linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/memcontrol.h>
  58#include <linux/res_counter.h>
  59#include <linux/static_key.h>
  60#include <linux/aio.h>
  61#include <linux/sched.h>
  62
  63#include <linux/filter.h>
  64#include <linux/rculist_nulls.h>
  65#include <linux/poll.h>
  66
  67#include <linux/atomic.h>
  68#include <net/dst.h>
  69#include <net/checksum.h>
  70
  71struct cgroup;
  72struct cgroup_subsys;
  73#ifdef CONFIG_NET
  74int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
  75void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
  76#else
  77static inline
  78int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  79{
  80        return 0;
  81}
  82static inline
  83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  84{
  85}
  86#endif
  87/*
  88 * This structure really needs to be cleaned up.
  89 * Most of it is for TCP, and not used by any of
  90 * the other protocols.
  91 */
  92
  93/* Define this to get the SOCK_DBG debugging facility. */
  94#define SOCK_DEBUGGING
  95#ifdef SOCK_DEBUGGING
  96#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  97                                        printk(KERN_DEBUG msg); } while (0)
  98#else
  99/* Validate arguments and do nothing */
 100static inline __printf(2, 3)
 101void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
 102{
 103}
 104#endif
 105
 106/* This is the per-socket lock.  The spinlock provides a synchronization
 107 * between user contexts and software interrupt processing, whereas the
 108 * mini-semaphore synchronizes multiple users amongst themselves.
 109 */
 110typedef struct {
 111        spinlock_t              slock;
 112        int                     owned;
 113        wait_queue_head_t       wq;
 114        /*
 115         * We express the mutex-alike socket_lock semantics
 116         * to the lock validator by explicitly managing
 117         * the slock as a lock variant (in addition to
 118         * the slock itself):
 119         */
 120#ifdef CONFIG_DEBUG_LOCK_ALLOC
 121        struct lockdep_map dep_map;
 122#endif
 123} socket_lock_t;
 124
 125struct sock;
 126struct proto;
 127struct net;
 128
 129typedef __u32 __bitwise __portpair;
 130typedef __u64 __bitwise __addrpair;
 131
 132/**
 133 *      struct sock_common - minimal network layer representation of sockets
 134 *      @skc_daddr: Foreign IPv4 addr
 135 *      @skc_rcv_saddr: Bound local IPv4 addr
 136 *      @skc_hash: hash value used with various protocol lookup tables
 137 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 138 *      @skc_dport: placeholder for inet_dport/tw_dport
 139 *      @skc_num: placeholder for inet_num/tw_num
 140 *      @skc_family: network address family
 141 *      @skc_state: Connection state
 142 *      @skc_reuse: %SO_REUSEADDR setting
 143 *      @skc_reuseport: %SO_REUSEPORT setting
 144 *      @skc_bound_dev_if: bound device index if != 0
 145 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 146 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 147 *      @skc_prot: protocol handlers inside a network family
 148 *      @skc_net: reference to the network namespace of this socket
 149 *      @skc_node: main hash linkage for various protocol lookup tables
 150 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 151 *      @skc_tx_queue_mapping: tx queue number for this connection
 152 *      @skc_refcnt: reference count
 153 *
 154 *      This is the minimal network layer representation of sockets, the header
 155 *      for struct sock and struct inet_timewait_sock.
 156 */
 157struct sock_common {
 158        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 159         * address on 64bit arches : cf INET_MATCH()
 160         */
 161        union {
 162                __addrpair      skc_addrpair;
 163                struct {
 164                        __be32  skc_daddr;
 165                        __be32  skc_rcv_saddr;
 166                };
 167        };
 168        union  {
 169                unsigned int    skc_hash;
 170                __u16           skc_u16hashes[2];
 171        };
 172        /* skc_dport && skc_num must be grouped as well */
 173        union {
 174                __portpair      skc_portpair;
 175                struct {
 176                        __be16  skc_dport;
 177                        __u16   skc_num;
 178                };
 179        };
 180
 181        unsigned short          skc_family;
 182        volatile unsigned char  skc_state;
 183        unsigned char           skc_reuse:4;
 184        unsigned char           skc_reuseport:4;
 185        int                     skc_bound_dev_if;
 186        union {
 187                struct hlist_node       skc_bind_node;
 188                struct hlist_nulls_node skc_portaddr_node;
 189        };
 190        struct proto            *skc_prot;
 191#ifdef CONFIG_NET_NS
 192        struct net              *skc_net;
 193#endif
 194
 195#if IS_ENABLED(CONFIG_IPV6)
 196        struct in6_addr         skc_v6_daddr;
 197        struct in6_addr         skc_v6_rcv_saddr;
 198#endif
 199
 200        /*
 201         * fields between dontcopy_begin/dontcopy_end
 202         * are not copied in sock_copy()
 203         */
 204        /* private: */
 205        int                     skc_dontcopy_begin[0];
 206        /* public: */
 207        union {
 208                struct hlist_node       skc_node;
 209                struct hlist_nulls_node skc_nulls_node;
 210        };
 211        int                     skc_tx_queue_mapping;
 212        atomic_t                skc_refcnt;
 213        /* private: */
 214        int                     skc_dontcopy_end[0];
 215        /* public: */
 216};
 217
 218struct cg_proto;
 219/**
 220  *     struct sock - network layer representation of sockets
 221  *     @__sk_common: shared layout with inet_timewait_sock
 222  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 223  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 224  *     @sk_lock:       synchronizer
 225  *     @sk_rcvbuf: size of receive buffer in bytes
 226  *     @sk_wq: sock wait queue and async head
 227  *     @sk_rx_dst: receive input route used by early demux
 228  *     @sk_dst_cache: destination cache
 229  *     @sk_dst_lock: destination cache lock
 230  *     @sk_policy: flow policy
 231  *     @sk_receive_queue: incoming packets
 232  *     @sk_wmem_alloc: transmit queue bytes committed
 233  *     @sk_write_queue: Packet sending queue
 234  *     @sk_async_wait_queue: DMA copied packets
 235  *     @sk_omem_alloc: "o" is "option" or "other"
 236  *     @sk_wmem_queued: persistent queue size
 237  *     @sk_forward_alloc: space allocated forward
 238  *     @sk_napi_id: id of the last napi context to receive data for sk
 239  *     @sk_ll_usec: usecs to busypoll when there is no data
 240  *     @sk_allocation: allocation mode
 241  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 242  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 243  *     @sk_sndbuf: size of send buffer in bytes
 244  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 245  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 246  *     @sk_no_check: %SO_NO_CHECK setting, whether or not checkup packets
 247  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 248  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 249  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 250  *     @sk_gso_max_size: Maximum GSO segment size to build
 251  *     @sk_gso_max_segs: Maximum number of GSO segments
 252  *     @sk_lingertime: %SO_LINGER l_linger setting
 253  *     @sk_backlog: always used with the per-socket spinlock held
 254  *     @sk_callback_lock: used with the callbacks in the end of this struct
 255  *     @sk_error_queue: rarely used
 256  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 257  *                       IPV6_ADDRFORM for instance)
 258  *     @sk_err: last error
 259  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 260  *                   persistent failure not just 'timed out'
 261  *     @sk_drops: raw/udp drops counter
 262  *     @sk_ack_backlog: current listen backlog
 263  *     @sk_max_ack_backlog: listen backlog set in listen()
 264  *     @sk_priority: %SO_PRIORITY setting
 265  *     @sk_cgrp_prioidx: socket group's priority map index
 266  *     @sk_type: socket type (%SOCK_STREAM, etc)
 267  *     @sk_protocol: which protocol this socket belongs in this network family
 268  *     @sk_peer_pid: &struct pid for this socket's peer
 269  *     @sk_peer_cred: %SO_PEERCRED setting
 270  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 271  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 272  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 273  *     @sk_rxhash: flow hash received from netif layer
 274  *     @sk_filter: socket filtering instructions
 275  *     @sk_protinfo: private area, net family specific, when not using slab
 276  *     @sk_timer: sock cleanup timer
 277  *     @sk_stamp: time stamp of last packet received
 278  *     @sk_socket: Identd and reporting IO signals
 279  *     @sk_user_data: RPC layer private data
 280  *     @sk_frag: cached page frag
 281  *     @sk_peek_off: current peek_offset value
 282  *     @sk_send_head: front of stuff to transmit
 283  *     @sk_security: used by security modules
 284  *     @sk_mark: generic packet mark
 285  *     @sk_classid: this socket's cgroup classid
 286  *     @sk_cgrp: this socket's cgroup-specific proto data
 287  *     @sk_write_pending: a write to stream socket waits to start
 288  *     @sk_state_change: callback to indicate change in the state of the sock
 289  *     @sk_data_ready: callback to indicate there is data to be processed
 290  *     @sk_write_space: callback to indicate there is bf sending space available
 291  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 292  *     @sk_backlog_rcv: callback to process the backlog
 293  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 294 */
 295struct sock {
 296        /*
 297         * Now struct inet_timewait_sock also uses sock_common, so please just
 298         * don't add nothing before this first member (__sk_common) --acme
 299         */
 300        struct sock_common      __sk_common;
 301#define sk_node                 __sk_common.skc_node
 302#define sk_nulls_node           __sk_common.skc_nulls_node
 303#define sk_refcnt               __sk_common.skc_refcnt
 304#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 305
 306#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 307#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 308#define sk_hash                 __sk_common.skc_hash
 309#define sk_portpair             __sk_common.skc_portpair
 310#define sk_num                  __sk_common.skc_num
 311#define sk_dport                __sk_common.skc_dport
 312#define sk_addrpair             __sk_common.skc_addrpair
 313#define sk_daddr                __sk_common.skc_daddr
 314#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 315#define sk_family               __sk_common.skc_family
 316#define sk_state                __sk_common.skc_state
 317#define sk_reuse                __sk_common.skc_reuse
 318#define sk_reuseport            __sk_common.skc_reuseport
 319#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 320#define sk_bind_node            __sk_common.skc_bind_node
 321#define sk_prot                 __sk_common.skc_prot
 322#define sk_net                  __sk_common.skc_net
 323#define sk_v6_daddr             __sk_common.skc_v6_daddr
 324#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 325
 326        socket_lock_t           sk_lock;
 327        struct sk_buff_head     sk_receive_queue;
 328        /*
 329         * The backlog queue is special, it is always used with
 330         * the per-socket spinlock held and requires low latency
 331         * access. Therefore we special case it's implementation.
