linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66
  67#include <asm/futex.h>
  68
  69#include "locking/rtmutex_common.h"
  70
  71int __read_mostly futex_cmpxchg_enabled;
  72
  73#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
  74
  75/*
  76 * Futex flags used to encode options to functions and preserve them across
  77 * restarts.
  78 */
  79#define FLAGS_SHARED            0x01
  80#define FLAGS_CLOCKRT           0x02
  81#define FLAGS_HAS_TIMEOUT       0x04
  82
  83/*
  84 * Priority Inheritance state:
  85 */
  86struct futex_pi_state {
  87        /*
  88         * list of 'owned' pi_state instances - these have to be
  89         * cleaned up in do_exit() if the task exits prematurely:
  90         */
  91        struct list_head list;
  92
  93        /*
  94         * The PI object:
  95         */
  96        struct rt_mutex pi_mutex;
  97
  98        struct task_struct *owner;
  99        atomic_t refcount;
 100
 101        union futex_key key;
 102};
 103
 104/**
 105 * struct futex_q - The hashed futex queue entry, one per waiting task
 106 * @list:               priority-sorted list of tasks waiting on this futex
 107 * @task:               the task waiting on the futex
 108 * @lock_ptr:           the hash bucket lock
 109 * @key:                the key the futex is hashed on
 110 * @pi_state:           optional priority inheritance state
 111 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 112 * @requeue_pi_key:     the requeue_pi target futex key
 113 * @bitset:             bitset for the optional bitmasked wakeup
 114 *
 115 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 116 * we can wake only the relevant ones (hashed queues may be shared).
 117 *
 118 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 119 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 120 * The order of wakeup is always to make the first condition true, then
 121 * the second.
 122 *
 123 * PI futexes are typically woken before they are removed from the hash list via
 124 * the rt_mutex code. See unqueue_me_pi().
 125 */
 126struct futex_q {
 127        struct plist_node list;
 128
 129        struct task_struct *task;
 130        spinlock_t *lock_ptr;
 131        union futex_key key;
 132        struct futex_pi_state *pi_state;
 133        struct rt_mutex_waiter *rt_waiter;
 134        union futex_key *requeue_pi_key;
 135        u32 bitset;
 136};
 137
 138static const struct futex_q futex_q_init = {
 139        /* list gets initialized in queue_me()*/
 140        .key = FUTEX_KEY_INIT,
 141        .bitset = FUTEX_BITSET_MATCH_ANY
 142};
 143
 144/*
 145 * Hash buckets are shared by all the futex_keys that hash to the same
 146 * location.  Each key may have multiple futex_q structures, one for each task
 147 * waiting on a futex.
 148 */
 149struct futex_hash_bucket {
 150        spinlock_t lock;
 151        struct plist_head chain;
 152};
 153
 154static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
 155
 156/*
 157 * We hash on the keys returned from get_futex_key (see below).
 158 */
 159static struct futex_hash_bucket *hash_futex(union futex_key *key)
 160{
 161        u32 hash = jhash2((u32*)&key->both.word,
 162                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 163                          key->both.offset);
 164        return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
 165}
 166
 167/*
 168 * Return 1 if two futex_keys are equal, 0 otherwise.
 169 */
 170static inline int match_futex(union futex_key *key1, union futex_key *key2)
 171{
 172        return (key1 && key2
 173                && key1->both.word == key2->both.word
 174                && key1->both.ptr == key2->both.ptr
 175                && key1->both.offset == key2->both.offset);
 176}
 177
 178/*
 179 * Take a reference to the resource addressed by a key.
 180 * Can be called while holding spinlocks.
 181 *
 182 */
 183static void get_futex_key_refs(union futex_key *key)
 184{
 185        if (!key->both.ptr)
 186                return;
 187
 188        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 189        case FUT_OFF_INODE:
 190                ihold(key->shared.inode);
 191                break;
 192        case FUT_OFF_MMSHARED:
 193                atomic_inc(&key->private.mm->mm_count);
 194                break;
 195        }
 196}
 197
 198/*
 199 * Drop a reference to the resource addressed by a key.
 200 * The hash bucket spinlock must not be held.
 201 */
 202static void drop_futex_key_refs(union futex_key *key)
 203{
 204        if (!key->both.ptr) {
 205                /* If we're here then we tried to put a key we failed to get */
 206                WARN_ON_ONCE(1);
 207                return;
 208        }
 209
 210        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 211        case FUT_OFF_INODE:
 212                iput(key->shared.inode);
 213                break;
 214        case FUT_OFF_MMSHARED:
 215                mmdrop(key->private.mm);
 216                break;
 217        }
 218}
 219
 220/**
 221 * get_futex_key() - Get parameters which are the keys for a futex
 222 * @uaddr:      virtual address of the futex
 223 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 224 * @key:        address where result is stored.
 225 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 226 *              VERIFY_WRITE)
 227 *
 228 * Return: a negative error code or 0
 229 *
 230 * The key words are stored in *key on success.
 231 *
 232 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 233 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 234 * We can usually work out the index without swapping in the page.
 235 *
 236 * lock_page() might sleep, the caller should not hold a spinlock.
 237 */
 238static int
 239get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 240{
 241        unsigned long address = (unsigned long)uaddr;
 242        struct mm_struct *mm = current->mm;
 243        struct page *page, *page_head;
 244        int err, ro = 0;
 245
 246        /*
 247         * The futex address must be "naturally" aligned.
 248         */
 249        key->both.offset = address % PAGE_SIZE;
 250        if (unlikely((address % sizeof(u32)) != 0))
 251                return -EINVAL;
 252        address -= key->both.offset;
 253
 254        if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 255                return -EFAULT;
 256
 257        /*
 258         * PROCESS_PRIVATE futexes are fast.
 259         * As the mm cannot disappear under us and the 'key' only needs
 260         * virtual address, we dont even have to find the underlying vma.
 261         * Note : We do have to check 'uaddr' is a valid user address,
 262         *        but access_ok() should be faster than find_vma()
 263         */
 264        if (!fshared) {
 265                key->private.mm = mm;
 266                key->private.address = address;
 267                get_futex_key_refs(key);
 268                return 0;
 269        }
 270
 271again:
 272        err = get_user_pages_fast(address, 1, 1, &page);
 273        /*
 274         * If write access is not required (eg. FUTEX_WAIT), try
 275         * and get read-only access.
 276         */
 277        if (err == -EFAULT && rw == VERIFY_READ) {
 278                err = get_user_pages_fast(address, 1, 0, &page);
 279                ro = 1;
 280        }
 281        if (err < 0)
 282                return err;
 283        else
 284                err = 0;
 285
 286#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 287        page_head = page;
 288        if (unlikely(PageTail(page))) {
 289                put_page(page);
 290                /* serialize against __split_huge_page_splitting() */
 291                local_irq_disable();
 292                if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
 293                        page_head = compound_head(page);
 294                        /*
 295                         * page_head is valid pointer but we must pin
 296                         * it before taking the PG_lock and/or
 297                         * PG_compound_lock. The moment we re-enable
 298                         * irqs __split_huge_page_splitting() can
 299                         * return and the head page can be freed from
 300                         * under us. We can't take the PG_lock and/or
 301                         * PG_compound_lock on a page that could be
 302                         * freed from under us.
 303                         */
 304                        if (page != page_head) {
 305                                get_page(page_head);
 306                                put_page(page);
 307                        }
 308                        local_irq_enable();
 309                } else {
 310                        local_irq_enable();
 311                        goto again;
 312                }
 313        }
 314#else
 315        page_head = compound_head(page);
 316        if (page != page_head) {
 317                get_page(page_head);
 318                put_page(page);
 319        }
 320#endif
 321
 322        lock_page(page_head);
 323
 324        /*
 325         * If page_head->mapping is NULL, then it cannot be a PageAnon
 326         * page; but it might be the ZERO_PAGE or in the gate area or
 327         * in a special mapping (all cases which we are happy to fail);
 328         * or it may have been a good file page when get_user_pages_fast
 329         * found it, but truncated or holepunched or subjected to
 330         * invalidate_complete_page2 before we got the page lock (also
 331         * cases which we are happy to fail).  And we hold a reference,
 332         * so refcount care in invalidate_complete_page's remove_mapping
 333         * prevents drop_caches from setting mapping to NULL beneath us.
 334         *
 335         * The case we do have to guard against is when memory pressure made
 336         * shmem_writepage move it from filecache to swapcache beneath us:
 337         * an unlikely race, but we do need to retry for page_head->mapping.
 338         */
 339        if (!page_head->mapping) {
 340                int shmem_swizzled = PageSwapCache(page_head);
 341                unlock_page(page_head);
 342                put_page(page_head);
 343                if (shmem_swizzled)
 344                        goto again;
 345                return -EFAULT;
 346        }
 347
 348        /*
 349         * Private mappings are handled in a simple way.
 350         *
 351         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 352         * it's a read-only handle, it's expected that futexes attach to
 353         * the object not the particular process.
 354         */
 355        if (PageAnon(page_head)) {
 356                /*
 357                 * A RO anonymous page will never change and thus doesn't make
 358                 * sense for futex operations.
 359                 */
 360                if (ro) {
 361                        err = -EFAULT;
 362                        goto out;
 363                }
 364
 365                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 366                key->private.mm = mm;
 367                key->private.address = address;
 368        } else {
 369                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 370                key->shared.inode = page_head->mapping->host;
 371                key->shared.pgoff = basepage_index(page);
 372        }
 373
 374        get_futex_key_refs(key);
 375
 376out:
 377        unlock_page(page_head);
 378        put_page(page_head);
 379        return err;
 380}
 381
 382static inline void put_futex_key(union futex_key *key)
 383{
 384        drop_futex_key_refs(key);
 385}
 386
 387/**
 388 * fault_in_user_writeable() - Fault in user address and verify RW access
 389 * @uaddr:      pointer to faulting user space address
 390 *
 391 * Slow path to fixup the fault we just took in the atomic write
 392 * access to @uaddr.
 393 *
 394 * We have no generic implementation of a non-destructive write to the
 395 * user address. We know that we faulted in the atomic pagefault
 396 * disabled section so we can as well avoid the #PF overhead by
 397 * calling get_user_pages() right away.
