linux/kernel/kexec.c
<<
>>
Prefs
   1/*
   2 * kexec.c - kexec system call
   3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <linux/utsname.h>
  25#include <linux/numa.h>
  26#include <linux/suspend.h>
  27#include <linux/device.h>
  28#include <linux/freezer.h>
  29#include <linux/pm.h>
  30#include <linux/cpu.h>
  31#include <linux/console.h>
  32#include <linux/vmalloc.h>
  33#include <linux/swap.h>
  34#include <linux/syscore_ops.h>
  35
  36#include <asm/page.h>
  37#include <asm/uaccess.h>
  38#include <asm/io.h>
  39#include <asm/sections.h>
  40
  41/* Per cpu memory for storing cpu states in case of system crash. */
  42note_buf_t __percpu *crash_notes;
  43
  44/* vmcoreinfo stuff */
  45static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
  46u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
  47size_t vmcoreinfo_size;
  48size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
  49
  50/* Flag to indicate we are going to kexec a new kernel */
  51bool kexec_in_progress = false;
  52
  53/* Location of the reserved area for the crash kernel */
  54struct resource crashk_res = {
  55        .name  = "Crash kernel",
  56        .start = 0,
  57        .end   = 0,
  58        .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  59};
  60struct resource crashk_low_res = {
  61        .name  = "Crash kernel",
  62        .start = 0,
  63        .end   = 0,
  64        .flags = IORESOURCE_BUSY | IORESOURCE_MEM
  65};
  66
  67int kexec_should_crash(struct task_struct *p)
  68{
  69        if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  70                return 1;
  71        return 0;
  72}
  73
  74/*
  75 * When kexec transitions to the new kernel there is a one-to-one
  76 * mapping between physical and virtual addresses.  On processors
  77 * where you can disable the MMU this is trivial, and easy.  For
  78 * others it is still a simple predictable page table to setup.
  79 *
  80 * In that environment kexec copies the new kernel to its final
  81 * resting place.  This means I can only support memory whose
  82 * physical address can fit in an unsigned long.  In particular
  83 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
  84 * If the assembly stub has more restrictive requirements
  85 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
  86 * defined more restrictively in <asm/kexec.h>.
  87 *
  88 * The code for the transition from the current kernel to the
  89 * the new kernel is placed in the control_code_buffer, whose size
  90 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
  91 * page of memory is necessary, but some architectures require more.
  92 * Because this memory must be identity mapped in the transition from
  93 * virtual to physical addresses it must live in the range
  94 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
  95 * modifiable.
  96 *
  97 * The assembly stub in the control code buffer is passed a linked list
  98 * of descriptor pages detailing the source pages of the new kernel,
  99 * and the destination addresses of those source pages.  As this data
 100 * structure is not used in the context of the current OS, it must
 101 * be self-contained.
 102 *
 103 * The code has been made to work with highmem pages and will use a
 104 * destination page in its final resting place (if it happens
 105 * to allocate it).  The end product of this is that most of the
 106 * physical address space, and most of RAM can be used.
 107 *
 108 * Future directions include:
 109 *  - allocating a page table with the control code buffer identity
 110 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 111 *    reliable.
 112 */
 113
 114/*
 115 * KIMAGE_NO_DEST is an impossible destination address..., for
 116 * allocating pages whose destination address we do not care about.
 117 */
 118#define KIMAGE_NO_DEST (-1UL)
 119
 120static int kimage_is_destination_range(struct kimage *image,
 121                                       unsigned long start, unsigned long end);
 122static struct page *kimage_alloc_page(struct kimage *image,
 123                                       gfp_t gfp_mask,
 124                                       unsigned long dest);
 125
 126static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
 127                            unsigned long nr_segments,
 128                            struct kexec_segment __user *segments)
 129{
 130        size_t segment_bytes;
 131        struct kimage *image;
 132        unsigned long i;
 133        int result;
 134
 135        /* Allocate a controlling structure */
 136        result = -ENOMEM;
 137        image = kzalloc(sizeof(*image), GFP_KERNEL);
 138        if (!image)
 139                goto out;
 140
 141        image->head = 0;
 142        image->entry = &image->head;
 143        image->last_entry = &image->head;
 144        image->control_page = ~0; /* By default this does not apply */
 145        image->start = entry;
 146        image->type = KEXEC_TYPE_DEFAULT;
 147
 148        /* Initialize the list of control pages */
 149        INIT_LIST_HEAD(&image->control_pages);
 150
 151        /* Initialize the list of destination pages */
 152        INIT_LIST_HEAD(&image->dest_pages);
 153
 154        /* Initialize the list of unusable pages */
 155        INIT_LIST_HEAD(&image->unuseable_pages);
 156
 157        /* Read in the segments */
 158        image->nr_segments = nr_segments;
 159        segment_bytes = nr_segments * sizeof(*segments);
 160        result = copy_from_user(image->segment, segments, segment_bytes);
 161        if (result) {
 162                result = -EFAULT;
 163                goto out;
 164        }
 165
 166        /*
 167         * Verify we have good destination addresses.  The caller is
 168         * responsible for making certain we don't attempt to load
 169         * the new image into invalid or reserved areas of RAM.  This
 170         * just verifies it is an address we can use.
 171         *
 172         * Since the kernel does everything in page size chunks ensure
 173         * the destination addresses are page aligned.  Too many
 174         * special cases crop of when we don't do this.  The most
 175         * insidious is getting overlapping destination addresses
 176         * simply because addresses are changed to page size
 177         * granularity.
 178         */
 179        result = -EADDRNOTAVAIL;
 180        for (i = 0; i < nr_segments; i++) {
 181                unsigned long mstart, mend;
 182
 183                mstart = image->segment[i].mem;
 184                mend   = mstart + image->segment[i].memsz;
 185                if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 186                        goto out;
 187                if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 188                        goto out;
 189        }
 190
 191        /* Verify our destination addresses do not overlap.
 192         * If we alloed overlapping destination addresses
 193         * through very weird things can happen with no
 194         * easy explanation as one segment stops on another.
 195         */
 196        result = -EINVAL;
 197        for (i = 0; i < nr_segments; i++) {
 198                unsigned long mstart, mend;
 199                unsigned long j;
 200
 201                mstart = image->segment[i].mem;
 202                mend   = mstart + image->segment[i].memsz;
 203                for (j = 0; j < i; j++) {
 204                        unsigned long pstart, pend;
 205                        pstart = image->segment[j].mem;
 206                        pend   = pstart + image->segment[j].memsz;
 207                        /* Do the segments overlap ? */
 208                        if ((mend > pstart) && (mstart < pend))
 209                                goto out;
 210                }
 211        }
 212
 213        /* Ensure our buffer sizes are strictly less than
 214         * our memory sizes.  This should always be the case,
 215         * and it is easier to check up front than to be surprised
 216         * later on.
