linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/nmi.h>
  32#include <linux/init.h>
  33#include <linux/uaccess.h>
  34#include <linux/highmem.h>
  35#include <asm/mmu_context.h>
  36#include <linux/interrupt.h>
  37#include <linux/capability.h>
  38#include <linux/completion.h>
  39#include <linux/kernel_stat.h>
  40#include <linux/debug_locks.h>
  41#include <linux/perf_event.h>
  42#include <linux/security.h>
  43#include <linux/notifier.h>
  44#include <linux/profile.h>
  45#include <linux/freezer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/blkdev.h>
  48#include <linux/delay.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/smp.h>
  51#include <linux/threads.h>
  52#include <linux/timer.h>
  53#include <linux/rcupdate.h>
  54#include <linux/cpu.h>
  55#include <linux/cpuset.h>
  56#include <linux/percpu.h>
  57#include <linux/proc_fs.h>
  58#include <linux/seq_file.h>
  59#include <linux/sysctl.h>
  60#include <linux/syscalls.h>
  61#include <linux/times.h>
  62#include <linux/tsacct_kern.h>
  63#include <linux/kprobes.h>
  64#include <linux/delayacct.h>
  65#include <linux/unistd.h>
  66#include <linux/pagemap.h>
  67#include <linux/hrtimer.h>
  68#include <linux/tick.h>
  69#include <linux/debugfs.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/binfmts.h>
  75#include <linux/context_tracking.h>
  76
  77#include <asm/switch_to.h>
  78#include <asm/tlb.h>
  79#include <asm/irq_regs.h>
  80#include <asm/mutex.h>
  81#ifdef CONFIG_PARAVIRT
  82#include <asm/paravirt.h>
  83#endif
  84
  85#include "sched.h"
  86#include "../workqueue_internal.h"
  87#include "../smpboot.h"
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/sched.h>
  91
  92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  93{
  94        unsigned long delta;
  95        ktime_t soft, hard, now;
  96
  97        for (;;) {
  98                if (hrtimer_active(period_timer))
  99                        break;
 100
 101                now = hrtimer_cb_get_time(period_timer);
 102                hrtimer_forward(period_timer, now, period);
 103
 104                soft = hrtimer_get_softexpires(period_timer);
 105                hard = hrtimer_get_expires(period_timer);
 106                delta = ktime_to_ns(ktime_sub(hard, soft));
 107                __hrtimer_start_range_ns(period_timer, soft, delta,
 108                                         HRTIMER_MODE_ABS_PINNED, 0);
 109        }
 110}
 111
 112DEFINE_MUTEX(sched_domains_mutex);
 113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 114
 115static void update_rq_clock_task(struct rq *rq, s64 delta);
 116
 117void update_rq_clock(struct rq *rq)
 118{
 119        s64 delta;
 120
 121        if (rq->skip_clock_update > 0)
 122                return;
 123
 124        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 125        rq->clock += delta;
 126        update_rq_clock_task(rq, delta);
 127}
 128
 129/*
 130 * Debugging: various feature bits
 131 */
 132
 133#define SCHED_FEAT(name, enabled)       \
 134        (1UL << __SCHED_FEAT_##name) * enabled |
 135
 136const_debug unsigned int sysctl_sched_features =
 137#include "features.h"
 138        0;
 139
 140#undef SCHED_FEAT
 141
 142#ifdef CONFIG_SCHED_DEBUG
 143#define SCHED_FEAT(name, enabled)       \
 144        #name ,
 145
 146static const char * const sched_feat_names[] = {
 147#include "features.h"
 148};
 149
 150#undef SCHED_FEAT
 151
 152static int sched_feat_show(struct seq_file *m, void *v)
 153{
 154        int i;
 155
 156        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 157                if (!(sysctl_sched_features & (1UL << i)))
 158                        seq_puts(m, "NO_");
 159                seq_printf(m, "%s ", sched_feat_names[i]);
 160        }
 161        seq_puts(m, "\n");
 162
 163        return 0;
 164}
 165
 166#ifdef HAVE_JUMP_LABEL
 167
 168#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 169#define jump_label_key__false STATIC_KEY_INIT_FALSE
 170
 171#define SCHED_FEAT(name, enabled)       \
 172        jump_label_key__##enabled ,
 173
 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 175#include "features.h"
 176};
 177
 178#undef SCHED_FEAT
 179
 180static void sched_feat_disable(int i)
 181{
 182        if (static_key_enabled(&sched_feat_keys[i]))
 183                static_key_slow_dec(&sched_feat_keys[i]);
 184}
 185
 186static void sched_feat_enable(int i)
 187{
 188        if (!static_key_enabled(&sched_feat_keys[i]))
 189                static_key_slow_inc(&sched_feat_keys[i]);
 190}
 191#else
 192static void sched_feat_disable(int i) { };
 193static void sched_feat_enable(int i) { };
 194#endif /* HAVE_JUMP_LABEL */
 195
 196static int sched_feat_set(char *cmp)
 197{
 198        int i;
 199        int neg = 0;
 200
 201        if (strncmp(cmp, "NO_", 3) == 0) {
 202                neg = 1;
 203                cmp += 3;
 204        }
 205
 206        for (i = 0; i < __SCHED_FEAT_NR; i++) {
 207                if (strcmp(cmp, sched_feat_names[i]) == 0) {
 208                        if (neg) {
 209                                sysctl_sched_features &= ~(1UL << i);
 210                                sched_feat_disable(i);
 211                        } else {
 212                                sysctl_sched_features |= (1UL << i);
 213                                sched_feat_enable(i);
 214                        }
 215                        break;
 216                }
 217        }
 218
 219        return i;
 220}
 221
 222static ssize_t
 223sched_feat_write(struct file *filp, const char __user *ubuf,
 224                size_t cnt, loff_t *ppos)
 225{
 226        char buf[64];
 227        char *cmp;
 228        int i;
 229
 230        if (cnt > 63)
 231                cnt = 63;
 232
 233        if (copy_from_user(&buf, ubuf, cnt))
 234                return -EFAULT;
 235
 236        buf[cnt] = 0;
 237        cmp = strstrip(buf);
 238
 239        i = sched_feat_set(cmp);
 240        if (i == __SCHED_FEAT_NR)
 241                return -EINVAL;
 242
 243        *ppos += cnt;
 244
 245        return cnt;
 246}
 247
 248static int sched_feat_open(struct inode *inode, struct file *filp)
 249{
 250        return single_open(filp, sched_feat_show, NULL);
 251}
 252
 253static const struct file_operations sched_feat_fops = {
 254        .open           = sched_feat_open,
 255        .write          = sched_feat_write,
 256        .read           = seq_read,
 257        .llseek         = seq_lseek,
 258        .release        = single_release,
 259};
 260
 261static __init int sched_init_debug(void)
 262{
 263        debugfs_create_file("sched_features", 0644, NULL, NULL,
 264                        &sched_feat_fops);
 265
 266        return 0;
 267}
 268late_initcall(sched_init_debug);
 269#endif /* CONFIG_SCHED_DEBUG */
 270
 271/*
 272 * Number of tasks to iterate in a single balance run.
 273 * Limited because this is done with IRQs disabled.
 274 */
 275const_debug unsigned int sysctl_sched_nr_migrate = 32;
 276
 277/*
 278 * period over which we average the RT time consumption, measured
 279 * in ms.
 280 *
 281 * default: 1s
 282 */
 283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 284
 285/*
 286 * period over which we measure -rt task cpu usage in us.
 287 * default: 1s
 288 */
 289unsigned int sysctl_sched_rt_period = 1000000;
 290
 291__read_mostly int scheduler_running;
 292
 293/*
 294 * part of the period that we allow rt tasks to run in us.
 295 * default: 0.95s
 296 */
 297int sysctl_sched_rt_runtime = 950000;
 298
 299
 300
 301/*
 302 * __task_rq_lock - lock the rq @p resides on.
 303 */
 304static inline struct rq *__task_rq_lock(struct task_struct *p)
 305        __acquires(rq->lock)
 306{
 307        struct rq *rq;
 308
 309        lockdep_assert_held(&p->pi_lock);
 310
 311        for (;;) {
 312                rq = task_rq(p);
 313                raw_spin_lock(&rq->lock);
 314                if (likely(rq == task_rq(p)))
 315                        return rq;
 316                raw_spin_unlock(&rq->lock);
 317        }
 318}
 319
 320/*
 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 322 */
 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
 324        __acquires(p->pi_lock)
 325        __acquires(rq->lock)
 326{
 327        struct rq *rq;
 328
 329        for (;;) {
 330                raw_spin_lock_irqsave(&p->pi_lock, *flags);
 331                rq = task_rq(p);
 332                raw_spin_lock(&rq->lock);
 333                if (likely(rq == task_rq(p)))
 334                        return rq;
 335                raw_spin_unlock(&rq->lock);
 336                raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 337        }
 338}
 339
 340static void __task_rq_unlock(struct rq *rq)
 341        __releases(rq->lock)
 342{
 343        raw_spin_unlock(&rq->lock);
 344}
 345
 346static inline void
 347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
 348        __releases(rq->lock)
 349        __releases(p->pi_lock)
 350{
 351        raw_spin_unlock(&rq->lock);
 352        raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
 353}
 354
 355/*
 356 * this_rq_lock - lock this runqueue and disable interrupts.
 357 */
 358static struct rq *this_rq_lock(void)
 359        __acquires(rq->lock)
 360{
 361        struct rq *rq;
 362
 363        local_irq_disable();
 364        rq = this_rq();
 365        raw_spin_lock(&rq->lock);
 366
 367        return rq;
 368}
 369
 370#ifdef CONFIG_SCHED_HRTICK
 371/*
 372 * Use HR-timers to deliver accurate preemption points.
 373 */
 374
 375static void hrtick_clear(struct rq *rq)
 376{
 377        if (hrtimer_active(&rq->hrtick_timer))
 378                hrtimer_cancel(&rq->hrtick_timer);
 379}
 380
 381/*
 382 * High-resolution timer tick.
 383 * Runs from hardirq context with interrupts disabled.
 384 */
 385static enum hrtimer_restart hrtick(struct hrtimer *timer)
 386{
 387        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 388
 389        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 390
 391        raw_spin_lock(&rq->lock);
 392        update_rq_clock(rq);
 393        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 394        raw_spin_unlock(&rq->lock);
 395
 396        return HRTIMER_NORESTART;
 397}
 398
 399#ifdef CONFIG_SMP
 400
 401static int __hrtick_restart(struct rq *rq)
 402{
 403        struct hrtimer *timer = &rq->hrtick_timer;
 404        ktime_t time = hrtimer_get_softexpires(timer);
 405
 406        return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
 407}
 408
 409/*
 410 * called from hardirq (IPI) context
 411 */
 412static void __hrtick_start(void *arg)
 413{
 414        struct rq *rq = arg;
 415
 416        raw_spin_lock(&rq->lock);
 417        __hrtick_restart(rq);
 418        rq->hrtick_csd_pending = 0;
 419        raw_spin_unlock(&rq->lock);
 420}
 421
 422/*
 423 * Called to set the hrtick timer state.
 424 *
 425 * called with rq->lock held and irqs disabled
 426 */
 427void hrtick_start(struct rq *rq, u64 delay)
 428{
 429        struct hrtimer *timer = &rq->hrtick_timer;
 430        ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
 431
 432        hrtimer_set_expires(timer, time);
 433
 434        if (rq == this_rq()) {
 435                __hrtick_restart(rq);
 436        } else if (!rq->hrtick_csd_pending) {
 437                __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
 438                rq->hrtick_csd_pending = 1;
 439        }
 440}
 441
 442static int
 443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
 444{
 445        int cpu = (int)(long)hcpu;
 446
 447        switch (action) {
 448        case CPU_UP_CANCELED:
 449        case CPU_UP_CANCELED_FROZEN:
 450        case CPU_DOWN_PREPARE:
 451        case CPU_DOWN_PREPARE_FROZEN:
 452        case CPU_DEAD:
 453        case CPU_DEAD_FROZEN:
 454                hrtick_clear(cpu_rq(cpu));
 455                return NOTIFY_OK;
 456        }
 457
 458        return NOTIFY_DONE;
 459}
 460
 461static __init void init_hrtick(void)
 462{
 463        hotcpu_notifier(hotplug_hrtick, 0);
 464}
 465#else
 466/*
 467 * Called to set the hrtick timer state.
 468 *
 469 * called with rq->lock held and irqs disabled
 470 */
 471void hrtick_start(struct rq *rq, u64 delay)
 472{
 473        __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
 474                        HRTIMER_MODE_REL_PINNED, 0);
 475}
 476
 477static inline void init_hrtick(void)
 478{
 479}
 480#endif /* CONFIG_SMP */
 481
 482static void init_rq_hrtick(struct rq *rq)
 483{
 484#ifdef CONFIG_SMP
 485        rq->hrtick_csd_pending = 0;
 486
 487        rq->hrtick_csd.flags = 0;
 488        rq->hrtick_csd.func = __hrtick_start;
 489        rq->hrtick_csd.info = rq;
 490#endif
 491
 492        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 493        rq->hrtick_timer.function = hrtick;
 494}
 495#else   /* CONFIG_SCHED_HRTICK */
 496static inline void hrtick_clear(struct rq *rq)
 497{
 498}
 499
 500static inline void init_rq_hrtick(struct rq *rq)
 501{
 502}
 503
 504static inline void init_hrtick(void)
 505{
 506}
 507#endif  /* CONFIG_SCHED_HRTICK */
 508
 509/*
 510 * resched_task - mark a task 'to be rescheduled now'.
 511 *
 512 * On UP this means the setting of the need_resched flag, on SMP it
 513 * might also involve a cross-CPU call to trigger the scheduler on
 514 * the target CPU.
 515 */
 516void resched_task(struct task_struct *p)
 517{
 518        int cpu;
 519
 520        lockdep_assert_held(&task_rq(p)->lock);
 521
 522        if (test_tsk_need_resched(p))
 523                return;
 524
 525        set_tsk_need_resched(p);
 526
 527        cpu = task_cpu(p);
 528        if (cpu == smp_processor_id()) {
 529                set_preempt_need_resched();
 530                return;
 531        }
 532
 533        /* NEED_RESCHED must be visible before we test polling */
 534        smp_mb();
 535        if (!tsk_is_polling(p))
 536                smp_send_reschedule(cpu);
 537}
 538
 539void resched_cpu(int cpu)
 540{
 541        struct rq *rq = cpu_rq(cpu);
 542        unsigned long flags;
 543
 544        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 545                return;
 546        resched_task(cpu_curr(cpu));
 547        raw_spin_unlock_irqrestore(&rq->lock, flags);
 548}
 549
 550#ifdef CONFIG_SMP
 551#ifdef CONFIG_NO_HZ_COMMON
 552/*
 553 * In the semi idle case, use the nearest busy cpu for migrating timers
 554 * from an idle cpu.  This is good for power-savings.
 555 *
 556 * We don't do similar optimization for completely idle system, as
 557 * selecting an idle cpu will add more delays to the timers than intended
 558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 559 */
 560int get_nohz_timer_target(void)
 561{
 562        int cpu = smp_processor_id();
 563        int i;
 564        struct sched_domain *sd;
 565
 566        rcu_read_lock();
 567        for_each_domain(cpu, sd) {
 568                for_each_cpu(i, sched_domain_span(sd)) {
 569                        if (!idle_cpu(i)) {
 570                                cpu = i;
 571                                goto unlock;
 572                        }
 573                }
 574        }
 575unlock:
 576        rcu_read_unlock();
 577        return cpu;
 578}
 579/*
 580 * When add_timer_on() enqueues a timer into the timer wheel of an
 581 * idle CPU then this timer might expire before the next timer event
 582 * which is scheduled to wake up that CPU. In case of a completely
 583 * idle system the next event might even be infinite time into the
 584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 585 * leaves the inner idle loop so the newly added timer is taken into
 586 * account when the CPU goes back to idle and evaluates the timer
 587 * wheel for the next timer event.
 588 */
 589static void wake_up_idle_cpu(int cpu)
 590{
 591        struct rq *rq = cpu_rq(cpu);
 592
 593        if (cpu == smp_processor_id())
 594                return;
 595
 596        /*
 597         * This is safe, as this function is called with the timer
 598         * wheel base lock of (cpu) held. When the CPU is on the way
 599         * to idle and has not yet set rq->curr to idle then it will
 600         * be serialized on the timer wheel base lock and take the new
 601         * timer into account automatically.
 602         */
 603        if (rq->curr != rq->idle)
 604                return;
 605
 606        /*
 607         * We can set TIF_RESCHED on the idle task of the other CPU
 608         * lockless. The worst case is that the other CPU runs the
 609         * idle task through an additional NOOP schedule()
 610         */
 611        set_tsk_need_resched(rq->idle);
 612
 613        /* NEED_RESCHED must be visible before we test polling */
 614        smp_mb();
 615        if (!tsk_is_polling(rq->idle))
 616                smp_send_reschedule(cpu);
 617}
 618
 619static bool wake_up_full_nohz_cpu(int cpu)
 620{
 621        if (tick_nohz_full_cpu(cpu)) {
 622                if (cpu != smp_processor_id() ||
 623                    tick_nohz_tick_stopped())
 624                        smp_send_reschedule(cpu);
 625                return true;
 626        }
 627
 628        return false;
 629}
 630
 631void wake_up_nohz_cpu(int cpu)
 632{
 633        if (!wake_up_full_nohz_cpu(cpu))
 634                wake_up_idle_cpu(cpu);
 635}
 636
 637static inline bool got_nohz_idle_kick(void)
 638{
 639        int cpu = smp_processor_id();
 640
 641        if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 642                return false;
 643
 644        if (idle_cpu(cpu) && !need_resched())
 645                return true;
 646
 647        /*
 648         * We can't run Idle Load Balance on this CPU for this time so we
 649         * cancel it and clear NOHZ_BALANCE_KICK
 650         */
 651        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 652        return false;
 653}
 654
 655#else /* CONFIG_NO_HZ_COMMON */
 656
 657static inline bool got_nohz_idle_kick(void)
 658{
 659        return false;
 660}
 661
 662#endif /* CONFIG_NO_HZ_COMMON */
 663
 664#ifdef CONFIG_NO_HZ_FULL
 665bool sched_can_stop_tick(void)
 666{
 667       struct rq *rq;
 668
 669       rq = this_rq();
 670
 671       /* Make sure rq->nr_running update is visible after the IPI */
 672       smp_rmb();
 673
 674       /* More than one running task need preemption */
 675       if (rq->nr_running > 1)
 676               return false;
 677
 678       return true;
 679}
 680#endif /* CONFIG_NO_HZ_FULL */
 681
 682void sched_avg_update(struct rq *rq)
 683{
 684        s64 period = sched_avg_period();
 685
 686        while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 687                /*
 688                 * Inline assembly required to prevent the compiler
 689                 * optimising this loop into a divmod call.
 690                 * See __iter_div_u64_rem() for another example of this.
 691                 */
 692                asm("" : "+rm" (rq->age_stamp));
 693                rq->age_stamp += period;
 694                rq->rt_avg /= 2;
 695        }
 696}
 697
 698#endif /* CONFIG_SMP */
 699
 700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 701                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 702/*
 703 * Iterate task_group tree rooted at *from, calling @down when first entering a
 704 * node and @up when leaving it for the final time.
 705 *
 706 * Caller must hold rcu_lock or sufficient equivalent.
 707 */
 708int walk_tg_tree_from(struct task_group *from,
 709                             tg_visitor down, tg_visitor up, void *data)
 710{
 711        struct task_group *parent, *child;
 712        int ret;
 713
 714        parent = from;
 715
 716down:
 717        ret = (*down)(parent, data);
 718        if (ret)
 719                goto out;
 720        list_for_each_entry_rcu(child, &parent->children, siblings) {
 721                parent = child;
 722                goto down;
 723
 724up:
 725                continue;
 726        }
 727        ret = (*up)(parent, data);
 728        if (ret || parent == from)
 729                goto out;
 730
 731        child = parent;
 732        parent = parent->parent;
 733        if (parent)
 734                goto up;
 735out:
 736        return ret;
 737}
 738
 739int tg_nop(struct task_group *tg, void *data)
 740{
 741        return 0;
 742}
 743#endif
 744
 745static void set_load_weight(struct task_struct *p)
 746{
 747        int prio = p->static_prio - MAX_RT_PRIO;
 748        struct load_weight *load = &p->se.load;
 749
 750        /*
 751         * SCHED_IDLE tasks get minimal weight:
 752         */
 753        if (p->policy == SCHED_IDLE) {
 754                load->weight = scale_load(WEIGHT_IDLEPRIO);
 755                load->inv_weight = WMULT_IDLEPRIO;
 756                return;
 757        }
 758
 759        load->weight = scale_load(prio_to_weight[prio]);
 760        load->inv_weight = prio_to_wmult[prio];
 761}
 762
 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 764{
 765        update_rq_clock(rq);
 766        sched_info_queued(rq, p);
 767        p->sched_class->enqueue_task(rq, p, flags);
 768}
 769
 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 771{
 772        update_rq_clock(rq);
 773        sched_info_dequeued(rq, p);
 774        p->sched_class->dequeue_task(rq, p, flags);
 775}
 776
 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
 778{
 779        if (task_contributes_to_load(p))
 780                rq->nr_uninterruptible--;
 781
 782        enqueue_task(rq, p, flags);
 783}
 784
 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 786{
 787        if (task_contributes_to_load(p))
 788                rq->nr_uninterruptible++;
 789
 790        dequeue_task(rq, p, flags);
 791}
 792
 793static void update_rq_clock_task(struct rq *rq, s64 delta)
 794{
 795/*
 796 * In theory, the compile should just see 0 here, and optimize out the call
 797 * to sched_rt_avg_update. But I don't trust it...
 798 */
 799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 800        s64 steal = 0, irq_delta = 0;
 801#endif
 802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 803        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 804
 805        /*
 806         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 807         * this case when a previous update_rq_clock() happened inside a
 808         * {soft,}irq region.