 398 */
 399static int fault_in_user_writeable(u32 __user *uaddr)
 400{
 401        struct mm_struct *mm = current->mm;
 402        int ret;
 403
 404        down_read(&mm->mmap_sem);
 405        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 406                               FAULT_FLAG_WRITE);
 407        up_read(&mm->mmap_sem);
 408
 409        return ret < 0 ? ret : 0;
 410}
 411
 412/**
 413 * futex_top_waiter() - Return the highest priority waiter on a futex
 414 * @hb:         the hash bucket the futex_q's reside in
 415 * @key:        the futex key (to distinguish it from other futex futex_q's)
 416 *
 417 * Must be called with the hb lock held.
 418 */
 419static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 420                                        union futex_key *key)
 421{
 422        struct futex_q *this;
 423
 424        plist_for_each_entry(this, &hb->chain, list) {
 425                if (match_futex(&this->key, key))
 426                        return this;
 427        }
 428        return NULL;
 429}
 430
 431static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 432                                      u32 uval, u32 newval)
 433{
 434        int ret;
 435
 436        pagefault_disable();
 437        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 438        pagefault_enable();
 439
 440        return ret;
 441}
 442
 443static int get_futex_value_locked(u32 *dest, u32 __user *from)
 444{
 445        int ret;
 446
 447        pagefault_disable();
 448        ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 449        pagefault_enable();
 450
 451        return ret ? -EFAULT : 0;
 452}
 453
 454
 455/*
 456 * PI code:
 457 */
 458static int refill_pi_state_cache(void)
 459{
 460        struct futex_pi_state *pi_state;
 461
 462        if (likely(current->pi_state_cache))
 463                return 0;
 464
 465        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 466
 467        if (!pi_state)
 468                return -ENOMEM;
 469
 470        INIT_LIST_HEAD(&pi_state->list);
 471        /* pi_mutex gets initialized later */
 472        pi_state->owner = NULL;
 473        atomic_set(&pi_state->refcount, 1);
 474        pi_state->key = FUTEX_KEY_INIT;
 475
 476        current->pi_state_cache = pi_state;
 477
 478        return 0;
 479}
 480
 481static struct futex_pi_state * alloc_pi_state(void)
 482{
 483        struct futex_pi_state *pi_state = current->pi_state_cache;
 484
 485        WARN_ON(!pi_state);
 486        current->pi_state_cache = NULL;
 487
 488        return pi_state;
 489}
 490
 491static void free_pi_state(struct futex_pi_state *pi_state)
 492{
 493        if (!atomic_dec_and_test(&pi_state->refcount))
 494                return;
 495
 496        /*
 497         * If pi_state->owner is NULL, the owner is most probably dying
 498         * and has cleaned up the pi_state already
 499         */
 500        if (pi_state->owner) {
 501                raw_spin_lock_irq(&pi_state->owner->pi_lock);
 502                list_del_init(&pi_state->list);
 503                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 504
 505                rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 506        }
 507
 508        if (current->pi_state_cache)
 509                kfree(pi_state);
 510        else {
 511                /*
 512                 * pi_state->list is already empty.
 513                 * clear pi_state->owner.
 514                 * refcount is at 0 - put it back to 1.
 515                 */
 516                pi_state->owner = NULL;
 517                atomic_set(&pi_state->refcount, 1);
 518                current->pi_state_cache = pi_state;
 519        }
 520}
 521
 522/*
 523 * Look up the task based on what TID userspace gave us.
 524 * We dont trust it.
 525 */
 526static struct task_struct * futex_find_get_task(pid_t pid)
 527{
 528        struct task_struct *p;
 529
 530        rcu_read_lock();
 531        p = find_task_by_vpid(pid);
 532        if (p)
 533                get_task_struct(p);
 534
 535        rcu_read_unlock();
 536
 537        return p;
 538}
 539
 540/*
 541 * This task is holding PI mutexes at exit time => bad.
 542 * Kernel cleans up PI-state, but userspace is likely hosed.
 543 * (Robust-futex cleanup is separate and might save the day for userspace.)
 544 */
 545void exit_pi_state_list(struct task_struct *curr)
 546{
 547        struct list_head *next, *head = &curr->pi_state_list;
 548        struct futex_pi_state *pi_state;
 549        struct futex_hash_bucket *hb;
 550        union futex_key key = FUTEX_KEY_INIT;
 551
 552        if (!futex_cmpxchg_enabled)
 553                return;
 554        /*
 555         * We are a ZOMBIE and nobody can enqueue itself on
 556         * pi_state_list anymore, but we have to be careful
 557         * versus waiters unqueueing themselves:
 558         */
 559        raw_spin_lock_irq(&curr->pi_lock);
 560        while (!list_empty(head)) {
 561
 562                next = head->next;
 563                pi_state = list_entry(next, struct futex_pi_state, list);
 564                key = pi_state->key;
 565                hb = hash_futex(&key);
 566                raw_spin_unlock_irq(&curr->pi_lock);
 567
 568                spin_lock(&hb->lock);
 569
 570                raw_spin_lock_irq(&curr->pi_lock);
 571                /*
 572                 * We dropped the pi-lock, so re-check whether this
 573                 * task still owns the PI-state:
 574                 */
 575                if (head->next != next) {
 576                        spin_unlock(&hb->lock);
 577                        continue;
 578                }
 579
 580                WARN_ON(pi_state->owner != curr);
 581                WARN_ON(list_empty(&pi_state->list));
 582                list_del_init(&pi_state->list);
 583                pi_state->owner = NULL;
 584                raw_spin_unlock_irq(&curr->pi_lock);
 585
 586                rt_mutex_unlock(&pi_state->pi_mutex);
 587
 588                spin_unlock(&hb->lock);
 589
 590                raw_spin_lock_irq(&curr->pi_lock);
 591        }
 592        raw_spin_unlock_irq(&curr->pi_lock);
 593}
 594
 595static int
 596lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 597                union futex_key *key, struct futex_pi_state **ps)
 598{
 599        struct futex_pi_state *pi_state = NULL;
 600        struct futex_q *this, *next;
 601        struct plist_head *head;
 602        struct task_struct *p;
 603        pid_t pid = uval & FUTEX_TID_MASK;
 604
 605        head = &hb->chain;
 606
 607        plist_for_each_entry_safe(this, next, head, list) {
 608                if (match_futex(&this->key, key)) {
 609                        /*
 610                         * Another waiter already exists - bump up
 611                         * the refcount and return its pi_state:
 612                         */
 613                        pi_state = this->pi_state;
 614                        /*
 615                         * Userspace might have messed up non-PI and PI futexes
 616                         */
 617                        if (unlikely(!pi_state))
 618                                return -EINVAL;
 619
 620                        WARN_ON(!atomic_read(&pi_state->refcount));
 621
 622                        /*
 623                         * When pi_state->owner is NULL then the owner died
 624                         * and another waiter is on the fly. pi_state->owner
 625                         * is fixed up by the task which acquires
 626                         * pi_state->rt_mutex.
 627                         *
 628                         * We do not check for pid == 0 which can happen when
 629                         * the owner died and robust_list_exit() cleared the
 630                         * TID.
 631                         */
 632                        if (pid && pi_state->owner) {
 633                                /*
 634                                 * Bail out if user space manipulated the
 635                                 * futex value.
 636                                 */
 637                                if (pid != task_pid_vnr(pi_state->owner))
 638                                        return -EINVAL;
 639                        }
 640
 641                        atomic_inc(&pi_state->refcount);
 642                        *ps = pi_state;
 643
 644                        return 0;
 645                }
 646        }
 647
 648        /*
 649         * We are the first waiter - try to look up the real owner and attach
 650         * the new pi_state to it, but bail out when TID = 0
 651         */
 652        if (!pid)
 653                return -ESRCH;
 654        p = futex_find_get_task(pid);
 655        if (!p)
 656                return -ESRCH;
 657
 658        /*
 659         * We need to look at the task state flags to figure out,
 660         * whether the task is exiting. To protect against the do_exit
 661         * change of the task flags, we do this protected by
 662         * p->pi_lock:
 663         */
 664        raw_spin_lock_irq(&p->pi_lock);
 665        if (unlikely(p->flags & PF_EXITING)) {
 666                /*
 667                 * The task is on the way out. When PF_EXITPIDONE is
 668                 * set, we know that the task has finished the
 669                 * cleanup:
 670                 */
 671                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 672
 673                raw_spin_unlock_irq(&p->pi_lock);
 674                put_task_struct(p);
 675                return ret;
 676        }
 677
 678        pi_state = alloc_pi_state();
 679
 680        /*
 681         * Initialize the pi_mutex in locked state and make 'p'
 682         * the owner of it:
 683         */
 684        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 685
 686        /* Store the key for possible exit cleanups: */
 687        pi_state->key = *key;
 688
 689        WARN_ON(!list_empty(&pi_state->list));
 690        list_add(&pi_state->list, &p->pi_state_list);
 691        pi_state->owner = p;
 692        raw_spin_unlock_irq(&p->pi_lock);
 693
 694        put_task_struct(p);
 695
 696        *ps = pi_state;
 697
 698        return 0;
 699}
 700
 701/**
 702 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 703 * @uaddr:              the pi futex user address
 704 * @hb:                 the pi futex hash bucket
 705 * @key:                the futex key associated with uaddr and hb
 706 * @ps:                 the pi_state pointer where we store the result of the
 707 *                      lookup
 708 * @task:               the task to perform the atomic lock work for.  This will
 709 *                      be "current" except in the case of requeue pi.
 710 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
 711 *
 712 * Return:
 713 *  0 - ready to wait;
 714 *  1 - acquired the lock;
 715 * <0 - error
 716 *
 717 * The hb->lock and futex_key refs shall be held by the caller.
 718 */
 719static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 720                                union futex_key *key,
 721                                struct futex_pi_state **ps,
 722                                struct task_struct *task, int set_waiters)
 723{
 724        int lock_taken, ret, force_take = 0;
 725        u32 uval, newval, curval, vpid = task_pid_vnr(task);
 726
 727retry:
 728        ret = lock_taken = 0;
 729
 730        /*
 731         * To avoid races, we attempt to take the lock here again
 732         * (by doing a 0 -> TID atomic cmpxchg), while holding all
 733         * the locks. It will most likely not succeed.
 734         */
 735        newval = vpid;
 736        if (set_waiters)
 737                newval |= FUTEX_WAITERS;
 738
 739        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 740                return -EFAULT;
 741
 742        /*
 743         * Detect deadlocks.
