the file then blow them away
1846         * now.  The code calls a routine that recursively deconstructs the
1847         * attribute fork.  We need to just commit the current transaction
1848         * because we can't use it for xfs_attr_inactive().
1849         */
1850        if (ip->i_d.di_anextents > 0) {
1851                ASSERT(ip->i_d.di_forkoff != 0);
1852
1853                error = xfs_attr_inactive(ip);
1854                if (error)
1855                        return;
1856        }
1857
1858        if (ip->i_afp)
1859                xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1860
1861        ASSERT(ip->i_d.di_anextents == 0);
1862
1863        /*
1864         * Free the inode.
1865         */
1866        error = xfs_inactive_ifree(ip);
1867        if (error)
1868                return;
1869
1870        /*
1871         * Release the dquots held by inode, if any.
1872         */
1873        xfs_qm_dqdetach(ip);
1874}
1875
1876/*
1877 * This is called when the inode's link count goes to 0.
1878 * We place the on-disk inode on a list in the AGI.  It
1879 * will be pulled from this list when the inode is freed.
1880 */
1881int
1882xfs_iunlink(
1883        xfs_trans_t     *tp,
1884        xfs_inode_t     *ip)
1885{
1886        xfs_mount_t     *mp;
1887        xfs_agi_t       *agi;
1888        xfs_dinode_t    *dip;
1889        xfs_buf_t       *agibp;
1890        xfs_buf_t       *ibp;
1891        xfs_agino_t     agino;
1892        short           bucket_index;
1893        int             offset;
1894        int             error;
1895
1896        ASSERT(ip->i_d.di_nlink == 0);
1897        ASSERT(ip->i_d.di_mode != 0);
1898
1899        mp = tp->t_mountp;
1900
1901        /*
1902         * Get the agi buffer first.  It ensures lock ordering
1903         * on the list.
1904         */
1905        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1906        if (error)
1907                return error;
1908        agi = XFS_BUF_TO_AGI(agibp);
1909
1910        /*
1911         * Get the index into the agi hash table for the
1912         * list this inode will go on.
1913         */
1914        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1915        ASSERT(agino != 0);
1916        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1917        ASSERT(agi->agi_unlinked[bucket_index]);
1918        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1919
1920        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1921                /*
1922                 * There is already another inode in the bucket we need
1923                 * to add ourselves to.  Add us at the front of the list.
1924                 * Here we put the head pointer into our next pointer,
1925                 * and then we fall through to point the head at us.
1926                 */
1927                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1928                                       0, 0);
1929                if (error)
1930                        return error;
1931
1932                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1933                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1934                offset = ip->i_imap.im_boffset +
1935                        offsetof(xfs_dinode_t, di_next_unlinked);
1936
1937                /* need to recalc the inode CRC if appropriate */
1938                xfs_dinode_calc_crc(mp, dip);
1939
1940                xfs_trans_inode_buf(tp, ibp);
1941                xfs_trans_log_buf(tp, ibp, offset,
1942                                  (offset + sizeof(xfs_agino_t) - 1));
1943                xfs_inobp_check(mp, ibp);
1944        }
1945
1946        /*
1947         * Point the bucket head pointer at the inode being inserted.
1948         */
1949        ASSERT(agino != 0);
1950        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1951        offset = offsetof(xfs_agi_t, agi_unlinked) +
1952                (sizeof(xfs_agino_t) * bucket_index);
1953        xfs_trans_log_buf(tp, agibp, offset,
1954                          (offset + sizeof(xfs_agino_t) - 1));
1955        return 0;
1956}
1957
1958/*
1959 * Pull the on-disk inode from the AGI unlinked list.
1960 */
1961STATIC int
1962xfs_iunlink_remove(
1963        xfs_trans_t     *tp,
1964        xfs_inode_t     *ip)
1965{
1966        xfs_ino_t       next_ino;
1967        xfs_mount_t     *mp;
1968        xfs_agi_t       *agi;
1969        xfs_dinode_t    *dip;
1970        xfs_buf_t       *agibp;
1971        xfs_buf_t       *ibp;
1972        xfs_agnumber_t  agno;
1973        xfs_agino_t     agino;
1974        xfs_agino_t     next_agino;
1975        xfs_buf_t       *last_ibp;
1976        xfs_dinode_t    *last_dip = NULL;
1977        short           bucket_index;
1978        int             offset, last_offset = 0;
1979        int             error;
1980
1981        mp = tp->t_mountp;
1982        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1983
1984        /*
1985         * Get the agi buffer first.  It ensures lock ordering
1986         * on the list.
1987         */
1988        error = xfs_read_agi(mp, tp, agno, &agibp);
1989        if (error)
1990                return error;
1991
1992        agi = XFS_BUF_TO_AGI(agibp);
1993
1994        /*
1995         * Get the index into the agi hash table for the
1996         * list this inode will go on.
1997         */
1998        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1999        ASSERT(agino != 0);
2000        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2001        ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2002        ASSERT(agi->agi_unlinked[bucket_index]);
2003
2004        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2005                /*
2006                 * We're at the head of the list.  Get the inode's on-disk
2007                 * buffer to see if there is anyone after us on the list.
2008                 * Only modify our next pointer if it is not already NULLAGINO.
2009                 * This saves us the overhead of dealing with the buffer when
2010                 * there is no need to change it.
2011                 */
2012                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2013                                       0, 0);
2014                if (error) {
2015                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2016                                __func__, error);
2017                        return error;
2018                }
2019                next_agino = be32_to_cpu(dip->di_next_unlinked);
2020                ASSERT(next_agino != 0);
2021                if (next_agino != NULLAGINO) {
2022                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2023                        offset = ip->i_imap.im_boffset +
2024                                offsetof(xfs_dinode_t, di_next_unlinked);
2025
2026                        /* need to recalc the inode CRC if appropriate */
2027                        xfs_dinode_calc_crc(mp, dip);
2028
2029                        xfs_trans_inode_buf(tp, ibp);
2030                        xfs_trans_log_buf(tp, ibp, offset,
2031                                          (offset + sizeof(xfs_agino_t) - 1));
2032                        xfs_inobp_check(mp, ibp);
2033                } else {
2034                        xfs_trans_brelse(tp, ibp);
2035                }
2036                /*
2037                 * Point the bucket head pointer at the next inode.