 809         *
 810         * When this happens, we stop ->clock_task and only update the
 811         * prev_irq_time stamp to account for the part that fit, so that a next
 812         * update will consume the rest. This ensures ->clock_task is
 813         * monotonic.
 814         *
 815         * It does however cause some slight miss-attribution of {soft,}irq
 816         * time, a more accurate solution would be to update the irq_time using
 817         * the current rq->clock timestamp, except that would require using
 818         * atomic ops.
 819         */
 820        if (irq_delta > delta)
 821                irq_delta = delta;
 822
 823        rq->prev_irq_time += irq_delta;
 824        delta -= irq_delta;
 825#endif
 826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 827        if (static_key_false((&paravirt_steal_rq_enabled))) {
 828                u64 st;
 829
 830                steal = paravirt_steal_clock(cpu_of(rq));
 831                steal -= rq->prev_steal_time_rq;
 832
 833                if (unlikely(steal > delta))
 834                        steal = delta;
 835
 836                st = steal_ticks(steal);
 837                steal = st * TICK_NSEC;
 838
 839                rq->prev_steal_time_rq += steal;
 840
 841                delta -= steal;
 842        }
 843#endif
 844
 845        rq->clock_task += delta;
 846
 847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 848        if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
 849                sched_rt_avg_update(rq, irq_delta + steal);
 850#endif
 851}
 852
 853void sched_set_stop_task(int cpu, struct task_struct *stop)
 854{
 855        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 856        struct task_struct *old_stop = cpu_rq(cpu)->stop;
 857
 858        if (stop) {
 859                /*
 860                 * Make it appear like a SCHED_FIFO task, its something
 861                 * userspace knows about and won't get confused about.
 862                 *
 863                 * Also, it will make PI more or less work without too
 864                 * much confusion -- but then, stop work should not
 865                 * rely on PI working anyway.
 866                 */
 867                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 868
 869                stop->sched_class = &stop_sched_class;
 870        }
 871
 872        cpu_rq(cpu)->stop = stop;
 873
 874        if (old_stop) {
 875                /*
 876                 * Reset it back to a normal scheduling class so that
 877                 * it can die in pieces.
 878                 */
 879                old_stop->sched_class = &rt_sched_class;
 880        }
 881}
 882
 883/*
 884 * __normal_prio - return the priority that is based on the static prio
 885 */
 886static inline int __normal_prio(struct task_struct *p)
 887{
 888        return p->static_prio;
 889}
 890
 891/*
 892 * Calculate the expected normal priority: i.e. priority
 893 * without taking RT-inheritance into account. Might be
 894 * boosted by interactivity modifiers. Changes upon fork,
 895 * setprio syscalls, and whenever the interactivity
 896 * estimator recalculates.
 897 */
 898static inline int normal_prio(struct task_struct *p)
 899{
 900        int prio;
 901
 902        if (task_has_rt_policy(p))
 903                prio = MAX_RT_PRIO-1 - p->rt_priority;
 904        else
 905                prio = __normal_prio(p);
 906        return prio;
 907}
 908
 909/*
 910 * Calculate the current priority, i.e. the priority
 911 * taken into account by the scheduler. This value might
 912 * be boosted by RT tasks, or might be boosted by
 913 * interactivity modifiers. Will be RT if the task got
 914 * RT-boosted. If not then it returns p->normal_prio.
 915 */
 916static int effective_prio(struct task_struct *p)
 917{
 918        p->normal_prio = normal_prio(p);
 919        /*
 920         * If we are RT tasks or we were boosted to RT priority,
 921         * keep the priority unchanged. Otherwise, update priority
 922         * to the normal priority:
 923         */
 924        if (!rt_prio(p->prio))
 925                return p->normal_prio;
 926        return p->prio;
 927}
 928
 929/**
 930 * task_curr - is this task currently executing on a CPU?
 931 * @p: the task in question.
 932 *
 933 * Return: 1 if the task is currently executing. 0 otherwise.
 934 */
 935inline int task_curr(const struct task_struct *p)
 936{
 937        return cpu_curr(task_cpu(p)) == p;
 938}
 939
 940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 941                                       const struct sched_class *prev_class,
 942                                       int oldprio)
 943{
 944        if (prev_class != p->sched_class) {
 945                if (prev_class->switched_from)
 946                        prev_class->switched_from(rq, p);
 947                p->sched_class->switched_to(rq, p);
 948        } else if (oldprio != p->prio)
 949                p->sched_class->prio_changed(rq, p, oldprio);
 950}
 951
 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 953{
 954        const struct sched_class *class;
 955
 956        if (p->sched_class == rq->curr->sched_class) {
 957                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 958        } else {
 959                for_each_class(class) {
 960                        if (class == rq->curr->sched_class)
 961                                break;
 962                        if (class == p->sched_class) {
 963                                resched_task(rq->curr);
 964                                break;
 965                        }
 966                }
 967        }
 968
 969        /*
 970         * A queue event has occurred, and we're going to schedule.  In
 971         * this case, we can save a useless back to back clock update.
 972         */
 973        if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
 974                rq->skip_clock_update = 1;
 975}
 976
 977#ifdef CONFIG_SMP
 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 979{
 980#ifdef CONFIG_SCHED_DEBUG
 981        /*
 982         * We should never call set_task_cpu() on a blocked task,
 983         * ttwu() will sort out the placement.
 984         */
 985        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
 986                        !(task_preempt_count(p) & PREEMPT_ACTIVE));
 987
 988#ifdef CONFIG_LOCKDEP
 989        /*
 990         * The caller should hold either p->pi_lock or rq->lock, when changing
 991         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 992         *
 993         * sched_move_task() holds both and thus holding either pins the cgroup,
 994         * see task_group().
 995         *
 996         * Furthermore, all task_rq users should acquire both locks, see
 997         * task_rq_lock().
 998         */
 999        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000                                      lockdep_is_held(&task_rq(p)->lock)));
1001#endif
1002#endif
1003
1004        trace_sched_migrate_task(p, new_cpu);
1005
1006        if (task_cpu(p) != new_cpu) {
1007                if (p->sched_class->migrate_task_rq)
1008                        p->sched_class->migrate_task_rq(p, new_cpu);
1009                p->se.nr_migrations++;
1010                perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011        }
1012
1013        __set_task_cpu(p, new_cpu);
1014}
1015
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018        if (p->on_rq) {
1019                struct rq *src_rq, *dst_rq;
1020
1021                src_rq = task_rq(p);
1022                dst_rq = cpu_rq(cpu);
1023
1024                deactivate_task(src_rq, p, 0);
1025                set_task_cpu(p, cpu);
1026                activate_task(dst_rq, p, 0);
1027                check_preempt_curr(dst_rq, p, 0);
1028        } else {
1029                /*
1030                 * Task isn't running anymore; make it appear like we migrated
1031                 * it before it went to sleep. This means on wakeup we make the
1032                 * previous cpu our targer instead of where it really is.
1033                 */
1034                p->wake_cpu = cpu;
1035        }
1036}
1037
1038struct migration_swap_arg {
1039        struct task_struct *src_task, *dst_task;
1040        int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045        struct migration_swap_arg *arg = data;
1046        struct rq *src_rq, *dst_rq;
1047        int ret = -EAGAIN;
1048
1049        src_rq = cpu_rq(arg->src_cpu);
1050        dst_rq = cpu_rq(arg->dst_cpu);
1051
1052        double_raw_lock(&arg->src_task->pi_lock,
1053                        &arg->dst_task->pi_lock);
1054        double_rq_lock(src_rq, dst_rq);
1055        if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056                goto unlock;
1057
1058        if (task_cpu(arg->src_task) != arg->src_cpu)
1059                goto unlock;
1060
1061        if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062                goto unlock;
1063
1064        if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065                goto unlock;
1066
1067        __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068        __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070        ret = 0;
1071
1072unlock:
1073        double_rq_unlock(src_rq, dst_rq);
1074        raw_spin_unlock(&arg->dst_task->pi_lock);
1075        raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077        return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085        struct migration_swap_arg arg;
1086        int ret = -EINVAL;
1087
1088        arg = (struct migration_swap_arg){
1089                .src_task = cur,
1090                .src_cpu = task_cpu(cur),
1091                .dst_task = p,
1092                .dst_cpu = task_cpu(p),
1093        };
1094
1095        if (arg.src_cpu == arg.dst_cpu)
1096                goto out;
1097
1098        /*
1099         * These three tests are all lockless; this is OK since all of them
1100         * will be re-checked with proper locks held further down the line.
1101         */
1102        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103                goto out;
1104
1105        if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106                goto out;
1107
1108        if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109                goto out;
1110
1111        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112
1113out:
1114        return ret;
1115}
1116
1117struct migration_arg {
1118        struct task_struct *task;
1119        int dest_cpu;
1120};
1121
1122static int migration_cpu_stop(void *data);
1123
1124/*
1125 * wait_task_inactive - wait for a thread to unschedule.
1126 *
1127 * If @match_state is nonzero, it's the @p->state value just checked and
1128 * not expected to change.  If it changes, i.e. @p might have woken up,
1129 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1130 * we return a positive number (its total switch count).  If a second call
1131 * a short while later returns the same number, the caller can be sure that
1132 * @p has remained unscheduled the whole time.
1133 *
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
1140unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1141{
1142        unsigned long flags;
1143        int running, on_rq;
1144        unsigned long ncsw;
1145        struct rq *rq;
1146
1147        for (;;) {
1148                /*
1149                 * We do the initial early heuristics without holding
1150                 * any task-queue locks at all. We'll only try to get
1151                 * the runqueue lock when things look like they will
1152                 * work out!
1153                 */
1154                rq = task_rq(p);
1155
1156                /*
1157                 * If the task is actively running on another CPU
1158                 * still, just relax and busy-wait without holding
1159                 * any locks.
1160                 *
1161                 * NOTE! Since we don't hold any locks, it's not
1162                 * even sure that "rq" stays as the right runqueue!
1163                 * But we don't care, since "task_running()" will
1164                 * return false if the runqueue has changed and p
1165                 * is actually now running somewhere else!
1166                 */
1167                while (task_running(rq, p)) {
1168                        if (match_state && unlikely(p->state != match_state))
1169                                return 0;
1170                        cpu_relax();
1171                }
1172
1173                /*
1174                 * Ok, time to look more closely! We need the rq
1175                 * lock now, to be *sure*. If we're wrong, we'll
1176                 * just go back and repeat.
1177                 */
1178                rq = task_rq_lock(p, &flags);
1179                trace_sched_wait_task(p);
1180                running = task_running(rq, p);
1181                on_rq = p->on_rq;
1182                ncsw = 0;
1183                if (!match_state || p->state == match_state)
1184                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1185                task_rq_unlock(rq, p, &flags);
1186
1187                /*
1188                 * If it changed from the expected state, bail out now.
1189                 */
1190                if (unlikely(!ncsw))
1191                        break;
1192
1193                /*
1194                 * Was it really running after all now that we
1195                 * checked with the proper locks actually held?
1196                 *
1197                 * Oops. Go back and try again..
1198                 */
1199                if (unlikely(running)) {
1200                        cpu_relax();
1201                        continue;
1202                }
1203
1204                /*
1205                 * It's not enough that it's not actively running,
1206                 * it must be off the runqueue _entirely_, and not
1207                 * preempted!
1208                 *
1209                 * So if it was still runnable (but just not actively
1210                 * running right now), it's preempted, and we should
1211                 * yield - it could be a while.
1212                 */
1213                if (unlikely(on_rq)) {
1214                        ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215
1216                        set_current_state(TASK_UNINTERRUPTIBLE);
1217                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1218                        continue;
1219                }
1220
1221                /*
1222                 * Ahh, all good. It wasn't running, and it wasn't
1223                 * runnable, which means that it will never become
1224                 * running in the future either. We're all done!
1225                 */
1226                break;
1227        }
1228
1229        return ncsw;
1230}
1231
1232/***
1233 * kick_process - kick a running thread to enter/exit the kernel
1234 * @p: the to-be-kicked thread
1235 *
1236 * Cause a process which is running on another CPU to enter
1237 * kernel-mode, without any delay. (to get signals handled.)
1238 *
1239 * NOTE: this function doesn't have to take the runqueue lock,
1240 * because all it wants to ensure is that the remote task enters
1241 * the kernel. If the IPI races and the task has been migrated
1242 * to another CPU then no harm is done and the purpose has been
1243 * achieved as well.
1244 */
1245void kick_process(struct task_struct *p)
1246{
1247        int cpu;
1248
1249        preempt_disable();
1250        cpu = task_cpu(p);
1251        if ((cpu != smp_processor_id()) && task_curr(p))
1252                smp_send_reschedule(cpu);
1253        preempt_enable();
1254}
1255EXPORT_SYMBOL_GPL(kick_process);
1256#endif /* CONFIG_SMP */
1257
1258#ifdef CONFIG_SMP
1259/*
1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1261 */
1262static int select_fallback_rq(int cpu, struct task_struct *p)
1263{
1264        int nid = cpu_to_node(cpu);
1265        const struct cpumask *nodemask = NULL;
1266        enum { cpuset, possible, fail } state = cpuset;
1267        int dest_cpu;
1268
1269        /*
1270         * If the node that the cpu is on has been offlined, cpu_to_node()
1271         * will return -1. There is no cpu on the node, and we should
1272         * select the cpu on the other node.
1273         */
1274        if (nid != -1) {
1275                nodemask = cpumask_of_node(nid);
1276
1277                /* Look for allowed, online CPU in same node. */
1278                for_each_cpu(dest_cpu, nodemask) {
1279                        if (!cpu_online(dest_cpu))
1280                                continue;
1281                        if (!cpu_active(dest_cpu))
1282                                continue;
1283                        if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284                                return dest_cpu;
1285                }
1286        }
1287
1288        for (;;) {
1289                /* Any allowed, online CPU? */
1290                for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1291                        if (!cpu_online(dest_cpu))
1292                                continue;
1293                        if (!cpu_active(dest_cpu))
1294                                continue;
1295                        goto out;
1296                }
1297
1298                switch (state) {
1299                case cpuset:
1300                        /* No more Mr. Nice Guy. */
1301                        cpuset_cpus_allowed_fallback(p);
1302                        state = possible;
1303                        break;
1304
1305                case possible:
1306                        do_set_cpus_allowed(p, cpu_possible_mask);
1307                        state = fail;
1308                        break;
1309
1310                case fail:
1311                        BUG();
1312                        break;
1313                }
1314        }
1315
1316out:
1317        if (state != cpuset) {
1318                /*
1319                 * Don't tell them about moving exiting tasks or
1320                 * kernel threads (both mm NULL), since they never
1321                 * leave kernel.
1322                 */
1323                if (p->mm && printk_ratelimit()) {
1324                        printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325                                        task_pid_nr(p), p->comm, cpu);
1326                }
1327        }
1328
1329        return dest_cpu;
1330}
1331
1332/*
1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1334 */
1335static inline
1336int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1337{
1338        cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1339
1340        /*
1341         * In order not to call set_task_cpu() on a blocking task we need
1342         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343         * cpu.
1344         *
1345         * Since this is common to all placement strategies, this lives here.
1346         *
1347         * [ this allows ->select_task() to simply return task_cpu(p) and
1348         *   not worry about this generic constraint ]
1349         */
1350        if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1351                     !cpu_online(cpu)))
1352                cpu = select_fallback_rq(task_cpu(p), p);
1353
1354        return cpu;
1355}
1356
1357static void update_avg(u64 *avg, u64 sample)
1358{
1359        s64 diff = sample - *avg;
1360        *avg += diff >> 3;
1361}
1362#endif
1363
1364static void
1365ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1366{
1367#ifdef CONFIG_SCHEDSTATS
1368        struct rq *rq = this_rq();
1369
1370#ifdef CONFIG_SMP
1371        int this_cpu = smp_processor_id();
1372
1373        if (cpu == this_cpu) {
1374                schedstat_inc(rq, ttwu_local);
1375                schedstat_inc(p, se.statistics.nr_wakeups_local);
1376        } else {
1377                struct sched_domain *sd;
1378
1379                schedstat_inc(p, se.statistics.nr_wakeups_remote);
1380                rcu_read_lock();
1381                for_each_domain(this_cpu, sd) {
1382                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383                                schedstat_inc(sd, ttwu_wake_remote);
1384                                break;
1385                        }
1386                }
1387                rcu_read_unlock();
1388        }
1389
1390        if (wake_flags & WF_MIGRATED)
1391                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392
1393#endif /* CONFIG_SMP */
1394
1395        schedstat_inc(rq, ttwu_count);
1396        schedstat_inc(p, se.statistics.nr_wakeups);
1397
1398        if (wake_flags & WF_SYNC)
1399                schedstat_inc(p, se.statistics.nr_wakeups_sync);
1400
1401#endif /* CONFIG_SCHEDSTATS */
1402}
1403
1404static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405{
1406        activate_task(rq, p, en_flags);
1407        p->on_rq = 1;
1408
1409        /* if a worker is waking up, notify workqueue */
1410        if (p->flags & PF_WQ_WORKER)
1411                wq_worker_waking_up(p, cpu_of(rq));
1412}
1413
1414/*
1415 * Mark the task runnable and perform wakeup-preemption.
1416 */
1417static void
1418ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1419{
1420        check_preempt_curr(rq, p, wake_flags);
1421        trace_sched_wakeup(p, true);
1422
1423        p->state = TASK_RUNNING;
1424#ifdef CONFIG_SMP
1425        if (p->sched_class->task_woken)
1426                p->sched_class->task_woken(rq, p);
1427
1428        if (rq->idle_stamp) {
1429                u64 delta = rq_clock(rq) - rq->idle_stamp;
1430                u64 max = 2*rq->max_idle_balance_cost;
1431
1432                update_avg(&rq->avg_idle, delta);
1433
1434                if (rq->avg_idle > max)
1435                        rq->avg_idle = max;
1436
1437                rq->idle_stamp = 0;
1438        }
1439#endif
1440}
1441
1442static void
1443ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444{
1445#ifdef CONFIG_SMP
1446        if (p->sched_contributes_to_load)
1447                rq->nr_uninterruptible--;
1448#endif
1449
1450        ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451        ttwu_do_wakeup(rq, p, wake_flags);
1452}
1453
1454/*
1455 * Called in case the task @p isn't fully descheduled from its runqueue,
1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457 * since all we need to do is flip p->state to TASK_RUNNING, since
1458 * the task is still ->on_rq.
1459 */
1460static int ttwu_remote(struct task_struct *p, int wake_flags)
1461{
1462        struct rq *rq;
1463        int ret = 0;
1464
1465        rq = __task_rq_lock(p);
1466        if (p->on_rq) {
1467                /* check_preempt_curr() may use rq clock */
1468                update_rq_clock(rq);
1469                ttwu_do_wakeup(rq, p, wake_flags);
1470                ret = 1;
1471        }
1472        __task_rq_unlock(rq);
1473
1474        return ret;
1475}
1476
1477#ifdef CONFIG_SMP
1478static void sched_ttwu_pending(void)
1479{
1480        struct rq *rq = this_rq();
1481        struct llist_node *llist = llist_del_all(&rq->wake_list);
1482        struct task_struct *p;
1483
1484        raw_spin_lock(&rq->lock);
1485
1486        while (llist) {
1487                p = llist_entry(llist, struct task_struct, wake_entry);
1488                llist = llist_next(llist);
1489                ttwu_do_activate(rq, p, 0);
1490        }
1491
1492        raw_spin_unlock(&rq->lock);
1493}
1494
1495void scheduler_ipi(void)
1496{
1497        /*
1498         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499         * TIF_NEED_RESCHED remotely (for the first time) will also send
1500         * this IPI.
1501         */
1502        if (tif_need_resched())
1503                set_preempt_need_resched();
1504
1505        if (llist_empty(&this_rq()->wake_list)
1506                        && !tick_nohz_full_cpu(smp_processor_id())
1507                        && !got_nohz_idle_kick())
1508                return;
1509
1510        /*
1511         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512         * traditionally all their work was done from the interrupt return
1513         * path. Now that we actually do some work, we need to make sure
1514         * we do call them.
1515         *
1516         * Some archs already do call them, luckily irq_enter/exit nest
1517         * properly.
1518         *
1519         * Arguably we should visit all archs and update all handlers,
1520         * however a fair share of IPIs are still resched only so this would
1521         * somewhat pessimize the simple resched case.
1522         */
1523        irq_enter();
1524        tick_nohz_full_check();
1525        sched_ttwu_pending();
1526
1527        /*
1528         * Check if someone kicked us for doing the nohz idle load balance.
1529         */
1530        if (unlikely(got_nohz_idle_kick())) {
1531                this_rq()->idle_balance = 1;
1532                raise_softirq_irqoff(SCHED_SOFTIRQ);
1533        }
1534        irq_exit();
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
1539        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540                smp_send_reschedule(cpu);
1541}
1542
1543bool cpus_share_cache(int this_cpu, int that_cpu)
1544{
1545        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
1547#endif /* CONFIG_SMP */
1548
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551        struct rq *rq = cpu_rq(cpu);
1552
1553#if defined(CONFIG_SMP)
1554        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555                sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556                ttwu_queue_remote(p, cpu);
1557                return;
1558        }
1559#endif
1560
1561        raw_spin_lock(&rq->lock);
1562        ttwu_do_activate(rq, p, 0);
1563        raw_spin_unlock(&rq->lock);
1564}
1565
1566/**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583{
1584        unsigned long flags;
1585        int cpu, success = 0;
1586
1587        /*
1588         * If we are going to wake up a thread waiting for CONDITION we
1589         * need to ensure that CONDITION=1 done by the caller can not be
1590         * reordered with p->state check below. This pairs with mb() in
1591         * set_current_state() the waiting thread does.
1592         */
1593        smp_mb__before_spinlock();
1594        raw_spin_lock_irqsave(&p->pi_lock, flags);
1595        if (!(p->state & state))
1596                goto out;
1597
1598        success = 1; /* we're going to change ->state */
1599        cpu = task_cpu(p);
1600
1601        if (p->on_rq && ttwu_remote(p, wake_flags))
1602                goto stat;
1603
1604#ifdef CONFIG_SMP
1605        /*
1606         * If the owning (remote) cpu is still in the middle of schedule() with
1607         * this task as prev, wait until its done referencing the task.