 332         * Note : rmem_alloc is in this structure to fill a hole
 333         * on 64bit arches, not because its logically part of
 334         * backlog.
 335         */
 336        struct {
 337                atomic_t        rmem_alloc;
 338                int             len;
 339                struct sk_buff  *head;
 340                struct sk_buff  *tail;
 341        } sk_backlog;
 342#define sk_rmem_alloc sk_backlog.rmem_alloc
 343        int                     sk_forward_alloc;
 344#ifdef CONFIG_RPS
 345        __u32                   sk_rxhash;
 346#endif
 347#ifdef CONFIG_NET_RX_BUSY_POLL
 348        unsigned int            sk_napi_id;
 349        unsigned int            sk_ll_usec;
 350#endif
 351        atomic_t                sk_drops;
 352        int                     sk_rcvbuf;
 353
 354        struct sk_filter __rcu  *sk_filter;
 355        struct socket_wq __rcu  *sk_wq;
 356
 357#ifdef CONFIG_NET_DMA
 358        struct sk_buff_head     sk_async_wait_queue;
 359#endif
 360
 361#ifdef CONFIG_XFRM
 362        struct xfrm_policy      *sk_policy[2];
 363#endif
 364        unsigned long           sk_flags;
 365        struct dst_entry        *sk_rx_dst;
 366        struct dst_entry __rcu  *sk_dst_cache;
 367        spinlock_t              sk_dst_lock;
 368        atomic_t                sk_wmem_alloc;
 369        atomic_t                sk_omem_alloc;
 370        int                     sk_sndbuf;
 371        struct sk_buff_head     sk_write_queue;
 372        kmemcheck_bitfield_begin(flags);
 373        unsigned int            sk_shutdown  : 2,
 374                                sk_no_check  : 2,
 375                                sk_userlocks : 4,
 376                                sk_protocol  : 8,
 377                                sk_type      : 16;
 378        kmemcheck_bitfield_end(flags);
 379        int                     sk_wmem_queued;
 380        gfp_t                   sk_allocation;
 381        u32                     sk_pacing_rate; /* bytes per second */
 382        u32                     sk_max_pacing_rate;
 383        netdev_features_t       sk_route_caps;
 384        netdev_features_t       sk_route_nocaps;
 385        int                     sk_gso_type;
 386        unsigned int            sk_gso_max_size;
 387        u16                     sk_gso_max_segs;
 388        int                     sk_rcvlowat;
 389        unsigned long           sk_lingertime;
 390        struct sk_buff_head     sk_error_queue;
 391        struct proto            *sk_prot_creator;
 392        rwlock_t                sk_callback_lock;
 393        int                     sk_err,
 394                                sk_err_soft;
 395        unsigned short          sk_ack_backlog;
 396        unsigned short          sk_max_ack_backlog;
 397        __u32                   sk_priority;
 398#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
 399        __u32                   sk_cgrp_prioidx;
 400#endif
 401        struct pid              *sk_peer_pid;
 402        const struct cred       *sk_peer_cred;
 403        long                    sk_rcvtimeo;
 404        long                    sk_sndtimeo;
 405        void                    *sk_protinfo;
 406        struct timer_list       sk_timer;
 407        ktime_t                 sk_stamp;
 408        struct socket           *sk_socket;
 409        void                    *sk_user_data;
 410        struct page_frag        sk_frag;
 411        struct sk_buff          *sk_send_head;
 412        __s32                   sk_peek_off;
 413        int                     sk_write_pending;
 414#ifdef CONFIG_SECURITY
 415        void                    *sk_security;
 416#endif
 417        __u32                   sk_mark;
 418        u32                     sk_classid;
 419        struct cg_proto         *sk_cgrp;
 420        void                    (*sk_state_change)(struct sock *sk);
 421        void                    (*sk_data_ready)(struct sock *sk, int bytes);
 422        void                    (*sk_write_space)(struct sock *sk);
 423        void                    (*sk_error_report)(struct sock *sk);
 424        int                     (*sk_backlog_rcv)(struct sock *sk,
 425                                                  struct sk_buff *skb);
 426        void                    (*sk_destruct)(struct sock *sk);
 427};
 428
 429#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 430
 431#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 432#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 433
 434/*
 435 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 436 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 437 * on a socket means that the socket will reuse everybody else's port
 438 * without looking at the other's sk_reuse value.
 439 */
 440
 441#define SK_NO_REUSE     0
 442#define SK_CAN_REUSE    1
 443#define SK_FORCE_REUSE  2
 444
 445static inline int sk_peek_offset(struct sock *sk, int flags)
 446{
 447        if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 448                return sk->sk_peek_off;
 449        else
 450                return 0;
 451}
 452
 453static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 454{
 455        if (sk->sk_peek_off >= 0) {
 456                if (sk->sk_peek_off >= val)
 457                        sk->sk_peek_off -= val;
 458                else
 459                        sk->sk_peek_off = 0;
 460        }
 461}
 462
 463static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 464{
 465        if (sk->sk_peek_off >= 0)
 466                sk->sk_peek_off += val;
 467}
 468
 469/*
 470 * Hashed lists helper routines
 471 */
 472static inline struct sock *sk_entry(const struct hlist_node *node)
 473{
 474        return hlist_entry(node, struct sock, sk_node);
 475}
 476
 477static inline struct sock *__sk_head(const struct hlist_head *head)
 478{
 479        return hlist_entry(head->first, struct sock, sk_node);
 480}
 481
 482static inline struct sock *sk_head(const struct hlist_head *head)
 483{
 484        return hlist_empty(head) ? NULL : __sk_head(head);
 485}
 486
 487static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 488{
 489        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 490}
 491
 492static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 493{
 494        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 495}
 496
 497static inline struct sock *sk_next(const struct sock *sk)
 498{
 499        return sk->sk_node.next ?
 500                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 501}
 502
 503static inline struct sock *sk_nulls_next(const struct sock *sk)
 504{
 505        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 506                hlist_nulls_entry(sk->sk_nulls_node.next,
 507                                  struct sock, sk_nulls_node) :
 508                NULL;
 509}
 510
 511static inline bool sk_unhashed(const struct sock *sk)
 512{
 513        return hlist_unhashed(&sk->sk_node);
 514}
 515
 516static inline bool sk_hashed(const struct sock *sk)
 517{
 518        return !sk_unhashed(sk);
 519}
 520
 521static inline void sk_node_init(struct hlist_node *node)
 522{
 523        node->pprev = NULL;
 524}
 525
 526static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 527{
 528        node->pprev = NULL;
 529}
 530
 531static inline void __sk_del_node(struct sock *sk)
 532{
 533        __hlist_del(&sk->sk_node);
 534}
 535
 536/* NB: equivalent to hlist_del_init_rcu */
 537static inline bool __sk_del_node_init(struct sock *sk)
 538{
 539        if (sk_hashed(sk)) {
 540                __sk_del_node(sk);
 541                sk_node_init(&sk->sk_node);
 542                return true;
 543        }
 544        return false;
 545}
 546
 547/* Grab socket reference count. This operation is valid only
 548   when sk is ALREADY grabbed f.e. it is found in hash table
 549   or a list and the lookup is made under lock preventing hash table
 550   modifications.