 217         */
 218        result = -EINVAL;
 219        for (i = 0; i < nr_segments; i++) {
 220                if (image->segment[i].bufsz > image->segment[i].memsz)
 221                        goto out;
 222        }
 223
 224        result = 0;
 225out:
 226        if (result == 0)
 227                *rimage = image;
 228        else
 229                kfree(image);
 230
 231        return result;
 232
 233}
 234
 235static void kimage_free_page_list(struct list_head *list);
 236
 237static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
 238                                unsigned long nr_segments,
 239                                struct kexec_segment __user *segments)
 240{
 241        int result;
 242        struct kimage *image;
 243
 244        /* Allocate and initialize a controlling structure */
 245        image = NULL;
 246        result = do_kimage_alloc(&image, entry, nr_segments, segments);
 247        if (result)
 248                goto out;
 249
 250        /*
 251         * Find a location for the control code buffer, and add it
 252         * the vector of segments so that it's pages will also be
 253         * counted as destination pages.
 254         */
 255        result = -ENOMEM;
 256        image->control_code_page = kimage_alloc_control_pages(image,
 257                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 258        if (!image->control_code_page) {
 259                printk(KERN_ERR "Could not allocate control_code_buffer\n");
 260                goto out_free;
 261        }
 262
 263        image->swap_page = kimage_alloc_control_pages(image, 0);
 264        if (!image->swap_page) {
 265                printk(KERN_ERR "Could not allocate swap buffer\n");
 266                goto out_free;
 267        }
 268
 269        *rimage = image;
 270        return 0;
 271
 272out_free:
 273        kimage_free_page_list(&image->control_pages);
 274        kfree(image);
 275out:
 276        return result;
 277}
 278
 279static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
 280                                unsigned long nr_segments,
 281                                struct kexec_segment __user *segments)
 282{
 283        int result;
 284        struct kimage *image;
 285        unsigned long i;
 286
 287        image = NULL;
 288        /* Verify we have a valid entry point */
 289        if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
 290                result = -EADDRNOTAVAIL;
 291                goto out;
 292        }
 293
 294        /* Allocate and initialize a controlling structure */
 295        result = do_kimage_alloc(&image, entry, nr_segments, segments);
 296        if (result)
 297                goto out;
 298
 299        /* Enable the special crash kernel control page
 300         * allocation policy.
 301         */
 302        image->control_page = crashk_res.start;
 303        image->type = KEXEC_TYPE_CRASH;
 304
 305        /*
 306         * Verify we have good destination addresses.  Normally
 307         * the caller is responsible for making certain we don't
 308         * attempt to load the new image into invalid or reserved
 309         * areas of RAM.  But crash kernels are preloaded into a
 310         * reserved area of ram.  We must ensure the addresses
 311         * are in the reserved area otherwise preloading the
 312         * kernel could corrupt things.
 313         */
 314        result = -EADDRNOTAVAIL;
 315        for (i = 0; i < nr_segments; i++) {
 316                unsigned long mstart, mend;
 317
 318                mstart = image->segment[i].mem;
 319                mend = mstart + image->segment[i].memsz - 1;
 320                /* Ensure we are within the crash kernel limits */
 321                if ((mstart < crashk_res.start) || (mend > crashk_res.end))
 322                        goto out_free;
 323        }
 324
 325        /*
 326         * Find a location for the control code buffer, and add
 327         * the vector of segments so that it's pages will also be
 328         * counted as destination pages.
 329         */
 330        result = -ENOMEM;
 331        image->control_code_page = kimage_alloc_control_pages(image,
 332                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 333        if (!image->control_code_page) {
 334                printk(KERN_ERR "Could not allocate control_code_buffer\n");
 335                goto out_free;
 336        }
 337
 338        *rimage = image;
 339        return 0;
 340
 341out_free:
 342        kfree(image);
 343out:
 344        return result;
 345}
 346
 347static int kimage_is_destination_range(struct kimage *image,
 348                                        unsigned long start,
 349                                        unsigned long end)
 350{
 351        unsigned long i;
 352
 353        for (i = 0; i < image->nr_segments; i++) {
 354                unsigned long mstart, mend;
 355
 356                mstart = image->segment[i].mem;
 357                mend = mstart + image->segment[i].memsz;
 358                if ((end > mstart) && (start < mend))
 359                        return 1;
 360        }
 361
 362        return 0;
 363}
 364
 365static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 366{
 367        struct page *pages;
 368
 369        pages = alloc_pages(gfp_mask, order);
 370        if (pages) {
 371                unsigned int count, i;
 372                pages->mapping = NULL;
 373                set_page_private(pages, order);
 374                count = 1 << order;
 375                for (i = 0; i < count; i++)
 376                        SetPageReserved(pages + i);
 377        }
 378
 379        return pages;
 380}
 381
 382static void kimage_free_pages(struct page *page)
 383{
 384        unsigned int order, count, i;
 385
 386        order = page_private(page);
 387        count = 1 << order;
 388        for (i = 0; i < count; i++)
 389                ClearPageReserved(page + i);
 390        __free_pages(page, order);
 391}
 392
 393static void kimage_free_page_list(struct list_head *list)
 394{
 395        struct list_head *pos, *next;
 396
 397        list_for_each_safe(pos, next, list) {
 398                struct page *page;
 399
 400                page = list_entry(pos, struct page, lru);
 401                list_del(&page->lru);
 402                kimage_free_pages(page);
 403        }
 404}
 405
 406static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 407                                                        unsigned int order)
 408{
 409        /* Control pages are special, they are the intermediaries
 410         * that are needed while we copy the rest of the pages
 411         * to their final resting place.  As such they must
 412         * not conflict with either the destination addresses
 413         * or memory the kernel is already using.
 414         *
 415         * The only case where we really need more than one of
 416         * these are for architectures where we cannot disable
 417         * the MMU and must instead generate an identity mapped
 418         * page table for all of the memory.
 419         *
 420         * At worst this runs in O(N) of the image size.
 421         */
 422        struct list_head extra_pages;
 423        struct page *pages;
 424        unsigned int count;
 425
 426        count = 1 << order;
 427        INIT_LIST_HEAD(&extra_pages);
 428
 429        /* Loop while I can allocate a page and the page allocated
 430         * is a destination page.
 431         */
 432        do {
 433                unsigned long pfn, epfn, addr, eaddr;
 434
 435                pages = kimage_alloc_pages(GFP_KERNEL, order);
 436                if (!pages)
 437                        break;
 438                pfn   = page_to_pfn(pages);
 439                epfn  = pfn + count;
 440                addr  = pfn << PAGE_SHIFT;
 441                eaddr = epfn << PAGE_SHIFT;
 442                if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 443                              kimage_is_destination_range(image, addr, eaddr)) {
 444                        list_add(&pages->lru, &extra_pages);
 445                        pages = NULL;
 446                }
 447        } while (!pages);
 448
 449        if (pages) {
 450                /* Remember the allocated page... */
 451                list_add(&pages->lru, &image->control_pages);
 452
 453                /* Because the page is already in it's destination
 454                 * location we will never allocate another page at
 455                 * that address.  Therefore kimage_alloc_pages
 456                 * will not return it (again) and we don't need
 457                 * to give it an entry in image->segment[].