1608         */
1609        while (p->on_cpu)
1610                cpu_relax();
1611        /*
1612         * Pairs with the smp_wmb() in finish_lock_switch().
1613         */
1614        smp_rmb();
1615
1616        p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617        p->state = TASK_WAKING;
1618
1619        if (p->sched_class->task_waking)
1620                p->sched_class->task_waking(p);
1621
1622        cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623        if (task_cpu(p) != cpu) {
1624                wake_flags |= WF_MIGRATED;
1625                set_task_cpu(p, cpu);
1626        }
1627#endif /* CONFIG_SMP */
1628
1629        ttwu_queue(p, cpu);
1630stat:
1631        ttwu_stat(p, cpu, wake_flags);
1632out:
1633        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635        return success;
1636}
1637
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648        struct rq *rq = task_rq(p);
1649
1650        if (WARN_ON_ONCE(rq != this_rq()) ||
1651            WARN_ON_ONCE(p == current))
1652                return;
1653
1654        lockdep_assert_held(&rq->lock);
1655
1656        if (!raw_spin_trylock(&p->pi_lock)) {
1657                raw_spin_unlock(&rq->lock);
1658                raw_spin_lock(&p->pi_lock);
1659                raw_spin_lock(&rq->lock);
1660        }
1661
1662        if (!(p->state & TASK_NORMAL))
1663                goto out;
1664
1665        if (!p->on_rq)
1666                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668        ttwu_do_wakeup(rq, p, 0);
1669        ttwu_stat(p, smp_processor_id(), 0);
1670out:
1671        raw_spin_unlock(&p->pi_lock);
1672}
1673
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686int wake_up_process(struct task_struct *p)
1687{
1688        WARN_ON(task_is_stopped_or_traced(p));
1689        return try_to_wake_up(p, TASK_NORMAL, 0);
1690}
1691EXPORT_SYMBOL(wake_up_process);
1692
1693int wake_up_state(struct task_struct *p, unsigned int state)
1694{
1695        return try_to_wake_up(p, state, 0);
1696}
1697
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705{
1706        p->on_rq                        = 0;
1707
1708        p->se.on_rq                     = 0;
1709        p->se.exec_start                = 0;
1710        p->se.sum_exec_runtime          = 0;
1711        p->se.prev_sum_exec_runtime     = 0;
1712        p->se.nr_migrations             = 0;
1713        p->se.vruntime                  = 0;
1714        INIT_LIST_HEAD(&p->se.group_node);
1715
1716#ifdef CONFIG_SCHEDSTATS
1717        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718#endif
1719
1720        INIT_LIST_HEAD(&p->rt.run_list);
1721
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723        INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
1725
1726#ifdef CONFIG_NUMA_BALANCING
1727        if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1728                p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1729                p->mm->numa_scan_seq = 0;
1730        }
1731
1732        if (clone_flags & CLONE_VM)
1733                p->numa_preferred_nid = current->numa_preferred_nid;
1734        else
1735                p->numa_preferred_nid = -1;
1736
1737        p->node_stamp = 0ULL;
1738        p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1739        p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1740        p->numa_work.next = &p->numa_work;
1741        p->numa_faults = NULL;
1742        p->numa_faults_buffer = NULL;
1743
1744        INIT_LIST_HEAD(&p->numa_entry);
1745        p->numa_group = NULL;
1746#endif /* CONFIG_NUMA_BALANCING */
1747}
1748
1749#ifdef CONFIG_NUMA_BALANCING
1750#ifdef CONFIG_SCHED_DEBUG
1751void set_numabalancing_state(bool enabled)
1752{
1753        if (enabled)
1754                sched_feat_set("NUMA");
1755        else
1756                sched_feat_set("NO_NUMA");
1757}
1758#else
1759__read_mostly bool numabalancing_enabled;
1760
1761void set_numabalancing_state(bool enabled)
1762{
1763        numabalancing_enabled = enabled;
1764}
1765#endif /* CONFIG_SCHED_DEBUG */
1766#endif /* CONFIG_NUMA_BALANCING */
1767
1768/*
1769 * fork()/clone()-time setup:
1770 */
1771void sched_fork(unsigned long clone_flags, struct task_struct *p)
1772{
1773        unsigned long flags;
1774        int cpu = get_cpu();
1775
1776        __sched_fork(clone_flags, p);
1777        /*
1778         * We mark the process as running here. This guarantees that
1779         * nobody will actually run it, and a signal or other external
1780         * event cannot wake it up and insert it on the runqueue either.
1781         */
1782        p->state = TASK_RUNNING;
1783
1784        /*
1785         * Make sure we do not leak PI boosting priority to the child.
1786         */
1787        p->prio = current->normal_prio;
1788
1789        /*
1790         * Revert to default priority/policy on fork if requested.
1791         */
1792        if (unlikely(p->sched_reset_on_fork)) {
1793                if (task_has_rt_policy(p)) {
1794                        p->policy = SCHED_NORMAL;
1795                        p->static_prio = NICE_TO_PRIO(0);
1796                        p->rt_priority = 0;
1797                } else if (PRIO_TO_NICE(p->static_prio) < 0)
1798                        p->static_prio = NICE_TO_PRIO(0);
1799
1800                p->prio = p->normal_prio = __normal_prio(p);
1801                set_load_weight(p);
1802
1803                /*
1804                 * We don't need the reset flag anymore after the fork. It has
1805                 * fulfilled its duty:
1806                 */
1807                p->sched_reset_on_fork = 0;
1808        }
1809
1810        if (!rt_prio(p->prio))
1811                p->sched_class = &fair_sched_class;
1812
1813        if (p->sched_class->task_fork)
1814                p->sched_class->task_fork(p);
1815
1816        /*
1817         * The child is not yet in the pid-hash so no cgroup attach races,
1818         * and the cgroup is pinned to this child due to cgroup_fork()
1819         * is ran before sched_fork().
1820         *
1821         * Silence PROVE_RCU.
1822         */
1823        raw_spin_lock_irqsave(&p->pi_lock, flags);
1824        set_task_cpu(p, cpu);
1825        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1826
1827#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1828        if (likely(sched_info_on()))
1829                memset(&p->sched_info, 0, sizeof(p->sched_info));
1830#endif
1831#if defined(CONFIG_SMP)
1832        p->on_cpu = 0;
1833#endif
1834        init_task_preempt_count(p);
1835#ifdef CONFIG_SMP
1836        plist_node_init(&p->pushable_tasks, MAX_PRIO);
1837#endif
1838
1839        put_cpu();
1840}
1841
1842/*
1843 * wake_up_new_task - wake up a newly created task for the first time.
1844 *
1845 * This function will do some initial scheduler statistics housekeeping
1846 * that must be done for every newly created context, then puts the task
1847 * on the runqueue and wakes it.
1848 */
1849void wake_up_new_task(struct task_struct *p)
1850{
1851        unsigned long flags;
1852        struct rq *rq;
1853
1854        raw_spin_lock_irqsave(&p->pi_lock, flags);
1855#ifdef CONFIG_SMP
1856        /*
1857         * Fork balancing, do it here and not earlier because:
1858         *  - cpus_allowed can change in the fork path
1859         *  - any previously selected cpu might disappear through hotplug
1860         */
1861        set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
1862#endif
1863
1864        /* Initialize new task's runnable average */
1865        init_task_runnable_average(p);
1866        rq = __task_rq_lock(p);
1867        activate_task(rq, p, 0);
1868        p->on_rq = 1;
1869        trace_sched_wakeup_new(p, true);
1870        check_preempt_curr(rq, p, WF_FORK);
1871#ifdef CONFIG_SMP
1872        if (p->sched_class->task_woken)
1873                p->sched_class->task_woken(rq, p);
1874#endif
1875        task_rq_unlock(rq, p, &flags);
1876}
1877
1878#ifdef CONFIG_PREEMPT_NOTIFIERS
1879
1880/**
1881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1882 * @notifier: notifier struct to register
1883 */
1884void preempt_notifier_register(struct preempt_notifier *notifier)
1885{
1886        hlist_add_head(&notifier->link, &current->preempt_notifiers);
1887}
1888EXPORT_SYMBOL_GPL(preempt_notifier_register);
1889
1890/**
1891 * preempt_notifier_unregister - no longer interested in preemption notifications
1892 * @notifier: notifier struct to unregister
1893 *
1894 * This is safe to call from within a preemption notifier.
1895 */
1896void preempt_notifier_unregister(struct preempt_notifier *notifier)
1897{
1898        hlist_del(&notifier->link);
1899}
1900EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1901
1902static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1903{
1904        struct preempt_notifier *notifier;
1905
1906        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1907                notifier->ops->sched_in(notifier, raw_smp_processor_id());
1908}
1909
1910static void
1911fire_sched_out_preempt_notifiers(struct task_struct *curr,
1912                                 struct task_struct *next)
1913{
1914        struct preempt_notifier *notifier;
1915
1916        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1917                notifier->ops->sched_out(notifier, next);
1918}
1919
1920#else /* !CONFIG_PREEMPT_NOTIFIERS */
1921
1922static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1923{
1924}
1925
1926static void
1927fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928                                 struct task_struct *next)
1929{
1930}
1931
1932#endif /* CONFIG_PREEMPT_NOTIFIERS */
1933
1934/**
1935 * prepare_task_switch - prepare to switch tasks
1936 * @rq: the runqueue preparing to switch
1937 * @prev: the current task that is being switched out
1938 * @next: the task we are going to switch to.
1939 *
1940 * This is called with the rq lock held and interrupts off. It must
1941 * be paired with a subsequent finish_task_switch after the context
1942 * switch.
1943 *
1944 * prepare_task_switch sets up locking and calls architecture specific
1945 * hooks.
1946 */
1947static inline void
1948prepare_task_switch(struct rq *rq, struct task_struct *prev,
1949                    struct task_struct *next)
1950{
1951        trace_sched_switch(prev, next);
1952        sched_info_switch(rq, prev, next);
1953        perf_event_task_sched_out(prev, next);
1954        fire_sched_out_preempt_notifiers(prev, next);
1955        prepare_lock_switch(rq, next);
1956        prepare_arch_switch(next);
1957}
1958
1959/**
1960 * finish_task_switch - clean up after a task-switch
1961 * @rq: runqueue associated with task-switch
1962 * @prev: the thread we just switched away from.
1963 *
1964 * finish_task_switch must be called after the context switch, paired
1965 * with a prepare_task_switch call before the context switch.
1966 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1967 * and do any other architecture-specific cleanup actions.
1968 *
1969 * Note that we may have delayed dropping an mm in context_switch(). If
1970 * so, we finish that here outside of the runqueue lock. (Doing it
1971 * with the lock held can cause deadlocks; see schedule() for
1972 * details.)
1973 */
1974static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1975        __releases(rq->lock)
1976{
1977        struct mm_struct *mm = rq->prev_mm;
1978        long prev_state;
1979
1980        rq->prev_mm = NULL;
1981
1982        /*
1983         * A task struct has one reference for the use as "current".
1984         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1985         * schedule one last time. The schedule call will never return, and
1986         * the scheduled task must drop that reference.
1987         * The test for TASK_DEAD must occur while the runqueue locks are
1988         * still held, otherwise prev could be scheduled on another cpu, die
1989         * there before we look at prev->state, and then the reference would
1990         * be dropped twice.
1991         *              Manfred Spraul <manfred@colorfullife.com>
1992         */
1993        prev_state = prev->state;
1994        vtime_task_switch(prev);
1995        finish_arch_switch(prev);
1996        perf_event_task_sched_in(prev, current);
1997        finish_lock_switch(rq, prev);
1998        finish_arch_post_lock_switch();
1999
2000        fire_sched_in_preempt_notifiers(current);
2001        if (mm)
2002                mmdrop(mm);
2003        if (unlikely(prev_state == TASK_DEAD)) {
2004                task_numa_free(prev);
2005
2006                /*
2007                 * Remove function-return probe instances associated with this
2008                 * task and put them back on the free list.
2009                 */
2010                kprobe_flush_task(prev);
2011                put_task_struct(prev);
2012        }
2013
2014        tick_nohz_task_switch(current);
2015}
2016
2017#ifdef CONFIG_SMP
2018
2019/* assumes rq->lock is held */
2020static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2021{
2022        if (prev->sched_class->pre_schedule)
2023                prev->sched_class->pre_schedule(rq, prev);
2024}
2025
2026/* rq->lock is NOT held, but preemption is disabled */
2027static inline void post_schedule(struct rq *rq)
2028{
2029        if (rq->post_schedule) {
2030                unsigned long flags;
2031
2032                raw_spin_lock_irqsave(&rq->lock, flags);
2033                if (rq->curr->sched_class->post_schedule)
2034                        rq->curr->sched_class->post_schedule(rq);
2035                raw_spin_unlock_irqrestore(&rq->lock, flags);
2036
2037                rq->post_schedule = 0;
2038        }
2039}
2040
2041#else
2042
2043static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2044{
2045}
2046
2047static inline void post_schedule(struct rq *rq)
2048{
2049}
2050
2051#endif
2052
2053/**
2054 * schedule_tail - first thing a freshly forked thread must call.
2055 * @prev: the thread we just switched away from.
2056 */
2057asmlinkage void schedule_tail(struct task_struct *prev)
2058        __releases(rq->lock)
2059{
2060        struct rq *rq = this_rq();
2061
2062        finish_task_switch(rq, prev);
2063
2064        /*
2065         * FIXME: do we need to worry about rq being invalidated by the
2066         * task_switch?
2067         */
2068        post_schedule(rq);
2069
2070#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2071        /* In this case, finish_task_switch does not reenable preemption */
2072        preempt_enable();
2073#endif
2074        if (current->set_child_tid)
2075                put_user(task_pid_vnr(current), current->set_child_tid);
2076}
2077
2078/*
2079 * context_switch - switch to the new MM and the new
2080 * thread's register state.
2081 */
2082static inline void
2083context_switch(struct rq *rq, struct task_struct *prev,
2084               struct task_struct *next)
2085{
2086        struct mm_struct *mm, *oldmm;
2087
2088        prepare_task_switch(rq, prev, next);
2089
2090        mm = next->mm;
2091        oldmm = prev->active_mm;
2092        /*
2093         * For paravirt, this is coupled with an exit in switch_to to
2094         * combine the page table reload and the switch backend into
2095         * one hypercall.
2096         */
2097        arch_start_context_switch(prev);
2098
2099        if (!mm) {
2100                next->active_mm = oldmm;
2101                atomic_inc(&oldmm->mm_count);
2102                enter_lazy_tlb(oldmm, next);
2103        } else
2104                switch_mm(oldmm, mm, next);
2105
2106        if (!prev->mm) {
2107                prev->active_mm = NULL;
2108                rq->prev_mm = oldmm;
2109        }
2110        /*
2111         * Since the runqueue lock will be released by the next
2112         * task (which is an invalid locking op but in the case
2113         * of the scheduler it's an obvious special-case), so we
2114         * do an early lockdep release here:
2115         */
2116#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2117        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2118#endif
2119
2120        context_tracking_task_switch(prev, next);
2121        /* Here we just switch the register state and the stack. */
2122        switch_to(prev, next, prev);
2123
2124        barrier();
2125        /*
2126         * this_rq must be evaluated again because prev may have moved
2127         * CPUs since it called schedule(), thus the 'rq' on its stack
2128         * frame will be invalid.
2129         */
2130        finish_task_switch(this_rq(), prev);
2131}
2132
2133/*
2134 * nr_running and nr_context_switches:
2135 *
2136 * externally visible scheduler statistics: current number of runnable
2137 * threads, total number of context switches performed since bootup.
2138 */
2139unsigned long nr_running(void)
2140{
2141        unsigned long i, sum = 0;
2142
2143        for_each_online_cpu(i)
2144                sum += cpu_rq(i)->nr_running;
2145
2146        return sum;
2147}
2148
2149unsigned long long nr_context_switches(void)
2150{
2151        int i;
2152        unsigned long long sum = 0;
2153
2154        for_each_possible_cpu(i)
2155                sum += cpu_rq(i)->nr_switches;
2156
2157        return sum;
2158}
2159
2160unsigned long nr_iowait(void)
2161{
2162        unsigned long i, sum = 0;
2163
2164        for_each_possible_cpu(i)
2165                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2166
2167        return sum;
2168}
2169
2170unsigned long nr_iowait_cpu(int cpu)
2171{
2172        struct rq *this = cpu_rq(cpu);
2173        return atomic_read(&this->nr_iowait);
2174}
2175
2176#ifdef CONFIG_SMP
2177
2178/*
2179 * sched_exec - execve() is a valuable balancing opportunity, because at
2180 * this point the task has the smallest effective memory and cache footprint.
2181 */
2182void sched_exec(void)
2183{
2184        struct task_struct *p = current;
2185        unsigned long flags;
2186        int dest_cpu;
2187
2188        raw_spin_lock_irqsave(&p->pi_lock, flags);
2189        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2190        if (dest_cpu == smp_processor_id())
2191                goto unlock;
2192
2193        if (likely(cpu_active(dest_cpu))) {
2194                struct migration_arg arg = { p, dest_cpu };
2195
2196                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2197                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2198                return;
2199        }
2200unlock:
2201        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2202}
2203
2204#endif
2205
2206DEFINE_PER_CPU(struct kernel_stat, kstat);
2207DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2208
2209EXPORT_PER_CPU_SYMBOL(kstat);
2210EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2211
2212/*
2213 * Return any ns on the sched_clock that have not yet been accounted in
2214 * @p in case that task is currently running.
2215 *
2216 * Called with task_rq_lock() held on @rq.
2217 */
2218static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2219{
2220        u64 ns = 0;
2221
2222        if (task_current(rq, p)) {
2223                update_rq_clock(rq);
2224                ns = rq_clock_task(rq) - p->se.exec_start;
2225                if ((s64)ns < 0)
2226                        ns = 0;
2227        }
2228
2229        return ns;
2230}
2231
2232unsigned long long task_delta_exec(struct task_struct *p)
2233{
2234        unsigned long flags;
2235        struct rq *rq;
2236        u64 ns = 0;
2237
2238        rq = task_rq_lock(p, &flags);
2239        ns = do_task_delta_exec(p, rq);
2240        task_rq_unlock(rq, p, &flags);
2241
2242        return ns;
2243}
2244
2245/*
2246 * Return accounted runtime for the task.
2247 * In case the task is currently running, return the runtime plus current's
2248 * pending runtime that have not been accounted yet.
2249 */
2250unsigned long long task_sched_runtime(struct task_struct *p)
2251{
2252        unsigned long flags;
2253        struct rq *rq;
2254        u64 ns = 0;
2255
2256#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2257        /*
2258         * 64-bit doesn't need locks to atomically read a 64bit value.
2259         * So we have a optimization chance when the task's delta_exec is 0.
2260         * Reading ->on_cpu is racy, but this is ok.
2261         *
2262         * If we race with it leaving cpu, we'll take a lock. So we're correct.
2263         * If we race with it entering cpu, unaccounted time is 0. This is
2264         * indistinguishable from the read occurring a few cycles earlier.
2265         */
2266        if (!p->on_cpu)
2267                return p->se.sum_exec_runtime;
2268#endif
2269
2270        rq = task_rq_lock(p, &flags);
2271        ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2272        task_rq_unlock(rq, p, &flags);
2273
2274        return ns;
2275}
2276
2277/*
2278 * This function gets called by the timer code, with HZ frequency.
2279 * We call it with interrupts disabled.
2280 */
2281void scheduler_tick(void)
2282{
2283        int cpu = smp_processor_id();
2284        struct rq *rq = cpu_rq(cpu);
2285        struct task_struct *curr = rq->curr;
2286
2287        sched_clock_tick();
2288
2289        raw_spin_lock(&rq->lock);
2290        update_rq_clock(rq);
2291        curr->sched_class->task_tick(rq, curr, 0);
2292        update_cpu_load_active(rq);
2293        raw_spin_unlock(&rq->lock);
2294
2295        perf_event_task_tick();
2296
2297#ifdef CONFIG_SMP
2298        rq->idle_balance = idle_cpu(cpu);
2299        trigger_load_balance(rq, cpu);
2300#endif
2301        rq_last_tick_reset(rq);
2302}
2303
2304#ifdef CONFIG_NO_HZ_FULL
2305/**
2306 * scheduler_tick_max_deferment
2307 *
2308 * Keep at least one tick per second when a single
2309 * active task is running because the scheduler doesn't
2310 * yet completely support full dynticks environment.
2311 *
2312 * This makes sure that uptime, CFS vruntime, load
2313 * balancing, etc... continue to move forward, even
2314 * with a very low granularity.
2315 *
2316 * Return: Maximum deferment in nanoseconds.
2317 */
2318u64 scheduler_tick_max_deferment(void)
2319{
2320        struct rq *rq = this_rq();
2321        unsigned long next, now = ACCESS_ONCE(jiffies);
2322
2323        next = rq->last_sched_tick + HZ;
2324
2325        if (time_before_eq(next, now))
2326                return 0;
2327
2328        return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
2329}
2330#endif
2331
2332notrace unsigned long get_parent_ip(unsigned long addr)
2333{
2334        if (in_lock_functions(addr)) {
2335                addr = CALLER_ADDR2;
2336                if (in_lock_functions(addr))
2337                        addr = CALLER_ADDR3;
2338        }
2339        return addr;
2340}
2341
2342#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2343                                defined(CONFIG_PREEMPT_TRACER))
2344
2345void __kprobes preempt_count_add(int val)
2346{
2347#ifdef CONFIG_DEBUG_PREEMPT
2348        /*
2349         * Underflow?
2350         */
2351        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2352                return;
2353#endif
2354        __preempt_count_add(val);
2355#ifdef CONFIG_DEBUG_PREEMPT
2356        /*
2357         * Spinlock count overflowing soon?
2358         */
2359        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2360                                PREEMPT_MASK - 10);
2361#endif
2362        if (preempt_count() == val)
2363                trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2364}
2365EXPORT_SYMBOL(preempt_count_add);
2366
2367void __kprobes preempt_count_sub(int val)
2368{
2369#ifdef CONFIG_DEBUG_PREEMPT
2370        /*
2371         * Underflow?