 551 */
 552
 553static inline void sock_hold(struct sock *sk)
 554{
 555        atomic_inc(&sk->sk_refcnt);
 556}
 557
 558/* Ungrab socket in the context, which assumes that socket refcnt
 559   cannot hit zero, f.e. it is true in context of any socketcall.
 560 */
 561static inline void __sock_put(struct sock *sk)
 562{
 563        atomic_dec(&sk->sk_refcnt);
 564}
 565
 566static inline bool sk_del_node_init(struct sock *sk)
 567{
 568        bool rc = __sk_del_node_init(sk);
 569
 570        if (rc) {
 571                /* paranoid for a while -acme */
 572                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 573                __sock_put(sk);
 574        }
 575        return rc;
 576}
 577#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 578
 579static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 580{
 581        if (sk_hashed(sk)) {
 582                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 583                return true;
 584        }
 585        return false;
 586}
 587
 588static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 589{
 590        bool rc = __sk_nulls_del_node_init_rcu(sk);
 591
 592        if (rc) {
 593                /* paranoid for a while -acme */
 594                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 595                __sock_put(sk);
 596        }
 597        return rc;
 598}
 599
 600static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 601{
 602        hlist_add_head(&sk->sk_node, list);
 603}
 604
 605static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 606{
 607        sock_hold(sk);
 608        __sk_add_node(sk, list);
 609}
 610
 611static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 612{
 613        sock_hold(sk);
 614        hlist_add_head_rcu(&sk->sk_node, list);
 615}
 616
 617static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 618{
 619        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 620}
 621
 622static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 623{
 624        sock_hold(sk);
 625        __sk_nulls_add_node_rcu(sk, list);
 626}
 627
 628static inline void __sk_del_bind_node(struct sock *sk)
 629{
 630        __hlist_del(&sk->sk_bind_node);
 631}
 632
 633static inline void sk_add_bind_node(struct sock *sk,
 634                                        struct hlist_head *list)
 635{
 636        hlist_add_head(&sk->sk_bind_node, list);
 637}
 638
 639#define sk_for_each(__sk, list) \
 640        hlist_for_each_entry(__sk, list, sk_node)
 641#define sk_for_each_rcu(__sk, list) \
 642        hlist_for_each_entry_rcu(__sk, list, sk_node)
 643#define sk_nulls_for_each(__sk, node, list) \
 644        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 645#define sk_nulls_for_each_rcu(__sk, node, list) \
 646        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 647#define sk_for_each_from(__sk) \
 648        hlist_for_each_entry_from(__sk, sk_node)
 649#define sk_nulls_for_each_from(__sk, node) \
 650        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 651                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 652#define sk_for_each_safe(__sk, tmp, list) \
 653        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 654#define sk_for_each_bound(__sk, list) \
 655        hlist_for_each_entry(__sk, list, sk_bind_node)
 656
 657static inline struct user_namespace *sk_user_ns(struct sock *sk)
 658{
 659        /* Careful only use this in a context where these parameters
 660         * can not change and must all be valid, such as recvmsg from
 661         * userspace.
 662         */
 663        return sk->sk_socket->file->f_cred->user_ns;
 664}
 665
 666/* Sock flags */
 667enum sock_flags {
 668        SOCK_DEAD,
 669        SOCK_DONE,
 670        SOCK_URGINLINE,
 671        SOCK_KEEPOPEN,
 672        SOCK_LINGER,
 673        SOCK_DESTROY,
 674        SOCK_BROADCAST,
 675        SOCK_TIMESTAMP,
 676        SOCK_ZAPPED,
 677        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 678        SOCK_DBG, /* %SO_DEBUG setting */
 679        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 680        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 681        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 682        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 683        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 684        SOCK_TIMESTAMPING_TX_HARDWARE,  /* %SOF_TIMESTAMPING_TX_HARDWARE */
 685        SOCK_TIMESTAMPING_TX_SOFTWARE,  /* %SOF_TIMESTAMPING_TX_SOFTWARE */
 686        SOCK_TIMESTAMPING_RX_HARDWARE,  /* %SOF_TIMESTAMPING_RX_HARDWARE */
 687        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 688        SOCK_TIMESTAMPING_SOFTWARE,     /* %SOF_TIMESTAMPING_SOFTWARE */
 689        SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
 690        SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
 691        SOCK_FASYNC, /* fasync() active */
 692        SOCK_RXQ_OVFL,
 693        SOCK_ZEROCOPY, /* buffers from userspace */
 694        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 695        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 696                     * Will use last 4 bytes of packet sent from
 697                     * user-space instead.
 698                     */
 699        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 700        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 701};
 702
 703static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 704{
 705        nsk->sk_flags = osk->sk_flags;
 706}
 707
 708static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 709{
 710        __set_bit(flag, &sk->sk_flags);
 711}
 712
 713static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 714{
 715        __clear_bit(flag, &sk->sk_flags);
 716}
 717
 718static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 719{
 720        return test_bit(flag, &sk->sk_flags);
 721}
 722
 723#ifdef CONFIG_NET
 724extern struct static_key memalloc_socks;
 725static inline int sk_memalloc_socks(void)
 726{
 727        return static_key_false(&memalloc_socks);
 728}
 729#else
 730
 731static inline int sk_memalloc_socks(void)
 732{
 733        return 0;
 734}
 735
 736#endif
 737
 738static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
 739{
 740        return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
 741}
 742
 743static inline void sk_acceptq_removed(struct sock *sk)
 744{
 745        sk->sk_ack_backlog--;
 746}
 747
 748static inline void sk_acceptq_added(struct sock *sk)
 749{
 750        sk->sk_ack_backlog++;
 751}
 752
 753static inline bool sk_acceptq_is_full(const struct sock *sk)
 754{
 755        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 756}
 757
 758/*
 759 * Compute minimal free write space needed to queue new packets.
 760 */
 761static inline int sk_stream_min_wspace(const struct sock *sk)
 762{
 763        return sk->sk_wmem_queued >> 1;
 764}
 765
 766static inline int sk_stream_wspace(const struct sock *sk)
 767{
 768        return sk->sk_sndbuf - sk->sk_wmem_queued;
 769}
 770
 771void sk_stream_write_space(struct sock *sk);
 772
 773/* OOB backlog add */
 774static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 775{
 776        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 777        skb_dst_force(skb);
 778
 779        if (!sk->sk_backlog.tail)
 780                sk->sk_backlog.head = skb;
 781        else
 782                sk->sk_backlog.tail->next = skb;
 783
 784        sk->sk_backlog.tail = skb;
 785        skb->next = NULL;
 786}
 787
 788/*
 789 * Take into account size of receive queue and backlog queue
 790 * Do not take into account this skb truesize,
 791 * to allow even a single big packet to come.
 792 */
 793static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
 794                                     unsigned int limit)
 795{
 796        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 797
 798        return qsize > limit;
 799}
 800
 801/* The per-socket spinlock must be held here. */
 802static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 803                                              unsigned int limit)
 804{
 805        if (sk_rcvqueues_full(sk, skb, limit))
 806                return -ENOBUFS;
 807
 808        __sk_add_backlog(sk, skb);
 809        sk->sk_backlog.len += skb->truesize;
 810        return 0;
 811}
 812
 813int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 814
 815static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 816{
 817        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 818                return __sk_backlog_rcv(sk, skb);
 819
 820        return sk->sk_backlog_rcv(sk, skb);
 821}
 822
 823static inline void sock_rps_record_flow(const struct sock *sk)
 824{
 825#ifdef CONFIG_RPS
 826        struct rps_sock_flow_table *sock_flow_table;
 827
 828        rcu_read_lock();
 829        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 830        rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 831        rcu_read_unlock();
 832#endif
 833}
 834
 835static inline void sock_rps_reset_flow(const struct sock *sk)
 836{
 837#ifdef CONFIG_RPS
 838        struct rps_sock_flow_table *sock_flow_table;
 839
 840        rcu_read_lock();
 841        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 842        rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 843        rcu_read_unlock();
 844#endif
 845}
 846
 847static inline void sock_rps_save_rxhash(struct sock *sk,
 848                                        const struct sk_buff *skb)
 849{
 850#ifdef CONFIG_RPS
 851        if (unlikely(sk->sk_rxhash != skb->rxhash)) {
 852                sock_rps_reset_flow(sk);
 853                sk->sk_rxhash = skb->rxhash;
 854        }
 855#endif
 856}
 857
 858static inline void sock_rps_reset_rxhash(struct sock *sk)
 859{
 860#ifdef CONFIG_RPS
 861        sock_rps_reset_flow(sk);
 862        sk->sk_rxhash = 0;
 863#endif
 864}
 865
 866#define sk_wait_event(__sk, __timeo, __condition)                       \
 867        ({      int __rc;                                               \
 868                release_sock(__sk);                                     \
 869                __rc = __condition;                                     \
 870                if (!__rc) {                                            \
 871                        *(__timeo) = schedule_timeout(*(__timeo));      \
 872                }                                                       \
 873                lock_sock(__sk);                                        \
 874                __rc = __condition;                                     \
 875                __rc;                                                   \
 876        })
 877
 878int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 879int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 880void sk_stream_wait_close(struct sock *sk, long timeo_p);
 881int sk_stream_error(struct sock *sk, int flags, int err);
 882void sk_stream_kill_queues(struct sock *sk);
 883void sk_set_memalloc(struct sock *sk);
 884void sk_clear_memalloc(struct sock *sk);
 885
 886int sk_wait_data(struct sock *sk, long *timeo);
 887
 888struct request_sock_ops;
 889struct timewait_sock_ops;
 890struct inet_hashinfo;
 891struct raw_hashinfo;
 892struct module;
 893
 894/*
 895 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 896 * un-modified. Special care is taken when initializing object to zero.