 744         */
 745        if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 746                return -EDEADLK;
 747
 748        /*
 749         * Surprise - we got the lock. Just return to userspace:
 750         */
 751        if (unlikely(!curval))
 752                return 1;
 753
 754        uval = curval;
 755
 756        /*
 757         * Set the FUTEX_WAITERS flag, so the owner will know it has someone
 758         * to wake at the next unlock.
 759         */
 760        newval = curval | FUTEX_WAITERS;
 761
 762        /*
 763         * Should we force take the futex? See below.
 764         */
 765        if (unlikely(force_take)) {
 766                /*
 767                 * Keep the OWNER_DIED and the WAITERS bit and set the
 768                 * new TID value.
 769                 */
 770                newval = (curval & ~FUTEX_TID_MASK) | vpid;
 771                force_take = 0;
 772                lock_taken = 1;
 773        }
 774
 775        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
 776                return -EFAULT;
 777        if (unlikely(curval != uval))
 778                goto retry;
 779
 780        /*
 781         * We took the lock due to forced take over.
 782         */
 783        if (unlikely(lock_taken))
 784                return 1;
 785
 786        /*
 787         * We dont have the lock. Look up the PI state (or create it if
 788         * we are the first waiter):
 789         */
 790        ret = lookup_pi_state(uval, hb, key, ps);
 791
 792        if (unlikely(ret)) {
 793                switch (ret) {
 794                case -ESRCH:
 795                        /*
 796                         * We failed to find an owner for this
 797                         * futex. So we have no pi_state to block
 798                         * on. This can happen in two cases:
 799                         *
 800                         * 1) The owner died
 801                         * 2) A stale FUTEX_WAITERS bit
 802                         *
 803                         * Re-read the futex value.
 804                         */
 805                        if (get_futex_value_locked(&curval, uaddr))
 806                                return -EFAULT;
 807
 808                        /*
 809                         * If the owner died or we have a stale
 810                         * WAITERS bit the owner TID in the user space
 811                         * futex is 0.
 812                         */
 813                        if (!(curval & FUTEX_TID_MASK)) {
 814                                force_take = 1;
 815                                goto retry;
 816                        }
 817                default:
 818                        break;
 819                }
 820        }
 821
 822        return ret;
 823}
 824
 825/**
 826 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 827 * @q:  The futex_q to unqueue
 828 *
 829 * The q->lock_ptr must not be NULL and must be held by the caller.
 830 */
 831static void __unqueue_futex(struct futex_q *q)
 832{
 833        struct futex_hash_bucket *hb;
 834
 835        if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
 836            || WARN_ON(plist_node_empty(&q->list)))
 837                return;
 838
 839        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
 840        plist_del(&q->list, &hb->chain);
 841}
 842
 843/*
 844 * The hash bucket lock must be held when this is called.
 845 * Afterwards, the futex_q must not be accessed.
 846 */
 847static void wake_futex(struct futex_q *q)
 848{
 849        struct task_struct *p = q->task;
 850
 851        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
 852                return;
 853
 854        /*
 855         * We set q->lock_ptr = NULL _before_ we wake up the task. If
 856         * a non-futex wake up happens on another CPU then the task
 857         * might exit and p would dereference a non-existing task
 858         * struct. Prevent this by holding a reference on p across the
 859         * wake up.
 860         */
 861        get_task_struct(p);
 862
 863        __unqueue_futex(q);
 864        /*
 865         * The waiting task can free the futex_q as soon as
 866         * q->lock_ptr = NULL is written, without taking any locks. A
 867         * memory barrier is required here to prevent the following
 868         * store to lock_ptr from getting ahead of the plist_del.
 869         */
 870        smp_wmb();
 871        q->lock_ptr = NULL;
 872
 873        wake_up_state(p, TASK_NORMAL);
 874        put_task_struct(p);
 875}
 876
 877static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 878{
 879        struct task_struct *new_owner;
 880        struct futex_pi_state *pi_state = this->pi_state;
 881        u32 uninitialized_var(curval), newval;
 882
 883        if (!pi_state)
 884                return -EINVAL;
 885
 886        /*
 887         * If current does not own the pi_state then the futex is
 888         * inconsistent and user space fiddled with the futex value.
 889         */
 890        if (pi_state->owner != current)
 891                return -EINVAL;
 892
 893        raw_spin_lock(&pi_state->pi_mutex.wait_lock);
 894        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 895
 896        /*
 897         * It is possible that the next waiter (the one that brought
 898         * this owner to the kernel) timed out and is no longer
 899         * waiting on the lock.
 900         */
 901        if (!new_owner)
 902                new_owner = this->task;
 903
 904        /*
 905         * We pass it to the next owner. (The WAITERS bit is always
 906         * kept enabled while there is PI state around. We must also
 907         * preserve the owner died bit.)
 908         */
 909        if (!(uval & FUTEX_OWNER_DIED)) {
 910                int ret = 0;
 911
 912                newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
 913
 914                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
 915                        ret = -EFAULT;
 916                else if (curval != uval)
 917                        ret = -EINVAL;
 918                if (ret) {
 919                        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 920                        return ret;
 921                }
 922        }
 923
 924        raw_spin_lock_irq(&pi_state->owner->pi_lock);
 925        WARN_ON(list_empty(&pi_state->list));
 926        list_del_init(&pi_state->list);
 927        raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 928
 929        raw_spin_lock_irq(&new_owner->pi_lock);
 930        WARN_ON(!list_empty(&pi_state->list));
 931        list_add(&pi_state->list, &new_owner->pi_state_list);
 932        pi_state->owner = new_owner;
 933        raw_spin_unlock_irq(&new_owner->pi_lock);
 934
 935        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 936        rt_mutex_unlock(&pi_state->pi_mutex);
 937
 938        return 0;
 939}
 940
 941static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
 942{
 943        u32 uninitialized_var(oldval);
 944
 945        /*
 946         * There is no waiter, so we unlock the futex. The owner died
 947         * bit has not to be preserved here. We are the owner:
 948         */
 949        if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
 950                return -EFAULT;
 951        if (oldval != uval)
 952                return -EAGAIN;
 953
 954        return 0;
 955}
 956
 957/*
 958 * Express the locking dependencies for lockdep:
 959 */
 960static inline void
 961double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 962{
 963        if (hb1 <= hb2) {
 964                spin_lock(&hb1->lock);
 965                if (hb1 < hb2)
 966                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
 967        } else { /* hb1 > hb2 */
 968                spin_lock(&hb2->lock);
 969                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
 970        }
 971}
 972
 973static inline void
 974double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
 975{
 976        spin_unlock(&hb1->lock);
 977        if (hb1 != hb2)
 978                spin_unlock(&hb2->lock);
 979}
 980
 981/*
 982 * Wake up waiters matching bitset queued on this futex (uaddr).
 983 */
 984static int
 985futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
 986{
 987        struct futex_hash_bucket *hb;
 988        struct futex_q *this, *next;
 989        struct plist_head *head;
 990        union futex_key key = FUTEX_KEY_INIT;
 991        int ret;
 992
 993        if (!bitset)
 994                return -EINVAL;
 995
 996        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
 997        if (unlikely(ret != 0))
 998                goto out;
 999
1000        hb = hash_futex(&key);
1001        spin_lock(&hb->lock);
1002        head = &hb->chain;
1003
1004        plist_for_each_entry_safe(this, next, head, list) {
1005                if (match_futex (&this->key, &key)) {
1006                        if (this->pi_state || this->rt_waiter) {
1007                                ret = -EINVAL;
1008                                break;
1009                        }
1010
1011                        /* Check if one of the bits is set in both bitsets */
1012                        if (!(this->bitset & bitset))
1013                                continue;
1014
1015                        wake_futex(this);
1016                        if (++ret >= nr_wake)
1017                                break;
1018                }
1019        }
1020
1021        spin_unlock(&hb->lock);
1022        put_futex_key(&key);
1023out:
1024        return ret;
1025}
1026
1027/*
1028 * Wake up all waiters hashed on the physical page that is mapped
1029 * to this virtual address:
1030 */
1031static int
1032futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1033              int nr_wake, int nr_wake2, int op)
1034{
1035        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1036        struct futex_hash_bucket *hb1, *hb2;
1037        struct plist_head *head;
1038        struct futex_q *this, *next;
1039        int ret, op_ret;
1040
1041retry:
1042        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1043        if (unlikely(ret != 0))
1044                goto out;
1045        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1046        if (unlikely(ret != 0))
1047                goto out_put_key1;
1048
1049        hb1 = hash_futex(&key1);
1050        hb2 = hash_futex(&key2);
1051
1052retry_private:
1053        double_lock_hb(hb1, hb2);
1054        op_ret = futex_atomic_op_inuser(op, uaddr2);
1055        if (unlikely(op_ret < 0)) {
1056
1057                double_unlock_hb(hb1, hb2);
1058
1059#ifndef CONFIG_MMU
1060                /*
1061                 * we don't get EFAULT from MMU faults if we don't have an MMU,
1062                 * but we might get them from range checking
1063                 */
1064                ret = op_ret;
1065                goto out_put_keys;
1066#endif
1067
1068                if (unlikely(op_ret != -EFAULT)) {
1069                        ret = op_ret;
1070                        goto out_put_keys;
1071                }
1072
1073                ret = fault_in_user_writeable(uaddr2);
1074                if (ret)
1075                        goto out_put_keys;
1076
1077                if (!(flags & FLAGS_SHARED))
1078                        goto retry_private;
1079
1080                put_futex_key(&key2);
1081                put_futex_key(&key1);
1082                goto retry;
1083        }
1084
1085        head = &hb1->chain;
1086
1087        plist_for_each_entry_safe(this, next, head, list) {
1088                if (match_futex (&this->key, &key1)) {
1089                        if (this->pi_state || this->rt_waiter) {
1090                                ret = -EINVAL;
1091                                goto out_unlock;
1092                        }
1093                        wake_futex(this);
1094                        if (++ret >= nr_wake)
1095                                break;
1096                }
1097        }
1098
1099        if (op_ret > 0) {
1100                head = &hb2->chain;
1101
1102                op_ret = 0;
1103                plist_for_each_entry_safe(this, next, head, list) {
1104                        if (match_futex (&this->key, &key2)) {
1105                                if (this->pi_state || this->rt_waiter) {
1106                                        ret = -EINVAL;
1107                                        goto out_unlock;
1108                                }
1109                                wake_futex(this);
1110                                if (++op_ret >= nr_wake2)
1111                                        break;
1112                        }
1113                }
1114                ret += op_ret;
1115        }
1116
1117out_unlock:
1118        double_unlock_hb(hb1, hb2);
1119out_put_keys:
1120        put_futex_key(&key2);
1121out_put_key1:
1122        put_futex_key(&key1);
1123out:
1124        return ret;
1125}
1126
1127/**
1128 * requeue_futex() - Requeue a futex_q from one hb to another
1129 * @q:          the futex_q to requeue
1130 * @hb1:        the source hash_bucket
1131 * @hb2:        the target hash_bucket
1132 * @key2:       the new key for the requeued futex_q
1133 */
1134static inline
1135void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1136                   struct futex_hash_bucket *hb2, union futex_key *key2)
1137{
1138
1139        /*
1140         * If key1 and key2 hash to the same bucket, no need to
1141         * requeue.