 458                 */
 459        }
 460        /* Deal with the destination pages I have inadvertently allocated.
 461         *
 462         * Ideally I would convert multi-page allocations into single
 463         * page allocations, and add everything to image->dest_pages.
 464         *
 465         * For now it is simpler to just free the pages.
 466         */
 467        kimage_free_page_list(&extra_pages);
 468
 469        return pages;
 470}
 471
 472static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 473                                                      unsigned int order)
 474{
 475        /* Control pages are special, they are the intermediaries
 476         * that are needed while we copy the rest of the pages
 477         * to their final resting place.  As such they must
 478         * not conflict with either the destination addresses
 479         * or memory the kernel is already using.
 480         *
 481         * Control pages are also the only pags we must allocate
 482         * when loading a crash kernel.  All of the other pages
 483         * are specified by the segments and we just memcpy
 484         * into them directly.
 485         *
 486         * The only case where we really need more than one of
 487         * these are for architectures where we cannot disable
 488         * the MMU and must instead generate an identity mapped
 489         * page table for all of the memory.
 490         *
 491         * Given the low demand this implements a very simple
 492         * allocator that finds the first hole of the appropriate
 493         * size in the reserved memory region, and allocates all
 494         * of the memory up to and including the hole.
 495         */
 496        unsigned long hole_start, hole_end, size;
 497        struct page *pages;
 498
 499        pages = NULL;
 500        size = (1 << order) << PAGE_SHIFT;
 501        hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 502        hole_end   = hole_start + size - 1;
 503        while (hole_end <= crashk_res.end) {
 504                unsigned long i;
 505
 506                if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 507                        break;
 508                /* See if I overlap any of the segments */
 509                for (i = 0; i < image->nr_segments; i++) {
 510                        unsigned long mstart, mend;
 511
 512                        mstart = image->segment[i].mem;
 513                        mend   = mstart + image->segment[i].memsz - 1;
 514                        if ((hole_end >= mstart) && (hole_start <= mend)) {
 515                                /* Advance the hole to the end of the segment */
 516                                hole_start = (mend + (size - 1)) & ~(size - 1);
 517                                hole_end   = hole_start + size - 1;
 518                                break;
 519                        }
 520                }
 521                /* If I don't overlap any segments I have found my hole! */
 522                if (i == image->nr_segments) {
 523                        pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 524                        break;
 525                }
 526        }
 527        if (pages)
 528                image->control_page = hole_end;
 529
 530        return pages;
 531}
 532
 533
 534struct page *kimage_alloc_control_pages(struct kimage *image,
 535                                         unsigned int order)
 536{
 537        struct page *pages = NULL;
 538
 539        switch (image->type) {
 540        case KEXEC_TYPE_DEFAULT:
 541                pages = kimage_alloc_normal_control_pages(image, order);
 542                break;
 543        case KEXEC_TYPE_CRASH:
 544                pages = kimage_alloc_crash_control_pages(image, order);
 545                break;
 546        }
 547
 548        return pages;
 549}
 550
 551static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 552{
 553        if (*image->entry != 0)
 554                image->entry++;
 555
 556        if (image->entry == image->last_entry) {
 557                kimage_entry_t *ind_page;
 558                struct page *page;
 559
 560                page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 561                if (!page)
 562                        return -ENOMEM;
 563
 564                ind_page = page_address(page);
 565                *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
 566                image->entry = ind_page;
 567                image->last_entry = ind_page +
 568                                      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 569        }
 570        *image->entry = entry;
 571        image->entry++;
 572        *image->entry = 0;
 573
 574        return 0;
 575}
 576
 577static int kimage_set_destination(struct kimage *image,
 578                                   unsigned long destination)
 579{
 580        int result;
 581
 582        destination &= PAGE_MASK;
 583        result = kimage_add_entry(image, destination | IND_DESTINATION);
 584        if (result == 0)
 585                image->destination = destination;
 586
 587        return result;
 588}
 589
 590
 591static int kimage_add_page(struct kimage *image, unsigned long page)
 592{
 593        int result;
 594
 595        page &= PAGE_MASK;
 596        result = kimage_add_entry(image, page | IND_SOURCE);
 597        if (result == 0)
 598                image->destination += PAGE_SIZE;
 599
 600        return result;
 601}
 602
 603
 604static void kimage_free_extra_pages(struct kimage *image)
 605{
 606        /* Walk through and free any extra destination pages I may have */
 607        kimage_free_page_list(&image->dest_pages);
 608
 609        /* Walk through and free any unusable pages I have cached */
 610        kimage_free_page_list(&image->unuseable_pages);
 611
 612}
 613static void kimage_terminate(struct kimage *image)
 614{
 615        if (*image->entry != 0)
 616                image->entry++;
 617
 618        *image->entry = IND_DONE;
 619}
 620
 621#define for_each_kimage_entry(image, ptr, entry) \
 622        for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 623                ptr = (entry & IND_INDIRECTION)? \
 624                        phys_to_virt((entry & PAGE_MASK)): ptr +1)
 625
 626static void kimage_free_entry(kimage_entry_t entry)
 627{
 628        struct page *page;
 629
 630        page = pfn_to_page(entry >> PAGE_SHIFT);
 631        kimage_free_pages(page);
 632}
 633
 634static void kimage_free(struct kimage *image)
 635{
 636        kimage_entry_t *ptr, entry;
 637        kimage_entry_t ind = 0;
 638
 639        if (!image)
 640                return;
 641
 642        kimage_free_extra_pages(image);
 643        for_each_kimage_entry(image, ptr, entry) {
 644                if (entry & IND_INDIRECTION) {
 645                        /* Free the previous indirection page */
 646                        if (ind & IND_INDIRECTION)
 647                                kimage_free_entry(ind);
 648                        /* Save this indirection page until we are
 649                         * done with it.