 897 */
 898static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 899{
 900        if (offsetof(struct sock, sk_node.next) != 0)
 901                memset(sk, 0, offsetof(struct sock, sk_node.next));
 902        memset(&sk->sk_node.pprev, 0,
 903               size - offsetof(struct sock, sk_node.pprev));
 904}
 905
 906/* Networking protocol blocks we attach to sockets.
 907 * socket layer -> transport layer interface
 908 * transport -> network interface is defined by struct inet_proto
 909 */
 910struct proto {
 911        void                    (*close)(struct sock *sk,
 912                                        long timeout);
 913        int                     (*connect)(struct sock *sk,
 914                                        struct sockaddr *uaddr,
 915                                        int addr_len);
 916        int                     (*disconnect)(struct sock *sk, int flags);
 917
 918        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 919
 920        int                     (*ioctl)(struct sock *sk, int cmd,
 921                                         unsigned long arg);
 922        int                     (*init)(struct sock *sk);
 923        void                    (*destroy)(struct sock *sk);
 924        void                    (*shutdown)(struct sock *sk, int how);
 925        int                     (*setsockopt)(struct sock *sk, int level,
 926                                        int optname, char __user *optval,
 927                                        unsigned int optlen);
 928        int                     (*getsockopt)(struct sock *sk, int level,
 929                                        int optname, char __user *optval,
 930                                        int __user *option);
 931#ifdef CONFIG_COMPAT
 932        int                     (*compat_setsockopt)(struct sock *sk,
 933                                        int level,
 934                                        int optname, char __user *optval,
 935                                        unsigned int optlen);
 936        int                     (*compat_getsockopt)(struct sock *sk,
 937                                        int level,
 938                                        int optname, char __user *optval,
 939                                        int __user *option);
 940        int                     (*compat_ioctl)(struct sock *sk,
 941                                        unsigned int cmd, unsigned long arg);
 942#endif
 943        int                     (*sendmsg)(struct kiocb *iocb, struct sock *sk,
 944                                           struct msghdr *msg, size_t len);
 945        int                     (*recvmsg)(struct kiocb *iocb, struct sock *sk,
 946                                           struct msghdr *msg,
 947                                           size_t len, int noblock, int flags,
 948                                           int *addr_len);
 949        int                     (*sendpage)(struct sock *sk, struct page *page,
 950                                        int offset, size_t size, int flags);
 951        int                     (*bind)(struct sock *sk,
 952                                        struct sockaddr *uaddr, int addr_len);
 953
 954        int                     (*backlog_rcv) (struct sock *sk,
 955                                                struct sk_buff *skb);
 956
 957        void            (*release_cb)(struct sock *sk);
 958        void            (*mtu_reduced)(struct sock *sk);
 959
 960        /* Keeping track of sk's, looking them up, and port selection methods. */
 961        void                    (*hash)(struct sock *sk);
 962        void                    (*unhash)(struct sock *sk);
 963        void                    (*rehash)(struct sock *sk);
 964        int                     (*get_port)(struct sock *sk, unsigned short snum);
 965        void                    (*clear_sk)(struct sock *sk, int size);
 966
 967        /* Keeping track of sockets in use */
 968#ifdef CONFIG_PROC_FS
 969        unsigned int            inuse_idx;
 970#endif
 971
 972        bool                    (*stream_memory_free)(const struct sock *sk);
 973        /* Memory pressure */
 974        void                    (*enter_memory_pressure)(struct sock *sk);
 975        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
 976        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
 977        /*
 978         * Pressure flag: try to collapse.
 979         * Technical note: it is used by multiple contexts non atomically.
 980         * All the __sk_mem_schedule() is of this nature: accounting
 981         * is strict, actions are advisory and have some latency.
 982         */
 983        int                     *memory_pressure;
 984        long                    *sysctl_mem;
 985        int                     *sysctl_wmem;
 986        int                     *sysctl_rmem;
 987        int                     max_header;
 988        bool                    no_autobind;
 989
 990        struct kmem_cache       *slab;
 991        unsigned int            obj_size;
 992        int                     slab_flags;
 993
 994        struct percpu_counter   *orphan_count;
 995
 996        struct request_sock_ops *rsk_prot;
 997        struct timewait_sock_ops *twsk_prot;
 998
 999        union {
1000                struct inet_hashinfo    *hashinfo;
1001                struct udp_table        *udp_table;
1002                struct raw_hashinfo     *raw_hash;
1003        } h;
1004
1005        struct module           *owner;
1006
1007        char                    name[32];
1008
1009        struct list_head        node;
1010#ifdef SOCK_REFCNT_DEBUG
1011        atomic_t                socks;
1012#endif
1013#ifdef CONFIG_MEMCG_KMEM
1014        /*
1015         * cgroup specific init/deinit functions. Called once for all
1016         * protocols that implement it, from cgroups populate function.
1017         * This function has to setup any files the protocol want to
1018         * appear in the kmem cgroup filesystem.
1019         */
1020        int                     (*init_cgroup)(struct mem_cgroup *memcg,
1021                                               struct cgroup_subsys *ss);
1022        void                    (*destroy_cgroup)(struct mem_cgroup *memcg);
1023        struct cg_proto         *(*proto_cgroup)(struct mem_cgroup *memcg);
1024#endif
1025};
1026
1027/*
1028 * Bits in struct cg_proto.flags
1029 */
1030enum cg_proto_flags {
1031        /* Currently active and new sockets should be assigned to cgroups */
1032        MEMCG_SOCK_ACTIVE,
1033        /* It was ever activated; we must disarm static keys on destruction */
1034        MEMCG_SOCK_ACTIVATED,
1035};
1036
1037struct cg_proto {
1038        struct res_counter      memory_allocated;       /* Current allocated memory. */
1039        struct percpu_counter   sockets_allocated;      /* Current number of sockets. */
1040        int                     memory_pressure;
1041        long                    sysctl_mem[3];
1042        unsigned long           flags;
1043        /*
1044         * memcg field is used to find which memcg we belong directly
1045         * Each memcg struct can hold more than one cg_proto, so container_of
1046         * won't really cut.
1047         *
1048         * The elegant solution would be having an inverse function to
1049         * proto_cgroup in struct proto, but that means polluting the structure
1050         * for everybody, instead of just for memcg users.
1051         */
1052        struct mem_cgroup       *memcg;
1053};
1054
1055int proto_register(struct proto *prot, int alloc_slab);
1056void proto_unregister(struct proto *prot);
1057
1058static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1059{
1060        return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1061}
1062
1063static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1064{
1065        return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1066}
1067
1068#ifdef SOCK_REFCNT_DEBUG
1069static inline void sk_refcnt_debug_inc(struct sock *sk)
1070{
1071        atomic_inc(&sk->sk_prot->socks);
1072}
1073
1074static inline void sk_refcnt_debug_dec(struct sock *sk)
1075{
1076        atomic_dec(&sk->sk_prot->socks);
1077        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1078               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1079}
1080
1081static inline void sk_refcnt_debug_release(const struct sock *sk)
1082{
1083        if (atomic_read(&sk->sk_refcnt) != 1)
1084                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1085                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1086}
1087#else /* SOCK_REFCNT_DEBUG */
1088#define sk_refcnt_debug_inc(sk) do { } while (0)
1089#define sk_refcnt_debug_dec(sk) do { } while (0)
1090#define sk_refcnt_debug_release(sk) do { } while (0)
1091#endif /* SOCK_REFCNT_DEBUG */
1092
1093#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1094extern struct static_key memcg_socket_limit_enabled;
1095static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1096                                               struct cg_proto *cg_proto)
1097{
1098        return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1099}
1100#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1101#else
1102#define mem_cgroup_sockets_enabled 0
1103static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1104                                               struct cg_proto *cg_proto)
1105{
1106        return NULL;
1107}
1108#endif
1109
1110static inline bool sk_stream_memory_free(const struct sock *sk)
1111{
1112        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1113                return false;
1114
1115        return sk->sk_prot->stream_memory_free ?