2372         */
2373        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2374                return;
2375        /*
2376         * Is the spinlock portion underflowing?
2377         */
2378        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2379                        !(preempt_count() & PREEMPT_MASK)))
2380                return;
2381#endif
2382
2383        if (preempt_count() == val)
2384                trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2385        __preempt_count_sub(val);
2386}
2387EXPORT_SYMBOL(preempt_count_sub);
2388
2389#endif
2390
2391/*
2392 * Print scheduling while atomic bug:
2393 */
2394static noinline void __schedule_bug(struct task_struct *prev)
2395{
2396        if (oops_in_progress)
2397                return;
2398
2399        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2400                prev->comm, prev->pid, preempt_count());
2401
2402        debug_show_held_locks(prev);
2403        print_modules();
2404        if (irqs_disabled())
2405                print_irqtrace_events(prev);
2406        dump_stack();
2407        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2408}
2409
2410/*
2411 * Various schedule()-time debugging checks and statistics:
2412 */
2413static inline void schedule_debug(struct task_struct *prev)
2414{
2415        /*
2416         * Test if we are atomic. Since do_exit() needs to call into
2417         * schedule() atomically, we ignore that path for now.
2418         * Otherwise, whine if we are scheduling when we should not be.
2419         */
2420        if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2421                __schedule_bug(prev);
2422        rcu_sleep_check();
2423
2424        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2425
2426        schedstat_inc(this_rq(), sched_count);
2427}
2428
2429static void put_prev_task(struct rq *rq, struct task_struct *prev)
2430{
2431        if (prev->on_rq || rq->skip_clock_update < 0)
2432                update_rq_clock(rq);
2433        prev->sched_class->put_prev_task(rq, prev);
2434}
2435
2436/*
2437 * Pick up the highest-prio task:
2438 */
2439static inline struct task_struct *
2440pick_next_task(struct rq *rq)
2441{
2442        const struct sched_class *class;
2443        struct task_struct *p;
2444
2445        /*
2446         * Optimization: we know that if all tasks are in
2447         * the fair class we can call that function directly:
2448         */
2449        if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2450                p = fair_sched_class.pick_next_task(rq);
2451                if (likely(p))
2452                        return p;
2453        }
2454
2455        for_each_class(class) {
2456                p = class->pick_next_task(rq);
2457                if (p)
2458                        return p;
2459        }
2460
2461        BUG(); /* the idle class will always have a runnable task */
2462}
2463
2464/*
2465 * __schedule() is the main scheduler function.
2466 *
2467 * The main means of driving the scheduler and thus entering this function are:
2468 *
2469 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2470 *
2471 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2472 *      paths. For example, see arch/x86/entry_64.S.
2473 *
2474 *      To drive preemption between tasks, the scheduler sets the flag in timer
2475 *      interrupt handler scheduler_tick().
2476 *
2477 *   3. Wakeups don't really cause entry into schedule(). They add a
2478 *      task to the run-queue and that's it.
2479 *
2480 *      Now, if the new task added to the run-queue preempts the current
2481 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2482 *      called on the nearest possible occasion:
2483 *
2484 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
2485 *
2486 *         - in syscall or exception context, at the next outmost
2487 *           preempt_enable(). (this might be as soon as the wake_up()'s
2488 *           spin_unlock()!)
2489 *
2490 *         - in IRQ context, return from interrupt-handler to
2491 *           preemptible context
2492 *
2493 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2494 *         then at the next:
2495 *
2496 *          - cond_resched() call
2497 *          - explicit schedule() call
2498 *          - return from syscall or exception to user-space
2499 *          - return from interrupt-handler to user-space
2500 */
2501static void __sched __schedule(void)
2502{
2503        struct task_struct *prev, *next;
2504        unsigned long *switch_count;
2505        struct rq *rq;
2506        int cpu;
2507
2508need_resched:
2509        preempt_disable();
2510        cpu = smp_processor_id();
2511        rq = cpu_rq(cpu);
2512        rcu_note_context_switch(cpu);
2513        prev = rq->curr;
2514
2515        schedule_debug(prev);
2516
2517        if (sched_feat(HRTICK))
2518                hrtick_clear(rq);
2519
2520        /*
2521         * Make sure that signal_pending_state()->signal_pending() below
2522         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2523         * done by the caller to avoid the race with signal_wake_up().
2524         */
2525        smp_mb__before_spinlock();
2526        raw_spin_lock_irq(&rq->lock);
2527
2528        switch_count = &prev->nivcsw;
2529        if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2530                if (unlikely(signal_pending_state(prev->state, prev))) {
2531                        prev->state = TASK_RUNNING;
2532                } else {
2533                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
2534                        prev->on_rq = 0;
2535
2536                        /*
2537                         * If a worker went to sleep, notify and ask workqueue
2538                         * whether it wants to wake up a task to maintain
2539                         * concurrency.
2540                         */
2541                        if (prev->flags & PF_WQ_WORKER) {
2542                                struct task_struct *to_wakeup;
2543
2544                                to_wakeup = wq_worker_sleeping(prev, cpu);
2545                                if (to_wakeup)
2546                                        try_to_wake_up_local(to_wakeup);
2547                        }
2548                }
2549                switch_count = &prev->nvcsw;
2550        }
2551
2552        pre_schedule(rq, prev);
2553
2554        if (unlikely(!rq->nr_running))
2555                idle_balance(cpu, rq);
2556
2557        put_prev_task(rq, prev);
2558        next = pick_next_task(rq);
2559        clear_tsk_need_resched(prev);
2560        clear_preempt_need_resched();
2561        rq->skip_clock_update = 0;
2562
2563        if (likely(prev != next)) {
2564                rq->nr_switches++;
2565                rq->curr = next;
2566                ++*switch_count;
2567
2568                context_switch(rq, prev, next); /* unlocks the rq */
2569                /*
2570                 * The context switch have flipped the stack from under us
2571                 * and restored the local variables which were saved when
2572                 * this task called schedule() in the past. prev == current
2573                 * is still correct, but it can be moved to another cpu/rq.
2574                 */
2575                cpu = smp_processor_id();
2576                rq = cpu_rq(cpu);
2577        } else
2578                raw_spin_unlock_irq(&rq->lock);
2579
2580        post_schedule(rq);
2581
2582        sched_preempt_enable_no_resched();
2583        if (need_resched())
2584                goto need_resched;
2585}
2586
2587static inline void sched_submit_work(struct task_struct *tsk)
2588{
2589        if (!tsk->state || tsk_is_pi_blocked(tsk))
2590                return;
2591        /*
2592         * If we are going to sleep and we have plugged IO queued,
2593         * make sure to submit it to avoid deadlocks.
2594         */
2595        if (blk_needs_flush_plug(tsk))
2596                blk_schedule_flush_plug(tsk);
2597}
2598
2599asmlinkage void __sched schedule(void)
2600{
2601        struct task_struct *tsk = current;
2602
2603        sched_submit_work(tsk);
2604        __schedule();
2605}
2606EXPORT_SYMBOL(schedule);
2607
2608#ifdef CONFIG_CONTEXT_TRACKING
2609asmlinkage void __sched schedule_user(void)
2610{
2611        /*
2612         * If we come here after a random call to set_need_resched(),
2613         * or we have been woken up remotely but the IPI has not yet arrived,
2614         * we haven't yet exited the RCU idle mode. Do it here manually until
2615         * we find a better solution.
2616         */
2617        user_exit();
2618        schedule();
2619        user_enter();
2620}
2621#endif
2622
2623/**
2624 * schedule_preempt_disabled - called with preemption disabled
2625 *
2626 * Returns with preemption disabled. Note: preempt_count must be 1
2627 */
2628void __sched schedule_preempt_disabled(void)
2629{
2630        sched_preempt_enable_no_resched();
2631        schedule();
2632        preempt_disable();
2633}
2634
2635#ifdef CONFIG_PREEMPT
2636/*
2637 * this is the entry point to schedule() from in-kernel preemption
2638 * off of preempt_enable. Kernel preemptions off return from interrupt
2639 * occur there and call schedule directly.
2640 */
2641asmlinkage void __sched notrace preempt_schedule(void)
2642{
2643        /*
2644         * If there is a non-zero preempt_count or interrupts are disabled,
2645         * we do not want to preempt the current task. Just return..
2646         */
2647        if (likely(!preemptible()))
2648                return;
2649
2650        do {
2651                __preempt_count_add(PREEMPT_ACTIVE);
2652                __schedule();
2653                __preempt_count_sub(PREEMPT_ACTIVE);
2654
2655                /*
2656                 * Check again in case we missed a preemption opportunity
2657                 * between schedule and now.
2658                 */
2659                barrier();
2660        } while (need_resched());
2661}
2662EXPORT_SYMBOL(preempt_schedule);
2663#endif /* CONFIG_PREEMPT */
2664
2665/*
2666 * this is the entry point to schedule() from kernel preemption
2667 * off of irq context.
2668 * Note, that this is called and return with irqs disabled. This will
2669 * protect us against recursive calling from irq.
2670 */
2671asmlinkage void __sched preempt_schedule_irq(void)
2672{
2673        enum ctx_state prev_state;
2674
2675        /* Catch callers which need to be fixed */
2676        BUG_ON(preempt_count() || !irqs_disabled());
2677
2678        prev_state = exception_enter();
2679
2680        do {
2681                __preempt_count_add(PREEMPT_ACTIVE);
2682                local_irq_enable();
2683                __schedule();
2684                local_irq_disable();
2685                __preempt_count_sub(PREEMPT_ACTIVE);
2686
2687                /*
2688                 * Check again in case we missed a preemption opportunity
2689                 * between schedule and now.
2690                 */
2691                barrier();
2692        } while (need_resched());
2693
2694        exception_exit(prev_state);
2695}
2696
2697int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2698                          void *key)
2699{
2700        return try_to_wake_up(curr->private, mode, wake_flags);
2701}
2702EXPORT_SYMBOL(default_wake_function);
2703
2704static long __sched
2705sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2706{
2707        unsigned long flags;
2708        wait_queue_t wait;
2709
2710        init_waitqueue_entry(&wait, current);
2711
2712        __set_current_state(state);
2713
2714        spin_lock_irqsave(&q->lock, flags);
2715        __add_wait_queue(q, &wait);
2716        spin_unlock(&q->lock);
2717        timeout = schedule_timeout(timeout);
2718        spin_lock_irq(&q->lock);
2719        __remove_wait_queue(q, &wait);
2720        spin_unlock_irqrestore(&q->lock, flags);
2721
2722        return timeout;
2723}
2724
2725void __sched interruptible_sleep_on(wait_queue_head_t *q)
2726{
2727        sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2728}
2729EXPORT_SYMBOL(interruptible_sleep_on);
2730
2731long __sched
2732interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2733{
2734        return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2735}
2736EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2737
2738void __sched sleep_on(wait_queue_head_t *q)
2739{
2740        sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2741}
2742EXPORT_SYMBOL(sleep_on);
2743
2744long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2745{
2746        return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2747}
2748EXPORT_SYMBOL(sleep_on_timeout);
2749
2750#ifdef CONFIG_RT_MUTEXES
2751
2752/*
2753 * rt_mutex_setprio - set the current priority of a task
2754 * @p: task
2755 * @prio: prio value (kernel-internal form)
2756 *
2757 * This function changes the 'effective' priority of a task. It does
2758 * not touch ->normal_prio like __setscheduler().
2759 *
2760 * Used by the rt_mutex code to implement priority inheritance logic.
2761 */
2762void rt_mutex_setprio(struct task_struct *p, int prio)
2763{
2764        int oldprio, on_rq, running;
2765        struct rq *rq;
2766        const struct sched_class *prev_class;
2767
2768        BUG_ON(prio < 0 || prio > MAX_PRIO);
2769
2770        rq = __task_rq_lock(p);
2771
2772        /*
2773         * Idle task boosting is a nono in general. There is one
2774         * exception, when PREEMPT_RT and NOHZ is active:
2775         *
2776         * The idle task calls get_next_timer_interrupt() and holds
2777         * the timer wheel base->lock on the CPU and another CPU wants
2778         * to access the timer (probably to cancel it). We can safely
2779         * ignore the boosting request, as the idle CPU runs this code
2780         * with interrupts disabled and will complete the lock
2781         * protected section without being interrupted. So there is no
2782         * real need to boost.
2783         */
2784        if (unlikely(p == rq->idle)) {
2785                WARN_ON(p != rq->curr);
2786                WARN_ON(p->pi_blocked_on);
2787                goto out_unlock;
2788        }
2789
2790        trace_sched_pi_setprio(p, prio);
2791        oldprio = p->prio;
2792        prev_class = p->sched_class;
2793        on_rq = p->on_rq;
2794        running = task_current(rq, p);
2795        if (on_rq)
2796                dequeue_task(rq, p, 0);
2797        if (running)
2798                p->sched_class->put_prev_task(rq, p);
2799
2800        if (rt_prio(prio))
2801                p->sched_class = &rt_sched_class;
2802        else
2803                p->sched_class = &fair_sched_class;
2804
2805        p->prio = prio;
2806
2807        if (running)
2808                p->sched_class->set_curr_task(rq);
2809        if (on_rq)
2810                enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
2811
2812        check_class_changed(rq, p, prev_class, oldprio);
2813out_unlock:
2814        __task_rq_unlock(rq);
2815}
2816#endif
2817void set_user_nice(struct task_struct *p, long nice)
2818{
2819        int old_prio, delta, on_rq;
2820        unsigned long flags;
2821        struct rq *rq;
2822
2823        if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2824                return;
2825        /*
2826         * We have to be careful, if called from sys_setpriority(),
2827         * the task might be in the middle of scheduling on another CPU.
2828         */
2829        rq = task_rq_lock(p, &flags);
2830        /*
2831         * The RT priorities are set via sched_setscheduler(), but we still
2832         * allow the 'normal' nice value to be set - but as expected
2833         * it wont have any effect on scheduling until the task is
2834         * SCHED_FIFO/SCHED_RR:
2835         */
2836        if (task_has_rt_policy(p)) {
2837                p->static_prio = NICE_TO_PRIO(nice);
2838                goto out_unlock;
2839        }
2840        on_rq = p->on_rq;
2841        if (on_rq)
2842                dequeue_task(rq, p, 0);
2843
2844        p->static_prio = NICE_TO_PRIO(nice);
2845        set_load_weight(p);
2846        old_prio = p->prio;
2847        p->prio = effective_prio(p);
2848        delta = p->prio - old_prio;
2849
2850        if (on_rq) {
2851                enqueue_task(rq, p, 0);
2852                /*
2853                 * If the task increased its priority or is running and
2854                 * lowered its priority, then reschedule its CPU:
2855                 */
2856                if (delta < 0 || (delta > 0 && task_running(rq, p)))
2857                        resched_task(rq->curr);
2858        }
2859out_unlock:
2860        task_rq_unlock(rq, p, &flags);
2861}
2862EXPORT_SYMBOL(set_user_nice);
2863
2864/*
2865 * can_nice - check if a task can reduce its nice value
2866 * @p: task
2867 * @nice: nice value
2868 */
2869int can_nice(const struct task_struct *p, const int nice)
2870{
2871        /* convert nice value [19,-20] to rlimit style value [1,40] */
2872        int nice_rlim = 20 - nice;
2873
2874        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
2875                capable(CAP_SYS_NICE));
2876}
2877
2878#ifdef __ARCH_WANT_SYS_NICE
2879
2880/*
2881 * sys_nice - change the priority of the current process.
2882 * @increment: priority increment
2883 *
2884 * sys_setpriority is a more generic, but much slower function that
2885 * does similar things.
2886 */
2887SYSCALL_DEFINE1(nice, int, increment)
2888{
2889        long nice, retval;
2890
2891        /*
2892         * Setpriority might change our priority at the same moment.
2893         * We don't have to worry. Conceptually one call occurs first
2894         * and we have a single winner.
2895         */
2896        if (increment < -40)
2897                increment = -40;
2898        if (increment > 40)
2899                increment = 40;
2900
2901        nice = TASK_NICE(current) + increment;
2902        if (nice < -20)
2903                nice = -20;
2904        if (nice > 19)
2905                nice = 19;
2906
2907        if (increment < 0 && !can_nice(current, nice))
2908                return -EPERM;
2909
2910        retval = security_task_setnice(current, nice);
2911        if (retval)
2912                return retval;
2913
2914        set_user_nice(current, nice);
2915        return 0;
2916}
2917
2918#endif
2919
2920/**
2921 * task_prio - return the priority value of a given task.
2922 * @p: the task in question.
2923 *
2924 * Return: The priority value as seen by users in /proc.
2925 * RT tasks are offset by -200. Normal tasks are centered
2926 * around 0, value goes from -16 to +15.
2927 */
2928int task_prio(const struct task_struct *p)
2929{
2930        return p->prio - MAX_RT_PRIO;
2931}
2932
2933/**
2934 * task_nice - return the nice value of a given task.
2935 * @p: the task in question.
2936 *
2937 * Return: The nice value [ -20 ... 0 ... 19 ].
2938 */
2939int task_nice(const struct task_struct *p)
2940{
2941        return TASK_NICE(p);
2942}
2943EXPORT_SYMBOL(task_nice);
2944
2945/**
2946 * idle_cpu - is a given cpu idle currently?
2947 * @cpu: the processor in question.
2948 *
2949 * Return: 1 if the CPU is currently idle. 0 otherwise.
2950 */
2951int idle_cpu(int cpu)
2952{
2953        struct rq *rq = cpu_rq(cpu);
2954
2955        if (rq->curr != rq->idle)
2956                return 0;
2957
2958        if (rq->nr_running)
2959                return 0;
2960
2961#ifdef CONFIG_SMP
2962        if (!llist_empty(&rq->wake_list))
2963                return 0;
2964#endif
2965
2966        return 1;
2967}
2968
2969/**
2970 * idle_task - return the idle task for a given cpu.
2971 * @cpu: the processor in question.
2972 *
2973 * Return: The idle task for the cpu @cpu.
2974 */
2975struct task_struct *idle_task(int cpu)
2976{
2977        return cpu_rq(cpu)->idle;
2978}
2979
2980/**
2981 * find_process_by_pid - find a process with a matching PID value.
2982 * @pid: the pid in question.
2983 *
2984 * The task of @pid, if found. %NULL otherwise.
2985 */
2986static struct task_struct *find_process_by_pid(pid_t pid)
2987{
2988        return pid ? find_task_by_vpid(pid) : current;
2989}
2990
2991/* Actually do priority change: must hold rq lock. */
2992static void
2993__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
2994{
2995        p->policy = policy;
2996        p->rt_priority = prio;
2997        p->normal_prio = normal_prio(p);
2998        /* we are holding p->pi_lock already */
2999        p->prio = rt_mutex_getprio(p);
3000        if (rt_prio(p->prio))
3001                p->sched_class = &rt_sched_class;
3002        else
3003                p->sched_class = &fair_sched_class;
3004        set_load_weight(p);
3005}
3006
3007/*
3008 * check the target process has a UID that matches the current process's
3009 */
3010static bool check_same_owner(struct task_struct *p)
3011{
3012        const struct cred *cred = current_cred(), *pcred;
3013        bool match;
3014
3015        rcu_read_lock();
3016        pcred = __task_cred(p);
3017        match = (uid_eq(cred->euid, pcred->euid) ||
3018                 uid_eq(cred->euid, pcred->uid));
3019        rcu_read_unlock();
3020        return match;
3021}
3022
3023static int __sched_setscheduler(struct task_struct *p, int policy,
3024                                const struct sched_param *param, bool user)
3025{
3026        int retval, oldprio, oldpolicy = -1, on_rq, running;
3027        unsigned long flags;
3028        const struct sched_class *prev_class;
3029        struct rq *rq;
3030        int reset_on_fork;
3031
3032        /* may grab non-irq protected spin_locks */
3033        BUG_ON(in_interrupt());
3034recheck:
3035        /* double check policy once rq lock held */
3036        if (policy < 0) {
3037                reset_on_fork = p->sched_reset_on_fork;
3038                policy = oldpolicy = p->policy;
3039        } else {
3040                reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3041                policy &= ~SCHED_RESET_ON_FORK;
3042
3043                if (policy != SCHED_FIFO && policy != SCHED_RR &&
3044                                policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3045                                policy != SCHED_IDLE)
3046                        return -EINVAL;
3047        }
3048
3049        /*
3050         * Valid priorities for SCHED_FIFO and SCHED_RR are
3051         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3052         * SCHED_BATCH and SCHED_IDLE is 0.
3053         */
3054        if (param->sched_priority < 0 ||
3055            (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3056            (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3057                return -EINVAL;
3058        if (rt_policy(policy) != (param->sched_priority != 0))
3059                return -EINVAL;
3060
3061        /*
3062         * Allow unprivileged RT tasks to decrease priority:
3063         */
3064        if (user && !capable(CAP_SYS_NICE)) {
3065                if (rt_policy(policy)) {
3066                        unsigned long rlim_rtprio =
3067                                        task_rlimit(p, RLIMIT_RTPRIO);
3068
3069                        /* can't set/change the rt policy */
3070                        if (policy != p->policy && !rlim_rtprio)
3071                                return -EPERM;
3072
3073                        /* can't increase priority */
3074                        if (param->sched_priority > p->rt_priority &&
3075                            param->sched_priority > rlim_rtprio)
3076                                return -EPERM;
3077                }
3078
3079                /*
3080                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3081                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3082                 */
3083                if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3084                        if (!can_nice(p, TASK_NICE(p)))
3085                                return -EPERM;
3086                }
3087
3088                /* can't change other user's priorities */
3089                if (!check_same_owner(p))
3090                        return -EPERM;
3091
3092                /* Normal users shall not reset the sched_reset_on_fork flag */
3093                if (p->sched_reset_on_fork && !reset_on_fork)
3094                        return -EPERM;
3095        }
3096
3097        if (user) {
3098                retval = security_task_setscheduler(p);
3099                if (retval)
3100                        return retval;
3101        }
3102
3103        /*
3104         * make sure no PI-waiters arrive (or leave) while we are
3105         * changing the priority of the task:
3106         *
3107         * To be able to change p->policy safely, the appropriate
3108         * runqueue lock must be held.