 650                         */
 651                        ind = entry;
 652                }
 653                else if (entry & IND_SOURCE)
 654                        kimage_free_entry(entry);
 655        }
 656        /* Free the final indirection page */
 657        if (ind & IND_INDIRECTION)
 658                kimage_free_entry(ind);
 659
 660        /* Handle any machine specific cleanup */
 661        machine_kexec_cleanup(image);
 662
 663        /* Free the kexec control pages... */
 664        kimage_free_page_list(&image->control_pages);
 665        kfree(image);
 666}
 667
 668static kimage_entry_t *kimage_dst_used(struct kimage *image,
 669                                        unsigned long page)
 670{
 671        kimage_entry_t *ptr, entry;
 672        unsigned long destination = 0;
 673
 674        for_each_kimage_entry(image, ptr, entry) {
 675                if (entry & IND_DESTINATION)
 676                        destination = entry & PAGE_MASK;
 677                else if (entry & IND_SOURCE) {
 678                        if (page == destination)
 679                                return ptr;
 680                        destination += PAGE_SIZE;
 681                }
 682        }
 683
 684        return NULL;
 685}
 686
 687static struct page *kimage_alloc_page(struct kimage *image,
 688                                        gfp_t gfp_mask,
 689                                        unsigned long destination)
 690{
 691        /*
 692         * Here we implement safeguards to ensure that a source page
 693         * is not copied to its destination page before the data on
 694         * the destination page is no longer useful.
 695         *
 696         * To do this we maintain the invariant that a source page is
 697         * either its own destination page, or it is not a
 698         * destination page at all.
 699         *
 700         * That is slightly stronger than required, but the proof
 701         * that no problems will not occur is trivial, and the
 702         * implementation is simply to verify.
 703         *
 704         * When allocating all pages normally this algorithm will run
 705         * in O(N) time, but in the worst case it will run in O(N^2)
 706         * time.   If the runtime is a problem the data structures can
 707         * be fixed.
 708         */
 709        struct page *page;
 710        unsigned long addr;
 711
 712        /*
 713         * Walk through the list of destination pages, and see if I
 714         * have a match.
 715         */
 716        list_for_each_entry(page, &image->dest_pages, lru) {
 717                addr = page_to_pfn(page) << PAGE_SHIFT;
 718                if (addr == destination) {
 719                        list_del(&page->lru);
 720                        return page;
 721                }
 722        }
 723        page = NULL;
 724        while (1) {
 725                kimage_entry_t *old;
 726
 727                /* Allocate a page, if we run out of memory give up */
 728                page = kimage_alloc_pages(gfp_mask, 0);
 729                if (!page)
 730                        return NULL;
 731                /* If the page cannot be used file it away */
 732                if (page_to_pfn(page) >
 733                                (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 734                        list_add(&page->lru, &image->unuseable_pages);
 735                        continue;
 736                }
 737                addr = page_to_pfn(page) << PAGE_SHIFT;
 738
 739                /* If it is the destination page we want use it */
 740                if (addr == destination)
 741                        break;
 742
 743                /* If the page is not a destination page use it */
 744                if (!kimage_is_destination_range(image, addr,
 745                                                  addr + PAGE_SIZE))
 746                        break;
 747
 748                /*
 749                 * I know that the page is someones destination page.
 750                 * See if there is already a source page for this
 751                 * destination page.  And if so swap the source pages.
 752                 */
 753                old = kimage_dst_used(image, addr);
 754                if (old) {
 755                        /* If so move it */
 756                        unsigned long old_addr;
 757                        struct page *old_page;
 758
 759                        old_addr = *old & PAGE_MASK;
 760                        old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
 761                        copy_highpage(page, old_page);
 762                        *old = addr | (*old & ~PAGE_MASK);
 763
 764                        /* The old page I have found cannot be a
 765                         * destination page, so return it if it's
 766                         * gfp_flags honor the ones passed in.
 767                         */
 768                        if (!(gfp_mask & __GFP_HIGHMEM) &&
 769                            PageHighMem(old_page)) {
 770                                kimage_free_pages(old_page);
 771                                continue;
 772                        }
 773                        addr = old_addr;
 774                        page = old_page;
 775                        break;
 776                }
 777                else {
 778                        /* Place the page on the destination list I
 779                         * will use it later.
 780                         */
 781                        list_add(&page->lru, &image->dest_pages);
 782                }
 783        }
 784
 785        return page;
 786}
 787
 788static int kimage_load_normal_segment(struct kimage *image,
 789                                         struct kexec_segment *segment)
 790{
 791        unsigned long maddr;
 792        size_t ubytes, mbytes;
 793        int result;
 794        unsigned char __user *buf;
 795
 796        result = 0;
 797        buf = segment->buf;
 798        ubytes = segment->bufsz;
 799        mbytes = segment->memsz;
 800        maddr = segment->mem;
 801
 802        result = kimage_set_destination(image, maddr);
 803        if (result < 0)
 804                goto out;
 805
 806        while (mbytes) {
 807                struct page *page;
 808                char *ptr;
 809                size_t uchunk, mchunk;
 810
 811                page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 812                if (!page) {
 813                        result  = -ENOMEM;
 814                        goto out;
 815                }
 816                result = kimage_add_page(image, page_to_pfn(page)
 817                                                                << PAGE_SHIFT);
 818                if (result < 0)
 819                        goto out;
 820
 821                ptr = kmap(page);
 822                /* Start with a clear page */
 823                clear_page(ptr);
 824                ptr += maddr & ~PAGE_MASK;
 825                mchunk = min_t(size_t, mbytes,
 826                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 827                uchunk = min(ubytes, mchunk);
 828
 829                result = copy_from_user(ptr, buf, uchunk);
 830                kunmap(page);
 831                if (result) {
 832                        result = -EFAULT;
 833                        goto out;
 834                }
 835                ubytes -= uchunk;
 836                maddr  += mchunk;
 837                buf    += mchunk;
 838                mbytes -= mchunk;
 839        }
 840out:
 841        return result;
 842}
 843
 844static int kimage_load_crash_segment(struct kimage *image,
 845                                        struct kexec_segment *segment)
 846{
 847        /* For crash dumps kernels we simply copy the data from
 848         * user space to it's destination.
 849         * We do things a page at a time for the sake of kmap.
 850         */
 851        unsigned long maddr;
 852        size_t ubytes, mbytes;
 853        int result;
 854        unsigned char __user *buf;
 855
 856        result = 0;
 857        buf = segment->buf;
 858        ubytes = segment->bufsz;
 859        mbytes = segment->memsz;
 860        maddr = segment->mem;
 861        while (mbytes) {
 862                struct page *page;
 863                char *ptr;
 864                size_t uchunk, mchunk;
 865
 866                page = pfn_to_page(maddr >> PAGE_SHIFT);
 867                if (!page) {
 868                        result  = -ENOMEM;
 869                        goto out;
 870                }
 871                ptr = kmap(page);
 872                ptr += maddr & ~PAGE_MASK;
 873                mchunk = min_t(size_t, mbytes,
 874                                PAGE_SIZE - (maddr & ~PAGE_MASK));
 875                uchunk = min(ubytes, mchunk);
 876                if (mchunk > uchunk) {
 877                        /* Zero the trailing part of the page */
 878                        memset(ptr + uchunk, 0, mchunk - uchunk);
 879                }
 880                result = copy_from_user(ptr, buf, uchunk);
 881                kexec_flush_icache_page(page);
 882                kunmap(page);
 883                if (result) {
 884                        result = -EFAULT;
 885                        goto out;
 886                }
 887                ubytes -= uchunk;
 888                maddr  += mchunk;
 889                buf    += mchunk;
 890                mbytes -= mchunk;
 891        }
 892out:
 893        return result;
 894}
 895
 896static int kimage_load_segment(struct kimage *image,
 897                                struct kexec_segment *segment)
 898{
 899        int result = -ENOMEM;
 900
 901        switch (image->type) {
 902        case KEXEC_TYPE_DEFAULT:
 903                result = kimage_load_normal_segment(image, segment);
 904                break;
 905        case KEXEC_TYPE_CRASH:
 906                result = kimage_load_crash_segment(image, segment);
 907                break;
 908        }
 909
 910        return result;
 911}
 912
 913/*
 914 * Exec Kernel system call: for obvious reasons only root may call it.