1116                sk->sk_prot->stream_memory_free(sk) : true;
1117}
1118
1119static inline bool sk_stream_is_writeable(const struct sock *sk)
1120{
1121        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1122               sk_stream_memory_free(sk);
1123}
1124
1125
1126static inline bool sk_has_memory_pressure(const struct sock *sk)
1127{
1128        return sk->sk_prot->memory_pressure != NULL;
1129}
1130
1131static inline bool sk_under_memory_pressure(const struct sock *sk)
1132{
1133        if (!sk->sk_prot->memory_pressure)
1134                return false;
1135
1136        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1137                return !!sk->sk_cgrp->memory_pressure;
1138
1139        return !!*sk->sk_prot->memory_pressure;
1140}
1141
1142static inline void sk_leave_memory_pressure(struct sock *sk)
1143{
1144        int *memory_pressure = sk->sk_prot->memory_pressure;
1145
1146        if (!memory_pressure)
1147                return;
1148
1149        if (*memory_pressure)
1150                *memory_pressure = 0;
1151
1152        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1153                struct cg_proto *cg_proto = sk->sk_cgrp;
1154                struct proto *prot = sk->sk_prot;
1155
1156                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1157                        cg_proto->memory_pressure = 0;
1158        }
1159
1160}
1161
1162static inline void sk_enter_memory_pressure(struct sock *sk)
1163{
1164        if (!sk->sk_prot->enter_memory_pressure)
1165                return;
1166
1167        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1168                struct cg_proto *cg_proto = sk->sk_cgrp;
1169                struct proto *prot = sk->sk_prot;
1170
1171                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1172                        cg_proto->memory_pressure = 1;
1173        }
1174
1175        sk->sk_prot->enter_memory_pressure(sk);
1176}
1177
1178static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1179{
1180        long *prot = sk->sk_prot->sysctl_mem;
1181        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1182                prot = sk->sk_cgrp->sysctl_mem;
1183        return prot[index];
1184}
1185
1186static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1187                                              unsigned long amt,
1188                                              int *parent_status)
1189{
1190        struct res_counter *fail;
1191        int ret;
1192
1193        ret = res_counter_charge_nofail(&prot->memory_allocated,
1194                                        amt << PAGE_SHIFT, &fail);
1195        if (ret < 0)
1196                *parent_status = OVER_LIMIT;
1197}
1198
1199static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1200                                              unsigned long amt)
1201{
1202        res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1203}
1204
1205static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1206{
1207        u64 ret;
1208        ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1209        return ret >> PAGE_SHIFT;
1210}
1211
1212static inline long
1213sk_memory_allocated(const struct sock *sk)
1214{
1215        struct proto *prot = sk->sk_prot;
1216        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1217                return memcg_memory_allocated_read(sk->sk_cgrp);
1218
1219        return atomic_long_read(prot->memory_allocated);
1220}
1221
1222static inline long
1223sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1224{
1225        struct proto *prot = sk->sk_prot;
1226
1227        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1228                memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1229                /* update the root cgroup regardless */
1230                atomic_long_add_return(amt, prot->memory_allocated);
1231                return memcg_memory_allocated_read(sk->sk_cgrp);
1232        }
1233
1234        return atomic_long_add_return(amt, prot->memory_allocated);
1235}
1236
1237static inline void
1238sk_memory_allocated_sub(struct sock *sk, int amt)
1239{
1240        struct proto *prot = sk->sk_prot;
1241
1242        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1243                memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1244
1245        atomic_long_sub(amt, prot->memory_allocated);
1246}
1247
1248static inline void sk_sockets_allocated_dec(struct sock *sk)
1249{
1250        struct proto *prot = sk->sk_prot;
1251
1252        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1253                struct cg_proto *cg_proto = sk->sk_cgrp;
1254
1255                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1256                        percpu_counter_dec(&cg_proto->sockets_allocated);
1257        }
1258
1259        percpu_counter_dec(prot->sockets_allocated);
1260}
1261
1262static inline void sk_sockets_allocated_inc(struct sock *sk)
1263{
1264        struct proto *prot = sk->sk_prot;
1265
1266        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1267                struct cg_proto *cg_proto = sk->sk_cgrp;
1268
1269                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1270                        percpu_counter_inc(&cg_proto->sockets_allocated);
1271        }
1272
1273        percpu_counter_inc(prot->sockets_allocated);
1274}
1275
1276static inline int
1277sk_sockets_allocated_read_positive(struct sock *sk)
1278{
1279        struct proto *prot = sk->sk_prot;
1280
1281        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1282                return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1283
1284        return percpu_counter_read_positive(prot->sockets_allocated);
1285}
1286
1287static inline int
1288proto_sockets_allocated_sum_positive(struct proto *prot)
1289{
1290        return percpu_counter_sum_positive(prot->sockets_allocated);
1291}
1292
1293static inline long
1294proto_memory_allocated(struct proto *prot)
1295{
1296        return atomic_long_read(prot->memory_allocated);
1297}
1298
1299static inline bool
1300proto_memory_pressure(struct proto *prot)
1301{
1302        if (!prot->memory_pressure)
1303                return false;
1304        return !!*prot->memory_pressure;
1305}
1306
1307
1308#ifdef CONFIG_PROC_FS
1309/* Called with local bh disabled */
1310void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1311int sock_prot_inuse_get(struct net *net, struct proto *proto);
1312#else
1313static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1314                int inc)
1315{
1316}
1317#endif
1318
1319
1320/* With per-bucket locks this operation is not-atomic, so that
1321 * this version is not worse.
1322 */
1323static inline void __sk_prot_rehash(struct sock *sk)
1324{
1325        sk->sk_prot->unhash(sk);
1326        sk->sk_prot->hash(sk);
1327}
1328
1329void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1330
1331/* About 10 seconds */
1332#define SOCK_DESTROY_TIME (10*HZ)
1333
1334/* Sockets 0-1023 can't be bound to unless you are superuser */
1335#define PROT_SOCK       1024
1336
1337#define SHUTDOWN_MASK   3
1338#define RCV_SHUTDOWN    1
1339#define SEND_SHUTDOWN   2
1340
1341#define SOCK_SNDBUF_LOCK        1
1342#define SOCK_RCVBUF_LOCK        2
1343#define SOCK_BINDADDR_LOCK      4
1344#define SOCK_BINDPORT_LOCK      8
1345
1346/* sock_iocb: used to kick off async processing of socket ios */
1347struct sock_iocb {
1348        struct list_head        list;
1349
1350        int                     flags;
1351        int                     size;
1352        struct socket           *sock;
1353        struct sock             *sk;
1354        struct scm_cookie       *scm;
1355        struct msghdr           *msg, async_msg;
1356        struct kiocb            *kiocb;
1357};
1358
1359static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1360{
1361        return (struct sock_iocb *)iocb->private;
1362}
1363
1364static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1365{
1366        return si->kiocb;
1367}
1368
1369struct socket_alloc {
1370        struct socket socket;
1371        struct inode vfs_inode;
1372};
1373
1374static inline struct socket *SOCKET_I(struct inode *inode)
1375{
1376        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1377}
1378
1379static inline struct inode *SOCK_INODE(struct socket *socket)
1380{
1381        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1382}
1383
1384/*
1385 * Functions for memory accounting
1386 */
1387int __sk_mem_schedule(struct sock *sk, int size, int kind);
1388void __sk_mem_reclaim(struct sock *sk);
1389
1390#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1391#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1392#define SK_MEM_SEND     0
1393#define SK_MEM_RECV     1
1394
1395static inline int sk_mem_pages(int amt)
1396{
1397        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1398}
1399
1400static inline bool sk_has_account(struct sock *sk)
1401{
1402        /* return true if protocol supports memory accounting */
1403        return !!sk->sk_prot->memory_allocated;
1404}
1405
1406static inline bool sk_wmem_schedule(struct sock *sk, int size)
1407{
1408        if (!sk_has_account(sk))
1409                return true;
1410        return size <= sk->sk_forward_alloc ||
1411                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1412}
1413
1414static inline bool
1415sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1416{
1417        if (!sk_has_account(sk))
1418                return true;
1419        return size<= sk->sk_forward_alloc ||
1420                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1421                skb_pfmemalloc(skb);
1422}
1423
1424static inline void sk_mem_reclaim(struct sock *sk)
1425{
1426        if (!sk_has_account(sk))
1427                return;
1428        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1429                __sk_mem_reclaim(sk);
1430}
1431
1432static inline void sk_mem_reclaim_partial(struct sock *sk)
1433{
1434        if (!sk_has_account(sk))
1435                return;
1436        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1437                __sk_mem_reclaim(sk);
1438}
1439
1440static inline void sk_mem_charge(struct sock *sk, int size)
1441{
1442        if (!sk_has_account(sk))
1443                return;
1444        sk->sk_forward_alloc -= size;
1445}
1446
1447static inline void sk_mem_uncharge(struct sock *sk, int size)
1448{
1449        if (!sk_has_account(sk))
1450                return;
1451        sk->sk_forward_alloc += size;
1452}
1453
1454static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1455{
1456        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1457        sk->sk_wmem_queued -= skb->truesize;
1458        sk_mem_uncharge(sk, skb->truesize);
1459        __kfree_skb(skb);
1460}
1461
1462/* Used by processes to "lock" a socket state, so that
1463 * interrupts and bottom half handlers won't change it
1464 * from under us. It essentially blocks any incoming
1465 * packets, so that we won't get any new data or any
1466 * packets that change the state of the socket.