2038                 */
2039                ASSERT(next_agino != 0);
2040                ASSERT(next_agino != agino);
2041                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2042                offset = offsetof(xfs_agi_t, agi_unlinked) +
2043                        (sizeof(xfs_agino_t) * bucket_index);
2044                xfs_trans_log_buf(tp, agibp, offset,
2045                                  (offset + sizeof(xfs_agino_t) - 1));
2046        } else {
2047                /*
2048                 * We need to search the list for the inode being freed.
2049                 */
2050                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2051                last_ibp = NULL;
2052                while (next_agino != agino) {
2053                        struct xfs_imap imap;
2054
2055                        if (last_ibp)
2056                                xfs_trans_brelse(tp, last_ibp);
2057
2058                        imap.im_blkno = 0;
2059                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2060
2061                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2062                        if (error) {
2063                                xfs_warn(mp,
2064        "%s: xfs_imap returned error %d.",
2065                                         __func__, error);
2066                                return error;
2067                        }
2068
2069                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2070                                               &last_ibp, 0, 0);
2071                        if (error) {
2072                                xfs_warn(mp,
2073        "%s: xfs_imap_to_bp returned error %d.",
2074                                        __func__, error);
2075                                return error;
2076                        }
2077
2078                        last_offset = imap.im_boffset;
2079                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2080                        ASSERT(next_agino != NULLAGINO);
2081                        ASSERT(next_agino != 0);
2082                }
2083
2084                /*
2085                 * Now last_ibp points to the buffer previous to us on the
2086                 * unlinked list.  Pull us from the list.
2087                 */
2088                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2089                                       0, 0);
2090                if (error) {
2091                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2092                                __func__, error);
2093                        return error;
2094                }
2095                next_agino = be32_to_cpu(dip->di_next_unlinked);
2096                ASSERT(next_agino != 0);
2097                ASSERT(next_agino != agino);
2098                if (next_agino != NULLAGINO) {
2099                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2100                        offset = ip->i_imap.im_boffset +
2101                                offsetof(xfs_dinode_t, di_next_unlinked);
2102
2103                        /* need to recalc the inode CRC if appropriate */
2104                        xfs_dinode_calc_crc(mp, dip);
2105
2106                        xfs_trans_inode_buf(tp, ibp);
2107                        xfs_trans_log_buf(tp, ibp, offset,
2108                                          (offset + sizeof(xfs_agino_t) - 1));
2109                        xfs_inobp_check(mp, ibp);
2110                } else {
2111                        xfs_trans_brelse(tp, ibp);
2112                }
2113                /*
2114                 * Point the previous inode on the list to the next inode.
2115                 */
2116                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2117                ASSERT(next_agino != 0);
2118                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2119
2120                /* need to recalc the inode CRC if appropriate */
2121                xfs_dinode_calc_crc(mp, last_dip);
2122
2123                xfs_trans_inode_buf(tp, last_ibp);
2124                xfs_trans_log_buf(tp, last_ibp, offset,
2125                                  (offset + sizeof(xfs_agino_t) - 1));
2126                xfs_inobp_check(mp, last_ibp);
2127        }
2128        return 0;
2129}
2130
2131/*
2132 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2133 * inodes that are in memory - they all must be marked stale and attached to
2134 * the cluster buffer.
2135 */
2136STATIC int
2137xfs_ifree_cluster(
2138        xfs_inode_t     *free_ip,
2139        xfs_trans_t     *tp,
2140        xfs_ino_t       inum)
2141{
2142        xfs_mount_t             *mp = free_ip->i_mount;
2143        int                     blks_per_cluster;
2144        int                     nbufs;
2145        int                     ninodes;
2146        int                     i, j;
2147        xfs_daddr_t             blkno;
2148        xfs_buf_t               *bp;
2149        xfs_inode_t             *ip;
2150        xfs_inode_log_item_t    *iip;
2151        xfs_log_item_t          *lip;
2152        struct xfs_perag        *pag;
2153
2154        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2155        if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2156                blks_per_cluster = 1;
2157                ninodes = mp->m_sb.sb_inopblock;
2158                nbufs = XFS_IALLOC_BLOCKS(mp);
2159        } else {
2160                blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2161                                        mp->m_sb.sb_blocksize;
2162                ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2163                nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2164        }
2165
2166        for (j = 0; j < nbufs; j++, inum += ninodes) {
2167                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2168                                         XFS_INO_TO_AGBNO(mp, inum));
2169
2170                /*
2171                 * We obtain and lock the backing buffer first in the process
2172                 * here, as we have to ensure that any dirty inode that we
2173                 * can't get the flush lock on is attached to the buffer.
2174                 * If we scan the in-memory inodes first, then buffer IO can
2175                 * complete before we get a lock on it, and hence we may fail
2176                 * to mark all the active inodes on the buffer stale.
2177                 */
2178                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2179                                        mp->m_bsize * blks_per_cluster,
2180                                        XBF_UNMAPPED);
2181
2182                if (!bp)
2183                        return ENOMEM;
2184
2185                /*
2186                 * This buffer may not have been correctly initialised as we
2187                 * didn't read it from disk. That's not important because we are
2188                 * only using to mark the buffer as stale in the log, and to
2189                 * attach stale cached inodes on it. That means it will never be
2190                 * dispatched for IO. If it is, we want to know about it, and we
2191                 * want it to fail. We can acheive this by adding a write
2192                 * verifier to the buffer.
2193                 */
2194                 bp->b_ops = &xfs_inode_buf_ops;
2195
2196                /*
2197                 * Walk the inodes already attached to the buffer and mark them
2198                 * stale. These will all have the flush locks held, so an
2199                 * in-memory inode walk can't lock them. By marking them all
2200                 * stale first, we will not attempt to lock them in the loop
2201                 * below as the XFS_ISTALE flag will be set.