 915 *
 916 * This call breaks up into three pieces.
 917 * - A generic part which loads the new kernel from the current
 918 *   address space, and very carefully places the data in the
 919 *   allocated pages.
 920 *
 921 * - A generic part that interacts with the kernel and tells all of
 922 *   the devices to shut down.  Preventing on-going dmas, and placing
 923 *   the devices in a consistent state so a later kernel can
 924 *   reinitialize them.
 925 *
 926 * - A machine specific part that includes the syscall number
 927 *   and then copies the image to it's final destination.  And
 928 *   jumps into the image at entry.
 929 *
 930 * kexec does not sync, or unmount filesystems so if you need
 931 * that to happen you need to do that yourself.
 932 */
 933struct kimage *kexec_image;
 934struct kimage *kexec_crash_image;
 935
 936static DEFINE_MUTEX(kexec_mutex);
 937
 938SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
 939                struct kexec_segment __user *, segments, unsigned long, flags)
 940{
 941        struct kimage **dest_image, *image;
 942        int result;
 943
 944        /* We only trust the superuser with rebooting the system. */
 945        if (!capable(CAP_SYS_BOOT))
 946                return -EPERM;
 947
 948        /*
 949         * Verify we have a legal set of flags
 950         * This leaves us room for future extensions.
 951         */
 952        if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
 953                return -EINVAL;
 954
 955        /* Verify we are on the appropriate architecture */
 956        if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
 957                ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
 958                return -EINVAL;
 959
 960        /* Put an artificial cap on the number
 961         * of segments passed to kexec_load.
 962         */
 963        if (nr_segments > KEXEC_SEGMENT_MAX)
 964                return -EINVAL;
 965
 966        image = NULL;
 967        result = 0;
 968
 969        /* Because we write directly to the reserved memory
 970         * region when loading crash kernels we need a mutex here to
 971         * prevent multiple crash  kernels from attempting to load
 972         * simultaneously, and to prevent a crash kernel from loading
 973         * over the top of a in use crash kernel.
 974         *
 975         * KISS: always take the mutex.
 976         */
 977        if (!mutex_trylock(&kexec_mutex))
 978                return -EBUSY;
 979
 980        dest_image = &kexec_image;
 981        if (flags & KEXEC_ON_CRASH)
 982                dest_image = &kexec_crash_image;
 983        if (nr_segments > 0) {
 984                unsigned long i;
 985
 986                /* Loading another kernel to reboot into */
 987                if ((flags & KEXEC_ON_CRASH) == 0)
 988                        result = kimage_normal_alloc(&image, entry,
 989                                                        nr_segments, segments);
 990                /* Loading another kernel to switch to if this one crashes */
 991                else if (flags & KEXEC_ON_CRASH) {
 992                        /* Free any current crash dump kernel before
 993                         * we corrupt it.
 994                         */
 995                        kimage_free(xchg(&kexec_crash_image, NULL));
 996                        result = kimage_crash_alloc(&image, entry,
 997                                                     nr_segments, segments);
 998                        crash_map_reserved_pages();
 999                }
1000                if (result)
1001                        goto out;
1002
1003                if (flags & KEXEC_PRESERVE_CONTEXT)
1004                        image->preserve_context = 1;
1005                result = machine_kexec_prepare(image);
1006                if (result)
1007                        goto out;
1008
1009                for (i = 0; i < nr_segments; i++) {
1010                        result = kimage_load_segment(image, &image->segment[i]);
1011                        if (result)
1012                                goto out;
1013                }
1014                kimage_terminate(image);
1015                if (flags & KEXEC_ON_CRASH)
1016                        crash_unmap_reserved_pages();
1017        }
1018        /* Install the new kernel, and  Uninstall the old */
1019        image = xchg(dest_image, image);
1020
1021out:
1022        mutex_unlock(&kexec_mutex);
1023        kimage_free(image);
1024
1025        return result;
1026}
1027
1028/*
1029 * Add and remove page tables for crashkernel memory
1030 *
1031 * Provide an empty default implementation here -- architecture
1032 * code may override this
1033 */
1034void __weak crash_map_reserved_pages(void)
1035{}
1036
1037void __weak crash_unmap_reserved_pages(void)
1038{}
1039
1040#ifdef CONFIG_COMPAT
1041asmlinkage long compat_sys_kexec_load(unsigned long entry,
1042                                unsigned long nr_segments,
1043                                struct compat_kexec_segment __user *segments,
1044                                unsigned long flags)
1045{
1046        struct compat_kexec_segment in;
1047        struct kexec_segment out, __user *ksegments;
1048        unsigned long i, result;
1049
1050        /* Don't allow clients that don't understand the native
1051         * architecture to do anything.
1052         */
1053        if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1054                return -EINVAL;
1055
1056        if (nr_segments > KEXEC_SEGMENT_MAX)
1057                return -EINVAL;
1058
1059        ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1060        for (i=0; i < nr_segments; i++) {
1061                result = copy_from_user(&in, &segments[i], sizeof(in));
1062                if (result)
1063                        return -EFAULT;
1064
1065                out.buf   = compat_ptr(in.buf);
1066                out.bufsz = in.bufsz;
1067                out.mem   = in.mem;
1068                out.memsz = in.memsz;
1069
1070                result = copy_to_user(&ksegments[i], &out, sizeof(out));
1071                if (result)
1072                        return -EFAULT;
1073        }
1074
1075        return sys_kexec_load(entry, nr_segments, ksegments, flags);
1076}
1077#endif
1078
1079void crash_kexec(struct pt_regs *regs)
1080{
1081        /* Take the kexec_mutex here to prevent sys_kexec_load
1082         * running on one cpu from replacing the crash kernel
1083         * we are using after a panic on a different cpu.
1084         *
1085         * If the crash kernel was not located in a fixed area
1086         * of memory the xchg(&kexec_crash_image) would be
1087         * sufficient.  But since I reuse the memory...