3109         */
3110        rq = task_rq_lock(p, &flags);
3111
3112        /*
3113         * Changing the policy of the stop threads its a very bad idea
3114         */
3115        if (p == rq->stop) {
3116                task_rq_unlock(rq, p, &flags);
3117                return -EINVAL;
3118        }
3119
3120        /*
3121         * If not changing anything there's no need to proceed further:
3122         */
3123        if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3124                        param->sched_priority == p->rt_priority))) {
3125                task_rq_unlock(rq, p, &flags);
3126                return 0;
3127        }
3128
3129#ifdef CONFIG_RT_GROUP_SCHED
3130        if (user) {
3131                /*
3132                 * Do not allow realtime tasks into groups that have no runtime
3133                 * assigned.
3134                 */
3135                if (rt_bandwidth_enabled() && rt_policy(policy) &&
3136                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3137                                !task_group_is_autogroup(task_group(p))) {
3138                        task_rq_unlock(rq, p, &flags);
3139                        return -EPERM;
3140                }
3141        }
3142#endif
3143
3144        /* recheck policy now with rq lock held */
3145        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3146                policy = oldpolicy = -1;
3147                task_rq_unlock(rq, p, &flags);
3148                goto recheck;
3149        }
3150        on_rq = p->on_rq;
3151        running = task_current(rq, p);
3152        if (on_rq)
3153                dequeue_task(rq, p, 0);
3154        if (running)
3155                p->sched_class->put_prev_task(rq, p);
3156
3157        p->sched_reset_on_fork = reset_on_fork;
3158
3159        oldprio = p->prio;
3160        prev_class = p->sched_class;
3161        __setscheduler(rq, p, policy, param->sched_priority);
3162
3163        if (running)
3164                p->sched_class->set_curr_task(rq);
3165        if (on_rq)
3166                enqueue_task(rq, p, 0);
3167
3168        check_class_changed(rq, p, prev_class, oldprio);
3169        task_rq_unlock(rq, p, &flags);
3170
3171        rt_mutex_adjust_pi(p);
3172
3173        return 0;
3174}
3175
3176/**
3177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3178 * @p: the task in question.
3179 * @policy: new policy.
3180 * @param: structure containing the new RT priority.
3181 *
3182 * Return: 0 on success. An error code otherwise.
3183 *
3184 * NOTE that the task may be already dead.
3185 */
3186int sched_setscheduler(struct task_struct *p, int policy,
3187                       const struct sched_param *param)
3188{
3189        return __sched_setscheduler(p, policy, param, true);
3190}
3191EXPORT_SYMBOL_GPL(sched_setscheduler);
3192
3193/**
3194 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3195 * @p: the task in question.
3196 * @policy: new policy.
3197 * @param: structure containing the new RT priority.
3198 *
3199 * Just like sched_setscheduler, only don't bother checking if the
3200 * current context has permission.  For example, this is needed in
3201 * stop_machine(): we create temporary high priority worker threads,
3202 * but our caller might not have that capability.
3203 *
3204 * Return: 0 on success. An error code otherwise.
3205 */
3206int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3207                               const struct sched_param *param)
3208{
3209        return __sched_setscheduler(p, policy, param, false);
3210}
3211
3212static int
3213do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3214{
3215        struct sched_param lparam;
3216        struct task_struct *p;
3217        int retval;
3218
3219        if (!param || pid < 0)
3220                return -EINVAL;
3221        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3222                return -EFAULT;
3223
3224        rcu_read_lock();
3225        retval = -ESRCH;
3226        p = find_process_by_pid(pid);
3227        if (p != NULL)
3228                retval = sched_setscheduler(p, policy, &lparam);
3229        rcu_read_unlock();
3230
3231        return retval;
3232}
3233
3234/**
3235 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3236 * @pid: the pid in question.
3237 * @policy: new policy.
3238 * @param: structure containing the new RT priority.
3239 *
3240 * Return: 0 on success. An error code otherwise.
3241 */
3242SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3243                struct sched_param __user *, param)
3244{
3245        /* negative values for policy are not valid */
3246        if (policy < 0)
3247                return -EINVAL;
3248
3249        return do_sched_setscheduler(pid, policy, param);
3250}
3251
3252/**
3253 * sys_sched_setparam - set/change the RT priority of a thread
3254 * @pid: the pid in question.
3255 * @param: structure containing the new RT priority.
3256 *
3257 * Return: 0 on success. An error code otherwise.
3258 */
3259SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3260{
3261        return do_sched_setscheduler(pid, -1, param);
3262}
3263
3264/**
3265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3266 * @pid: the pid in question.
3267 *
3268 * Return: On success, the policy of the thread. Otherwise, a negative error
3269 * code.
3270 */
3271SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3272{
3273        struct task_struct *p;
3274        int retval;
3275
3276        if (pid < 0)
3277                return -EINVAL;
3278
3279        retval = -ESRCH;
3280        rcu_read_lock();
3281        p = find_process_by_pid(pid);
3282        if (p) {
3283                retval = security_task_getscheduler(p);
3284                if (!retval)
3285                        retval = p->policy
3286                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3287        }
3288        rcu_read_unlock();
3289        return retval;
3290}
3291
3292/**
3293 * sys_sched_getparam - get the RT priority of a thread
3294 * @pid: the pid in question.
3295 * @param: structure containing the RT priority.
3296 *
3297 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3298 * code.
3299 */
3300SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3301{
3302        struct sched_param lp;
3303        struct task_struct *p;
3304        int retval;
3305
3306        if (!param || pid < 0)
3307                return -EINVAL;
3308
3309        rcu_read_lock();
3310        p = find_process_by_pid(pid);
3311        retval = -ESRCH;
3312        if (!p)
3313                goto out_unlock;
3314
3315        retval = security_task_getscheduler(p);
3316        if (retval)
3317                goto out_unlock;
3318
3319        lp.sched_priority = p->rt_priority;
3320        rcu_read_unlock();
3321
3322        /*
3323         * This one might sleep, we cannot do it with a spinlock held ...
3324         */
3325        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3326
3327        return retval;
3328
3329out_unlock:
3330        rcu_read_unlock();
3331        return retval;
3332}
3333
3334long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3335{
3336        cpumask_var_t cpus_allowed, new_mask;
3337        struct task_struct *p;
3338        int retval;
3339
3340        rcu_read_lock();
3341
3342        p = find_process_by_pid(pid);
3343        if (!p) {
3344                rcu_read_unlock();
3345                return -ESRCH;
3346        }
3347
3348        /* Prevent p going away */
3349        get_task_struct(p);
3350        rcu_read_unlock();
3351
3352        if (p->flags & PF_NO_SETAFFINITY) {
3353                retval = -EINVAL;
3354                goto out_put_task;
3355        }
3356        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3357                retval = -ENOMEM;
3358                goto out_put_task;
3359        }
3360        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3361                retval = -ENOMEM;
3362                goto out_free_cpus_allowed;
3363        }
3364        retval = -EPERM;
3365        if (!check_same_owner(p)) {
3366                rcu_read_lock();
3367                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3368                        rcu_read_unlock();
3369                        goto out_unlock;
3370                }
3371                rcu_read_unlock();
3372        }
3373
3374        retval = security_task_setscheduler(p);
3375        if (retval)
3376                goto out_unlock;
3377
3378        cpuset_cpus_allowed(p, cpus_allowed);
3379        cpumask_and(new_mask, in_mask, cpus_allowed);
3380again:
3381        retval = set_cpus_allowed_ptr(p, new_mask);
3382
3383        if (!retval) {
3384                cpuset_cpus_allowed(p, cpus_allowed);
3385                if (!cpumask_subset(new_mask, cpus_allowed)) {
3386                        /*
3387                         * We must have raced with a concurrent cpuset
3388                         * update. Just reset the cpus_allowed to the
3389                         * cpuset's cpus_allowed
3390                         */
3391                        cpumask_copy(new_mask, cpus_allowed);
3392                        goto again;
3393                }
3394        }
3395out_unlock:
3396        free_cpumask_var(new_mask);
3397out_free_cpus_allowed:
3398        free_cpumask_var(cpus_allowed);
3399out_put_task:
3400        put_task_struct(p);
3401        return retval;
3402}
3403
3404static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3405                             struct cpumask *new_mask)
3406{
3407        if (len < cpumask_size())
3408                cpumask_clear(new_mask);
3409        else if (len > cpumask_size())
3410                len = cpumask_size();
3411
3412        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3413}
3414
3415/**
3416 * sys_sched_setaffinity - set the cpu affinity of a process
3417 * @pid: pid of the process
3418 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3419 * @user_mask_ptr: user-space pointer to the new cpu mask
3420 *
3421 * Return: 0 on success. An error code otherwise.
3422 */
3423SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3424                unsigned long __user *, user_mask_ptr)
3425{
3426        cpumask_var_t new_mask;
3427        int retval;
3428
3429        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3430                return -ENOMEM;
3431
3432        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3433        if (retval == 0)
3434                retval = sched_setaffinity(pid, new_mask);
3435        free_cpumask_var(new_mask);
3436        return retval;
3437}
3438
3439long sched_getaffinity(pid_t pid, struct cpumask *mask)
3440{
3441        struct task_struct *p;
3442        unsigned long flags;
3443        int retval;
3444
3445        rcu_read_lock();
3446
3447        retval = -ESRCH;
3448        p = find_process_by_pid(pid);
3449        if (!p)
3450                goto out_unlock;
3451
3452        retval = security_task_getscheduler(p);
3453        if (retval)
3454                goto out_unlock;
3455
3456        raw_spin_lock_irqsave(&p->pi_lock, flags);
3457        cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3458        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3459
3460out_unlock:
3461        rcu_read_unlock();
3462
3463        return retval;
3464}
3465
3466/**
3467 * sys_sched_getaffinity - get the cpu affinity of a process
3468 * @pid: pid of the process
3469 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3470 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3471 *
3472 * Return: 0 on success. An error code otherwise.
3473 */
3474SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3475                unsigned long __user *, user_mask_ptr)
3476{
3477        int ret;
3478        cpumask_var_t mask;
3479
3480        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3481                return -EINVAL;
3482        if (len & (sizeof(unsigned long)-1))
3483                return -EINVAL;
3484
3485        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3486                return -ENOMEM;
3487
3488        ret = sched_getaffinity(pid, mask);
3489        if (ret == 0) {
3490                size_t retlen = min_t(size_t, len, cpumask_size());
3491
3492                if (copy_to_user(user_mask_ptr, mask, retlen))
3493                        ret = -EFAULT;
3494                else
3495                        ret = retlen;
3496        }
3497        free_cpumask_var(mask);
3498
3499        return ret;
3500}
3501
3502/**
3503 * sys_sched_yield - yield the current processor to other threads.
3504 *
3505 * This function yields the current CPU to other tasks. If there are no
3506 * other threads running on this CPU then this function will return.
3507 *
3508 * Return: 0.
3509 */
3510SYSCALL_DEFINE0(sched_yield)
3511{
3512        struct rq *rq = this_rq_lock();
3513
3514        schedstat_inc(rq, yld_count);
3515        current->sched_class->yield_task(rq);
3516
3517        /*
3518         * Since we are going to call schedule() anyway, there's
3519         * no need to preempt or enable interrupts:
3520         */
3521        __release(rq->lock);
3522        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3523        do_raw_spin_unlock(&rq->lock);
3524        sched_preempt_enable_no_resched();
3525
3526        schedule();
3527
3528        return 0;
3529}
3530
3531static void __cond_resched(void)
3532{
3533        __preempt_count_add(PREEMPT_ACTIVE);
3534        __schedule();
3535        __preempt_count_sub(PREEMPT_ACTIVE);
3536}
3537
3538int __sched _cond_resched(void)
3539{
3540        if (should_resched()) {
3541                __cond_resched();
3542                return 1;
3543        }
3544        return 0;
3545}
3546EXPORT_SYMBOL(_cond_resched);
3547
3548/*
3549 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
3550 * call schedule, and on return reacquire the lock.
3551 *
3552 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3553 * operations here to prevent schedule() from being called twice (once via
3554 * spin_unlock(), once by hand).
3555 */
3556int __cond_resched_lock(spinlock_t *lock)
3557{
3558        int resched = should_resched();
3559        int ret = 0;
3560
3561        lockdep_assert_held(lock);
3562
3563        if (spin_needbreak(lock) || resched) {
3564                spin_unlock(lock);
3565                if (resched)
3566                        __cond_resched();
3567                else
3568                        cpu_relax();
3569                ret = 1;
3570                spin_lock(lock);
3571        }
3572        return ret;
3573}
3574EXPORT_SYMBOL(__cond_resched_lock);
3575
3576int __sched __cond_resched_softirq(void)
3577{
3578        BUG_ON(!in_softirq());
3579
3580        if (should_resched()) {
3581                local_bh_enable();
3582                __cond_resched();
3583                local_bh_disable();
3584                return 1;
3585        }
3586        return 0;
3587}
3588EXPORT_SYMBOL(__cond_resched_softirq);
3589
3590/**
3591 * yield - yield the current processor to other threads.
3592 *
3593 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3594 *
3595 * The scheduler is at all times free to pick the calling task as the most
3596 * eligible task to run, if removing the yield() call from your code breaks
3597 * it, its already broken.
3598 *
3599 * Typical broken usage is:
3600 *
3601 * while (!event)
3602 *      yield();
3603 *
3604 * where one assumes that yield() will let 'the other' process run that will
3605 * make event true. If the current task is a SCHED_FIFO task that will never
3606 * happen. Never use yield() as a progress guarantee!!
3607 *
3608 * If you want to use yield() to wait for something, use wait_event().
3609 * If you want to use yield() to be 'nice' for others, use cond_resched().
3610 * If you still want to use yield(), do not!
3611 */
3612void __sched yield(void)
3613{
3614        set_current_state(TASK_RUNNING);
3615        sys_sched_yield();
3616}
3617EXPORT_SYMBOL(yield);
3618
3619/**
3620 * yield_to - yield the current processor to another thread in
3621 * your thread group, or accelerate that thread toward the
3622 * processor it's on.
3623 * @p: target task
3624 * @preempt: whether task preemption is allowed or not
3625 *
3626 * It's the caller's job to ensure that the target task struct
3627 * can't go away on us before we can do any checks.
3628 *
3629 * Return:
3630 *      true (>0) if we indeed boosted the target task.
3631 *      false (0) if we failed to boost the target.
3632 *      -ESRCH if there's no task to yield to.
3633 */
3634bool __sched yield_to(struct task_struct *p, bool preempt)
3635{
3636        struct task_struct *curr = current;
3637        struct rq *rq, *p_rq;
3638        unsigned long flags;
3639        int yielded = 0;
3640
3641        local_irq_save(flags);
3642        rq = this_rq();
3643
3644again:
3645        p_rq = task_rq(p);
3646        /*
3647         * If we're the only runnable task on the rq and target rq also
3648         * has only one task, there's absolutely no point in yielding.
3649         */
3650        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3651                yielded = -ESRCH;
3652                goto out_irq;
3653        }
3654
3655        double_rq_lock(rq, p_rq);
3656        while (task_rq(p) != p_rq) {
3657                double_rq_unlock(rq, p_rq);
3658                goto again;
3659        }
3660
3661        if (!curr->sched_class->yield_to_task)
3662                goto out_unlock;
3663
3664        if (curr->sched_class != p->sched_class)
3665                goto out_unlock;
3666
3667        if (task_running(p_rq, p) || p->state)
3668                goto out_unlock;
3669
3670        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
3671        if (yielded) {
3672                schedstat_inc(rq, yld_count);
3673                /*
3674                 * Make p's CPU reschedule; pick_next_entity takes care of
3675                 * fairness.
3676                 */
3677                if (preempt && rq != p_rq)
3678                        resched_task(p_rq->curr);
3679        }
3680
3681out_unlock:
3682        double_rq_unlock(rq, p_rq);
3683out_irq:
3684        local_irq_restore(flags);
3685
3686        if (yielded > 0)
3687                schedule();
3688
3689        return yielded;
3690}
3691EXPORT_SYMBOL_GPL(yield_to);
3692
3693/*
3694 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3695 * that process accounting knows that this is a task in IO wait state.
3696 */
3697void __sched io_schedule(void)
3698{
3699        struct rq *rq = raw_rq();
3700
3701        delayacct_blkio_start();
3702        atomic_inc(&rq->nr_iowait);
3703        blk_flush_plug(current);
3704        current->in_iowait = 1;
3705        schedule();
3706        current->in_iowait = 0;
3707        atomic_dec(&rq->nr_iowait);
3708        delayacct_blkio_end();
3709}
3710EXPORT_SYMBOL(io_schedule);
3711
3712long __sched io_schedule_timeout(long timeout)
3713{
3714        struct rq *rq = raw_rq();
3715        long ret;
3716
3717        delayacct_blkio_start();
3718        atomic_inc(&rq->nr_iowait);
3719        blk_flush_plug(current);
3720        current->in_iowait = 1;
3721        ret = schedule_timeout(timeout);
3722        current->in_iowait = 0;
3723        atomic_dec(&rq->nr_iowait);
3724        delayacct_blkio_end();
3725        return ret;
3726}
3727
3728/**
3729 * sys_sched_get_priority_max - return maximum RT priority.
3730 * @policy: scheduling class.
3731 *
3732 * Return: On success, this syscall returns the maximum
3733 * rt_priority that can be used by a given scheduling class.
3734 * On failure, a negative error code is returned.
3735 */
3736SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
3737{
3738        int ret = -EINVAL;
3739
3740        switch (policy) {
3741        case SCHED_FIFO:
3742        case SCHED_RR:
3743                ret = MAX_USER_RT_PRIO-1;
3744                break;
3745        case SCHED_NORMAL:
3746        case SCHED_BATCH:
3747        case SCHED_IDLE:
3748                ret = 0;
3749                break;
3750        }
3751        return ret;
3752}
3753
3754/**
3755 * sys_sched_get_priority_min - return minimum RT priority.
3756 * @policy: scheduling class.
3757 *
3758 * Return: On success, this syscall returns the minimum
3759 * rt_priority that can be used by a given scheduling class.
3760 * On failure, a negative error code is returned.
3761 */
3762SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
3763{
3764        int ret = -EINVAL;
3765
3766        switch (policy) {
3767        case SCHED_FIFO:
3768        case SCHED_RR:
3769                ret = 1;
3770                break;
3771        case SCHED_NORMAL:
3772        case SCHED_BATCH:
3773        case SCHED_IDLE:
3774                ret = 0;
3775        }
3776        return ret;
3777}
3778
3779/**
3780 * sys_sched_rr_get_interval - return the default timeslice of a process.
3781 * @pid: pid of the process.
3782 * @interval: userspace pointer to the timeslice value.
3783 *
3784 * this syscall writes the default timeslice value of a given process
3785 * into the user-space timespec buffer. A value of '0' means infinity.
3786 *
3787 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
3788 * an error code.
3789 */
3790SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
3791                struct timespec __user *, interval)
3792{
3793        struct task_struct *p;
3794        unsigned int time_slice;
3795        unsigned long flags;
3796        struct rq *rq;
3797        int retval;
3798        struct timespec t;
3799
3800        if (pid < 0)
3801                return -EINVAL;
3802
3803        retval = -ESRCH;
3804        rcu_read_lock();
3805        p = find_process_by_pid(pid);
3806        if (!p)
3807                goto out_unlock;
3808
3809        retval = security_task_getscheduler(p);
3810        if (retval)
3811                goto out_unlock;
3812
3813        rq = task_rq_lock(p, &flags);
3814        time_slice = p->sched_class->get_rr_interval(rq, p);
3815        task_rq_unlock(rq, p, &flags);
3816
3817        rcu_read_unlock();
3818        jiffies_to_timespec(time_slice, &t);
3819        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3820        return retval;
3821
3822out_unlock:
3823        rcu_read_unlock();
3824        return retval;
3825}
3826
3827static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
3828
3829void sched_show_task(struct task_struct *p)
3830{
3831        unsigned long free = 0;
3832        int ppid;
3833        unsigned state;
3834
3835        state = p->state ? __ffs(p->state) + 1 : 0;
3836        printk(KERN_INFO "%-15.15s %c", p->comm,
3837                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
3838#if BITS_PER_LONG == 32
3839        if (state == TASK_RUNNING)
3840                printk(KERN_CONT " running  ");
3841        else
3842                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
3843#else
3844        if (state == TASK_RUNNING)
3845                printk(KERN_CONT "  running task    ");
3846        else
3847                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
3848#endif
3849#ifdef CONFIG_DEBUG_STACK_USAGE
3850        free = stack_not_used(p);
3851#endif
3852        rcu_read_lock();
3853        ppid = task_pid_nr(rcu_dereference(p->real_parent));
3854        rcu_read_unlock();
3855        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
3856                task_pid_nr(p), ppid,
3857                (unsigned long)task_thread_info(p)->flags);
3858
3859        print_worker_info(KERN_INFO, p);
3860        show_stack(p, NULL);
3861}
3862
3863void show_state_filter(unsigned long state_filter)
3864{
3865        struct task_struct *g, *p;
3866
3867#if BITS_PER_LONG == 32
3868        printk(KERN_INFO
3869                "  task                PC stack   pid father\n");
3870#else
3871        printk(KERN_INFO
3872                "  task                        PC stack   pid father\n");
3873#endif
3874        rcu_read_lock();
3875        do_each_thread(g, p) {
3876                /*
3877                 * reset the NMI-timeout, listing all files on a slow
3878                 * console might take a lot of time:
3879                 */
3880                touch_nmi_watchdog();
3881                if (!state_filter || (p->state & state_filter))
3882                        sched_show_task(p);
3883        } while_each_thread(g, p);
3884
3885        touch_all_softlockup_watchdogs();
3886
3887#ifdef CONFIG_SCHED_DEBUG
3888        sysrq_sched_debug_show();
3889#endif
3890        rcu_read_unlock();
3891        /*
3892         * Only show locks if all tasks are dumped:
3893         */
3894        if (!state_filter)
3895                debug_show_all_locks();
3896}
3897
3898void init_idle_bootup_task(struct task_struct *idle)
3899{
3900        idle->sched_class = &idle_sched_class;
3901}
3902
3903/**
3904 * init_idle - set up an idle thread for a given CPU
3905 * @idle: task in question
3906 * @cpu: cpu the idle task belongs to
3907 *
3908 * NOTE: this function does not set the idle thread's NEED_RESCHED
3909 * flag, to make booting more robust.