2202                 */
2203                lip = bp->b_fspriv;
2204                while (lip) {
2205                        if (lip->li_type == XFS_LI_INODE) {
2206                                iip = (xfs_inode_log_item_t *)lip;
2207                                ASSERT(iip->ili_logged == 1);
2208                                lip->li_cb = xfs_istale_done;
2209                                xfs_trans_ail_copy_lsn(mp->m_ail,
2210                                                        &iip->ili_flush_lsn,
2211                                                        &iip->ili_item.li_lsn);
2212                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2213                        }
2214                        lip = lip->li_bio_list;
2215                }
2216
2217
2218                /*
2219                 * For each inode in memory attempt to add it to the inode
2220                 * buffer and set it up for being staled on buffer IO
2221                 * completion.  This is safe as we've locked out tail pushing
2222                 * and flushing by locking the buffer.
2223                 *
2224                 * We have already marked every inode that was part of a
2225                 * transaction stale above, which means there is no point in
2226                 * even trying to lock them.
2227                 */
2228                for (i = 0; i < ninodes; i++) {
2229retry:
2230                        rcu_read_lock();
2231                        ip = radix_tree_lookup(&pag->pag_ici_root,
2232                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2233
2234                        /* Inode not in memory, nothing to do */
2235                        if (!ip) {
2236                                rcu_read_unlock();
2237                                continue;
2238                        }
2239
2240                        /*
2241                         * because this is an RCU protected lookup, we could
2242                         * find a recently freed or even reallocated inode
2243                         * during the lookup. We need to check under the
2244                         * i_flags_lock for a valid inode here. Skip it if it
2245                         * is not valid, the wrong inode or stale.
2246                         */
2247                        spin_lock(&ip->i_flags_lock);
2248                        if (ip->i_ino != inum + i ||
2249                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2250                                spin_unlock(&ip->i_flags_lock);
2251                                rcu_read_unlock();
2252                                continue;
2253                        }
2254                        spin_unlock(&ip->i_flags_lock);
2255
2256                        /*
2257                         * Don't try to lock/unlock the current inode, but we
2258                         * _cannot_ skip the other inodes that we did not find
2259                         * in the list attached to the buffer and are not
2260                         * already marked stale. If we can't lock it, back off
2261                         * and retry.
2262                         */
2263                        if (ip != free_ip &&
2264                            !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2265                                rcu_read_unlock();
2266                                delay(1);
2267                                goto retry;
2268                        }
2269                        rcu_read_unlock();
2270
2271                        xfs_iflock(ip);
2272                        xfs_iflags_set(ip, XFS_ISTALE);
2273
2274                        /*
2275                         * we don't need to attach clean inodes or those only
2276                         * with unlogged changes (which we throw away, anyway).
2277                         */
2278                        iip = ip->i_itemp;
2279                        if (!iip || xfs_inode_clean(ip)) {
2280                                ASSERT(ip != free_ip);
2281                                xfs_ifunlock(ip);
2282                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2283                                continue;
2284                        }
2285
2286                        iip->ili_last_fields = iip->ili_fields;
2287                        iip->ili_fields = 0;
2288                        iip->ili_logged = 1;
2289                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2290                                                &iip->ili_item.li_lsn);
2291
2292                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2293                                                  &iip->ili_item);
2294
2295                        if (ip != free_ip)
2296                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2297                }
2298
2299                xfs_trans_stale_inode_buf(tp, bp);
2300                xfs_trans_binval(tp, bp);
2301        }
2302
2303        xfs_perag_put(pag);
2304        return 0;
2305}
2306
2307/*
2308 * This is called to return an inode to the inode free list.
2309 * The inode should already be truncated to 0 length and have
2310 * no pages associated with it.  This routine also assumes that
2311 * the inode is already a part of the transaction.
2312 *
2313 * The on-disk copy of the inode will have been added to the list
2314 * of unlinked inodes in the AGI. We need to remove the inode from
2315 * that list atomically with respect to freeing it here.
2316 */
2317int
2318xfs_ifree(
2319        xfs_trans_t     *tp,
2320        xfs_inode_t     *ip,
2321        xfs_bmap_free_t *flist)
2322{
2323        int                     error;
2324        int                     delete;
2325        xfs_ino_t               first_ino;
2326
2327        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2328        ASSERT(ip->i_d.di_nlink == 0);
2329        ASSERT(ip->i_d.di_nextents == 0);
2330        ASSERT(ip->i_d.di_anextents == 0);
2331        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2332        ASSERT(ip->i_d.di_nblocks == 0);
2333
2334        /*
2335         * Pull the on-disk inode from the AGI unlinked list.
2336         */
2337        error = xfs_iunlink_remove(tp, ip);
2338        if (error)
2339                return error;
2340
2341        error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2342        if (error)
2343                return error;
2344
2345        ip->i_d.di_mode = 0;            /* mark incore inode as free */
2346        ip->i_d.di_flags = 0;
2347        ip->i_d.di_dmevmask = 0;
2348        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2349        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2350        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2351        /*
2352         * Bump the generation count so no one will be confused
2353         * by reincarnations of this inode.
2354         */
2355        ip->i_d.di_gen++;
2356        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2357
2358        if (delete)
2359                error = xfs_ifree_cluster(ip, tp, first_ino);
2360
2361        return error;
2362}
2363
2364/*
2365 * This is called to unpin an inode.  The caller must have the inode locked
2366 * in at least shared mode so that the buffer cannot be subsequently pinned
2367 * once someone is waiting for it to be unpinned.