1142         */
1143        if (likely(&hb1->chain != &hb2->chain)) {
1144                plist_del(&q->list, &hb1->chain);
1145                plist_add(&q->list, &hb2->chain);
1146                q->lock_ptr = &hb2->lock;
1147        }
1148        get_futex_key_refs(key2);
1149        q->key = *key2;
1150}
1151
1152/**
1153 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1154 * @q:          the futex_q
1155 * @key:        the key of the requeue target futex
1156 * @hb:         the hash_bucket of the requeue target futex
1157 *
1158 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1159 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1160 * to the requeue target futex so the waiter can detect the wakeup on the right
1161 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1162 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1163 * to protect access to the pi_state to fixup the owner later.  Must be called
1164 * with both q->lock_ptr and hb->lock held.
1165 */
1166static inline
1167void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1168                           struct futex_hash_bucket *hb)
1169{
1170        get_futex_key_refs(key);
1171        q->key = *key;
1172
1173        __unqueue_futex(q);
1174
1175        WARN_ON(!q->rt_waiter);
1176        q->rt_waiter = NULL;
1177
1178        q->lock_ptr = &hb->lock;
1179
1180        wake_up_state(q->task, TASK_NORMAL);
1181}
1182
1183/**
1184 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1185 * @pifutex:            the user address of the to futex
1186 * @hb1:                the from futex hash bucket, must be locked by the caller
1187 * @hb2:                the to futex hash bucket, must be locked by the caller
1188 * @key1:               the from futex key
1189 * @key2:               the to futex key
1190 * @ps:                 address to store the pi_state pointer
1191 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1192 *
1193 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1194 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1195 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1196 * hb1 and hb2 must be held by the caller.
1197 *
1198 * Return:
1199 *  0 - failed to acquire the lock atomically;
1200 *  1 - acquired the lock;
1201 * <0 - error
1202 */
1203static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1204                                 struct futex_hash_bucket *hb1,
1205                                 struct futex_hash_bucket *hb2,
1206                                 union futex_key *key1, union futex_key *key2,
1207                                 struct futex_pi_state **ps, int set_waiters)
1208{
1209        struct futex_q *top_waiter = NULL;
1210        u32 curval;
1211        int ret;
1212
1213        if (get_futex_value_locked(&curval, pifutex))
1214                return -EFAULT;
1215
1216        /*
1217         * Find the top_waiter and determine if there are additional waiters.
1218         * If the caller intends to requeue more than 1 waiter to pifutex,
1219         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1220         * as we have means to handle the possible fault.  If not, don't set
1221         * the bit unecessarily as it will force the subsequent unlock to enter
1222         * the kernel.
1223         */
1224        top_waiter = futex_top_waiter(hb1, key1);
1225
1226        /* There are no waiters, nothing for us to do. */
1227        if (!top_waiter)
1228                return 0;
1229
1230        /* Ensure we requeue to the expected futex. */
1231        if (!match_futex(top_waiter->requeue_pi_key, key2))
1232                return -EINVAL;
1233
1234        /*
1235         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1236         * the contended case or if set_waiters is 1.  The pi_state is returned
1237         * in ps in contended cases.
1238         */
1239        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1240                                   set_waiters);
1241        if (ret == 1)
1242                requeue_pi_wake_futex(top_waiter, key2, hb2);
1243
1244        return ret;
1245}
1246
1247/**
1248 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1249 * @uaddr1:     source futex user address
1250 * @flags:      futex flags (FLAGS_SHARED, etc.)
1251 * @uaddr2:     target futex user address
1252 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1253 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1254 * @cmpval:     @uaddr1 expected value (or %NULL)
1255 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1256 *              pi futex (pi to pi requeue is not supported)
1257 *
1258 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1259 * uaddr2 atomically on behalf of the top waiter.
1260 *
1261 * Return:
1262 * >=0 - on success, the number of tasks requeued or woken;
1263 *  <0 - on error
1264 */
1265static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1266                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1267                         u32 *cmpval, int requeue_pi)
1268{
1269        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1270        int drop_count = 0, task_count = 0, ret;
1271        struct futex_pi_state *pi_state = NULL;
1272        struct futex_hash_bucket *hb1, *hb2;
1273        struct plist_head *head1;
1274        struct futex_q *this, *next;
1275        u32 curval2;
1276
1277        if (requeue_pi) {
1278                /*
1279                 * requeue_pi requires a pi_state, try to allocate it now
1280                 * without any locks in case it fails.
1281                 */
1282                if (refill_pi_state_cache())
1283                        return -ENOMEM;
1284                /*
1285                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1286                 * + nr_requeue, since it acquires the rt_mutex prior to
1287                 * returning to userspace, so as to not leave the rt_mutex with
1288                 * waiters and no owner.  However, second and third wake-ups
1289                 * cannot be predicted as they involve race conditions with the
1290                 * first wake and a fault while looking up the pi_state.  Both
1291                 * pthread_cond_signal() and pthread_cond_broadcast() should
1292                 * use nr_wake=1.
1293                 */
1294                if (nr_wake != 1)
1295                        return -EINVAL;
1296        }
1297
1298retry:
1299        if (pi_state != NULL) {
1300                /*
1301                 * We will have to lookup the pi_state again, so free this one
1302                 * to keep the accounting correct.
1303                 */
1304                free_pi_state(pi_state);
1305                pi_state = NULL;
1306        }
1307
1308        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1309        if (unlikely(ret != 0))
1310                goto out;
1311        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1312                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1313        if (unlikely(ret != 0))
1314                goto out_put_key1;
1315
1316        hb1 = hash_futex(&key1);
1317        hb2 = hash_futex(&key2);
1318
1319retry_private:
1320        double_lock_hb(hb1, hb2);
1321
1322        if (likely(cmpval != NULL)) {
1323                u32 curval;
1324
1325                ret = get_futex_value_locked(&curval, uaddr1);
1326
1327                if (unlikely(ret)) {
1328                        double_unlock_hb(hb1, hb2);
1329
1330                        ret = get_user(curval, uaddr1);
1331                        if (ret)
1332                                goto out_put_keys;
1333
1334                        if (!(flags & FLAGS_SHARED))
1335                                goto retry_private;
1336
1337                        put_futex_key(&key2);
1338                        put_futex_key(&key1);
1339                        goto retry;
1340                }
1341                if (curval != *cmpval) {
1342                        ret = -EAGAIN;
1343                        goto out_unlock;
1344                }
1345        }
1346
1347        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1348                /*
1349                 * Attempt to acquire uaddr2 and wake the top waiter. If we
1350                 * intend to requeue waiters, force setting the FUTEX_WAITERS
1351                 * bit.  We force this here where we are able to easily handle
1352                 * faults rather in the requeue loop below.
1353                 */
1354                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1355                                                 &key2, &pi_state, nr_requeue);
1356
1357                /*
1358                 * At this point the top_waiter has either taken uaddr2 or is
1359                 * waiting on it.  If the former, then the pi_state will not
1360                 * exist yet, look it up one more time to ensure we have a
1361                 * reference to it.
1362                 */
1363                if (ret == 1) {
1364                        WARN_ON(pi_state);
1365                        drop_count++;
1366                        task_count++;
1367                        ret = get_futex_value_locked(&curval2, uaddr2);
1368                        if (!ret)
1369                                ret = lookup_pi_state(curval2, hb2, &key2,
1370                                                      &pi_state);
1371                }
1372
1373                switch (ret) {
1374                case 0:
1375                        break;
1376                case -EFAULT:
1377                        double_unlock_hb(hb1, hb2);
1378                        put_futex_key(&key2);
1379                        put_futex_key(&key1);
1380                        ret = fault_in_user_writeable(uaddr2);
1381                        if (!ret)
1382                                goto retry;
1383                        goto out;
1384                case -EAGAIN:
1385                        /* The owner was exiting, try again. */
1386                        double_unlock_hb(hb1, hb2);
1387                        put_futex_key(&key2);
1388                        put_futex_key(&key1);
1389                        cond_resched();
1390                        goto retry;
1391                default:
1392                        goto out_unlock;
1393                }
1394        }
1395
1396        head1 = &hb1->chain;
1397        plist_for_each_entry_safe(this, next, head1, list) {
1398                if (task_count - nr_wake >= nr_requeue)
1399                        break;
1400
1401                if (!match_futex(&this->key, &key1))
1402                        continue;
1403
1404                /*
1405                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1406                 * be paired with each other and no other futex ops.
1407                 *
1408                 * We should never be requeueing a futex_q with a pi_state,
1409                 * which is awaiting a futex_unlock_pi().
1410                 */
1411                if ((requeue_pi && !this->rt_waiter) ||
1412                    (!requeue_pi && this->rt_waiter) ||
1413                    this->pi_state) {
1414                        ret = -EINVAL;
1415                        break;
1416                }
1417
1418                /*
1419                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1420                 * lock, we already woke the top_waiter.  If not, it will be
1421                 * woken by futex_unlock_pi().
1422                 */
1423                if (++task_count <= nr_wake && !requeue_pi) {
1424                        wake_futex(this);
1425                        continue;
1426                }
1427
1428                /* Ensure we requeue to the expected futex for requeue_pi. */
1429                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1430                        ret = -EINVAL;
1431                        break;
1432                }
1433
1434                /*
1435                 * Requeue nr_requeue waiters and possibly one more in the case
1436                 * of requeue_pi if we couldn't acquire the lock atomically.