3910 */
3911void init_idle(struct task_struct *idle, int cpu)
3912{
3913        struct rq *rq = cpu_rq(cpu);
3914        unsigned long flags;
3915
3916        raw_spin_lock_irqsave(&rq->lock, flags);
3917
3918        __sched_fork(0, idle);
3919        idle->state = TASK_RUNNING;
3920        idle->se.exec_start = sched_clock();
3921
3922        do_set_cpus_allowed(idle, cpumask_of(cpu));
3923        /*
3924         * We're having a chicken and egg problem, even though we are
3925         * holding rq->lock, the cpu isn't yet set to this cpu so the
3926         * lockdep check in task_group() will fail.
3927         *
3928         * Similar case to sched_fork(). / Alternatively we could
3929         * use task_rq_lock() here and obtain the other rq->lock.
3930         *
3931         * Silence PROVE_RCU
3932         */
3933        rcu_read_lock();
3934        __set_task_cpu(idle, cpu);
3935        rcu_read_unlock();
3936
3937        rq->curr = rq->idle = idle;
3938#if defined(CONFIG_SMP)
3939        idle->on_cpu = 1;
3940#endif
3941        raw_spin_unlock_irqrestore(&rq->lock, flags);
3942
3943        /* Set the preempt count _outside_ the spinlocks! */
3944        init_idle_preempt_count(idle, cpu);
3945
3946        /*
3947         * The idle tasks have their own, simple scheduling class:
3948         */
3949        idle->sched_class = &idle_sched_class;
3950        ftrace_graph_init_idle_task(idle, cpu);
3951        vtime_init_idle(idle, cpu);
3952#if defined(CONFIG_SMP)
3953        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
3954#endif
3955}
3956
3957#ifdef CONFIG_SMP
3958void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
3959{
3960        if (p->sched_class && p->sched_class->set_cpus_allowed)
3961                p->sched_class->set_cpus_allowed(p, new_mask);
3962
3963        cpumask_copy(&p->cpus_allowed, new_mask);
3964        p->nr_cpus_allowed = cpumask_weight(new_mask);
3965}
3966
3967/*
3968 * This is how migration works:
3969 *
3970 * 1) we invoke migration_cpu_stop() on the target CPU using
3971 *    stop_one_cpu().
3972 * 2) stopper starts to run (implicitly forcing the migrated thread
3973 *    off the CPU)
3974 * 3) it checks whether the migrated task is still in the wrong runqueue.
3975 * 4) if it's in the wrong runqueue then the migration thread removes
3976 *    it and puts it into the right queue.
3977 * 5) stopper completes and stop_one_cpu() returns and the migration
3978 *    is done.
3979 */
3980
3981/*
3982 * Change a given task's CPU affinity. Migrate the thread to a
3983 * proper CPU and schedule it away if the CPU it's executing on
3984 * is removed from the allowed bitmask.
3985 *
3986 * NOTE: the caller must have a valid reference to the task, the
3987 * task must not exit() & deallocate itself prematurely. The
3988 * call is not atomic; no spinlocks may be held.
3989 */
3990int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3991{
3992        unsigned long flags;
3993        struct rq *rq;
3994        unsigned int dest_cpu;
3995        int ret = 0;
3996
3997        rq = task_rq_lock(p, &flags);
3998
3999        if (cpumask_equal(&p->cpus_allowed, new_mask))
4000                goto out;
4001
4002        if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4003                ret = -EINVAL;
4004                goto out;
4005        }
4006
4007        do_set_cpus_allowed(p, new_mask);
4008
4009        /* Can the task run on the task's current CPU? If so, we're done */
4010        if (cpumask_test_cpu(task_cpu(p), new_mask))
4011                goto out;
4012
4013        dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4014        if (p->on_rq) {
4015                struct migration_arg arg = { p, dest_cpu };
4016                /* Need help from migration thread: drop lock and wait. */
4017                task_rq_unlock(rq, p, &flags);
4018                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4019                tlb_migrate_finish(p->mm);
4020                return 0;
4021        }
4022out:
4023        task_rq_unlock(rq, p, &flags);
4024
4025        return ret;
4026}
4027EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4028
4029/*
4030 * Move (not current) task off this cpu, onto dest cpu. We're doing
4031 * this because either it can't run here any more (set_cpus_allowed()
4032 * away from this CPU, or CPU going down), or because we're
4033 * attempting to rebalance this task on exec (sched_exec).
4034 *
4035 * So we race with normal scheduler movements, but that's OK, as long
4036 * as the task is no longer on this CPU.
4037 *
4038 * Returns non-zero if task was successfully migrated.
4039 */
4040static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4041{
4042        struct rq *rq_dest, *rq_src;
4043        int ret = 0;
4044
4045        if (unlikely(!cpu_active(dest_cpu)))
4046                return ret;
4047
4048        rq_src = cpu_rq(src_cpu);
4049        rq_dest = cpu_rq(dest_cpu);
4050
4051        raw_spin_lock(&p->pi_lock);
4052        double_rq_lock(rq_src, rq_dest);
4053        /* Already moved. */
4054        if (task_cpu(p) != src_cpu)
4055                goto done;
4056        /* Affinity changed (again). */
4057        if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4058                goto fail;
4059
4060        /*
4061         * If we're not on a rq, the next wake-up will ensure we're
4062         * placed properly.
4063         */
4064        if (p->on_rq) {
4065                dequeue_task(rq_src, p, 0);
4066                set_task_cpu(p, dest_cpu);
4067                enqueue_task(rq_dest, p, 0);
4068                check_preempt_curr(rq_dest, p, 0);
4069        }
4070done:
4071        ret = 1;
4072fail:
4073        double_rq_unlock(rq_src, rq_dest);
4074        raw_spin_unlock(&p->pi_lock);
4075        return ret;
4076}
4077
4078#ifdef CONFIG_NUMA_BALANCING
4079/* Migrate current task p to target_cpu */
4080int migrate_task_to(struct task_struct *p, int target_cpu)
4081{
4082        struct migration_arg arg = { p, target_cpu };
4083        int curr_cpu = task_cpu(p);
4084
4085        if (curr_cpu == target_cpu)
4086                return 0;
4087
4088        if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4089                return -EINVAL;
4090
4091        /* TODO: This is not properly updating schedstats */
4092
4093        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4094}
4095
4096/*
4097 * Requeue a task on a given node and accurately track the number of NUMA
4098 * tasks on the runqueues
4099 */
4100void sched_setnuma(struct task_struct *p, int nid)
4101{
4102        struct rq *rq;
4103        unsigned long flags;
4104        bool on_rq, running;
4105
4106        rq = task_rq_lock(p, &flags);
4107        on_rq = p->on_rq;
4108        running = task_current(rq, p);
4109
4110        if (on_rq)
4111                dequeue_task(rq, p, 0);
4112        if (running)
4113                p->sched_class->put_prev_task(rq, p);
4114
4115        p->numa_preferred_nid = nid;
4116
4117        if (running)
4118                p->sched_class->set_curr_task(rq);
4119        if (on_rq)
4120                enqueue_task(rq, p, 0);
4121        task_rq_unlock(rq, p, &flags);
4122}
4123#endif
4124
4125/*
4126 * migration_cpu_stop - this will be executed by a highprio stopper thread
4127 * and performs thread migration by bumping thread off CPU then
4128 * 'pushing' onto another runqueue.
4129 */
4130static int migration_cpu_stop(void *data)
4131{
4132        struct migration_arg *arg = data;
4133
4134        /*
4135         * The original target cpu might have gone down and we might
4136         * be on another cpu but it doesn't matter.
4137         */
4138        local_irq_disable();
4139        __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4140        local_irq_enable();
4141        return 0;
4142}
4143
4144#ifdef CONFIG_HOTPLUG_CPU
4145
4146/*
4147 * Ensures that the idle task is using init_mm right before its cpu goes
4148 * offline.
4149 */
4150void idle_task_exit(void)
4151{
4152        struct mm_struct *mm = current->active_mm;
4153
4154        BUG_ON(cpu_online(smp_processor_id()));
4155
4156        if (mm != &init_mm)
4157                switch_mm(mm, &init_mm, current);
4158        mmdrop(mm);
4159}
4160
4161/*
4162 * Since this CPU is going 'away' for a while, fold any nr_active delta
4163 * we might have. Assumes we're called after migrate_tasks() so that the
4164 * nr_active count is stable.
4165 *
4166 * Also see the comment "Global load-average calculations".
4167 */
4168static void calc_load_migrate(struct rq *rq)
4169{
4170        long delta = calc_load_fold_active(rq);
4171        if (delta)
4172                atomic_long_add(delta, &calc_load_tasks);
4173}
4174
4175/*
4176 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4177 * try_to_wake_up()->select_task_rq().
4178 *
4179 * Called with rq->lock held even though we'er in stop_machine() and
4180 * there's no concurrency possible, we hold the required locks anyway
4181 * because of lock validation efforts.
4182 */
4183static void migrate_tasks(unsigned int dead_cpu)
4184{
4185        struct rq *rq = cpu_rq(dead_cpu);
4186        struct task_struct *next, *stop = rq->stop;
4187        int dest_cpu;
4188
4189        /*
4190         * Fudge the rq selection such that the below task selection loop
4191         * doesn't get stuck on the currently eligible stop task.
4192         *
4193         * We're currently inside stop_machine() and the rq is either stuck
4194         * in the stop_machine_cpu_stop() loop, or we're executing this code,
4195         * either way we should never end up calling schedule() until we're
4196         * done here.
4197         */
4198        rq->stop = NULL;
4199
4200        /*
4201         * put_prev_task() and pick_next_task() sched
4202         * class method both need to have an up-to-date
4203         * value of rq->clock[_task]
4204         */
4205        update_rq_clock(rq);
4206
4207        for ( ; ; ) {
4208                /*
4209                 * There's this thread running, bail when that's the only
4210                 * remaining thread.
4211                 */
4212                if (rq->nr_running == 1)
4213                        break;
4214
4215                next = pick_next_task(rq);
4216                BUG_ON(!next);
4217                next->sched_class->put_prev_task(rq, next);
4218
4219                /* Find suitable destination for @next, with force if needed. */
4220                dest_cpu = select_fallback_rq(dead_cpu, next);
4221                raw_spin_unlock(&rq->lock);
4222
4223                __migrate_task(next, dead_cpu, dest_cpu);
4224
4225                raw_spin_lock(&rq->lock);
4226        }
4227
4228        rq->stop = stop;
4229}
4230
4231#endif /* CONFIG_HOTPLUG_CPU */
4232
4233#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4234
4235static struct ctl_table sd_ctl_dir[] = {
4236        {
4237                .procname       = "sched_domain",
4238                .mode           = 0555,
4239        },
4240        {}
4241};
4242
4243static struct ctl_table sd_ctl_root[] = {
4244        {
4245                .procname       = "kernel",
4246                .mode           = 0555,
4247                .child          = sd_ctl_dir,
4248        },
4249        {}
4250};
4251
4252static struct ctl_table *sd_alloc_ctl_entry(int n)
4253{
4254        struct ctl_table *entry =
4255                kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4256
4257        return entry;
4258}
4259
4260static void sd_free_ctl_entry(struct ctl_table **tablep)
4261{
4262        struct ctl_table *entry;
4263
4264        /*
4265         * In the intermediate directories, both the child directory and
4266         * procname are dynamically allocated and could fail but the mode
4267         * will always be set. In the lowest directory the names are
4268         * static strings and all have proc handlers.
4269         */
4270        for (entry = *tablep; entry->mode; entry++) {
4271                if (entry->child)
4272                        sd_free_ctl_entry(&entry->child);
4273                if (entry->proc_handler == NULL)
4274                        kfree(entry->procname);
4275        }
4276
4277        kfree(*tablep);
4278        *tablep = NULL;
4279}
4280
4281static int min_load_idx = 0;
4282static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4283
4284static void
4285set_table_entry(struct ctl_table *entry,
4286                const char *procname, void *data, int maxlen,
4287                umode_t mode, proc_handler *proc_handler,
4288                bool load_idx)
4289{
4290        entry->procname = procname;
4291        entry->data = data;
4292        entry->maxlen = maxlen;
4293        entry->mode = mode;
4294        entry->proc_handler = proc_handler;
4295
4296        if (load_idx) {
4297                entry->extra1 = &min_load_idx;
4298                entry->extra2 = &max_load_idx;
4299        }
4300}
4301
4302static struct ctl_table *
4303sd_alloc_ctl_domain_table(struct sched_domain *sd)
4304{
4305        struct ctl_table *table = sd_alloc_ctl_entry(13);
4306
4307        if (table == NULL)
4308                return NULL;
4309
4310        set_table_entry(&table[0], "min_interval", &sd->min_interval,
4311                sizeof(long), 0644, proc_doulongvec_minmax, false);
4312        set_table_entry(&table[1], "max_interval", &sd->max_interval,
4313                sizeof(long), 0644, proc_doulongvec_minmax, false);
4314        set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4315                sizeof(int), 0644, proc_dointvec_minmax, true);
4316        set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4317                sizeof(int), 0644, proc_dointvec_minmax, true);
4318        set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4319                sizeof(int), 0644, proc_dointvec_minmax, true);
4320        set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4321                sizeof(int), 0644, proc_dointvec_minmax, true);
4322        set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4323                sizeof(int), 0644, proc_dointvec_minmax, true);
4324        set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4325                sizeof(int), 0644, proc_dointvec_minmax, false);
4326        set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4327                sizeof(int), 0644, proc_dointvec_minmax, false);
4328        set_table_entry(&table[9], "cache_nice_tries",
4329                &sd->cache_nice_tries,
4330                sizeof(int), 0644, proc_dointvec_minmax, false);
4331        set_table_entry(&table[10], "flags", &sd->flags,
4332                sizeof(int), 0644, proc_dointvec_minmax, false);
4333        set_table_entry(&table[11], "name", sd->name,
4334                CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4335        /* &table[12] is terminator */
4336
4337        return table;
4338}
4339
4340static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4341{
4342        struct ctl_table *entry, *table;
4343        struct sched_domain *sd;
4344        int domain_num = 0, i;
4345        char buf[32];
4346
4347        for_each_domain(cpu, sd)
4348                domain_num++;
4349        entry = table = sd_alloc_ctl_entry(domain_num + 1);
4350        if (table == NULL)
4351                return NULL;
4352
4353        i = 0;
4354        for_each_domain(cpu, sd) {
4355                snprintf(buf, 32, "domain%d", i);
4356                entry->procname = kstrdup(buf, GFP_KERNEL);
4357                entry->mode = 0555;
4358                entry->child = sd_alloc_ctl_domain_table(sd);
4359                entry++;
4360                i++;
4361        }
4362        return table;
4363}
4364
4365static struct ctl_table_header *sd_sysctl_header;
4366static void register_sched_domain_sysctl(void)
4367{
4368        int i, cpu_num = num_possible_cpus();
4369        struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4370        char buf[32];
4371
4372        WARN_ON(sd_ctl_dir[0].child);
4373        sd_ctl_dir[0].child = entry;
4374
4375        if (entry == NULL)
4376                return;
4377
4378        for_each_possible_cpu(i) {
4379                snprintf(buf, 32, "cpu%d", i);
4380                entry->procname = kstrdup(buf, GFP_KERNEL);
4381                entry->mode = 0555;
4382                entry->child = sd_alloc_ctl_cpu_table(i);
4383                entry++;
4384        }
4385
4386        WARN_ON(sd_sysctl_header);
4387        sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4388}
4389
4390/* may be called multiple times per register */
4391static void unregister_sched_domain_sysctl(void)
4392{
4393        if (sd_sysctl_header)
4394                unregister_sysctl_table(sd_sysctl_header);
4395        sd_sysctl_header = NULL;
4396        if (sd_ctl_dir[0].child)
4397                sd_free_ctl_entry(&sd_ctl_dir[0].child);
4398}
4399#else
4400static void register_sched_domain_sysctl(void)
4401{
4402}
4403static void unregister_sched_domain_sysctl(void)
4404{
4405}
4406#endif
4407
4408static void set_rq_online(struct rq *rq)
4409{
4410        if (!rq->online) {
4411                const struct sched_class *class;
4412
4413                cpumask_set_cpu(rq->cpu, rq->rd->online);
4414                rq->online = 1;
4415
4416                for_each_class(class) {
4417                        if (class->rq_online)
4418                                class->rq_online(rq);
4419                }
4420        }
4421}
4422
4423static void set_rq_offline(struct rq *rq)
4424{
4425        if (rq->online) {
4426                const struct sched_class *class;
4427
4428                for_each_class(class) {
4429                        if (class->rq_offline)
4430                                class->rq_offline(rq);
4431                }
4432
4433                cpumask_clear_cpu(rq->cpu, rq->rd->online);
4434                rq->online = 0;
4435        }
4436}
4437
4438/*
4439 * migration_call - callback that gets triggered when a CPU is added.
4440 * Here we can start up the necessary migration thread for the new CPU.
4441 */
4442static int
4443migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4444{
4445        int cpu = (long)hcpu;
4446        unsigned long flags;
4447        struct rq *rq = cpu_rq(cpu);
4448
4449        switch (action & ~CPU_TASKS_FROZEN) {
4450
4451        case CPU_UP_PREPARE:
4452                rq->calc_load_update = calc_load_update;
4453                break;
4454
4455        case CPU_ONLINE:
4456                /* Update our root-domain */
4457                raw_spin_lock_irqsave(&rq->lock, flags);
4458                if (rq->rd) {
4459                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4460
4461                        set_rq_online(rq);
4462                }
4463                raw_spin_unlock_irqrestore(&rq->lock, flags);
4464                break;
4465
4466#ifdef CONFIG_HOTPLUG_CPU
4467        case CPU_DYING:
4468                sched_ttwu_pending();
4469                /* Update our root-domain */
4470                raw_spin_lock_irqsave(&rq->lock, flags);
4471                if (rq->rd) {
4472                        BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
4473                        set_rq_offline(rq);
4474                }
4475                migrate_tasks(cpu);
4476                BUG_ON(rq->nr_running != 1); /* the migration thread */
4477                raw_spin_unlock_irqrestore(&rq->lock, flags);
4478                break;
4479
4480        case CPU_DEAD:
4481                calc_load_migrate(rq);
4482                break;
4483#endif
4484        }
4485
4486        update_max_interval();
4487
4488        return NOTIFY_OK;
4489}
4490
4491/*
4492 * Register at high priority so that task migration (migrate_all_tasks)
4493 * happens before everything else.  This has to be lower priority than
4494 * the notifier in the perf_event subsystem, though.
4495 */
4496static struct notifier_block migration_notifier = {
4497        .notifier_call = migration_call,
4498        .priority = CPU_PRI_MIGRATION,
4499};
4500
4501static int sched_cpu_active(struct notifier_block *nfb,
4502                                      unsigned long action, void *hcpu)
4503{
4504        switch (action & ~CPU_TASKS_FROZEN) {
4505        case CPU_STARTING:
4506        case CPU_DOWN_FAILED:
4507                set_cpu_active((long)hcpu, true);
4508                return NOTIFY_OK;
4509        default:
4510                return NOTIFY_DONE;
4511        }
4512}
4513
4514static int sched_cpu_inactive(struct notifier_block *nfb,
4515                                        unsigned long action, void *hcpu)
4516{
4517        switch (action & ~CPU_TASKS_FROZEN) {
4518        case CPU_DOWN_PREPARE:
4519                set_cpu_active((long)hcpu, false);
4520                return NOTIFY_OK;
4521        default:
4522                return NOTIFY_DONE;
4523        }
4524}
4525
4526static int __init migration_init(void)
4527{
4528        void *cpu = (void *)(long)smp_processor_id();
4529        int err;
4530
4531        /* Initialize migration for the boot CPU */
4532        err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4533        BUG_ON(err == NOTIFY_BAD);
4534        migration_call(&migration_notifier, CPU_ONLINE, cpu);
4535        register_cpu_notifier(&migration_notifier);
4536
4537        /* Register cpu active notifiers */
4538        cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4539        cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4540
4541        return 0;
4542}
4543early_initcall(migration_init);
4544#endif
4545
4546#ifdef CONFIG_SMP
4547
4548static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4549
4550#ifdef CONFIG_SCHED_DEBUG
4551
4552static __read_mostly int sched_debug_enabled;
4553
4554static int __init sched_debug_setup(char *str)
4555{
4556        sched_debug_enabled = 1;
4557
4558        return 0;
4559}
4560early_param("sched_debug", sched_debug_setup);
4561
4562static inline bool sched_debug(void)
4563{
4564        return sched_debug_enabled;
4565}
4566
4567static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
4568                                  struct cpumask *groupmask)
4569{
4570        struct sched_group *group = sd->groups;
4571        char str[256];
4572
4573        cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
4574        cpumask_clear(groupmask);
4575
4576        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4577
4578        if (!(sd->flags & SD_LOAD_BALANCE)) {
4579                printk("does not load-balance\n");
4580                if (sd->parent)
4581                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4582                                        " has parent");
4583                return -1;
4584        }
4585
4586        printk(KERN_CONT "span %s level %s\n", str, sd->name);
4587
4588        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4589                printk(KERN_ERR "ERROR: domain->span does not contain "
4590                                "CPU%d\n", cpu);
4591        }
4592        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4593                printk(KERN_ERR "ERROR: domain->groups does not contain"
4594                                " CPU%d\n", cpu);
4595        }
4596
4597        printk(KERN_DEBUG "%*s groups:", level + 1, "");
4598        do {
4599                if (!group) {
4600                        printk("\n");
4601                        printk(KERN_ERR "ERROR: group is NULL\n");
4602                        break;
4603                }
4604
4605                /*
4606                 * Even though we initialize ->power to something semi-sane,
4607                 * we leave power_orig unset. This allows us to detect if
4608                 * domain iteration is still funny without causing /0 traps.