2368 */
2369static void
2370xfs_iunpin(
2371        struct xfs_inode        *ip)
2372{
2373        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2374
2375        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2376
2377        /* Give the log a push to start the unpinning I/O */
2378        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2379
2380}
2381
2382static void
2383__xfs_iunpin_wait(
2384        struct xfs_inode        *ip)
2385{
2386        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2387        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2388
2389        xfs_iunpin(ip);
2390
2391        do {
2392                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2393                if (xfs_ipincount(ip))
2394                        io_schedule();
2395        } while (xfs_ipincount(ip));
2396        finish_wait(wq, &wait.wait);
2397}
2398
2399void
2400xfs_iunpin_wait(
2401        struct xfs_inode        *ip)
2402{
2403        if (xfs_ipincount(ip))
2404                __xfs_iunpin_wait(ip);
2405}
2406
2407/*
2408 * Removing an inode from the namespace involves removing the directory entry
2409 * and dropping the link count on the inode. Removing the directory entry can
2410 * result in locking an AGF (directory blocks were freed) and removing a link
2411 * count can result in placing the inode on an unlinked list which results in
2412 * locking an AGI.
2413 *
2414 * The big problem here is that we have an ordering constraint on AGF and AGI
2415 * locking - inode allocation locks the AGI, then can allocate a new extent for
2416 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2417 * removes the inode from the unlinked list, requiring that we lock the AGI
2418 * first, and then freeing the inode can result in an inode chunk being freed
2419 * and hence freeing disk space requiring that we lock an AGF.
2420 *
2421 * Hence the ordering that is imposed by other parts of the code is AGI before
2422 * AGF. This means we cannot remove the directory entry before we drop the inode
2423 * reference count and put it on the unlinked list as this results in a lock
2424 * order of AGF then AGI, and this can deadlock against inode allocation and
2425 * freeing. Therefore we must drop the link counts before we remove the
2426 * directory entry.
2427 *
2428 * This is still safe from a transactional point of view - it is not until we
2429 * get to xfs_bmap_finish() that we have the possibility of multiple
2430 * transactions in this operation. Hence as long as we remove the directory
2431 * entry and drop the link count in the first transaction of the remove
2432 * operation, there are no transactional constraints on the ordering here.
2433 */
2434int
2435xfs_remove(
2436        xfs_inode_t             *dp,
2437        struct xfs_name         *name,
2438        xfs_inode_t             *ip)
2439{
2440        xfs_mount_t             *mp = dp->i_mount;
2441        xfs_trans_t             *tp = NULL;
2442        int                     is_dir = S_ISDIR(ip->i_d.di_mode);
2443        int                     error = 0;
2444        xfs_bmap_free_t         free_list;
2445        xfs_fsblock_t           first_block;
2446        int                     cancel_flags;
2447        int                     committed;
2448        int                     link_zero;
2449        uint                    resblks;
2450        uint                    log_count;
2451
2452        trace_xfs_remove(dp, name);
2453
2454        if (XFS_FORCED_SHUTDOWN(mp))
2455                return XFS_ERROR(EIO);
2456
2457        error = xfs_qm_dqattach(dp, 0);
2458        if (error)
2459                goto std_return;
2460
2461        error = xfs_qm_dqattach(ip, 0);
2462        if (error)
2463                goto std_return;
2464
2465        if (is_dir) {
2466                tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2467                log_count = XFS_DEFAULT_LOG_COUNT;
2468        } else {
2469                tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2470                log_count = XFS_REMOVE_LOG_COUNT;
2471        }
2472        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2473
2474        /*
2475         * We try to get the real space reservation first,
2476         * allowing for directory btree deletion(s) implying
2477         * possible bmap insert(s).  If we can't get the space
2478         * reservation then we use 0 instead, and avoid the bmap
2479         * btree insert(s) in the directory code by, if the bmap
2480         * insert tries to happen, instead trimming the LAST
2481         * block from the directory.
2482         */
2483        resblks = XFS_REMOVE_SPACE_RES(mp);
2484        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2485        if (error == ENOSPC) {
2486                resblks = 0;
2487                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2488        }
2489        if (error) {
2490                ASSERT(error != ENOSPC);
2491                cancel_flags = 0;
2492                goto out_trans_cancel;
2493        }
2494
2495        xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2496
2497        xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2498        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2499
2500        /*
2501         * If we're removing a directory perform some additional validation.
2502         */
2503        cancel_flags |= XFS_TRANS_ABORT;
2504        if (is_dir) {
2505                ASSERT(ip->i_d.di_nlink >= 2);
2506                if (ip->i_d.di_nlink != 2) {
2507                        error = XFS_ERROR(ENOTEMPTY);
2508                        goto out_trans_cancel;
2509                }
2510                if (!xfs_dir_isempty(ip)) {
2511                        error = XFS_ERROR(ENOTEMPTY);
2512                        goto out_trans_cancel;
2513                }
2514
2515                /* Drop the link from ip's "..".  */
2516                error = xfs_droplink(tp, dp);
2517                if (error)
2518                        goto out_trans_cancel;
2519
2520                /* Drop the "." link from ip to self.  */
2521                error = xfs_droplink(tp, ip);
2522                if (error)
2523                        goto out_trans_cancel;
2524        } else {
2525                /*
2526                 * When removing a non-directory we need to log the parent
2527                 * inode here.  For a directory this is done implicitly
2528                 * by the xfs_droplink call for the ".." entry.
2529                 */
2530                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2531        }
2532        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2533
2534        /* Drop the link from dp to ip. */
2535        error = xfs_droplink(tp, ip);
2536        if (error)
2537                goto out_trans_cancel;
2538
2539        /* Determine if this is the last link while the inode is locked */
2540        link_zero = (ip->i_d.di_nlink == 0);
2541
2542        xfs_bmap_init(&free_list, &first_block);
2543        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2544                                        &first_block, &free_list, resblks);
2545        if (error) {
2546                ASSERT(error != ENOENT);
2547                goto out_bmap_cancel;
2548        }
2549
2550        /*
2551         * If this is a synchronous mount, make sure that the
2552         * remove transaction goes to disk before returning to
2553         * the user.