1437                 */
1438                if (requeue_pi) {
1439                        /* Prepare the waiter to take the rt_mutex. */
1440                        atomic_inc(&pi_state->refcount);
1441                        this->pi_state = pi_state;
1442                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1443                                                        this->rt_waiter,
1444                                                        this->task, 1);
1445                        if (ret == 1) {
1446                                /* We got the lock. */
1447                                requeue_pi_wake_futex(this, &key2, hb2);
1448                                drop_count++;
1449                                continue;
1450                        } else if (ret) {
1451                                /* -EDEADLK */
1452                                this->pi_state = NULL;
1453                                free_pi_state(pi_state);
1454                                goto out_unlock;
1455                        }
1456                }
1457                requeue_futex(this, hb1, hb2, &key2);
1458                drop_count++;
1459        }
1460
1461out_unlock:
1462        double_unlock_hb(hb1, hb2);
1463
1464        /*
1465         * drop_futex_key_refs() must be called outside the spinlocks. During
1466         * the requeue we moved futex_q's from the hash bucket at key1 to the
1467         * one at key2 and updated their key pointer.  We no longer need to
1468         * hold the references to key1.
1469         */
1470        while (--drop_count >= 0)
1471                drop_futex_key_refs(&key1);
1472
1473out_put_keys:
1474        put_futex_key(&key2);
1475out_put_key1:
1476        put_futex_key(&key1);
1477out:
1478        if (pi_state != NULL)
1479                free_pi_state(pi_state);
1480        return ret ? ret : task_count;
1481}
1482
1483/* The key must be already stored in q->key. */
1484static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1485        __acquires(&hb->lock)
1486{
1487        struct futex_hash_bucket *hb;
1488
1489        hb = hash_futex(&q->key);
1490        q->lock_ptr = &hb->lock;
1491
1492        spin_lock(&hb->lock);
1493        return hb;
1494}
1495
1496static inline void
1497queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1498        __releases(&hb->lock)
1499{
1500        spin_unlock(&hb->lock);
1501}
1502
1503/**
1504 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1505 * @q:  The futex_q to enqueue
1506 * @hb: The destination hash bucket
1507 *
1508 * The hb->lock must be held by the caller, and is released here. A call to
1509 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1510 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1511 * or nothing if the unqueue is done as part of the wake process and the unqueue
1512 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1513 * an example).
1514 */
1515static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1516        __releases(&hb->lock)
1517{
1518        int prio;
1519
1520        /*
1521         * The priority used to register this element is
1522         * - either the real thread-priority for the real-time threads
1523         * (i.e. threads with a priority lower than MAX_RT_PRIO)
1524         * - or MAX_RT_PRIO for non-RT threads.
1525         * Thus, all RT-threads are woken first in priority order, and
1526         * the others are woken last, in FIFO order.
1527         */
1528        prio = min(current->normal_prio, MAX_RT_PRIO);
1529
1530        plist_node_init(&q->list, prio);
1531        plist_add(&q->list, &hb->chain);
1532        q->task = current;
1533        spin_unlock(&hb->lock);
1534}
1535
1536/**
1537 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1538 * @q:  The futex_q to unqueue
1539 *
1540 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1541 * be paired with exactly one earlier call to queue_me().
1542 *
1543 * Return:
1544 *   1 - if the futex_q was still queued (and we removed unqueued it);
1545 *   0 - if the futex_q was already removed by the waking thread
1546 */
1547static int unqueue_me(struct futex_q *q)
1548{
1549        spinlock_t *lock_ptr;
1550        int ret = 0;
1551
1552        /* In the common case we don't take the spinlock, which is nice. */
1553retry:
1554        lock_ptr = q->lock_ptr;
1555        barrier();
1556        if (lock_ptr != NULL) {
1557                spin_lock(lock_ptr);
1558                /*
1559                 * q->lock_ptr can change between reading it and
1560                 * spin_lock(), causing us to take the wrong lock.  This
1561                 * corrects the race condition.
1562                 *
1563                 * Reasoning goes like this: if we have the wrong lock,
1564                 * q->lock_ptr must have changed (maybe several times)
1565                 * between reading it and the spin_lock().  It can
1566                 * change again after the spin_lock() but only if it was
1567                 * already changed before the spin_lock().  It cannot,
1568                 * however, change back to the original value.  Therefore
1569                 * we can detect whether we acquired the correct lock.
1570                 */
1571                if (unlikely(lock_ptr != q->lock_ptr)) {
1572                        spin_unlock(lock_ptr);
1573                        goto retry;
1574                }
1575                __unqueue_futex(q);
1576
1577                BUG_ON(q->pi_state);
1578
1579                spin_unlock(lock_ptr);
1580                ret = 1;
1581        }
1582
1583        drop_futex_key_refs(&q->key);
1584        return ret;
1585}
1586
1587/*
1588 * PI futexes can not be requeued and must remove themself from the
1589 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1590 * and dropped here.
1591 */
1592static void unqueue_me_pi(struct futex_q *q)
1593        __releases(q->lock_ptr)
1594{
1595        __unqueue_futex(q);
1596
1597        BUG_ON(!q->pi_state);
1598        free_pi_state(q->pi_state);
1599        q->pi_state = NULL;
1600
1601        spin_unlock(q->lock_ptr);
1602}
1603
1604/*
1605 * Fixup the pi_state owner with the new owner.
1606 *
1607 * Must be called with hash bucket lock held and mm->sem held for non
1608 * private futexes.
1609 */
1610static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1611                                struct task_struct *newowner)
1612{
1613        u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1614        struct futex_pi_state *pi_state = q->pi_state;
1615        struct task_struct *oldowner = pi_state->owner;
1616        u32 uval, uninitialized_var(curval), newval;
1617        int ret;
1618
1619        /* Owner died? */
1620        if (!pi_state->owner)
1621                newtid |= FUTEX_OWNER_DIED;
1622
1623        /*
1624         * We are here either because we stole the rtmutex from the
1625         * previous highest priority waiter or we are the highest priority
1626         * waiter but failed to get the rtmutex the first time.
1627         * We have to replace the newowner TID in the user space variable.
1628         * This must be atomic as we have to preserve the owner died bit here.
1629         *
1630         * Note: We write the user space value _before_ changing the pi_state
1631         * because we can fault here. Imagine swapped out pages or a fork
1632         * that marked all the anonymous memory readonly for cow.
1633         *
1634         * Modifying pi_state _before_ the user space value would
1635         * leave the pi_state in an inconsistent state when we fault
1636         * here, because we need to drop the hash bucket lock to
1637         * handle the fault. This might be observed in the PID check
1638         * in lookup_pi_state.
1639         */
1640retry:
1641        if (get_futex_value_locked(&uval, uaddr))
1642                goto handle_fault;
1643
1644        while (1) {
1645                newval = (uval & FUTEX_OWNER_DIED) | newtid;
1646
1647                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1648                        goto handle_fault;
1649                if (curval == uval)
1650                        break;
1651                uval = curval;
1652        }
1653
1654        /*
1655         * We fixed up user space. Now we need to fix the pi_state
1656         * itself.
1657         */
1658        if (pi_state->owner != NULL) {
1659                raw_spin_lock_irq(&pi_state->owner->pi_lock);
1660                WARN_ON(list_empty(&pi_state->list));
1661                list_del_init(&pi_state->list);
1662                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1663        }
1664
1665        pi_state->owner = newowner;
1666
1667        raw_spin_lock_irq(&newowner->pi_lock);
1668        WARN_ON(!list_empty(&pi_state->list));
1669        list_add(&pi_state->list, &newowner->pi_state_list);
1670        raw_spin_unlock_irq(&newowner->pi_lock);
1671        return 0;
1672
1673        /*
1674         * To handle the page fault we need to drop the hash bucket
1675         * lock here. That gives the other task (either the highest priority
1676         * waiter itself or the task which stole the rtmutex) the
1677         * chance to try the fixup of the pi_state. So once we are
1678         * back from handling the fault we need to check the pi_state
1679         * after reacquiring the hash bucket lock and before trying to
1680         * do another fixup. When the fixup has been done already we
1681         * simply return.
1682         */
1683handle_fault:
1684        spin_unlock(q->lock_ptr);
1685
1686        ret = fault_in_user_writeable(uaddr);
1687
1688        spin_lock(q->lock_ptr);
1689
1690        /*
1691         * Check if someone else fixed it for us:
1692         */
1693        if (pi_state->owner != oldowner)
1694                return 0;
1695
1696        if (ret)
1697                return ret;
1698
1699        goto retry;
1700}
1701
1702static long futex_wait_restart(struct restart_block *restart);
1703
1704/**
1705 * fixup_owner() - Post lock pi_state and corner case management
1706 * @uaddr:      user address of the futex
1707 * @q:          futex_q (contains pi_state and access to the rt_mutex)
1708 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1709 *
1710 * After attempting to lock an rt_mutex, this function is called to cleanup
1711 * the pi_state owner as well as handle race conditions that may allow us to
1712 * acquire the lock. Must be called with the hb lock held.
1713 *
1714 * Return:
1715 *  1 - success, lock taken;
1716 *  0 - success, lock not taken;
1717 * <0 - on error (-EFAULT)
1718 */
1719static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1720{
1721        struct task_struct *owner;
1722        int ret = 0;
1723
1724        if (locked) {
1725                /*
1726                 * Got the lock. We might not be the anticipated owner if we
1727                 * did a lock-steal - fix up the PI-state in that case:
1728                 */
1729                if (q->pi_state->owner != current)
1730                        ret = fixup_pi_state_owner(uaddr, q, current);
1731                goto out;
1732        }
1733
1734        /*
1735         * Catch the rare case, where the lock was released when we were on the
1736         * way back before we locked the hash bucket.
1737         */
1738        if (q->pi_state->owner == current) {
1739                /*
1740                 * Try to get the rt_mutex now. This might fail as some other
1741                 * task acquired the rt_mutex after we removed ourself from the
1742                 * rt_mutex waiters list.
1743                 */
1744                if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1745                        locked = 1;
1746                        goto out;
1747                }
1748
1749                /*
1750                 * pi_state is incorrect, some other task did a lock steal and
1751                 * we returned due to timeout or signal without taking the
1752                 * rt_mutex. Too late.