1467 *
1468 * While locked, BH processing will add new packets to
1469 * the backlog queue.  This queue is processed by the
1470 * owner of the socket lock right before it is released.
1471 *
1472 * Since ~2.3.5 it is also exclusive sleep lock serializing
1473 * accesses from user process context.
1474 */
1475#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1476
1477/*
1478 * Macro so as to not evaluate some arguments when
1479 * lockdep is not enabled.
1480 *
1481 * Mark both the sk_lock and the sk_lock.slock as a
1482 * per-address-family lock class.
1483 */
1484#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1485do {                                                                    \
1486        sk->sk_lock.owned = 0;                                          \
1487        init_waitqueue_head(&sk->sk_lock.wq);                           \
1488        spin_lock_init(&(sk)->sk_lock.slock);                           \
1489        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1490                        sizeof((sk)->sk_lock));                         \
1491        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1492                                (skey), (sname));                               \
1493        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1494} while (0)
1495
1496void lock_sock_nested(struct sock *sk, int subclass);
1497
1498static inline void lock_sock(struct sock *sk)
1499{
1500        lock_sock_nested(sk, 0);
1501}
1502
1503void release_sock(struct sock *sk);
1504
1505/* BH context may only use the following locking interface. */
1506#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1507#define bh_lock_sock_nested(__sk) \
1508                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1509                                SINGLE_DEPTH_NESTING)
1510#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1511
1512bool lock_sock_fast(struct sock *sk);
1513/**
1514 * unlock_sock_fast - complement of lock_sock_fast
1515 * @sk: socket
1516 * @slow: slow mode
1517 *
1518 * fast unlock socket for user context.
1519 * If slow mode is on, we call regular release_sock()
1520 */
1521static inline void unlock_sock_fast(struct sock *sk, bool slow)
1522{
1523        if (slow)
1524                release_sock(sk);
1525        else
1526                spin_unlock_bh(&sk->sk_lock.slock);
1527}
1528
1529
1530struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1531                      struct proto *prot);
1532void sk_free(struct sock *sk);
1533void sk_release_kernel(struct sock *sk);
1534struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1535
1536struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1537                             gfp_t priority);
1538struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1539                             gfp_t priority);
1540void sock_wfree(struct sk_buff *skb);
1541void skb_orphan_partial(struct sk_buff *skb);
1542void sock_rfree(struct sk_buff *skb);
1543void sock_edemux(struct sk_buff *skb);
1544
1545int sock_setsockopt(struct socket *sock, int level, int op,
1546                    char __user *optval, unsigned int optlen);
1547
1548int sock_getsockopt(struct socket *sock, int level, int op,
1549                    char __user *optval, int __user *optlen);
1550struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1551                                    int noblock, int *errcode);
1552struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1553                                     unsigned long data_len, int noblock,
1554                                     int *errcode, int max_page_order);
1555void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1556void sock_kfree_s(struct sock *sk, void *mem, int size);
1557void sk_send_sigurg(struct sock *sk);
1558
1559/*
1560 * Functions to fill in entries in struct proto_ops when a protocol
1561 * does not implement a particular function.
1562 */
1563int sock_no_bind(struct socket *, struct sockaddr *, int);
1564int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1565int sock_no_socketpair(struct socket *, struct socket *);
1566int sock_no_accept(struct socket *, struct socket *, int);
1567int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1568unsigned int sock_no_poll(struct file *, struct socket *,
1569                          struct poll_table_struct *);
1570int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1571int sock_no_listen(struct socket *, int);
1572int sock_no_shutdown(struct socket *, int);
1573int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1574int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1575int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1576int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1577                    int);
1578int sock_no_mmap(struct file *file, struct socket *sock,
1579                 struct vm_area_struct *vma);
1580ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1581                         size_t size, int flags);
1582
1583/*
1584 * Functions to fill in entries in struct proto_ops when a protocol
1585 * uses the inet style.
1586 */
1587int sock_common_getsockopt(struct socket *sock, int level, int optname,
1588                                  char __user *optval, int __user *optlen);
1589int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1590                               struct msghdr *msg, size_t size, int flags);
1591int sock_common_setsockopt(struct socket *sock, int level, int optname,
1592                                  char __user *optval, unsigned int optlen);
1593int compat_sock_common_getsockopt(struct socket *sock, int level,
1594                int optname, char __user *optval, int __user *optlen);
1595int compat_sock_common_setsockopt(struct socket *sock, int level,
1596                int optname, char __user *optval, unsigned int optlen);
1597
1598void sk_common_release(struct sock *sk);
1599
1600/*
1601 *      Default socket callbacks and setup code
1602 */
1603
1604/* Initialise core socket variables */
1605void sock_init_data(struct socket *sock, struct sock *sk);
1606
1607void sk_filter_release_rcu(struct rcu_head *rcu);
1608
1609/**
1610 *      sk_filter_release - release a socket filter
1611 *      @fp: filter to remove
1612 *
1613 *      Remove a filter from a socket and release its resources.
1614 */
1615
1616static inline void sk_filter_release(struct sk_filter *fp)
1617{
1618        if (atomic_dec_and_test(&fp->refcnt))
1619                call_rcu(&fp->rcu, sk_filter_release_rcu);
1620}
1621
1622static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1623{
1624        atomic_sub(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1625        sk_filter_release(fp);
1626}
1627
1628static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1629{
1630        atomic_inc(&fp->refcnt);
1631        atomic_add(sk_filter_size(fp->len), &sk->sk_omem_alloc);
1632}
1633
1634/*
1635 * Socket reference counting postulates.
1636 *
1637 * * Each user of socket SHOULD hold a reference count.
1638 * * Each access point to socket (an hash table bucket, reference from a list,
1639 *   running timer, skb in flight MUST hold a reference count.
1640 * * When reference count hits 0, it means it will never increase back.
1641 * * When reference count hits 0, it means that no references from
1642 *   outside exist to this socket and current process on current CPU
1643 *   is last user and may/should destroy this socket.
1644 * * sk_free is called from any context: process, BH, IRQ. When
1645 *   it is called, socket has no references from outside -> sk_free
1646 *   may release descendant resources allocated by the socket, but
1647 *   to the time when it is called, socket is NOT referenced by any
1648 *   hash tables, lists etc.
1649 * * Packets, delivered from outside (from network or from another process)
1650 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1651 *   when they sit in queue. Otherwise, packets will leak to hole, when
1652 *   socket is looked up by one cpu and unhasing is made by another CPU.
1653 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1654 *   (leak to backlog). Packet socket does all the processing inside
1655 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1656 *   use separate SMP lock, so that they are prone too.
1657 */
1658
1659/* Ungrab socket and destroy it, if it was the last reference. */
1660static inline void sock_put(struct sock *sk)
1661{
1662        if (atomic_dec_and_test(&sk->sk_refcnt))
1663                sk_free(sk);
1664}
1665/* Generic version of sock_put(), dealing with all sockets
1666 * (TCP_TIMEWAIT, ESTABLISHED...)