2554         */
2555        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2556                xfs_trans_set_sync(tp);
2557
2558        error = xfs_bmap_finish(&tp, &free_list, &committed);
2559        if (error)
2560                goto out_bmap_cancel;
2561
2562        error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2563        if (error)
2564                goto std_return;
2565
2566        /*
2567         * If we are using filestreams, kill the stream association.
2568         * If the file is still open it may get a new one but that
2569         * will get killed on last close in xfs_close() so we don't
2570         * have to worry about that.
2571         */
2572        if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2573                xfs_filestream_deassociate(ip);
2574
2575        return 0;
2576
2577 out_bmap_cancel:
2578        xfs_bmap_cancel(&free_list);
2579 out_trans_cancel:
2580        xfs_trans_cancel(tp, cancel_flags);
2581 std_return:
2582        return error;
2583}
2584
2585/*
2586 * Enter all inodes for a rename transaction into a sorted array.
2587 */
2588STATIC void
2589xfs_sort_for_rename(
2590        xfs_inode_t     *dp1,   /* in: old (source) directory inode */
2591        xfs_inode_t     *dp2,   /* in: new (target) directory inode */
2592        xfs_inode_t     *ip1,   /* in: inode of old entry */
2593        xfs_inode_t     *ip2,   /* in: inode of new entry, if it
2594                                   already exists, NULL otherwise. */
2595        xfs_inode_t     **i_tab,/* out: array of inode returned, sorted */
2596        int             *num_inodes)  /* out: number of inodes in array */
2597{
2598        xfs_inode_t             *temp;
2599        int                     i, j;
2600
2601        /*
2602         * i_tab contains a list of pointers to inodes.  We initialize
2603         * the table here & we'll sort it.  We will then use it to
2604         * order the acquisition of the inode locks.
2605         *
2606         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2607         */
2608        i_tab[0] = dp1;
2609        i_tab[1] = dp2;
2610        i_tab[2] = ip1;
2611        if (ip2) {
2612                *num_inodes = 4;
2613                i_tab[3] = ip2;
2614        } else {
2615                *num_inodes = 3;
2616                i_tab[3] = NULL;
2617        }
2618
2619        /*
2620         * Sort the elements via bubble sort.  (Remember, there are at
2621         * most 4 elements to sort, so this is adequate.)
2622         */
2623        for (i = 0; i < *num_inodes; i++) {
2624                for (j = 1; j < *num_inodes; j++) {
2625                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2626                                temp = i_tab[j];
2627                                i_tab[j] = i_tab[j-1];
2628                                i_tab[j-1] = temp;
2629                        }
2630                }
2631        }
2632}
2633
2634/*
2635 * xfs_rename
2636 */
2637int
2638xfs_rename(
2639        xfs_inode_t     *src_dp,
2640        struct xfs_name *src_name,
2641        xfs_inode_t     *src_ip,
2642        xfs_inode_t     *target_dp,
2643        struct xfs_name *target_name,
2644        xfs_inode_t     *target_ip)
2645{
2646        xfs_trans_t     *tp = NULL;
2647        xfs_mount_t     *mp = src_dp->i_mount;
2648        int             new_parent;             /* moving to a new dir */
2649        int             src_is_directory;       /* src_name is a directory */
2650        int             error;
2651        xfs_bmap_free_t free_list;
2652        xfs_fsblock_t   first_block;
2653        int             cancel_flags;
2654        int             committed;
2655        xfs_inode_t     *inodes[4];
2656        int             spaceres;
2657        int             num_inodes;
2658
2659        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2660
2661        new_parent = (src_dp != target_dp);
2662        src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2663
2664        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2665                                inodes, &num_inodes);
2666
2667        xfs_bmap_init(&free_list, &first_block);
2668        tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2669        cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2670        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2671        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2672        if (error == ENOSPC) {
2673                spaceres = 0;
2674                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2675        }
2676        if (error) {
2677                xfs_trans_cancel(tp, 0);
2678                goto std_return;
2679        }
2680
2681        /*
2682         * Attach the dquots to the inodes
2683         */
2684        error = xfs_qm_vop_rename_dqattach(inodes);
2685        if (error) {
2686                xfs_trans_cancel(tp, cancel_flags);
2687                goto std_return;
2688        }
2689
2690        /*
2691         * Lock all the participating inodes. Depending upon whether
2692         * the target_name exists in the target directory, and
2693         * whether the target directory is the same as the source
2694         * directory, we can lock from 2 to 4 inodes.
2695         */
2696        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2697
2698        /*
2699         * Join all the inodes to the transaction. From this point on,
2700         * we can rely on either trans_commit or trans_cancel to unlock
2701         * them.
2702         */
2703        xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2704        if (new_parent)
2705                xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2706        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2707        if (target_ip)
2708                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2709
2710        /*
2711         * If we are using project inheritance, we only allow renames
2712         * into our tree when the project IDs are the same; else the
2713         * tree quota mechanism would be circumvented.
2714         */
2715        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2716                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2717                error = XFS_ERROR(EXDEV);
2718                goto error_return;
2719        }
2720
2721        /*
2722         * Set up the target.
2723         */
2724        if (target_ip == NULL) {
2725                /*
2726                 * If there's no space reservation, check the entry will
2727                 * fit before actually inserting it.
2728                 */
2729                error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2730                if (error)
2731                        goto error_return;
2732                /*
2733                 * If target does not exist and the rename crosses
2734                 * directories, adjust the target directory link count
2735                 * to account for the ".." reference from the new entry.
2736                 */
2737                error = xfs_dir_createname(tp, target_dp, target_name,
2738                                                src_ip->i_ino, &first_block,
2739                                                &free_list, spaceres);
2740                if (error == ENOSPC)
2741                        goto error_return;
2742                if (error)
2743                        goto abort_return;
2744
2745                xfs_trans_ichgtime(tp, target_dp,
2746                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2747
2748                if (new_parent && src_is_directory) {
2749                        error = xfs_bumplink(tp, target_dp);
2750                        if (error)
2751                                goto abort_return;
2752                }
2753        } else { /* target_ip != NULL */
2754                /*
2755                 * If target exists and it's a directory, check that both
2756                 * target and source are directories and that target can be
2757                 * destroyed, or that neither is a directory.