1753                 */
1754                raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1755                owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1756                if (!owner)
1757                        owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1758                raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1759                ret = fixup_pi_state_owner(uaddr, q, owner);
1760                goto out;
1761        }
1762
1763        /*
1764         * Paranoia check. If we did not take the lock, then we should not be
1765         * the owner of the rt_mutex.
1766         */
1767        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1768                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1769                                "pi-state %p\n", ret,
1770                                q->pi_state->pi_mutex.owner,
1771                                q->pi_state->owner);
1772
1773out:
1774        return ret ? ret : locked;
1775}
1776
1777/**
1778 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1779 * @hb:         the futex hash bucket, must be locked by the caller
1780 * @q:          the futex_q to queue up on
1781 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1782 */
1783static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1784                                struct hrtimer_sleeper *timeout)
1785{
1786        /*
1787         * The task state is guaranteed to be set before another task can
1788         * wake it. set_current_state() is implemented using set_mb() and
1789         * queue_me() calls spin_unlock() upon completion, both serializing
1790         * access to the hash list and forcing another memory barrier.
1791         */
1792        set_current_state(TASK_INTERRUPTIBLE);
1793        queue_me(q, hb);
1794
1795        /* Arm the timer */
1796        if (timeout) {
1797                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1798                if (!hrtimer_active(&timeout->timer))
1799                        timeout->task = NULL;
1800        }
1801
1802        /*
1803         * If we have been removed from the hash list, then another task
1804         * has tried to wake us, and we can skip the call to schedule().
1805         */
1806        if (likely(!plist_node_empty(&q->list))) {
1807                /*
1808                 * If the timer has already expired, current will already be
1809                 * flagged for rescheduling. Only call schedule if there
1810                 * is no timeout, or if it has yet to expire.
1811                 */
1812                if (!timeout || timeout->task)
1813                        freezable_schedule();
1814        }
1815        __set_current_state(TASK_RUNNING);
1816}
1817
1818/**
1819 * futex_wait_setup() - Prepare to wait on a futex
1820 * @uaddr:      the futex userspace address
1821 * @val:        the expected value
1822 * @flags:      futex flags (FLAGS_SHARED, etc.)
1823 * @q:          the associated futex_q
1824 * @hb:         storage for hash_bucket pointer to be returned to caller
1825 *
1826 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1827 * compare it with the expected value.  Handle atomic faults internally.
1828 * Return with the hb lock held and a q.key reference on success, and unlocked
1829 * with no q.key reference on failure.
1830 *
1831 * Return:
1832 *  0 - uaddr contains val and hb has been locked;
1833 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1834 */
1835static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1836                           struct futex_q *q, struct futex_hash_bucket **hb)
1837{
1838        u32 uval;
1839        int ret;
1840
1841        /*
1842         * Access the page AFTER the hash-bucket is locked.
1843         * Order is important:
1844         *
1845         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1846         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1847         *
1848         * The basic logical guarantee of a futex is that it blocks ONLY
1849         * if cond(var) is known to be true at the time of blocking, for
1850         * any cond.  If we locked the hash-bucket after testing *uaddr, that
1851         * would open a race condition where we could block indefinitely with
1852         * cond(var) false, which would violate the guarantee.
1853         *
1854         * On the other hand, we insert q and release the hash-bucket only
1855         * after testing *uaddr.  This guarantees that futex_wait() will NOT
1856         * absorb a wakeup if *uaddr does not match the desired values
1857         * while the syscall executes.
1858         */
1859retry:
1860        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1861        if (unlikely(ret != 0))
1862                return ret;
1863
1864retry_private:
1865        *hb = queue_lock(q);
1866
1867        ret = get_futex_value_locked(&uval, uaddr);
1868
1869        if (ret) {
1870                queue_unlock(q, *hb);
1871
1872                ret = get_user(uval, uaddr);
1873                if (ret)
1874                        goto out;
1875
1876                if (!(flags & FLAGS_SHARED))
1877                        goto retry_private;
1878
1879                put_futex_key(&q->key);
1880                goto retry;
1881        }
1882
1883        if (uval != val) {
1884                queue_unlock(q, *hb);
1885                ret = -EWOULDBLOCK;
1886        }
1887
1888out:
1889        if (ret)
1890                put_futex_key(&q->key);
1891        return ret;
1892}
1893
1894static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1895                      ktime_t *abs_time, u32 bitset)
1896{
1897        struct hrtimer_sleeper timeout, *to = NULL;
1898        struct restart_block *restart;
1899        struct futex_hash_bucket *hb;
1900        struct futex_q q = futex_q_init;
1901        int ret;
1902
1903        if (!bitset)
1904                return -EINVAL;
1905        q.bitset = bitset;
1906
1907        if (abs_time) {
1908                to = &timeout;
1909
1910                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1911                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
1912                                      HRTIMER_MODE_ABS);
1913                hrtimer_init_sleeper(to, current);
1914                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1915                                             current->timer_slack_ns);
1916        }
1917
1918retry:
1919        /*
1920         * Prepare to wait on uaddr. On success, holds hb lock and increments
1921         * q.key refs.
1922         */
1923        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1924        if (ret)
1925                goto out;
1926
1927        /* queue_me and wait for wakeup, timeout, or a signal. */
1928        futex_wait_queue_me(hb, &q, to);
1929
1930        /* If we were woken (and unqueued), we succeeded, whatever. */
1931        ret = 0;
1932        /* unqueue_me() drops q.key ref */
1933        if (!unqueue_me(&q))
1934                goto out;
1935        ret = -ETIMEDOUT;
1936        if (to && !to->task)
1937                goto out;
1938
1939        /*
1940         * We expect signal_pending(current), but we might be the
1941         * victim of a spurious wakeup as well.
1942         */
1943        if (!signal_pending(current))
1944                goto retry;
1945
1946        ret = -ERESTARTSYS;
1947        if (!abs_time)
1948                goto out;
1949
1950        restart = &current_thread_info()->restart_block;
1951        restart->fn = futex_wait_restart;
1952        restart->futex.uaddr = uaddr;
1953        restart->futex.val = val;
1954        restart->futex.time = abs_time->tv64;
1955        restart->futex.bitset = bitset;
1956        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1957
1958        ret = -ERESTART_RESTARTBLOCK;
1959
1960out:
1961        if (to) {
1962                hrtimer_cancel(&to->timer);
1963                destroy_hrtimer_on_stack(&to->timer);
1964        }
1965        return ret;
1966}
1967
1968
1969static long futex_wait_restart(struct restart_block *restart)
1970{
1971        u32 __user *uaddr = restart->futex.uaddr;
1972        ktime_t t, *tp = NULL;
1973
1974        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1975                t.tv64 = restart->futex.time;
1976                tp = &t;
1977        }
1978        restart->fn = do_no_restart_syscall;
1979
1980        return (long)futex_wait(uaddr, restart->futex.flags,
1981                                restart->futex.val, tp, restart->futex.bitset);
1982}
1983
1984
1985/*
1986 * Userspace tried a 0 -> TID atomic transition of the futex value
1987 * and failed. The kernel side here does the whole locking operation:
1988 * if there are waiters then it will block, it does PI, etc. (Due to
1989 * races the kernel might see a 0 value of the futex too.)
1990 */
1991static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1992                         ktime_t *time, int trylock)
1993{
1994        struct hrtimer_sleeper timeout, *to = NULL;
1995        struct futex_hash_bucket *hb;
1996        struct futex_q q = futex_q_init;
1997        int res, ret;
1998
1999        if (refill_pi_state_cache())
2000                return -ENOMEM;
2001
2002        if (time) {
2003                to = &timeout;
2004                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2005                                      HRTIMER_MODE_ABS);
2006                hrtimer_init_sleeper(to, current);
2007                hrtimer_set_expires(&to->timer, *time);
2008        }
2009
2010retry:
2011        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2012        if (unlikely(ret != 0))
2013                goto out;
2014
2015retry_private:
2016        hb = queue_lock(&q);
2017
2018        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2019        if (unlikely(ret)) {
2020                switch (ret) {
2021                case 1:
2022                        /* We got the lock. */
2023                        ret = 0;
2024                        goto out_unlock_put_key;
2025                case -EFAULT:
2026                        goto uaddr_faulted;
2027                case -EAGAIN:
2028                        /*
2029                         * Task is exiting and we just wait for the
2030                         * exit to complete.
2031                         */
2032                        queue_unlock(&q, hb);
2033                        put_futex_key(&q.key);
2034                        cond_resched();
2035                        goto retry;
2036                default:
2037                        goto out_unlock_put_key;
2038                }
2039        }
2040
2041        /*
2042         * Only actually queue now that the atomic ops are done:
2043         */
2044        queue_me(&q, hb);
2045
2046        WARN_ON(!q.pi_state);
2047        /*
2048         * Block on the PI mutex:
2049         */
2050        if (!trylock)
2051                ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2052        else {
2053                ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2054                /* Fixup the trylock return value: */
2055                ret = ret ? 0 : -EWOULDBLOCK;
2056        }
2057
2058        spin_lock(q.lock_ptr);
2059        /*
2060         * Fixup the pi_state owner and possibly acquire the lock if we
2061         * haven't already.
2062         */
2063        res = fixup_owner(uaddr, &q, !ret);
2064        /*
2065         * If fixup_owner() returned an error, proprogate that.  If it acquired
2066         * the lock, clear our -ETIMEDOUT or -EINTR.
2067         */
2068        if (res)
2069                ret = (res < 0) ? res : 0;
2070
2071        /*
2072         * If fixup_owner() faulted and was unable to handle the fault, unlock
2073         * it and return the fault to userspace.
2074         */
2075        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2076                rt_mutex_unlock(&q.pi_state->pi_mutex);
2077
2078        /* Unqueue and drop the lock */
2079        unqueue_me_pi(&q);
2080
2081        goto out_put_key;
2082
2083out_unlock_put_key:
2084        queue_unlock(&q, hb);
2085
2086out_put_key:
2087        put_futex_key(&q.key);
2088out:
2089        if (to)
2090                destroy_hrtimer_on_stack(&to->timer);
2091        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2092
2093uaddr_faulted:
2094        queue_unlock(&q, hb);
2095
2096        ret = fault_in_user_writeable(uaddr);
2097        if (ret)
2098                goto out_put_key;
2099
2100        if (!(flags & FLAGS_SHARED))
2101                goto retry_private;
2102
2103        put_futex_key(&q.key);
2104        goto retry;
2105}
2106
2107/*
2108 * Userspace attempted a TID -> 0 atomic transition, and failed.