4609                 */
4610                if (!group->sgp->power_orig) {
4611                        printk(KERN_CONT "\n");
4612                        printk(KERN_ERR "ERROR: domain->cpu_power not "
4613                                        "set\n");
4614                        break;
4615                }
4616
4617                if (!cpumask_weight(sched_group_cpus(group))) {
4618                        printk(KERN_CONT "\n");
4619                        printk(KERN_ERR "ERROR: empty group\n");
4620                        break;
4621                }
4622
4623                if (!(sd->flags & SD_OVERLAP) &&
4624                    cpumask_intersects(groupmask, sched_group_cpus(group))) {
4625                        printk(KERN_CONT "\n");
4626                        printk(KERN_ERR "ERROR: repeated CPUs\n");
4627                        break;
4628                }
4629
4630                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
4631
4632                cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4633
4634                printk(KERN_CONT " %s", str);
4635                if (group->sgp->power != SCHED_POWER_SCALE) {
4636                        printk(KERN_CONT " (cpu_power = %d)",
4637                                group->sgp->power);
4638                }
4639
4640                group = group->next;
4641        } while (group != sd->groups);
4642        printk(KERN_CONT "\n");
4643
4644        if (!cpumask_equal(sched_domain_span(sd), groupmask))
4645                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4646
4647        if (sd->parent &&
4648            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4649                printk(KERN_ERR "ERROR: parent span is not a superset "
4650                        "of domain->span\n");
4651        return 0;
4652}
4653
4654static void sched_domain_debug(struct sched_domain *sd, int cpu)
4655{
4656        int level = 0;
4657
4658        if (!sched_debug_enabled)
4659                return;
4660
4661        if (!sd) {
4662                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4663                return;
4664        }
4665
4666        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4667
4668        for (;;) {
4669                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4670                        break;
4671                level++;
4672                sd = sd->parent;
4673                if (!sd)
4674                        break;
4675        }
4676}
4677#else /* !CONFIG_SCHED_DEBUG */
4678# define sched_domain_debug(sd, cpu) do { } while (0)
4679static inline bool sched_debug(void)
4680{
4681        return false;
4682}
4683#endif /* CONFIG_SCHED_DEBUG */
4684
4685static int sd_degenerate(struct sched_domain *sd)
4686{
4687        if (cpumask_weight(sched_domain_span(sd)) == 1)
4688                return 1;
4689
4690        /* Following flags need at least 2 groups */
4691        if (sd->flags & (SD_LOAD_BALANCE |
4692                         SD_BALANCE_NEWIDLE |
4693                         SD_BALANCE_FORK |
4694                         SD_BALANCE_EXEC |
4695                         SD_SHARE_CPUPOWER |
4696                         SD_SHARE_PKG_RESOURCES)) {
4697                if (sd->groups != sd->groups->next)
4698                        return 0;
4699        }
4700
4701        /* Following flags don't use groups */
4702        if (sd->flags & (SD_WAKE_AFFINE))
4703                return 0;
4704
4705        return 1;
4706}
4707
4708static int
4709sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
4710{
4711        unsigned long cflags = sd->flags, pflags = parent->flags;
4712
4713        if (sd_degenerate(parent))
4714                return 1;
4715
4716        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
4717                return 0;
4718
4719        /* Flags needing groups don't count if only 1 group in parent */
4720        if (parent->groups == parent->groups->next) {
4721                pflags &= ~(SD_LOAD_BALANCE |
4722                                SD_BALANCE_NEWIDLE |
4723                                SD_BALANCE_FORK |
4724                                SD_BALANCE_EXEC |
4725                                SD_SHARE_CPUPOWER |
4726                                SD_SHARE_PKG_RESOURCES |
4727                                SD_PREFER_SIBLING);
4728                if (nr_node_ids == 1)
4729                        pflags &= ~SD_SERIALIZE;
4730        }
4731        if (~cflags & pflags)
4732                return 0;
4733
4734        return 1;
4735}
4736
4737static void free_rootdomain(struct rcu_head *rcu)
4738{
4739        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
4740
4741        cpupri_cleanup(&rd->cpupri);
4742        free_cpumask_var(rd->rto_mask);
4743        free_cpumask_var(rd->online);
4744        free_cpumask_var(rd->span);
4745        kfree(rd);
4746}
4747
4748static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4749{
4750        struct root_domain *old_rd = NULL;
4751        unsigned long flags;
4752
4753        raw_spin_lock_irqsave(&rq->lock, flags);
4754
4755        if (rq->rd) {
4756                old_rd = rq->rd;
4757
4758                if (cpumask_test_cpu(rq->cpu, old_rd->online))
4759                        set_rq_offline(rq);
4760
4761                cpumask_clear_cpu(rq->cpu, old_rd->span);
4762
4763                /*
4764                 * If we dont want to free the old_rd yet then
4765                 * set old_rd to NULL to skip the freeing later
4766                 * in this function:
4767                 */
4768                if (!atomic_dec_and_test(&old_rd->refcount))
4769                        old_rd = NULL;
4770        }
4771
4772        atomic_inc(&rd->refcount);
4773        rq->rd = rd;
4774
4775        cpumask_set_cpu(rq->cpu, rd->span);
4776        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
4777                set_rq_online(rq);
4778
4779        raw_spin_unlock_irqrestore(&rq->lock, flags);
4780
4781        if (old_rd)
4782                call_rcu_sched(&old_rd->rcu, free_rootdomain);
4783}
4784
4785static int init_rootdomain(struct root_domain *rd)
4786{
4787        memset(rd, 0, sizeof(*rd));
4788
4789        if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
4790                goto out;
4791        if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
4792                goto free_span;
4793        if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
4794                goto free_online;
4795
4796        if (cpupri_init(&rd->cpupri) != 0)
4797                goto free_rto_mask;
4798        return 0;
4799
4800free_rto_mask:
4801        free_cpumask_var(rd->rto_mask);
4802free_online:
4803        free_cpumask_var(rd->online);
4804free_span:
4805        free_cpumask_var(rd->span);
4806out:
4807        return -ENOMEM;
4808}
4809
4810/*
4811 * By default the system creates a single root-domain with all cpus as
4812 * members (mimicking the global state we have today).
4813 */
4814struct root_domain def_root_domain;
4815
4816static void init_defrootdomain(void)
4817{
4818        init_rootdomain(&def_root_domain);
4819
4820        atomic_set(&def_root_domain.refcount, 1);
4821}
4822
4823static struct root_domain *alloc_rootdomain(void)
4824{
4825        struct root_domain *rd;
4826
4827        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
4828        if (!rd)
4829                return NULL;
4830
4831        if (init_rootdomain(rd) != 0) {
4832                kfree(rd);
4833                return NULL;
4834        }
4835
4836        return rd;
4837}
4838
4839static void free_sched_groups(struct sched_group *sg, int free_sgp)
4840{
4841        struct sched_group *tmp, *first;
4842
4843        if (!sg)
4844                return;
4845
4846        first = sg;
4847        do {
4848                tmp = sg->next;
4849
4850                if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
4851                        kfree(sg->sgp);
4852
4853                kfree(sg);
4854                sg = tmp;
4855        } while (sg != first);
4856}
4857
4858static void free_sched_domain(struct rcu_head *rcu)
4859{
4860        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
4861
4862        /*
4863         * If its an overlapping domain it has private groups, iterate and
4864         * nuke them all.
4865         */
4866        if (sd->flags & SD_OVERLAP) {
4867                free_sched_groups(sd->groups, 1);
4868        } else if (atomic_dec_and_test(&sd->groups->ref)) {
4869                kfree(sd->groups->sgp);
4870                kfree(sd->groups);
4871        }
4872        kfree(sd);
4873}
4874
4875static void destroy_sched_domain(struct sched_domain *sd, int cpu)
4876{
4877        call_rcu(&sd->rcu, free_sched_domain);
4878}
4879
4880static void destroy_sched_domains(struct sched_domain *sd, int cpu)
4881{
4882        for (; sd; sd = sd->parent)
4883                destroy_sched_domain(sd, cpu);
4884}
4885
4886/*
4887 * Keep a special pointer to the highest sched_domain that has
4888 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
4889 * allows us to avoid some pointer chasing select_idle_sibling().
4890 *
4891 * Also keep a unique ID per domain (we use the first cpu number in
4892 * the cpumask of the domain), this allows us to quickly tell if
4893 * two cpus are in the same cache domain, see cpus_share_cache().
4894 */
4895DEFINE_PER_CPU(struct sched_domain *, sd_llc);
4896DEFINE_PER_CPU(int, sd_llc_size);
4897DEFINE_PER_CPU(int, sd_llc_id);
4898DEFINE_PER_CPU(struct sched_domain *, sd_numa);
4899DEFINE_PER_CPU(struct sched_domain *, sd_busy);
4900DEFINE_PER_CPU(struct sched_domain *, sd_asym);
4901
4902static void update_top_cache_domain(int cpu)
4903{
4904        struct sched_domain *sd;
4905        struct sched_domain *busy_sd = NULL;
4906        int id = cpu;
4907        int size = 1;
4908
4909        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
4910        if (sd) {
4911                id = cpumask_first(sched_domain_span(sd));
4912                size = cpumask_weight(sched_domain_span(sd));
4913                busy_sd = sd->parent; /* sd_busy */
4914        }
4915        rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
4916
4917        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
4918        per_cpu(sd_llc_size, cpu) = size;
4919        per_cpu(sd_llc_id, cpu) = id;
4920
4921        sd = lowest_flag_domain(cpu, SD_NUMA);
4922        rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
4923
4924        sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
4925        rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
4926}
4927
4928/*
4929 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4930 * hold the hotplug lock.
4931 */
4932static void
4933cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
4934{
4935        struct rq *rq = cpu_rq(cpu);
4936        struct sched_domain *tmp;
4937
4938        /* Remove the sched domains which do not contribute to scheduling. */
4939        for (tmp = sd; tmp; ) {
4940                struct sched_domain *parent = tmp->parent;
4941                if (!parent)
4942                        break;
4943
4944                if (sd_parent_degenerate(tmp, parent)) {
4945                        tmp->parent = parent->parent;
4946                        if (parent->parent)
4947                                parent->parent->child = tmp;
4948                        /*
4949                         * Transfer SD_PREFER_SIBLING down in case of a
4950                         * degenerate parent; the spans match for this
4951                         * so the property transfers.
4952                         */
4953                        if (parent->flags & SD_PREFER_SIBLING)
4954                                tmp->flags |= SD_PREFER_SIBLING;
4955                        destroy_sched_domain(parent, cpu);
4956                } else
4957                        tmp = tmp->parent;
4958        }
4959
4960        if (sd && sd_degenerate(sd)) {
4961                tmp = sd;
4962                sd = sd->parent;
4963                destroy_sched_domain(tmp, cpu);
4964                if (sd)
4965                        sd->child = NULL;
4966        }
4967
4968        sched_domain_debug(sd, cpu);
4969
4970        rq_attach_root(rq, rd);
4971        tmp = rq->sd;
4972        rcu_assign_pointer(rq->sd, sd);
4973        destroy_sched_domains(tmp, cpu);
4974
4975        update_top_cache_domain(cpu);
4976}
4977
4978/* cpus with isolated domains */
4979static cpumask_var_t cpu_isolated_map;
4980
4981/* Setup the mask of cpus configured for isolated domains */
4982static int __init isolated_cpu_setup(char *str)
4983{
4984        alloc_bootmem_cpumask_var(&cpu_isolated_map);
4985        cpulist_parse(str, cpu_isolated_map);
4986        return 1;
4987}
4988
4989__setup("isolcpus=", isolated_cpu_setup);
4990
4991static const struct cpumask *cpu_cpu_mask(int cpu)
4992{
4993        return cpumask_of_node(cpu_to_node(cpu));
4994}
4995
4996struct sd_data {
4997        struct sched_domain **__percpu sd;
4998        struct sched_group **__percpu sg;
4999        struct sched_group_power **__percpu sgp;
5000};
5001
5002struct s_data {
5003        struct sched_domain ** __percpu sd;
5004        struct root_domain      *rd;
5005};
5006
5007enum s_alloc {
5008        sa_rootdomain,
5009        sa_sd,
5010        sa_sd_storage,
5011        sa_none,
5012};
5013
5014struct sched_domain_topology_level;
5015
5016typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5017typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5018
5019#define SDTL_OVERLAP    0x01
5020
5021struct sched_domain_topology_level {
5022        sched_domain_init_f init;
5023        sched_domain_mask_f mask;
5024        int                 flags;
5025        int                 numa_level;
5026        struct sd_data      data;
5027};
5028
5029/*
5030 * Build an iteration mask that can exclude certain CPUs from the upwards
5031 * domain traversal.
5032 *
5033 * Asymmetric node setups can result in situations where the domain tree is of
5034 * unequal depth, make sure to skip domains that already cover the entire
5035 * range.
5036 *
5037 * In that case build_sched_domains() will have terminated the iteration early
5038 * and our sibling sd spans will be empty. Domains should always include the
5039 * cpu they're built on, so check that.
5040 *
5041 */
5042static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5043{
5044        const struct cpumask *span = sched_domain_span(sd);
5045        struct sd_data *sdd = sd->private;
5046        struct sched_domain *sibling;
5047        int i;
5048
5049        for_each_cpu(i, span) {
5050                sibling = *per_cpu_ptr(sdd->sd, i);
5051                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5052                        continue;
5053
5054                cpumask_set_cpu(i, sched_group_mask(sg));
5055        }
5056}
5057
5058/*
5059 * Return the canonical balance cpu for this group, this is the first cpu
5060 * of this group that's also in the iteration mask.
5061 */
5062int group_balance_cpu(struct sched_group *sg)
5063{
5064        return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5065}
5066
5067static int
5068build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5069{
5070        struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5071        const struct cpumask *span = sched_domain_span(sd);
5072        struct cpumask *covered = sched_domains_tmpmask;
5073        struct sd_data *sdd = sd->private;
5074        struct sched_domain *child;
5075        int i;
5076
5077        cpumask_clear(covered);
5078
5079        for_each_cpu(i, span) {
5080                struct cpumask *sg_span;
5081
5082                if (cpumask_test_cpu(i, covered))
5083                        continue;
5084
5085                child = *per_cpu_ptr(sdd->sd, i);
5086
5087                /* See the comment near build_group_mask(). */
5088                if (!cpumask_test_cpu(i, sched_domain_span(child)))
5089                        continue;
5090
5091                sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5092                                GFP_KERNEL, cpu_to_node(cpu));
5093
5094                if (!sg)
5095                        goto fail;
5096
5097                sg_span = sched_group_cpus(sg);
5098                if (child->child) {
5099                        child = child->child;
5100                        cpumask_copy(sg_span, sched_domain_span(child));
5101                } else
5102                        cpumask_set_cpu(i, sg_span);
5103
5104                cpumask_or(covered, covered, sg_span);
5105
5106                sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5107                if (atomic_inc_return(&sg->sgp->ref) == 1)
5108                        build_group_mask(sd, sg);
5109
5110                /*
5111                 * Initialize sgp->power such that even if we mess up the
5112                 * domains and no possible iteration will get us here, we won't
5113                 * die on a /0 trap.
5114                 */
5115                sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5116                sg->sgp->power_orig = sg->sgp->power;
5117
5118                /*
5119                 * Make sure the first group of this domain contains the
5120                 * canonical balance cpu. Otherwise the sched_domain iteration
5121                 * breaks. See update_sg_lb_stats().
5122                 */
5123                if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5124                    group_balance_cpu(sg) == cpu)
5125                        groups = sg;
5126
5127                if (!first)
5128                        first = sg;
5129                if (last)
5130                        last->next = sg;
5131                last = sg;
5132                last->next = first;
5133        }
5134        sd->groups = groups;
5135
5136        return 0;
5137
5138fail:
5139        free_sched_groups(first, 0);
5140
5141        return -ENOMEM;
5142}
5143
5144static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5145{
5146        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5147        struct sched_domain *child = sd->child;
5148
5149        if (child)
5150                cpu = cpumask_first(sched_domain_span(child));
5151
5152        if (sg) {
5153                *sg = *per_cpu_ptr(sdd->sg, cpu);
5154                (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5155                atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5156        }
5157
5158        return cpu;
5159}
5160
5161/*
5162 * build_sched_groups will build a circular linked list of the groups
5163 * covered by the given span, and will set each group's ->cpumask correctly,
5164 * and ->cpu_power to 0.
5165 *
5166 * Assumes the sched_domain tree is fully constructed
5167 */
5168static int
5169build_sched_groups(struct sched_domain *sd, int cpu)
5170{
5171        struct sched_group *first = NULL, *last = NULL;
5172        struct sd_data *sdd = sd->private;
5173        const struct cpumask *span = sched_domain_span(sd);
5174        struct cpumask *covered;
5175        int i;
5176
5177        get_group(cpu, sdd, &sd->groups);
5178        atomic_inc(&sd->groups->ref);
5179
5180        if (cpu != cpumask_first(span))
5181                return 0;
5182
5183        lockdep_assert_held(&sched_domains_mutex);
5184        covered = sched_domains_tmpmask;
5185
5186        cpumask_clear(covered);
5187
5188        for_each_cpu(i, span) {
5189                struct sched_group *sg;
5190                int group, j;
5191
5192                if (cpumask_test_cpu(i, covered))
5193                        continue;
5194
5195                group = get_group(i, sdd, &sg);
5196                cpumask_clear(sched_group_cpus(sg));
5197                sg->sgp->power = 0;
5198                cpumask_setall(sched_group_mask(sg));
5199
5200                for_each_cpu(j, span) {
5201                        if (get_group(j, sdd, NULL) != group)
5202                                continue;
5203
5204                        cpumask_set_cpu(j, covered);
5205                        cpumask_set_cpu(j, sched_group_cpus(sg));
5206                }
5207
5208                if (!first)
5209                        first = sg;
5210                if (last)
5211                        last->next = sg;
5212                last = sg;
5213        }
5214        last->next = first;
5215
5216        return 0;
5217}
5218
5219/*
5220 * Initialize sched groups cpu_power.
5221 *
5222 * cpu_power indicates the capacity of sched group, which is used while
5223 * distributing the load between different sched groups in a sched domain.
5224 * Typically cpu_power for all the groups in a sched domain will be same unless
5225 * there are asymmetries in the topology. If there are asymmetries, group
5226 * having more cpu_power will pickup more load compared to the group having
5227 * less cpu_power.
5228 */
5229static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5230{
5231        struct sched_group *sg = sd->groups;
5232
5233        WARN_ON(!sg);
5234
5235        do {
5236                sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5237                sg = sg->next;
5238        } while (sg != sd->groups);
5239
5240        if (cpu != group_balance_cpu(sg))
5241                return;
5242
5243        update_group_power(sd, cpu);
5244        atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5245}
5246
5247int __weak arch_sd_sibling_asym_packing(void)
5248{
5249       return 0*SD_ASYM_PACKING;
5250}
5251
5252/*
5253 * Initializers for schedule domains
5254 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5255 */
5256
5257#ifdef CONFIG_SCHED_DEBUG
5258# define SD_INIT_NAME(sd, type)         sd->name = #type
5259#else
5260# define SD_INIT_NAME(sd, type)         do { } while (0)
5261#endif
5262
5263#define SD_INIT_FUNC(type)                                              \
5264static noinline struct sched_domain *                                   \
5265sd_init_##type(struct sched_domain_topology_level *tl, int cpu)         \
5266{                                                                       \
5267        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);       \
5268        *sd = SD_##type##_INIT;                                         \
5269        SD_INIT_NAME(sd, type);                                         \
5270        sd->private = &tl->data;                                        \
5271        return sd;                                                      \
5272}
5273
5274SD_INIT_FUNC(CPU)
5275#ifdef CONFIG_SCHED_SMT
5276 SD_INIT_FUNC(SIBLING)
5277#endif
5278#ifdef CONFIG_SCHED_MC
5279 SD_INIT_FUNC(MC)
5280#endif
5281#ifdef CONFIG_SCHED_BOOK
5282 SD_INIT_FUNC(BOOK)
5283#endif
5284
5285static int default_relax_domain_level = -1;
5286int sched_domain_level_max;
5287
5288static int __init setup_relax_domain_level(char *str)
5289{
5290        if (kstrtoint(str, 0, &default_relax_domain_level))
5291                pr_warn("Unable to set relax_domain_level\n");
5292
5293        return 1;
5294}
5295__setup("relax_domain_level=", setup_relax_domain_level);
5296
5297static void set_domain_attribute(struct sched_domain *sd,
5298                                 struct sched_domain_attr *attr)
5299{
5300        int request;
5301
5302        if (!attr || attr->relax_domain_level < 0) {
5303                if (default_relax_domain_level < 0)
5304                        return;
5305                else
5306                        request = default_relax_domain_level;
5307        } else
5308                request = attr->relax_domain_level;
5309        if (request < sd->level) {
5310                /* turn off idle balance on this domain */
5311                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5312        } else {
5313                /* turn on idle balance on this domain */
5314                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5315        }
5316}
5317
5318static void __sdt_free(const struct cpumask *cpu_map);
5319static int __sdt_alloc(const struct cpumask *cpu_map);
5320
5321static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5322                                 const struct cpumask *cpu_map)
5323{
5324        switch (what) {
5325        case sa_rootdomain:
5326                if (!atomic_read(&d->rd->refcount))
5327                        free_rootdomain(&d->rd->rcu); /* fall through */
5328        case sa_sd:
5329                free_percpu(d->sd); /* fall through */
5330        case sa_sd_storage:
5331                __sdt_free(cpu_map); /* fall through */
5332        case sa_none:
5333                break;
5334        }
5335}
5336
5337static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5338                                                   const struct cpumask *cpu_map)
5339{
5340        memset(d, 0, sizeof(*d));
5341
5342        if (__sdt_alloc(cpu_map))
5343                return sa_sd_storage;
5344        d->sd = alloc_percpu(struct sched_domain *);
5345        if (!d->sd)
5346                return sa_sd_storage;
5347        d->rd = alloc_rootdomain();
5348        if (!d->rd)
5349                return sa_sd;
5350        return sa_rootdomain;
5351}
5352
5353/*
5354 * NULL the sd_data elements we've used to build the sched_domain and
5355 * sched_group structure so that the subsequent __free_domain_allocs()
5356 * will not free the data we're using.