1088         */
1089        if (mutex_trylock(&kexec_mutex)) {
1090                if (kexec_crash_image) {
1091                        struct pt_regs fixed_regs;
1092
1093                        crash_setup_regs(&fixed_regs, regs);
1094                        crash_save_vmcoreinfo();
1095                        machine_crash_shutdown(&fixed_regs);
1096                        machine_kexec(kexec_crash_image);
1097                }
1098                mutex_unlock(&kexec_mutex);
1099        }
1100}
1101
1102size_t crash_get_memory_size(void)
1103{
1104        size_t size = 0;
1105        mutex_lock(&kexec_mutex);
1106        if (crashk_res.end != crashk_res.start)
1107                size = resource_size(&crashk_res);
1108        mutex_unlock(&kexec_mutex);
1109        return size;
1110}
1111
1112void __weak crash_free_reserved_phys_range(unsigned long begin,
1113                                           unsigned long end)
1114{
1115        unsigned long addr;
1116
1117        for (addr = begin; addr < end; addr += PAGE_SIZE)
1118                free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1119}
1120
1121int crash_shrink_memory(unsigned long new_size)
1122{
1123        int ret = 0;
1124        unsigned long start, end;
1125        unsigned long old_size;
1126        struct resource *ram_res;
1127
1128        mutex_lock(&kexec_mutex);
1129
1130        if (kexec_crash_image) {
1131                ret = -ENOENT;
1132                goto unlock;
1133        }
1134        start = crashk_res.start;
1135        end = crashk_res.end;
1136        old_size = (end == 0) ? 0 : end - start + 1;
1137        if (new_size >= old_size) {
1138                ret = (new_size == old_size) ? 0 : -EINVAL;
1139                goto unlock;
1140        }
1141
1142        ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1143        if (!ram_res) {
1144                ret = -ENOMEM;
1145                goto unlock;
1146        }
1147
1148        start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1149        end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1150
1151        crash_map_reserved_pages();
1152        crash_free_reserved_phys_range(end, crashk_res.end);
1153
1154        if ((start == end) && (crashk_res.parent != NULL))
1155                release_resource(&crashk_res);
1156
1157        ram_res->start = end;
1158        ram_res->end = crashk_res.end;
1159        ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1160        ram_res->name = "System RAM";
1161
1162        crashk_res.end = end - 1;
1163
1164        insert_resource(&iomem_resource, ram_res);
1165        crash_unmap_reserved_pages();
1166
1167unlock:
1168        mutex_unlock(&kexec_mutex);
1169        return ret;
1170}
1171
1172static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1173                            size_t data_len)
1174{
1175        struct elf_note note;
1176
1177        note.n_namesz = strlen(name) + 1;
1178        note.n_descsz = data_len;
1179        note.n_type   = type;
1180        memcpy(buf, &note, sizeof(note));
1181        buf += (sizeof(note) + 3)/4;
1182        memcpy(buf, name, note.n_namesz);
1183        buf += (note.n_namesz + 3)/4;
1184        memcpy(buf, data, note.n_descsz);
1185        buf += (note.n_descsz + 3)/4;
1186
1187        return buf;
1188}
1189
1190static void final_note(u32 *buf)
1191{
1192        struct elf_note note;
1193
1194        note.n_namesz = 0;
1195        note.n_descsz = 0;
1196        note.n_type   = 0;
1197        memcpy(buf, &note, sizeof(note));
1198}
1199
1200void crash_save_cpu(struct pt_regs *regs, int cpu)
1201{
1202        struct elf_prstatus prstatus;
1203        u32 *buf;
1204
1205        if ((cpu < 0) || (cpu >= nr_cpu_ids))
1206                return;
1207
1208        /* Using ELF notes here is opportunistic.
1209         * I need a well defined structure format
1210         * for the data I pass, and I need tags
1211         * on the data to indicate what information I have
1212         * squirrelled away.  ELF notes happen to provide
1213         * all of that, so there is no need to invent something new.
1214         */
1215        buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1216        if (!buf)
1217                return;
1218        memset(&prstatus, 0, sizeof(prstatus));
1219        prstatus.pr_pid = current->pid;
1220        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1221        buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1222                              &prstatus, sizeof(prstatus));
1223        final_note(buf);
1224}
1225
1226static int __init crash_notes_memory_init(void)
1227{
1228        /* Allocate memory for saving cpu registers. */
1229        crash_notes = alloc_percpu(note_buf_t);
1230        if (!crash_notes) {
1231                printk("Kexec: Memory allocation for saving cpu register"
1232                " states failed\n");
1233                return -ENOMEM;
1234        }
1235        return 0;
1236}
1237module_init(crash_notes_memory_init)
1238
1239
1240/*
1241 * parsing the "crashkernel" commandline
1242 *
1243 * this code is intended to be called from architecture specific code
1244 */
1245
1246
1247/*
1248 * This function parses command lines in the format
1249 *
1250 *   crashkernel=ramsize-range:size[,...][@offset]
1251 *
1252 * The function returns 0 on success and -EINVAL on failure.
1253 */
1254static int __init parse_crashkernel_mem(char                    *cmdline,
1255                                        unsigned long long      system_ram,
1256                                        unsigned long long      *crash_size,
1257                                        unsigned long long      *crash_base)
1258{
1259        char *cur = cmdline, *tmp;
1260
1261        /* for each entry of the comma-separated list */
1262        do {
1263                unsigned long long start, end = ULLONG_MAX, size;
1264
1265                /* get the start of the range */
1266                start = memparse(cur, &tmp);
1267                if (cur == tmp) {
1268                        pr_warning("crashkernel: Memory value expected\n");
1269                        return -EINVAL;
1270                }
1271                cur = tmp;
1272                if (*cur != '-') {
1273                        pr_warning("crashkernel: '-' expected\n");
1274                        return -EINVAL;
1275                }
1276                cur++;
1277
1278                /* if no ':' is here, than we read the end */
1279                if (*cur != ':') {
1280                        end = memparse(cur, &tmp);
1281                        if (cur == tmp) {
1282                                pr_warning("crashkernel: Memory "
1283                                                "value expected\n");
1284                                return -EINVAL;
1285                        }
1286                        cur = tmp;
1287                        if (end <= start) {
1288                                pr_warning("crashkernel: end <= start\n");
1289                                return -EINVAL;
1290                        }
1291                }
1292
1293                if (*cur != ':') {
1294                        pr_warning("crashkernel: ':' expected\n");
1295                        return -EINVAL;
1296                }
1297                cur++;
1298
1299                size = memparse(cur, &tmp);
1300                if (cur == tmp) {
1301                        pr_warning("Memory value expected\n");
1302                        return -EINVAL;
1303                }
1304                cur = tmp;
1305                if (size >= system_ram) {
1306                        pr_warning("crashkernel: invalid size\n");
1307                        return -EINVAL;
1308                }
1309
1310                /* match ? */
1311                if (system_ram >= start && system_ram < end) {
1312                        *crash_size = size;
1313                        break;
1314                }
1315        } while (*cur++ == ',');
1316
1317        if (*crash_size > 0) {
1318                while (*cur && *cur != ' ' && *cur != '@')
1319                        cur++;
1320                if (*cur == '@') {
1321                        cur++;
1322                        *crash_base = memparse(cur, &tmp);
1323                        if (cur == tmp) {
1324                                pr_warning("Memory value expected "
1325                                                "after '@'\n");
1326                                return -EINVAL;
1327                        }
1328                }
1329        }
1330
1331        return 0;
1332}
1333
1334/*
1335 * That function parses "simple" (old) crashkernel command lines like
1336 *
1337 *      crashkernel=size[@offset]
1338 *
1339 * It returns 0 on success and -EINVAL on failure.