2109 * This is the in-kernel slowpath: we look up the PI state (if any),
2110 * and do the rt-mutex unlock.
2111 */
2112static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2113{
2114        struct futex_hash_bucket *hb;
2115        struct futex_q *this, *next;
2116        struct plist_head *head;
2117        union futex_key key = FUTEX_KEY_INIT;
2118        u32 uval, vpid = task_pid_vnr(current);
2119        int ret;
2120
2121retry:
2122        if (get_user(uval, uaddr))
2123                return -EFAULT;
2124        /*
2125         * We release only a lock we actually own:
2126         */
2127        if ((uval & FUTEX_TID_MASK) != vpid)
2128                return -EPERM;
2129
2130        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2131        if (unlikely(ret != 0))
2132                goto out;
2133
2134        hb = hash_futex(&key);
2135        spin_lock(&hb->lock);
2136
2137        /*
2138         * To avoid races, try to do the TID -> 0 atomic transition
2139         * again. If it succeeds then we can return without waking
2140         * anyone else up:
2141         */
2142        if (!(uval & FUTEX_OWNER_DIED) &&
2143            cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2144                goto pi_faulted;
2145        /*
2146         * Rare case: we managed to release the lock atomically,
2147         * no need to wake anyone else up:
2148         */
2149        if (unlikely(uval == vpid))
2150                goto out_unlock;
2151
2152        /*
2153         * Ok, other tasks may need to be woken up - check waiters
2154         * and do the wakeup if necessary:
2155         */
2156        head = &hb->chain;
2157
2158        plist_for_each_entry_safe(this, next, head, list) {
2159                if (!match_futex (&this->key, &key))
2160                        continue;
2161                ret = wake_futex_pi(uaddr, uval, this);
2162                /*
2163                 * The atomic access to the futex value
2164                 * generated a pagefault, so retry the
2165                 * user-access and the wakeup:
2166                 */
2167                if (ret == -EFAULT)
2168                        goto pi_faulted;
2169                goto out_unlock;
2170        }
2171        /*
2172         * No waiters - kernel unlocks the futex:
2173         */
2174        if (!(uval & FUTEX_OWNER_DIED)) {
2175                ret = unlock_futex_pi(uaddr, uval);
2176                if (ret == -EFAULT)
2177                        goto pi_faulted;
2178        }
2179
2180out_unlock:
2181        spin_unlock(&hb->lock);
2182        put_futex_key(&key);
2183
2184out:
2185        return ret;
2186
2187pi_faulted:
2188        spin_unlock(&hb->lock);
2189        put_futex_key(&key);
2190
2191        ret = fault_in_user_writeable(uaddr);
2192        if (!ret)
2193                goto retry;
2194
2195        return ret;
2196}
2197
2198/**
2199 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2200 * @hb:         the hash_bucket futex_q was original enqueued on
2201 * @q:          the futex_q woken while waiting to be requeued
2202 * @key2:       the futex_key of the requeue target futex
2203 * @timeout:    the timeout associated with the wait (NULL if none)
2204 *
2205 * Detect if the task was woken on the initial futex as opposed to the requeue
2206 * target futex.  If so, determine if it was a timeout or a signal that caused
2207 * the wakeup and return the appropriate error code to the caller.  Must be
2208 * called with the hb lock held.
2209 *
2210 * Return:
2211 *  0 = no early wakeup detected;
2212 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2213 */
2214static inline
2215int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2216                                   struct futex_q *q, union futex_key *key2,
2217                                   struct hrtimer_sleeper *timeout)
2218{
2219        int ret = 0;
2220
2221        /*
2222         * With the hb lock held, we avoid races while we process the wakeup.
2223         * We only need to hold hb (and not hb2) to ensure atomicity as the
2224         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2225         * It can't be requeued from uaddr2 to something else since we don't
2226         * support a PI aware source futex for requeue.
2227         */
2228        if (!match_futex(&q->key, key2)) {
2229                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2230                /*
2231                 * We were woken prior to requeue by a timeout or a signal.
2232                 * Unqueue the futex_q and determine which it was.
2233                 */
2234                plist_del(&q->list, &hb->chain);
2235
2236                /* Handle spurious wakeups gracefully */
2237                ret = -EWOULDBLOCK;
2238                if (timeout && !timeout->task)
2239                        ret = -ETIMEDOUT;
2240                else if (signal_pending(current))
2241                        ret = -ERESTARTNOINTR;
2242        }
2243        return ret;
2244}
2245
2246/**
2247 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2248 * @uaddr:      the futex we initially wait on (non-pi)
2249 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2250 *              the same type, no requeueing from private to shared, etc.
2251 * @val:        the expected value of uaddr
2252 * @abs_time:   absolute timeout
2253 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2254 * @uaddr2:     the pi futex we will take prior to returning to user-space
2255 *
2256 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2257 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2258 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2259 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2260 * without one, the pi logic would not know which task to boost/deboost, if
2261 * there was a need to.
2262 *
2263 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2264 * via the following--
2265 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2266 * 2) wakeup on uaddr2 after a requeue
2267 * 3) signal
2268 * 4) timeout
2269 *
2270 * If 3, cleanup and return -ERESTARTNOINTR.
2271 *
2272 * If 2, we may then block on trying to take the rt_mutex and return via:
2273 * 5) successful lock
2274 * 6) signal
2275 * 7) timeout
2276 * 8) other lock acquisition failure
2277 *
2278 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2279 *
2280 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2281 *
2282 * Return:
2283 *  0 - On success;
2284 * <0 - On error
2285 */
2286static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2287                                 u32 val, ktime_t *abs_time, u32 bitset,
2288                                 u32 __user *uaddr2)
2289{
2290        struct hrtimer_sleeper timeout, *to = NULL;
2291        struct rt_mutex_waiter rt_waiter;
2292        struct rt_mutex *pi_mutex = NULL;
2293        struct futex_hash_bucket *hb;
2294        union futex_key key2 = FUTEX_KEY_INIT;
2295        struct futex_q q = futex_q_init;
2296        int res, ret;
2297
2298        if (uaddr == uaddr2)
2299                return -EINVAL;
2300
2301        if (!bitset)
2302                return -EINVAL;
2303
2304        if (abs_time) {
2305                to = &timeout;
2306                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2307                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2308                                      HRTIMER_MODE_ABS);
2309                hrtimer_init_sleeper(to, current);
2310                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2311                                             current->timer_slack_ns);
2312        }
2313
2314        /*
2315         * The waiter is allocated on our stack, manipulated by the requeue
2316         * code while we sleep on uaddr.
2317         */
2318        debug_rt_mutex_init_waiter(&rt_waiter);
2319        rt_waiter.task = NULL;
2320
2321        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2322        if (unlikely(ret != 0))
2323                goto out;
2324
2325        q.bitset = bitset;
2326        q.rt_waiter = &rt_waiter;
2327        q.requeue_pi_key = &key2;
2328
2329        /*
2330         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2331         * count.
2332         */
2333        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2334        if (ret)
2335                goto out_key2;
2336
2337        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2338        futex_wait_queue_me(hb, &q, to);
2339
2340        spin_lock(&hb->lock);
2341        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2342        spin_unlock(&hb->lock);
2343        if (ret)
2344                goto out_put_keys;
2345
2346        /*
2347         * In order for us to be here, we know our q.key == key2, and since
2348         * we took the hb->lock above, we also know that futex_requeue() has
2349         * completed and we no longer have to concern ourselves with a wakeup
2350         * race with the atomic proxy lock acquisition by the requeue code. The
2351         * futex_requeue dropped our key1 reference and incremented our key2
2352         * reference count.
2353         */
2354
2355        /* Check if the requeue code acquired the second futex for us. */
2356        if (!q.rt_waiter) {
2357                /*
2358                 * Got the lock. We might not be the anticipated owner if we
2359                 * did a lock-steal - fix up the PI-state in that case.
2360                 */
2361                if (q.pi_state && (q.pi_state->owner != current)) {
2362                        spin_lock(q.lock_ptr);
2363                        ret = fixup_pi_state_owner(uaddr2, &q, current);
2364                        spin_unlock(q.lock_ptr);
2365                }
2366        } else {
2367                /*
2368                 * We have been woken up by futex_unlock_pi(), a timeout, or a
2369                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2370                 * the pi_state.
2371                 */
2372                WARN_ON(!q.pi_state);
2373                pi_mutex = &q.pi_state->pi_mutex;
2374                ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2375                debug_rt_mutex_free_waiter(&rt_waiter);
2376
2377                spin_lock(q.lock_ptr);
2378                /*
2379                 * Fixup the pi_state owner and possibly acquire the lock if we
2380                 * haven't already.
2381                 */
2382                res = fixup_owner(uaddr2, &q, !ret);
2383                /*
2384                 * If fixup_owner() returned an error, proprogate that.  If it
2385                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2386                 */
2387                if (res)
2388                        ret = (res < 0) ? res : 0;
2389
2390                /* Unqueue and drop the lock. */
2391                unqueue_me_pi(&q);
2392        }
2393
2394        /*
2395         * If fixup_pi_state_owner() faulted and was unable to handle the
2396         * fault, unlock the rt_mutex and return the fault to userspace.
2397         */
2398        if (ret == -EFAULT) {
2399                if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2400                        rt_mutex_unlock(pi_mutex);
2401        } else if (ret == -EINTR) {
2402                /*
2403                 * We've already been requeued, but cannot restart by calling
2404                 * futex_lock_pi() directly. We could restart this syscall, but
2405                 * it would detect that the user space "val" changed and return
2406                 * -EWOULDBLOCK.  Save the overhead of the restart and return
2407                 * -EWOULDBLOCK directly.
2408                 */
2409                ret = -EWOULDBLOCK;
2410        }
2411
2412out_put_keys:
2413        put_futex_key(&q.key);
2414out_key2:
2415        put_futex_key(&key2);
2416
2417out:
2418        if (to) {
2419                hrtimer_cancel(&to->timer);
2420                destroy_hrtimer_on_stack(&to->timer);
2421        }
2422        return ret;
2423}
2424
2425/*
2426 * Support for robust futexes: the kernel cleans up held futexes at
2427 * thread exit time.