1667 */
1668void sock_gen_put(struct sock *sk);
1669
1670int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1671
1672static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1673{
1674        sk->sk_tx_queue_mapping = tx_queue;
1675}
1676
1677static inline void sk_tx_queue_clear(struct sock *sk)
1678{
1679        sk->sk_tx_queue_mapping = -1;
1680}
1681
1682static inline int sk_tx_queue_get(const struct sock *sk)
1683{
1684        return sk ? sk->sk_tx_queue_mapping : -1;
1685}
1686
1687static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1688{
1689        sk_tx_queue_clear(sk);
1690        sk->sk_socket = sock;
1691}
1692
1693static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1694{
1695        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1696        return &rcu_dereference_raw(sk->sk_wq)->wait;
1697}
1698/* Detach socket from process context.
1699 * Announce socket dead, detach it from wait queue and inode.
1700 * Note that parent inode held reference count on this struct sock,
1701 * we do not release it in this function, because protocol
1702 * probably wants some additional cleanups or even continuing
1703 * to work with this socket (TCP).
1704 */
1705static inline void sock_orphan(struct sock *sk)
1706{
1707        write_lock_bh(&sk->sk_callback_lock);
1708        sock_set_flag(sk, SOCK_DEAD);
1709        sk_set_socket(sk, NULL);
1710        sk->sk_wq  = NULL;
1711        write_unlock_bh(&sk->sk_callback_lock);
1712}
1713
1714static inline void sock_graft(struct sock *sk, struct socket *parent)
1715{
1716        write_lock_bh(&sk->sk_callback_lock);
1717        sk->sk_wq = parent->wq;
1718        parent->sk = sk;
1719        sk_set_socket(sk, parent);
1720        security_sock_graft(sk, parent);
1721        write_unlock_bh(&sk->sk_callback_lock);
1722}
1723
1724kuid_t sock_i_uid(struct sock *sk);
1725unsigned long sock_i_ino(struct sock *sk);
1726
1727static inline struct dst_entry *
1728__sk_dst_get(struct sock *sk)
1729{
1730        return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1731                                                       lockdep_is_held(&sk->sk_lock.slock));
1732}
1733
1734static inline struct dst_entry *
1735sk_dst_get(struct sock *sk)
1736{
1737        struct dst_entry *dst;
1738
1739        rcu_read_lock();
1740        dst = rcu_dereference(sk->sk_dst_cache);
1741        if (dst)
1742                dst_hold(dst);
1743        rcu_read_unlock();
1744        return dst;
1745}
1746
1747static inline void dst_negative_advice(struct sock *sk)
1748{
1749        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1750
1751        if (dst && dst->ops->negative_advice) {
1752                ndst = dst->ops->negative_advice(dst);
1753
1754                if (ndst != dst) {
1755                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1756                        sk_tx_queue_clear(sk);
1757                }
1758        }
1759}
1760
1761static inline void
1762__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1763{
1764        struct dst_entry *old_dst;
1765
1766        sk_tx_queue_clear(sk);
1767        /*
1768         * This can be called while sk is owned by the caller only,
1769         * with no state that can be checked in a rcu_dereference_check() cond
1770         */
1771        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1772        rcu_assign_pointer(sk->sk_dst_cache, dst);
1773        dst_release(old_dst);
1774}
1775
1776static inline void
1777sk_dst_set(struct sock *sk, struct dst_entry *dst)
1778{
1779        spin_lock(&sk->sk_dst_lock);
1780        __sk_dst_set(sk, dst);
1781        spin_unlock(&sk->sk_dst_lock);
1782}
1783
1784static inline void
1785__sk_dst_reset(struct sock *sk)
1786{
1787        __sk_dst_set(sk, NULL);
1788}
1789
1790static inline void
1791sk_dst_reset(struct sock *sk)
1792{
1793        spin_lock(&sk->sk_dst_lock);
1794        __sk_dst_reset(sk);
1795        spin_unlock(&sk->sk_dst_lock);
1796}
1797
1798struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1799
1800struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1801
1802static inline bool sk_can_gso(const struct sock *sk)
1803{
1804        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1805}
1806
1807void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1808
1809static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1810{
1811        sk->sk_route_nocaps |= flags;
1812        sk->sk_route_caps &= ~flags;
1813}
1814
1815static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1816                                           char __user *from, char *to,
1817                                           int copy, int offset)
1818{
1819        if (skb->ip_summed == CHECKSUM_NONE) {
1820                int err = 0;
1821                __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1822                if (err)
1823                        return err;
1824                skb->csum = csum_block_add(skb->csum, csum, offset);
1825        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1826                if (!access_ok(VERIFY_READ, from, copy) ||
1827                    __copy_from_user_nocache(to, from, copy))
1828                        return -EFAULT;
1829        } else if (copy_from_user(to, from, copy))
1830                return -EFAULT;
1831
1832        return 0;
1833}
1834
1835static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1836                                       char __user *from, int copy)
1837{
1838        int err, offset = skb->len;
1839
1840        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1841                                       copy, offset);
1842        if (err)
1843                __skb_trim(skb, offset);
1844
1845        return err;
1846}
1847
1848static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1849                                           struct sk_buff *skb,
1850                                           struct page *page,
1851                                           int off, int copy)
1852{
1853        int err;
1854
1855        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1856                                       copy, skb->len);
1857        if (err)
1858                return err;
1859
1860        skb->len             += copy;
1861        skb->data_len        += copy;
1862        skb->truesize        += copy;
1863        sk->sk_wmem_queued   += copy;
1864        sk_mem_charge(sk, copy);
1865        return 0;
1866}
1867
1868static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1869                                   struct sk_buff *skb, struct page *page,
1870                                   int off, int copy)
1871{
1872        if (skb->ip_summed == CHECKSUM_NONE) {
1873                int err = 0;
1874                __wsum csum = csum_and_copy_from_user(from,
1875                                                     page_address(page) + off,
1876                                                            copy, 0, &err);
1877                if (err)
1878                        return err;
1879                skb->csum = csum_block_add(skb->csum, csum, skb->len);
1880        } else if (copy_from_user(page_address(page) + off, from, copy))
1881                return -EFAULT;
1882
1883        skb->len             += copy;
1884        skb->data_len        += copy;
1885        skb->truesize        += copy;
1886        sk->sk_wmem_queued   += copy;
1887        sk_mem_charge(sk, copy);
1888        return 0;
1889}
1890
1891/**
1892 * sk_wmem_alloc_get - returns write allocations
1893 * @sk: socket
1894 *
1895 * Returns sk_wmem_alloc minus initial offset of one
1896 */
1897static inline int sk_wmem_alloc_get(const struct sock *sk)
1898{
1899        return atomic_read(&sk->sk_wmem_alloc) - 1;
1900}
1901
1902/**
1903 * sk_rmem_alloc_get - returns read allocations
1904 * @sk: socket
1905 *
1906 * Returns sk_rmem_alloc
1907 */
1908static inline int sk_rmem_alloc_get(const struct sock *sk)
1909{
1910        return atomic_read(&sk->sk_rmem_alloc);
1911}
1912
1913/**
1914 * sk_has_allocations - check if allocations are outstanding
1915 * @sk: socket
1916 *
1917 * Returns true if socket has write or read allocations
1918 */
1919static inline bool sk_has_allocations(const struct sock *sk)
1920{
1921        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1922}
1923
1924/**
1925 * wq_has_sleeper - check if there are any waiting processes
1926 * @wq: struct socket_wq
1927 *
1928 * Returns true if socket_wq has waiting processes
1929 *
1930 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1931 * barrier call. They were added due to the race found within the tcp code.
1932 *
1933 * Consider following tcp code paths:
1934 *
1935 * CPU1                  CPU2
1936 *
1937 * sys_select            receive packet
1938 *   ...                 ...
1939 *   __add_wait_queue    update tp->rcv_nxt
1940 *   ...                 ...
1941 *   tp->rcv_nxt check   sock_def_readable
1942 *   ...                 {
1943 *   schedule               rcu_read_lock();
1944 *                          wq = rcu_dereference(sk->sk_wq);
1945 *                          if (wq && waitqueue_active(&wq->wait))
1946 *                              wake_up_interruptible(&wq->wait)
1947 *                          ...
1948 *                       }
1949 *
1950 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1951 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1952 * could then endup calling schedule and sleep forever if there are no more
1953 * data on the socket.
1954 *
1955 */
1956static inline bool wq_has_sleeper(struct socket_wq *wq)
1957{
1958        /* We need to be sure we are in sync with the
1959         * add_wait_queue modifications to the wait queue.