1340 */
1341static int __init parse_crashkernel_simple(char                 *cmdline,
1342                                           unsigned long long   *crash_size,
1343                                           unsigned long long   *crash_base)
1344{
1345        char *cur = cmdline;
1346
1347        *crash_size = memparse(cmdline, &cur);
1348        if (cmdline == cur) {
1349                pr_warning("crashkernel: memory value expected\n");
1350                return -EINVAL;
1351        }
1352
1353        if (*cur == '@')
1354                *crash_base = memparse(cur+1, &cur);
1355        else if (*cur != ' ' && *cur != '\0') {
1356                pr_warning("crashkernel: unrecognized char\n");
1357                return -EINVAL;
1358        }
1359
1360        return 0;
1361}
1362
1363#define SUFFIX_HIGH 0
1364#define SUFFIX_LOW  1
1365#define SUFFIX_NULL 2
1366static __initdata char *suffix_tbl[] = {
1367        [SUFFIX_HIGH] = ",high",
1368        [SUFFIX_LOW]  = ",low",
1369        [SUFFIX_NULL] = NULL,
1370};
1371
1372/*
1373 * That function parses "suffix"  crashkernel command lines like
1374 *
1375 *      crashkernel=size,[high|low]
1376 *
1377 * It returns 0 on success and -EINVAL on failure.
1378 */
1379static int __init parse_crashkernel_suffix(char *cmdline,
1380                                           unsigned long long   *crash_size,
1381                                           unsigned long long   *crash_base,
1382                                           const char *suffix)
1383{
1384        char *cur = cmdline;
1385
1386        *crash_size = memparse(cmdline, &cur);
1387        if (cmdline == cur) {
1388                pr_warn("crashkernel: memory value expected\n");
1389                return -EINVAL;
1390        }
1391
1392        /* check with suffix */
1393        if (strncmp(cur, suffix, strlen(suffix))) {
1394                pr_warn("crashkernel: unrecognized char\n");
1395                return -EINVAL;
1396        }
1397        cur += strlen(suffix);
1398        if (*cur != ' ' && *cur != '\0') {
1399                pr_warn("crashkernel: unrecognized char\n");
1400                return -EINVAL;
1401        }
1402
1403        return 0;
1404}
1405
1406static __init char *get_last_crashkernel(char *cmdline,
1407                             const char *name,
1408                             const char *suffix)
1409{
1410        char *p = cmdline, *ck_cmdline = NULL;
1411
1412        /* find crashkernel and use the last one if there are more */
1413        p = strstr(p, name);
1414        while (p) {
1415                char *end_p = strchr(p, ' ');
1416                char *q;
1417
1418                if (!end_p)
1419                        end_p = p + strlen(p);
1420
1421                if (!suffix) {
1422                        int i;
1423
1424                        /* skip the one with any known suffix */
1425                        for (i = 0; suffix_tbl[i]; i++) {
1426                                q = end_p - strlen(suffix_tbl[i]);
1427                                if (!strncmp(q, suffix_tbl[i],
1428                                             strlen(suffix_tbl[i])))
1429                                        goto next;
1430                        }
1431                        ck_cmdline = p;
1432                } else {
1433                        q = end_p - strlen(suffix);
1434                        if (!strncmp(q, suffix, strlen(suffix)))
1435                                ck_cmdline = p;
1436                }
1437next:
1438                p = strstr(p+1, name);
1439        }
1440
1441        if (!ck_cmdline)
1442                return NULL;
1443
1444        return ck_cmdline;
1445}
1446
1447static int __init __parse_crashkernel(char *cmdline,
1448                             unsigned long long system_ram,
1449                             unsigned long long *crash_size,
1450                             unsigned long long *crash_base,
1451                             const char *name,
1452                             const char *suffix)
1453{
1454        char    *first_colon, *first_space;
1455        char    *ck_cmdline;
1456
1457        BUG_ON(!crash_size || !crash_base);
1458        *crash_size = 0;
1459        *crash_base = 0;
1460
1461        ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1462
1463        if (!ck_cmdline)
1464                return -EINVAL;
1465
1466        ck_cmdline += strlen(name);
1467
1468        if (suffix)
1469                return parse_crashkernel_suffix(ck_cmdline, crash_size,
1470                                crash_base, suffix);
1471        /*
1472         * if the commandline contains a ':', then that's the extended
1473         * syntax -- if not, it must be the classic syntax
1474         */
1475        first_colon = strchr(ck_cmdline, ':');
1476        first_space = strchr(ck_cmdline, ' ');
1477        if (first_colon && (!first_space || first_colon < first_space))
1478                return parse_crashkernel_mem(ck_cmdline, system_ram,
1479                                crash_size, crash_base);
1480
1481        return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1482}
1483
1484/*
1485 * That function is the entry point for command line parsing and should be
1486 * called from the arch-specific code.
1487 */
1488int __init parse_crashkernel(char *cmdline,
1489                             unsigned long long system_ram,
1490                             unsigned long long *crash_size,
1491                             unsigned long long *crash_base)
1492{
1493        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1494                                        "crashkernel=", NULL);
1495}
1496
1497int __init parse_crashkernel_high(char *cmdline,
1498                             unsigned long long system_ram,
1499                             unsigned long long *crash_size,
1500                             unsigned long long *crash_base)
1501{
1502        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1503                                "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1504}
1505
1506int __init parse_crashkernel_low(char *cmdline,
1507                             unsigned long long system_ram,
1508                             unsigned long long *crash_size,
1509                             unsigned long long *crash_base)
1510{
1511        return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1512                                "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1513}
1514
1515static void update_vmcoreinfo_note(void)
1516{
1517        u32 *buf = vmcoreinfo_note;
1518
1519        if (!vmcoreinfo_size)
1520                return;
1521        buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1522                              vmcoreinfo_size);
1523        final_note(buf);
1524}
1525
1526void crash_save_vmcoreinfo(void)
1527{
1528        vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1529        update_vmcoreinfo_note();
1530}
1531
1532void vmcoreinfo_append_str(const char *fmt, ...)