2428 *
2429 * Implementation: user-space maintains a per-thread list of locks it
2430 * is holding. Upon do_exit(), the kernel carefully walks this list,
2431 * and marks all locks that are owned by this thread with the
2432 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2433 * always manipulated with the lock held, so the list is private and
2434 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2435 * field, to allow the kernel to clean up if the thread dies after
2436 * acquiring the lock, but just before it could have added itself to
2437 * the list. There can only be one such pending lock.
2438 */
2439
2440/**
2441 * sys_set_robust_list() - Set the robust-futex list head of a task
2442 * @head:       pointer to the list-head
2443 * @len:        length of the list-head, as userspace expects
2444 */
2445SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2446                size_t, len)
2447{
2448        if (!futex_cmpxchg_enabled)
2449                return -ENOSYS;
2450        /*
2451         * The kernel knows only one size for now:
2452         */
2453        if (unlikely(len != sizeof(*head)))
2454                return -EINVAL;
2455
2456        current->robust_list = head;
2457
2458        return 0;
2459}
2460
2461/**
2462 * sys_get_robust_list() - Get the robust-futex list head of a task
2463 * @pid:        pid of the process [zero for current task]
2464 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2465 * @len_ptr:    pointer to a length field, the kernel fills in the header size
2466 */
2467SYSCALL_DEFINE3(get_robust_list, int, pid,
2468                struct robust_list_head __user * __user *, head_ptr,
2469                size_t __user *, len_ptr)
2470{
2471        struct robust_list_head __user *head;
2472        unsigned long ret;
2473        struct task_struct *p;
2474
2475        if (!futex_cmpxchg_enabled)
2476                return -ENOSYS;
2477
2478        rcu_read_lock();
2479
2480        ret = -ESRCH;
2481        if (!pid)
2482                p = current;
2483        else {
2484                p = find_task_by_vpid(pid);
2485                if (!p)
2486                        goto err_unlock;
2487        }
2488
2489        ret = -EPERM;
2490        if (!ptrace_may_access(p, PTRACE_MODE_READ))
2491                goto err_unlock;
2492
2493        head = p->robust_list;
2494        rcu_read_unlock();
2495
2496        if (put_user(sizeof(*head), len_ptr))
2497                return -EFAULT;
2498        return put_user(head, head_ptr);
2499
2500err_unlock:
2501        rcu_read_unlock();
2502
2503        return ret;
2504}
2505
2506/*
2507 * Process a futex-list entry, check whether it's owned by the
2508 * dying task, and do notification if so:
2509 */
2510int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2511{
2512        u32 uval, uninitialized_var(nval), mval;
2513
2514retry:
2515        if (get_user(uval, uaddr))
2516                return -1;
2517
2518        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2519                /*
2520                 * Ok, this dying thread is truly holding a futex
2521                 * of interest. Set the OWNER_DIED bit atomically
2522                 * via cmpxchg, and if the value had FUTEX_WAITERS
2523                 * set, wake up a waiter (if any). (We have to do a
2524                 * futex_wake() even if OWNER_DIED is already set -
2525                 * to handle the rare but possible case of recursive
2526                 * thread-death.) The rest of the cleanup is done in
2527                 * userspace.
2528                 */
2529                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2530                /*
2531                 * We are not holding a lock here, but we want to have
2532                 * the pagefault_disable/enable() protection because
2533                 * we want to handle the fault gracefully. If the
2534                 * access fails we try to fault in the futex with R/W
2535                 * verification via get_user_pages. get_user() above
2536                 * does not guarantee R/W access. If that fails we
2537                 * give up and leave the futex locked.
2538                 */
2539                if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2540                        if (fault_in_user_writeable(uaddr))
2541                                return -1;
2542                        goto retry;
2543                }
2544                if (nval != uval)
2545                        goto retry;
2546
2547                /*
2548                 * Wake robust non-PI futexes here. The wakeup of
2549                 * PI futexes happens in exit_pi_state():
2550                 */
2551                if (!pi && (uval & FUTEX_WAITERS))
2552                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2553        }
2554        return 0;
2555}
2556
2557/*
2558 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2559 */
2560static inline int fetch_robust_entry(struct robust_list __user **entry,
2561                                     struct robust_list __user * __user *head,
2562                                     unsigned int *pi)
2563{
2564        unsigned long uentry;
2565
2566        if (get_user(uentry, (unsigned long __user *)head))
2567                return -EFAULT;
2568
2569        *entry = (void __user *)(uentry & ~1UL);
2570        *pi = uentry & 1;
2571
2572        return 0;
2573}
2574
2575/*
2576 * Walk curr->robust_list (very carefully, it's a userspace list!)
2577 * and mark any locks found there dead, and notify any waiters.
2578 *
2579 * We silently return on any sign of list-walking problem.
2580 */
2581void exit_robust_list(struct task_struct *curr)
2582{
2583        struct robust_list_head __user *head = curr->robust_list;
2584        struct robust_list __user *entry, *next_entry, *pending;
2585        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2586        unsigned int uninitialized_var(next_pi);
2587        unsigned long futex_offset;
2588        int rc;
2589
2590        if (!futex_cmpxchg_enabled)
2591                return;
2592
2593        /*
2594         * Fetch the list head (which was registered earlier, via
2595         * sys_set_robust_list()):
2596         */
2597        if (fetch_robust_entry(&entry, &head->list.next, &pi))
2598                return;
2599        /*
2600         * Fetch the relative futex offset:
2601         */
2602        if (get_user(futex_offset, &head->futex_offset))
2603                return;
2604        /*
2605         * Fetch any possibly pending lock-add first, and handle it
2606         * if it exists:
2607         */
2608        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2609                return;
2610
2611        next_entry = NULL;      /* avoid warning with gcc */
2612        while (entry != &head->list) {
2613                /*
2614                 * Fetch the next entry in the list before calling
2615                 * handle_futex_death:
2616                 */
2617                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2618                /*
2619                 * A pending lock might already be on the list, so
2620                 * don't process it twice:
2621                 */
2622                if (entry != pending)
2623                        if (handle_futex_death((void __user *)entry + futex_offset,
2624                                                curr, pi))
2625                                return;
2626                if (rc)
2627                        return;
2628                entry = next_entry;
2629                pi = next_pi;
2630                /*
2631                 * Avoid excessively long or circular lists:
2632                 */
2633                if (!--limit)
2634                        break;
2635
2636                cond_resched();
2637        }
2638
2639        if (pending)
2640                handle_futex_death((void __user *)pending + futex_offset,
2641                                   curr, pip);
2642}
2643
2644long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2645                u32 __user *uaddr2, u32 val2, u32 val3)
2646{
2647        int cmd = op & FUTEX_CMD_MASK;
2648        unsigned int flags = 0;
2649
2650        if (!(op & FUTEX_PRIVATE_FLAG))
2651                flags |= FLAGS_SHARED;
2652
2653        if (op & FUTEX_CLOCK_REALTIME) {
2654                flags |= FLAGS_CLOCKRT;
2655                if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2656                        return -ENOSYS;
2657        }
2658
2659        switch (cmd) {
2660        case FUTEX_LOCK_PI:
2661        case FUTEX_UNLOCK_PI:
2662        case FUTEX_TRYLOCK_PI:
2663        case FUTEX_WAIT_REQUEUE_PI:
2664        case FUTEX_CMP_REQUEUE_PI:
2665                if (!futex_cmpxchg_enabled)
2666                        return -ENOSYS;
2667        }
2668
2669        switch (cmd) {
2670        case FUTEX_WAIT:
2671                val3 = FUTEX_BITSET_MATCH_ANY;
2672        case FUTEX_WAIT_BITSET:
2673                return futex_wait(uaddr, flags, val, timeout, val3);
2674        case FUTEX_WAKE:
2675                val3 = FUTEX_BITSET_MATCH_ANY;
2676        case FUTEX_WAKE_BITSET:
2677                return futex_wake(uaddr, flags, val, val3);
2678        case FUTEX_REQUEUE:
2679                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2680        case FUTEX_CMP_REQUEUE:
2681                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2682        case FUTEX_WAKE_OP:
2683                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2684        case FUTEX_LOCK_PI:
2685                return futex_lock_pi(uaddr, flags, val, timeout, 0);
2686        case FUTEX_UNLOCK_PI:
2687                return futex_unlock_pi(uaddr, flags);
2688        case FUTEX_TRYLOCK_PI:
2689                return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2690        case FUTEX_WAIT_REQUEUE_PI:
2691                val3 = FUTEX_BITSET_MATCH_ANY;
2692                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2693                                             uaddr2);
2694        case FUTEX_CMP_REQUEUE_PI:
2695                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2696        }
2697        return -ENOSYS;
2698}
2699
2700
2701SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2702                struct timespec __user *, utime, u32 __user *, uaddr2,
2703                u32, val3)
2704{
2705        struct timespec ts;
2706        ktime_t t, *tp = NULL;
2707        u32 val2 = 0;
2708        int cmd = op & FUTEX_CMD_MASK;
2709
2710        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2711                      cmd == FUTEX_WAIT_BITSET ||
2712                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
2713                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2714                        return -EFAULT;
2715                if (!timespec_valid(&ts))
2716                        return -EINVAL;
2717
2718                t = timespec_to_ktime(ts);
2719                if (cmd == FUTEX_WAIT)
2720                        t = ktime_add_safe(ktime_get(), t);
2721                tp = &t;
2722        }
2723        /*
2724         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2725         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2726         */
2727        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2728            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2729                val2 = (u32) (unsigned long) utime;
2730
2731        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2732}
2733
2734static int __init futex_init(void)
2735{
2736        u32 curval;
2737        int i;
2738
2739        /*
2740         * This will fail and we want it. Some arch implementations do
2741         * runtime detection of the futex_atomic_cmpxchg_inatomic()
2742         * functionality. We want to know that before we call in any
2743         * of the complex code paths. Also we want to prevent
2744         * registration of robust lists in that case. NULL is
2745         * guaranteed to fault and we get -EFAULT on functional
2746         * implementation, the non-functional ones will return
2747         * -ENOSYS.
2748         */
2749        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2750                futex_cmpxchg_enabled = 1;
2751
2752        for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2753                plist_head_init(&futex_queues[i].chain);
2754                spin_lock_init(&futex_queues[i].lock);
2755        }
2756
2757        return 0;
2758}
2759__initcall(futex_init);
2760