1960         *
1961         * This memory barrier is paired in the sock_poll_wait.
1962         */
1963        smp_mb();
1964        return wq && waitqueue_active(&wq->wait);
1965}
1966
1967/**
1968 * sock_poll_wait - place memory barrier behind the poll_wait call.
1969 * @filp:           file
1970 * @wait_address:   socket wait queue
1971 * @p:              poll_table
1972 *
1973 * See the comments in the wq_has_sleeper function.
1974 */
1975static inline void sock_poll_wait(struct file *filp,
1976                wait_queue_head_t *wait_address, poll_table *p)
1977{
1978        if (!poll_does_not_wait(p) && wait_address) {
1979                poll_wait(filp, wait_address, p);
1980                /* We need to be sure we are in sync with the
1981                 * socket flags modification.
1982                 *
1983                 * This memory barrier is paired in the wq_has_sleeper.
1984                 */
1985                smp_mb();
1986        }
1987}
1988
1989/*
1990 *      Queue a received datagram if it will fit. Stream and sequenced
1991 *      protocols can't normally use this as they need to fit buffers in
1992 *      and play with them.
1993 *
1994 *      Inlined as it's very short and called for pretty much every
1995 *      packet ever received.
1996 */
1997
1998static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1999{
2000        skb_orphan(skb);
2001        skb->sk = sk;
2002        skb->destructor = sock_wfree;
2003        /*
2004         * We used to take a refcount on sk, but following operation
2005         * is enough to guarantee sk_free() wont free this sock until
2006         * all in-flight packets are completed
2007         */
2008        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2009}
2010
2011static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2012{
2013        skb_orphan(skb);
2014        skb->sk = sk;
2015        skb->destructor = sock_rfree;
2016        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2017        sk_mem_charge(sk, skb->truesize);
2018}
2019
2020void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2021                    unsigned long expires);
2022
2023void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2024
2025int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2026
2027int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2028
2029/*
2030 *      Recover an error report and clear atomically
2031 */
2032
2033static inline int sock_error(struct sock *sk)
2034{
2035        int err;
2036        if (likely(!sk->sk_err))
2037                return 0;
2038        err = xchg(&sk->sk_err, 0);
2039        return -err;
2040}
2041
2042static inline unsigned long sock_wspace(struct sock *sk)
2043{
2044        int amt = 0;
2045
2046        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2047                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2048                if (amt < 0)
2049                        amt = 0;
2050        }
2051        return amt;
2052}
2053
2054static inline void sk_wake_async(struct sock *sk, int how, int band)
2055{
2056        if (sock_flag(sk, SOCK_FASYNC))
2057                sock_wake_async(sk->sk_socket, how, band);
2058}
2059
2060/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2061 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2062 * Note: for send buffers, TCP works better if we can build two skbs at
2063 * minimum.
2064 */
2065#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2066
2067#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2068#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2069
2070static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2071{
2072        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2073                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2074                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2075        }
2076}
2077
2078struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2079
2080/**
2081 * sk_page_frag - return an appropriate page_frag
2082 * @sk: socket
2083 *
2084 * If socket allocation mode allows current thread to sleep, it means its
2085 * safe to use the per task page_frag instead of the per socket one.
2086 */
2087static inline struct page_frag *sk_page_frag(struct sock *sk)
2088{
2089        if (sk->sk_allocation & __GFP_WAIT)
2090                return &current->task_frag;
2091
2092        return &sk->sk_frag;
2093}
2094
2095bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2096
2097/*
2098 *      Default write policy as shown to user space via poll/select/SIGIO
2099 */
2100static inline bool sock_writeable(const struct sock *sk)
2101{
2102        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2103}
2104
2105static inline gfp_t gfp_any(void)
2106{
2107        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2108}
2109
2110static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2111{
2112        return noblock ? 0 : sk->sk_rcvtimeo;
2113}
2114
2115static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2116{
2117        return noblock ? 0 : sk->sk_sndtimeo;
2118}
2119
2120static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2121{
2122        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2123}
2124
2125/* Alas, with timeout socket operations are not restartable.
2126 * Compare this to poll().
2127 */
2128static inline int sock_intr_errno(long timeo)
2129{
2130        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2131}
2132
2133void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2134                           struct sk_buff *skb);
2135void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2136                             struct sk_buff *skb);
2137
2138static inline void
2139sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2140{
2141        ktime_t kt = skb->tstamp;
2142        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2143
2144        /*
2145         * generate control messages if
2146         * - receive time stamping in software requested (SOCK_RCVTSTAMP
2147         *   or SOCK_TIMESTAMPING_RX_SOFTWARE)
2148         * - software time stamp available and wanted
2149         *   (SOCK_TIMESTAMPING_SOFTWARE)
2150         * - hardware time stamps available and wanted
2151         *   (SOCK_TIMESTAMPING_SYS_HARDWARE or
2152         *   SOCK_TIMESTAMPING_RAW_HARDWARE)
2153         */
2154        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2155            sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2156            (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2157            (hwtstamps->hwtstamp.tv64 &&
2158             sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2159            (hwtstamps->syststamp.tv64 &&
2160             sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2161                __sock_recv_timestamp(msg, sk, skb);
2162        else
2163                sk->sk_stamp = kt;
2164
2165        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2166                __sock_recv_wifi_status(msg, sk, skb);
2167}
2168
2169void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2170                              struct sk_buff *skb);
2171
2172static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2173                                          struct sk_buff *skb)
2174{
2175#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2176                           (1UL << SOCK_RCVTSTAMP)                      | \
2177                           (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)       | \
2178                           (1UL << SOCK_TIMESTAMPING_SOFTWARE)          | \
2179                           (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE)      | \
2180                           (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2181
2182        if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2183                __sock_recv_ts_and_drops(msg, sk, skb);
2184        else
2185                sk->sk_stamp = skb->tstamp;
2186}
2187
2188/**
2189 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2190 * @sk:         socket sending this packet
2191 * @tx_flags:   filled with instructions for time stamping
2192 *
2193 * Currently only depends on SOCK_TIMESTAMPING* flags.
2194 */
2195void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2196
2197/**
2198 * sk_eat_skb - Release a skb if it is no longer needed
2199 * @sk: socket to eat this skb from
2200 * @skb: socket buffer to eat
2201 * @copied_early: flag indicating whether DMA operations copied this data early
2202 *
2203 * This routine must be called with interrupts disabled or with the socket
2204 * locked so that the sk_buff queue operation is ok.
2205*/
2206#ifdef CONFIG_NET_DMA
2207static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2208{
2209        __skb_unlink(skb, &sk->sk_receive_queue);
2210        if (!copied_early)
2211                __kfree_skb(skb);
2212        else
2213                __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2214}
2215#else
2216static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2217{
2218        __skb_unlink(skb, &sk->sk_receive_queue);
2219        __kfree_skb(skb);
2220}
2221#endif
2222
2223static inline
2224struct net *sock_net(const struct sock *sk)
2225{
2226        return read_pnet(&sk->sk_net);
2227}
2228
2229static inline
2230void sock_net_set(struct sock *sk, struct net *net)
2231{
2232        write_pnet(&sk->sk_net, net);
2233}
2234
2235/*
2236 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2237 * They should not hold a reference to a namespace in order to allow
2238 * to stop it.
2239 * Sockets after sk_change_net should be released using sk_release_kernel
2240 */
2241static inline void sk_change_net(struct sock *sk, struct net *net)
2242{
2243        put_net(sock_net(sk));
2244        sock_net_set(sk, hold_net(net));
2245}
2246
2247static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2248{
2249        if (skb->sk) {
2250                struct sock *sk = skb->sk;
2251
2252                skb->destructor = NULL;
2253                skb->sk = NULL;
2254                return sk;
2255        }
2256        return NULL;
2257}
2258
2259void sock_enable_timestamp(struct sock *sk, int flag);
2260int sock_get_timestamp(struct sock *, struct timeval __user *);
2261int sock_get_timestampns(struct sock *, struct timespec __user *);
2262int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2263                       int type);
2264
2265/*
2266 *      Enable debug/info messages
2267 */
2268extern int net_msg_warn;
2269#define NETDEBUG(fmt, args...) \
2270        do { if (net_msg_warn) printk(fmt,##args); } while (0)
2271
2272#define LIMIT_NETDEBUG(fmt, args...) \
2273        do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2274
2275extern __u32 sysctl_wmem_max;
2276extern __u32 sysctl_rmem_max;
2277
2278extern int sysctl_optmem_max;
2279
2280extern __u32 sysctl_wmem_default;
2281extern __u32 sysctl_rmem_default;
2282
2283#endif  /* _SOCK_H */
2284