2758                 */
2759                if (S_ISDIR(target_ip->i_d.di_mode)) {
2760                        /*
2761                         * Make sure target dir is empty.
2762                         */
2763                        if (!(xfs_dir_isempty(target_ip)) ||
2764                            (target_ip->i_d.di_nlink > 2)) {
2765                                error = XFS_ERROR(EEXIST);
2766                                goto error_return;
2767                        }
2768                }
2769
2770                /*
2771                 * Link the source inode under the target name.
2772                 * If the source inode is a directory and we are moving
2773                 * it across directories, its ".." entry will be
2774                 * inconsistent until we replace that down below.
2775                 *
2776                 * In case there is already an entry with the same
2777                 * name at the destination directory, remove it first.
2778                 */
2779                error = xfs_dir_replace(tp, target_dp, target_name,
2780                                        src_ip->i_ino,
2781                                        &first_block, &free_list, spaceres);
2782                if (error)
2783                        goto abort_return;
2784
2785                xfs_trans_ichgtime(tp, target_dp,
2786                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2787
2788                /*
2789                 * Decrement the link count on the target since the target
2790                 * dir no longer points to it.
2791                 */
2792                error = xfs_droplink(tp, target_ip);
2793                if (error)
2794                        goto abort_return;
2795
2796                if (src_is_directory) {
2797                        /*
2798                         * Drop the link from the old "." entry.
2799                         */
2800                        error = xfs_droplink(tp, target_ip);
2801                        if (error)
2802                                goto abort_return;
2803                }
2804        } /* target_ip != NULL */
2805
2806        /*
2807         * Remove the source.
2808         */
2809        if (new_parent && src_is_directory) {
2810                /*
2811                 * Rewrite the ".." entry to point to the new
2812                 * directory.
2813                 */
2814                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2815                                        target_dp->i_ino,
2816                                        &first_block, &free_list, spaceres);
2817                ASSERT(error != EEXIST);
2818                if (error)
2819                        goto abort_return;
2820        }
2821
2822        /*
2823         * We always want to hit the ctime on the source inode.
2824         *
2825         * This isn't strictly required by the standards since the source
2826         * inode isn't really being changed, but old unix file systems did
2827         * it and some incremental backup programs won't work without it.
2828         */
2829        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2830        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2831
2832        /*
2833         * Adjust the link count on src_dp.  This is necessary when
2834         * renaming a directory, either within one parent when
2835         * the target existed, or across two parent directories.
2836         */
2837        if (src_is_directory && (new_parent || target_ip != NULL)) {
2838
2839                /*
2840                 * Decrement link count on src_directory since the
2841                 * entry that's moved no longer points to it.
2842                 */
2843                error = xfs_droplink(tp, src_dp);
2844                if (error)
2845                        goto abort_return;
2846        }
2847
2848        error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2849                                        &first_block, &free_list, spaceres);
2850        if (error)
2851                goto abort_return;
2852
2853        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2854        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2855        if (new_parent)
2856                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2857
2858        /*
2859         * If this is a synchronous mount, make sure that the
2860         * rename transaction goes to disk before returning to
2861         * the user.
2862         */
2863        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2864                xfs_trans_set_sync(tp);
2865        }
2866
2867        error = xfs_bmap_finish(&tp, &free_list, &committed);
2868        if (error) {
2869                xfs_bmap_cancel(&free_list);
2870                xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2871                                 XFS_TRANS_ABORT));
2872                goto std_return;
2873        }
2874
2875        /*
2876         * trans_commit will unlock src_ip, target_ip & decrement
2877         * the vnode references.
2878         */
2879        return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2880
2881 abort_return:
2882        cancel_flags |= XFS_TRANS_ABORT;
2883 error_return:
2884        xfs_bmap_cancel(&free_list);
2885        xfs_trans_cancel(tp, cancel_flags);
2886 std_return:
2887        return error;
2888}
2889
2890STATIC int
2891xfs_iflush_cluster(
2892        xfs_inode_t     *ip,
2893        xfs_buf_t       *bp)
2894{
2895        xfs_mount_t             *mp = ip->i_mount;
2896        struct xfs_perag        *pag;
2897        unsigned long           first_index, mask;
2898        unsigned long           inodes_per_cluster;
2899        int                     ilist_size;
2900        xfs_inode_t             **ilist;
2901        xfs_inode_t             *iq;
2902        int                     nr_found;
2903        int                     clcount = 0;
2904        int                     bufwasdelwri;
2905        int                     i;
2906
2907        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2908
2909        inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2910        ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2911        ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2912        if (!ilist)
2913                goto out_put;
2914
2915        mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2916        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2917        rcu_read_lock();
2918        /* really need a gang lookup range call here */
2919        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2920                                        first_index, inodes_per_cluster);
2921        if (nr_found == 0)
2922                goto out_free;
2923
2924        for (i = 0; i < nr_found; i++) {
2925                iq = ilist[i];
2926                if (iq == ip)
2927                        continue;
2928
2929                /*
2930                 * because this is an RCU protected lookup, we could find a
2931                 * recently freed or even reallocated inode during the lookup.
2932                 * We need to check under the i_flags_lock for a valid inode
2933                 * here. Skip it if it is not valid or the wrong inode.
2934                 */
2935                spin_lock(&ip->i_flags_lock);
2936                if (!ip->i_ino ||
2937                    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2938                        spin_unlock(&ip->i_flags_lock);
2939                        continue;
2940                }
2941                spin_unlock(&ip->i_flags_lock);
2942
2943                /*
2944                 * Do an un-protected check to see if the inode is dirty and
2945                 * is a candidate for flushing.  These checks will be repeated
2946                 * later after the appropriate locks are acquired.
2947                 */
2948                if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2949                        continue;
2950
2951                /*
2952                 * Try to get locks.  If any are unavailable or it is pinned,
2953                 * then this inode cannot be flushed and is skipped.