1533{
1534        va_list args;
1535        char buf[0x50];
1536        size_t r;
1537
1538        va_start(args, fmt);
1539        r = vsnprintf(buf, sizeof(buf), fmt, args);
1540        va_end(args);
1541
1542        r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1543
1544        memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1545
1546        vmcoreinfo_size += r;
1547}
1548
1549/*
1550 * provide an empty default implementation here -- architecture
1551 * code may override this
1552 */
1553void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1554{}
1555
1556unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1557{
1558        return __pa((unsigned long)(char *)&vmcoreinfo_note);
1559}
1560
1561static int __init crash_save_vmcoreinfo_init(void)
1562{
1563        VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1564        VMCOREINFO_PAGESIZE(PAGE_SIZE);
1565
1566        VMCOREINFO_SYMBOL(init_uts_ns);
1567        VMCOREINFO_SYMBOL(node_online_map);
1568#ifdef CONFIG_MMU
1569        VMCOREINFO_SYMBOL(swapper_pg_dir);
1570#endif
1571        VMCOREINFO_SYMBOL(_stext);
1572        VMCOREINFO_SYMBOL(vmap_area_list);
1573
1574#ifndef CONFIG_NEED_MULTIPLE_NODES
1575        VMCOREINFO_SYMBOL(mem_map);
1576        VMCOREINFO_SYMBOL(contig_page_data);
1577#endif
1578#ifdef CONFIG_SPARSEMEM
1579        VMCOREINFO_SYMBOL(mem_section);
1580        VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1581        VMCOREINFO_STRUCT_SIZE(mem_section);
1582        VMCOREINFO_OFFSET(mem_section, section_mem_map);
1583#endif
1584        VMCOREINFO_STRUCT_SIZE(page);
1585        VMCOREINFO_STRUCT_SIZE(pglist_data);
1586        VMCOREINFO_STRUCT_SIZE(zone);
1587        VMCOREINFO_STRUCT_SIZE(free_area);
1588        VMCOREINFO_STRUCT_SIZE(list_head);
1589        VMCOREINFO_SIZE(nodemask_t);
1590        VMCOREINFO_OFFSET(page, flags);
1591        VMCOREINFO_OFFSET(page, _count);
1592        VMCOREINFO_OFFSET(page, mapping);
1593        VMCOREINFO_OFFSET(page, lru);
1594        VMCOREINFO_OFFSET(page, _mapcount);
1595        VMCOREINFO_OFFSET(page, private);
1596        VMCOREINFO_OFFSET(pglist_data, node_zones);
1597        VMCOREINFO_OFFSET(pglist_data, nr_zones);
1598#ifdef CONFIG_FLAT_NODE_MEM_MAP
1599        VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1600#endif
1601        VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1602        VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1603        VMCOREINFO_OFFSET(pglist_data, node_id);
1604        VMCOREINFO_OFFSET(zone, free_area);
1605        VMCOREINFO_OFFSET(zone, vm_stat);
1606        VMCOREINFO_OFFSET(zone, spanned_pages);
1607        VMCOREINFO_OFFSET(free_area, free_list);
1608        VMCOREINFO_OFFSET(list_head, next);
1609        VMCOREINFO_OFFSET(list_head, prev);
1610        VMCOREINFO_OFFSET(vmap_area, va_start);
1611        VMCOREINFO_OFFSET(vmap_area, list);
1612        VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1613        log_buf_kexec_setup();
1614        VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1615        VMCOREINFO_NUMBER(NR_FREE_PAGES);
1616        VMCOREINFO_NUMBER(PG_lru);
1617        VMCOREINFO_NUMBER(PG_private);
1618        VMCOREINFO_NUMBER(PG_swapcache);
1619        VMCOREINFO_NUMBER(PG_slab);
1620#ifdef CONFIG_MEMORY_FAILURE
1621        VMCOREINFO_NUMBER(PG_hwpoison);
1622#endif
1623        VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1624
1625        arch_crash_save_vmcoreinfo();
1626        update_vmcoreinfo_note();
1627
1628        return 0;
1629}
1630
1631module_init(crash_save_vmcoreinfo_init)
1632
1633/*
1634 * Move into place and start executing a preloaded standalone
1635 * executable.  If nothing was preloaded return an error.
1636 */
1637int kernel_kexec(void)
1638{
1639        int error = 0;
1640
1641        if (!mutex_trylock(&kexec_mutex))
1642                return -EBUSY;
1643        if (!kexec_image) {
1644                error = -EINVAL;
1645                goto Unlock;
1646        }
1647
1648#ifdef CONFIG_KEXEC_JUMP
1649        if (kexec_image->preserve_context) {
1650                lock_system_sleep();
1651                pm_prepare_console();
1652                error = freeze_processes();
1653                if (error) {
1654                        error = -EBUSY;
1655                        goto Restore_console;
1656                }
1657                suspend_console();
1658                error = dpm_suspend_start(PMSG_FREEZE);
1659                if (error)
1660                        goto Resume_console;
1661                /* At this point, dpm_suspend_start() has been called,
1662                 * but *not* dpm_suspend_end(). We *must* call
1663                 * dpm_suspend_end() now.  Otherwise, drivers for
1664                 * some devices (e.g. interrupt controllers) become
1665                 * desynchronized with the actual state of the
1666                 * hardware at resume time, and evil weirdness ensues.
1667                 */
1668                error = dpm_suspend_end(PMSG_FREEZE);
1669                if (error)
1670                        goto Resume_devices;
1671                error = disable_nonboot_cpus();
1672                if (error)
1673                        goto Enable_cpus;
1674                local_irq_disable();
1675                error = syscore_suspend();
1676                if (error)
1677                        goto Enable_irqs;
1678        } else
1679#endif
1680        {
1681                kexec_in_progress = true;
1682                kernel_restart_prepare(NULL);
1683                migrate_to_reboot_cpu();
1684                printk(KERN_EMERG "Starting new kernel\n");
1685                machine_shutdown();
1686        }
1687
1688        machine_kexec(kexec_image);
1689
1690#ifdef CONFIG_KEXEC_JUMP
1691        if (kexec_image->preserve_context) {
1692                syscore_resume();
1693 Enable_irqs:
1694                local_irq_enable();
1695 Enable_cpus:
1696                enable_nonboot_cpus();
1697                dpm_resume_start(PMSG_RESTORE);
1698 Resume_devices:
1699                dpm_resume_end(PMSG_RESTORE);
1700 Resume_console:
1701                resume_console();
1702                thaw_processes();
1703 Restore_console:
1704                pm_restore_console();
1705                unlock_system_sleep();
1706        }
1707#endif
1708
1709 Unlock:
1710        mutex_unlock(&kexec_mutex);
1711        return error;
1712}
1713