2954                 */
2955
2956                if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2957                        continue;
2958                if (!xfs_iflock_nowait(iq)) {
2959                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
2960                        continue;
2961                }
2962                if (xfs_ipincount(iq)) {
2963                        xfs_ifunlock(iq);
2964                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
2965                        continue;
2966                }
2967
2968                /*
2969                 * arriving here means that this inode can be flushed.  First
2970                 * re-check that it's dirty before flushing.
2971                 */
2972                if (!xfs_inode_clean(iq)) {
2973                        int     error;
2974                        error = xfs_iflush_int(iq, bp);
2975                        if (error) {
2976                                xfs_iunlock(iq, XFS_ILOCK_SHARED);
2977                                goto cluster_corrupt_out;
2978                        }
2979                        clcount++;
2980                } else {
2981                        xfs_ifunlock(iq);
2982                }
2983                xfs_iunlock(iq, XFS_ILOCK_SHARED);
2984        }
2985
2986        if (clcount) {
2987                XFS_STATS_INC(xs_icluster_flushcnt);
2988                XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2989        }
2990
2991out_free:
2992        rcu_read_unlock();
2993        kmem_free(ilist);
2994out_put:
2995        xfs_perag_put(pag);
2996        return 0;
2997
2998
2999cluster_corrupt_out:
3000        /*
3001         * Corruption detected in the clustering loop.  Invalidate the
3002         * inode buffer and shut down the filesystem.
3003         */
3004        rcu_read_unlock();
3005        /*
3006         * Clean up the buffer.  If it was delwri, just release it --
3007         * brelse can handle it with no problems.  If not, shut down the
3008         * filesystem before releasing the buffer.
3009         */
3010        bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3011        if (bufwasdelwri)
3012                xfs_buf_relse(bp);
3013
3014        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3015
3016        if (!bufwasdelwri) {
3017                /*
3018                 * Just like incore_relse: if we have b_iodone functions,
3019                 * mark the buffer as an error and call them.  Otherwise
3020                 * mark it as stale and brelse.
3021                 */
3022                if (bp->b_iodone) {
3023                        XFS_BUF_UNDONE(bp);
3024                        xfs_buf_stale(bp);
3025                        xfs_buf_ioerror(bp, EIO);
3026                        xfs_buf_ioend(bp, 0);
3027                } else {
3028                        xfs_buf_stale(bp);
3029                        xfs_buf_relse(bp);
3030                }
3031        }
3032
3033        /*
3034         * Unlocks the flush lock
3035         */
3036        xfs_iflush_abort(iq, false);
3037        kmem_free(ilist);
3038        xfs_perag_put(pag);
3039        return XFS_ERROR(EFSCORRUPTED);
3040}
3041
3042/*
3043 * Flush dirty inode metadata into the backing buffer.
3044 *
3045 * The caller must have the inode lock and the inode flush lock held.  The
3046 * inode lock will still be held upon return to the caller, and the inode
3047 * flush lock will be released after the inode has reached the disk.
3048 *
3049 * The caller must write out the buffer returned in *bpp and release it.
3050 */
3051int
3052xfs_iflush(
3053        struct xfs_inode        *ip,
3054        struct xfs_buf          **bpp)
3055{
3056        struct xfs_mount        *mp = ip->i_mount;
3057        struct xfs_buf          *bp;
3058        struct xfs_dinode       *dip;
3059        int                     error;
3060
3061        XFS_STATS_INC(xs_iflush_count);
3062
3063        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3064        ASSERT(xfs_isiflocked(ip));
3065        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3066               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3067
3068        *bpp = NULL;
3069
3070        xfs_iunpin_wait(ip);
3071
3072        /*
3073         * For stale inodes we cannot rely on the backing buffer remaining
3074         * stale in cache for the remaining life of the stale inode and so
3075         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3076         * inodes below. We have to check this after ensuring the inode is
3077         * unpinned so that it is safe to reclaim the stale inode after the
3078         * flush call.
3079         */
3080        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3081                xfs_ifunlock(ip);
3082                return 0;
3083        }
3084
3085        /*
3086         * This may have been unpinned because the filesystem is shutting
3087         * down forcibly. If that's the case we must not write this inode
3088         * to disk, because the log record didn't make it to disk.
3089         *
3090         * We also have to remove the log item from the AIL in this case,
3091         * as we wait for an empty AIL as part of the unmount process.
3092         */
3093        if (XFS_FORCED_SHUTDOWN(mp)) {
3094                error = XFS_ERROR(EIO);
3095                goto abort_out;
3096        }
3097
3098        /*
3099         * Get the buffer containing the on-disk inode.
3100         */
3101        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3102                               0);
3103        if (error || !bp) {
3104                xfs_ifunlock(ip);
3105                return error;
3106        }
3107
3108        /*
3109         * First flush out the inode that xfs_iflush was called with.
3110         */
3111        error = xfs_iflush_int(ip, bp);
3112        if (error)
3113                goto corrupt_out;
3114
3115        /*
3116         * If the buffer is pinned then push on the log now so we won't
3117         * get stuck waiting in the write for too long.
3118         */
3119        if (xfs_buf_ispinned(bp))
3120                xfs_log_force(mp, 0);
3121
3122        /*
3123         * inode clustering:
3124         * see if other inodes can be gathered into this write
3125         */
3126        error = xfs_iflush_cluster(ip, bp);
3127        if (error)
3128                goto cluster_corrupt_out;
3129
3130        *bpp = bp;
3131        return 0;
3132
3133corrupt_out:
3134        xfs_buf_relse(bp);
3135        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3136cluster_corrupt_out:
3137        error = XFS_ERROR(EFSCORRUPTED);
3138abort_out:
3139        /*
3140         * Unlocks the flush lock
3141         */
3142        xfs_iflush_abort(ip, false);
3143        return error;
3144}
3145
3146STATIC int
3147xfs_iflush_int(
3148        struct xfs_inode        *ip,
3149        struct xfs_buf          *bp)
3150{
3151        struct xfs_inode_log_item *iip = ip->i_itemp;
3152        struct xfs_dinode       *dip;
3153        struct xfs_mount        *mp = ip->i_mount;
3154
3155        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3156        ASSERT(xfs_isiflocked(ip));
3157        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3158               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3159        ASSERT(iip != NULL && iip->ili_fields != 0);
3160
3161        /* set *dip = inode's place in the buffer */
3162        dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3163
3164        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3165                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3166                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3167                        "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3168                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3169                goto corrupt_out;
3170        }
3171        if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3172                                mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3173                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3174                        "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3175                        __func__, ip->i_ino, ip, ip->i_d.di_magic);
3176                goto corrupt_out;
3177        }
3178        if (S_ISREG(ip->i_d.di_mode)) {
3179                if (XFS_TEST_ERROR(
3180                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3181                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3182                    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3183                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3184                                "%s: Bad regular inode %Lu, ptr 0x%p",
3185                                __func__, ip->i_ino, ip);
3186                        goto corrupt_out;
3187                }
3188        } else if (S_ISDIR(ip->i_d.di_mode)) {
3189                if (XFS_TEST_ERROR(
3190                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3191                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3192                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3193                    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3194                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3195                                "%s: Bad directory inode %Lu, ptr 0x%p",
3196                                __func__, ip->i_ino, ip);
3197                        goto corrupt_out;
3198                }
3199        }
3200        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3201                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3202                                XFS_RANDOM_IFLUSH_5)) {
3203                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3204                        "%s: detected corrupt incore inode %Lu, "
3205                        "total extents = %d, nblocks = %Ld, ptr 0x%p",
3206                        __func__, ip->i_ino,
3207                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3208                        ip->i_d.di_nblocks, ip);
3209                goto corrupt_out;
3210        }
3211        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3212                                mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3213                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3214                        "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3215                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3216                goto corrupt_out;
3217        }
3218
3219        /*
3220         * Inode item log recovery for v1/v2 inodes are dependent on the
3221         * di_flushiter count for correct sequencing. We bump the flush
3222         * iteration count so we can detect flushes which postdate a log record
3223         * during recovery. This is redundant as we now log every change and
3224         * hence this can't happen but we need to still do it to ensure
3225         * backwards compatibility with old kernels that predate logging all
3226         * inode changes.
3227         */
3228        if (ip->i_d.di_version < 3)
3229                ip->i_d.di_flushiter++;
3230
3231        /*
3232         * Copy the dirty parts of the inode into the on-disk
3233         * inode.  We always copy out the core of the inode,
3234         * because if the inode is dirty at all the core must
3235         * be.
3236         */
3237        xfs_dinode_to_disk(dip, &ip->i_d);
3238
3239        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3240        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3241                ip->i_d.di_flushiter = 0;
3242
3243        /*
3244         * If this is really an old format inode and the superblock version
3245         * has not been updated to support only new format inodes, then
3246         * convert back to the old inode format.  If the superblock version
3247         * has been updated, then make the conversion permanent.
3248         */
3249        ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3250        if (ip->i_d.di_version == 1) {
3251                if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3252                        /*
3253                         * Convert it back.
3254                         */
3255                        ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3256                        dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3257                } else {
3258                        /*
3259                         * The superblock version has already been bumped,
3260                         * so just make the conversion to the new inode
3261                         * format permanent.
3262                         */
3263                        ip->i_d.di_version = 2;
3264                        dip->di_version = 2;
3265                        ip->i_d.di_onlink = 0;
3266                        dip->di_onlink = 0;
3267                        memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3268                        memset(&(dip->di_pad[0]), 0,
3269                              sizeof(dip->di_pad));
3270                        ASSERT(xfs_get_projid(ip) == 0);
3271                }
3272        }
3273
3274        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3275        if (XFS_IFORK_Q(ip))
3276                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3277        xfs_inobp_check(mp, bp);
3278
3279        /*
3280         * We've recorded everything logged in the inode, so we'd like to clear
3281         * the ili_fields bits so we don't log and flush things unnecessarily.
3282         * However, we can't stop logging all this information until the data
3283         * we've copied into the disk buffer is written to disk.  If we did we
3284         * might overwrite the copy of the inode in the log with all the data
3285         * after re-logging only part of it, and in the face of a crash we
3286         * wouldn't have all the data we need to recover.
3287         *
3288         * What we do is move the bits to the ili_last_fields field.  When
3289         * logging the inode, these bits are moved back to the ili_fields field.
3290         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3291         * know that the information those bits represent is permanently on
3292         * disk.  As long as the flush completes before the inode is logged
3293         * again, then both ili_fields and ili_last_fields will be cleared.
3294         *
3295         * We can play with the ili_fields bits here, because the inode lock
3296         * must be held exclusively in order to set bits there and the flush
3297         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3298         * done routine can tell whether or not to look in the AIL.  Also, store
3299         * the current LSN of the inode so that we can tell whether the item has
3300         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3301         * need the AIL lock, because it is a 64 bit value that cannot be read
3302         * atomically.
3303         */
3304        iip->ili_last_fields = iip->ili_fields;
3305        iip->ili_fields = 0;
3306        iip->ili_logged = 1;
3307
3308        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3309                                &iip->ili_item.li_lsn);
3310
3311        /*
3312         * Attach the function xfs_iflush_done to the inode's
3313         * buffer.  This will remove the inode from the AIL
3314         * and unlock the inode's flush lock when the inode is
3315         * completely written to disk.
3316         */
3317        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3318
3319        /* update the lsn in the on disk inode if required */
3320        if (ip->i_d.di_version == 3)
3321                dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3322
3323        /* generate the checksum. */
3324        xfs_dinode_calc_crc(mp, dip);
3325
3326        ASSERT(bp->b_fspriv != NULL);
3327        ASSERT(bp->b_iodone != NULL);
3328        return 0;
3329
3330corrupt_out:
3331        return XFS_ERROR(EFSCORRUPTED);
3332}
3333