5357 */
5358static void claim_allocations(int cpu, struct sched_domain *sd)
5359{
5360        struct sd_data *sdd = sd->private;
5361
5362        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5363        *per_cpu_ptr(sdd->sd, cpu) = NULL;
5364
5365        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5366                *per_cpu_ptr(sdd->sg, cpu) = NULL;
5367
5368        if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5369                *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5370}
5371
5372#ifdef CONFIG_SCHED_SMT
5373static const struct cpumask *cpu_smt_mask(int cpu)
5374{
5375        return topology_thread_cpumask(cpu);
5376}
5377#endif
5378
5379/*
5380 * Topology list, bottom-up.
5381 */
5382static struct sched_domain_topology_level default_topology[] = {
5383#ifdef CONFIG_SCHED_SMT
5384        { sd_init_SIBLING, cpu_smt_mask, },
5385#endif
5386#ifdef CONFIG_SCHED_MC
5387        { sd_init_MC, cpu_coregroup_mask, },
5388#endif
5389#ifdef CONFIG_SCHED_BOOK
5390        { sd_init_BOOK, cpu_book_mask, },
5391#endif
5392        { sd_init_CPU, cpu_cpu_mask, },
5393        { NULL, },
5394};
5395
5396static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5397
5398#define for_each_sd_topology(tl)                        \
5399        for (tl = sched_domain_topology; tl->init; tl++)
5400
5401#ifdef CONFIG_NUMA
5402
5403static int sched_domains_numa_levels;
5404static int *sched_domains_numa_distance;
5405static struct cpumask ***sched_domains_numa_masks;
5406static int sched_domains_curr_level;
5407
5408static inline int sd_local_flags(int level)
5409{
5410        if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5411                return 0;
5412
5413        return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5414}
5415
5416static struct sched_domain *
5417sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5418{
5419        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5420        int level = tl->numa_level;
5421        int sd_weight = cpumask_weight(
5422                        sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5423
5424        *sd = (struct sched_domain){
5425                .min_interval           = sd_weight,
5426                .max_interval           = 2*sd_weight,
5427                .busy_factor            = 32,
5428                .imbalance_pct          = 125,
5429                .cache_nice_tries       = 2,
5430                .busy_idx               = 3,
5431                .idle_idx               = 2,
5432                .newidle_idx            = 0,
5433                .wake_idx               = 0,
5434                .forkexec_idx           = 0,
5435
5436                .flags                  = 1*SD_LOAD_BALANCE
5437                                        | 1*SD_BALANCE_NEWIDLE
5438                                        | 0*SD_BALANCE_EXEC
5439                                        | 0*SD_BALANCE_FORK
5440                                        | 0*SD_BALANCE_WAKE
5441                                        | 0*SD_WAKE_AFFINE
5442                                        | 0*SD_SHARE_CPUPOWER
5443                                        | 0*SD_SHARE_PKG_RESOURCES
5444                                        | 1*SD_SERIALIZE
5445                                        | 0*SD_PREFER_SIBLING
5446                                        | 1*SD_NUMA
5447                                        | sd_local_flags(level)
5448                                        ,
5449                .last_balance           = jiffies,
5450                .balance_interval       = sd_weight,
5451        };
5452        SD_INIT_NAME(sd, NUMA);
5453        sd->private = &tl->data;
5454
5455        /*
5456         * Ugly hack to pass state to sd_numa_mask()...
5457         */
5458        sched_domains_curr_level = tl->numa_level;
5459
5460        return sd;
5461}
5462
5463static const struct cpumask *sd_numa_mask(int cpu)
5464{
5465        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5466}
5467
5468static void sched_numa_warn(const char *str)
5469{
5470        static int done = false;
5471        int i,j;
5472
5473        if (done)
5474                return;
5475
5476        done = true;
5477
5478        printk(KERN_WARNING "ERROR: %s\n\n", str);
5479
5480        for (i = 0; i < nr_node_ids; i++) {
5481                printk(KERN_WARNING "  ");
5482                for (j = 0; j < nr_node_ids; j++)
5483                        printk(KERN_CONT "%02d ", node_distance(i,j));
5484                printk(KERN_CONT "\n");
5485        }
5486        printk(KERN_WARNING "\n");
5487}
5488
5489static bool find_numa_distance(int distance)
5490{
5491        int i;
5492
5493        if (distance == node_distance(0, 0))
5494                return true;
5495
5496        for (i = 0; i < sched_domains_numa_levels; i++) {
5497                if (sched_domains_numa_distance[i] == distance)
5498                        return true;
5499        }
5500
5501        return false;
5502}
5503
5504static void sched_init_numa(void)
5505{
5506        int next_distance, curr_distance = node_distance(0, 0);
5507        struct sched_domain_topology_level *tl;
5508        int level = 0;
5509        int i, j, k;
5510
5511        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5512        if (!sched_domains_numa_distance)
5513                return;
5514
5515        /*
5516         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5517         * unique distances in the node_distance() table.
5518         *
5519         * Assumes node_distance(0,j) includes all distances in
5520         * node_distance(i,j) in order to avoid cubic time.
5521         */
5522        next_distance = curr_distance;
5523        for (i = 0; i < nr_node_ids; i++) {
5524                for (j = 0; j < nr_node_ids; j++) {
5525                        for (k = 0; k < nr_node_ids; k++) {
5526                                int distance = node_distance(i, k);
5527
5528                                if (distance > curr_distance &&
5529                                    (distance < next_distance ||
5530                                     next_distance == curr_distance))
5531                                        next_distance = distance;
5532
5533                                /*
5534                                 * While not a strong assumption it would be nice to know
5535                                 * about cases where if node A is connected to B, B is not
5536                                 * equally connected to A.
5537                                 */
5538                                if (sched_debug() && node_distance(k, i) != distance)
5539                                        sched_numa_warn("Node-distance not symmetric");
5540
5541                                if (sched_debug() && i && !find_numa_distance(distance))
5542                                        sched_numa_warn("Node-0 not representative");
5543                        }
5544                        if (next_distance != curr_distance) {
5545                                sched_domains_numa_distance[level++] = next_distance;
5546                                sched_domains_numa_levels = level;
5547                                curr_distance = next_distance;
5548                        } else break;
5549                }
5550
5551                /*
5552                 * In case of sched_debug() we verify the above assumption.
5553                 */
5554                if (!sched_debug())
5555                        break;
5556        }
5557        /*
5558         * 'level' contains the number of unique distances, excluding the
5559         * identity distance node_distance(i,i).
5560         *
5561         * The sched_domains_numa_distance[] array includes the actual distance
5562         * numbers.
5563         */
5564
5565        /*
5566         * Here, we should temporarily reset sched_domains_numa_levels to 0.
5567         * If it fails to allocate memory for array sched_domains_numa_masks[][],
5568         * the array will contain less then 'level' members. This could be
5569         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5570         * in other functions.
5571         *
5572         * We reset it to 'level' at the end of this function.
5573         */
5574        sched_domains_numa_levels = 0;
5575
5576        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5577        if (!sched_domains_numa_masks)
5578                return;
5579
5580        /*
5581         * Now for each level, construct a mask per node which contains all
5582         * cpus of nodes that are that many hops away from us.
5583         */
5584        for (i = 0; i < level; i++) {
5585                sched_domains_numa_masks[i] =
5586                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5587                if (!sched_domains_numa_masks[i])
5588                        return;
5589
5590                for (j = 0; j < nr_node_ids; j++) {
5591                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
5592                        if (!mask)
5593                                return;
5594
5595                        sched_domains_numa_masks[i][j] = mask;
5596
5597                        for (k = 0; k < nr_node_ids; k++) {
5598                                if (node_distance(j, k) > sched_domains_numa_distance[i])
5599                                        continue;
5600
5601                                cpumask_or(mask, mask, cpumask_of_node(k));
5602                        }
5603                }
5604        }
5605
5606        tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5607                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5608        if (!tl)
5609                return;
5610
5611        /*
5612         * Copy the default topology bits..
5613         */
5614        for (i = 0; default_topology[i].init; i++)
5615                tl[i] = default_topology[i];
5616
5617        /*
5618         * .. and append 'j' levels of NUMA goodness.
5619         */
5620        for (j = 0; j < level; i++, j++) {
5621                tl[i] = (struct sched_domain_topology_level){
5622                        .init = sd_numa_init,
5623                        .mask = sd_numa_mask,
5624                        .flags = SDTL_OVERLAP,
5625                        .numa_level = j,
5626                };
5627        }
5628
5629        sched_domain_topology = tl;
5630
5631        sched_domains_numa_levels = level;
5632}
5633
5634static void sched_domains_numa_masks_set(int cpu)
5635{
5636        int i, j;
5637        int node = cpu_to_node(cpu);
5638
5639        for (i = 0; i < sched_domains_numa_levels; i++) {
5640                for (j = 0; j < nr_node_ids; j++) {
5641                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
5642                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5643                }
5644        }
5645}
5646
5647static void sched_domains_numa_masks_clear(int cpu)
5648{
5649        int i, j;
5650        for (i = 0; i < sched_domains_numa_levels; i++) {
5651                for (j = 0; j < nr_node_ids; j++)
5652                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5653        }
5654}
5655
5656/*
5657 * Update sched_domains_numa_masks[level][node] array when new cpus
5658 * are onlined.
5659 */
5660static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5661                                           unsigned long action,
5662                                           void *hcpu)
5663{
5664        int cpu = (long)hcpu;
5665
5666        switch (action & ~CPU_TASKS_FROZEN) {
5667        case CPU_ONLINE:
5668                sched_domains_numa_masks_set(cpu);
5669                break;
5670
5671        case CPU_DEAD:
5672                sched_domains_numa_masks_clear(cpu);
5673                break;
5674
5675        default:
5676                return NOTIFY_DONE;
5677        }
5678
5679        return NOTIFY_OK;
5680}
5681#else
5682static inline void sched_init_numa(void)
5683{
5684}
5685
5686static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5687                                           unsigned long action,
5688                                           void *hcpu)
5689{
5690        return 0;
5691}
5692#endif /* CONFIG_NUMA */
5693
5694static int __sdt_alloc(const struct cpumask *cpu_map)
5695{
5696        struct sched_domain_topology_level *tl;
5697        int j;
5698
5699        for_each_sd_topology(tl) {
5700                struct sd_data *sdd = &tl->data;
5701
5702                sdd->sd = alloc_percpu(struct sched_domain *);
5703                if (!sdd->sd)
5704                        return -ENOMEM;
5705
5706                sdd->sg = alloc_percpu(struct sched_group *);
5707                if (!sdd->sg)
5708                        return -ENOMEM;
5709
5710                sdd->sgp = alloc_percpu(struct sched_group_power *);
5711                if (!sdd->sgp)
5712                        return -ENOMEM;
5713
5714                for_each_cpu(j, cpu_map) {
5715                        struct sched_domain *sd;
5716                        struct sched_group *sg;
5717                        struct sched_group_power *sgp;
5718
5719                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5720                                        GFP_KERNEL, cpu_to_node(j));
5721                        if (!sd)
5722                                return -ENOMEM;
5723
5724                        *per_cpu_ptr(sdd->sd, j) = sd;
5725
5726                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5727                                        GFP_KERNEL, cpu_to_node(j));
5728                        if (!sg)
5729                                return -ENOMEM;
5730
5731                        sg->next = sg;
5732
5733                        *per_cpu_ptr(sdd->sg, j) = sg;
5734
5735                        sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
5736                                        GFP_KERNEL, cpu_to_node(j));
5737                        if (!sgp)
5738                                return -ENOMEM;
5739
5740                        *per_cpu_ptr(sdd->sgp, j) = sgp;
5741                }
5742        }
5743
5744        return 0;
5745}
5746
5747static void __sdt_free(const struct cpumask *cpu_map)
5748{
5749        struct sched_domain_topology_level *tl;
5750        int j;
5751
5752        for_each_sd_topology(tl) {
5753                struct sd_data *sdd = &tl->data;
5754
5755                for_each_cpu(j, cpu_map) {
5756                        struct sched_domain *sd;
5757
5758                        if (sdd->sd) {
5759                                sd = *per_cpu_ptr(sdd->sd, j);
5760                                if (sd && (sd->flags & SD_OVERLAP))
5761                                        free_sched_groups(sd->groups, 0);
5762                                kfree(*per_cpu_ptr(sdd->sd, j));
5763                        }
5764
5765                        if (sdd->sg)
5766                                kfree(*per_cpu_ptr(sdd->sg, j));
5767                        if (sdd->sgp)
5768                                kfree(*per_cpu_ptr(sdd->sgp, j));
5769                }
5770                free_percpu(sdd->sd);
5771                sdd->sd = NULL;
5772                free_percpu(sdd->sg);
5773                sdd->sg = NULL;
5774                free_percpu(sdd->sgp);
5775                sdd->sgp = NULL;
5776        }
5777}
5778
5779struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5780                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5781                struct sched_domain *child, int cpu)
5782{
5783        struct sched_domain *sd = tl->init(tl, cpu);
5784        if (!sd)
5785                return child;
5786
5787        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
5788        if (child) {
5789                sd->level = child->level + 1;
5790                sched_domain_level_max = max(sched_domain_level_max, sd->level);
5791                child->parent = sd;
5792                sd->child = child;
5793        }
5794        set_domain_attribute(sd, attr);
5795
5796        return sd;
5797}
5798
5799/*
5800 * Build sched domains for a given set of cpus and attach the sched domains
5801 * to the individual cpus
5802 */
5803static int build_sched_domains(const struct cpumask *cpu_map,
5804                               struct sched_domain_attr *attr)
5805{
5806        enum s_alloc alloc_state;
5807        struct sched_domain *sd;
5808        struct s_data d;
5809        int i, ret = -ENOMEM;
5810
5811        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5812        if (alloc_state != sa_rootdomain)
5813                goto error;
5814
5815        /* Set up domains for cpus specified by the cpu_map. */
5816        for_each_cpu(i, cpu_map) {
5817                struct sched_domain_topology_level *tl;
5818
5819                sd = NULL;
5820                for_each_sd_topology(tl) {
5821                        sd = build_sched_domain(tl, cpu_map, attr, sd, i);
5822                        if (tl == sched_domain_topology)
5823                                *per_cpu_ptr(d.sd, i) = sd;
5824                        if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5825                                sd->flags |= SD_OVERLAP;
5826                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5827                                break;
5828                }
5829        }
5830
5831        /* Build the groups for the domains */
5832        for_each_cpu(i, cpu_map) {
5833                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5834                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
5835                        if (sd->flags & SD_OVERLAP) {
5836                                if (build_overlap_sched_groups(sd, i))
5837                                        goto error;
5838                        } else {
5839                                if (build_sched_groups(sd, i))
5840                                        goto error;
5841                        }
5842                }
5843        }
5844
5845        /* Calculate CPU power for physical packages and nodes */
5846        for (i = nr_cpumask_bits-1; i >= 0; i--) {
5847                if (!cpumask_test_cpu(i, cpu_map))
5848                        continue;
5849
5850                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5851                        claim_allocations(i, sd);
5852                        init_sched_groups_power(i, sd);
5853                }
5854        }
5855
5856        /* Attach the domains */
5857        rcu_read_lock();
5858        for_each_cpu(i, cpu_map) {
5859                sd = *per_cpu_ptr(d.sd, i);
5860                cpu_attach_domain(sd, d.rd, i);
5861        }
5862        rcu_read_unlock();
5863
5864        ret = 0;
5865error:
5866        __free_domain_allocs(&d, alloc_state, cpu_map);
5867        return ret;
5868}
5869
5870static cpumask_var_t *doms_cur; /* current sched domains */
5871static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
5872static struct sched_domain_attr *dattr_cur;
5873                                /* attribues of custom domains in 'doms_cur' */
5874
5875/*
5876 * Special case: If a kmalloc of a doms_cur partition (array of
5877 * cpumask) fails, then fallback to a single sched domain,
5878 * as determined by the single cpumask fallback_doms.
5879 */
5880static cpumask_var_t fallback_doms;
5881
5882/*
5883 * arch_update_cpu_topology lets virtualized architectures update the
5884 * cpu core maps. It is supposed to return 1 if the topology changed
5885 * or 0 if it stayed the same.
5886 */
5887int __attribute__((weak)) arch_update_cpu_topology(void)
5888{
5889        return 0;
5890}
5891
5892cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
5893{
5894        int i;
5895        cpumask_var_t *doms;
5896
5897        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
5898        if (!doms)
5899                return NULL;
5900        for (i = 0; i < ndoms; i++) {
5901                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
5902                        free_sched_domains(doms, i);
5903                        return NULL;
5904                }
5905        }
5906        return doms;
5907}
5908
5909void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
5910{
5911        unsigned int i;
5912        for (i = 0; i < ndoms; i++)
5913                free_cpumask_var(doms[i]);
5914        kfree(doms);
5915}
5916
5917/*
5918 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5919 * For now this just excludes isolated cpus, but could be used to
5920 * exclude other special cases in the future.
5921 */
5922static int init_sched_domains(const struct cpumask *cpu_map)
5923{
5924        int err;
5925
5926        arch_update_cpu_topology();
5927        ndoms_cur = 1;
5928        doms_cur = alloc_sched_domains(ndoms_cur);
5929        if (!doms_cur)
5930                doms_cur = &fallback_doms;
5931        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
5932        err = build_sched_domains(doms_cur[0], NULL);
5933        register_sched_domain_sysctl();
5934
5935        return err;
5936}
5937
5938/*
5939 * Detach sched domains from a group of cpus specified in cpu_map
5940 * These cpus will now be attached to the NULL domain
5941 */
5942static void detach_destroy_domains(const struct cpumask *cpu_map)
5943{
5944        int i;
5945
5946        rcu_read_lock();
5947        for_each_cpu(i, cpu_map)
5948                cpu_attach_domain(NULL, &def_root_domain, i);
5949        rcu_read_unlock();
5950}
5951
5952/* handle null as "default" */
5953static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
5954                        struct sched_domain_attr *new, int idx_new)
5955{
5956        struct sched_domain_attr tmp;
5957
5958        /* fast path */
5959        if (!new && !cur)
5960                return 1;
5961
5962        tmp = SD_ATTR_INIT;
5963        return !memcmp(cur ? (cur + idx_cur) : &tmp,
5964                        new ? (new + idx_new) : &tmp,
5965                        sizeof(struct sched_domain_attr));
5966}
5967
5968/*
5969 * Partition sched domains as specified by the 'ndoms_new'
5970 * cpumasks in the array doms_new[] of cpumasks. This compares
5971 * doms_new[] to the current sched domain partitioning, doms_cur[].
5972 * It destroys each deleted domain and builds each new domain.
5973 *
5974 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
5975 * The masks don't intersect (don't overlap.) We should setup one
5976 * sched domain for each mask. CPUs not in any of the cpumasks will
5977 * not be load balanced. If the same cpumask appears both in the
5978 * current 'doms_cur' domains and in the new 'doms_new', we can leave
5979 * it as it is.
5980 *
5981 * The passed in 'doms_new' should be allocated using
5982 * alloc_sched_domains.  This routine takes ownership of it and will
5983 * free_sched_domains it when done with it. If the caller failed the
5984 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
5985 * and partition_sched_domains() will fallback to the single partition
5986 * 'fallback_doms', it also forces the domains to be rebuilt.
5987 *
5988 * If doms_new == NULL it will be replaced with cpu_online_mask.
5989 * ndoms_new == 0 is a special case for destroying existing domains,
5990 * and it will not create the default domain.
5991 *
5992 * Call with hotplug lock held
5993 */
5994void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
5995                             struct sched_domain_attr *dattr_new)
5996{
5997        int i, j, n;
5998        int new_topology;
5999
6000        mutex_lock(&sched_domains_mutex);
6001
6002        /* always unregister in case we don't destroy any domains */
6003        unregister_sched_domain_sysctl();
6004
6005        /* Let architecture update cpu core mappings. */
6006        new_topology = arch_update_cpu_topology();
6007
6008        n = doms_new ? ndoms_new : 0;
6009
6010        /* Destroy deleted domains */
6011        for (i = 0; i < ndoms_cur; i++) {
6012                for (j = 0; j < n && !new_topology; j++) {
6013                        if (cpumask_equal(doms_cur[i], doms_new[j])
6014                            && dattrs_equal(dattr_cur, i, dattr_new, j))
6015                                goto match1;
6016                }
6017                /* no match - a current sched domain not in new doms_new[] */
6018                detach_destroy_domains(doms_cur[i]);
6019match1:
6020                ;
6021        }
6022
6023        n = ndoms_cur;
6024        if (doms_new == NULL) {
6025                n = 0;
6026                doms_new = &fallback_doms;
6027                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6028                WARN_ON_ONCE(dattr_new);
6029        }
6030
6031        /* Build new domains */
6032        for (i = 0; i < ndoms_new; i++) {
6033                for (j = 0; j < n && !new_topology; j++) {
6034                        if (cpumask_equal(doms_new[i], doms_cur[j])
6035                            && dattrs_equal(dattr_new, i, dattr_cur, j))
6036                                goto match2;
6037                }
6038                /* no match - add a new doms_new */
6039                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6040match2:
6041                ;
6042        }
6043
6044        /* Remember the new sched domains */
6045        if (doms_cur != &fallback_doms)
6046                free_sched_domains(doms_cur, ndoms_cur);
6047        kfree(dattr_cur);       /* kfree(NULL) is safe */
6048        doms_cur = doms_new;
6049        dattr_cur = dattr_new;
6050        ndoms_cur = ndoms_new;
6051
6052        register_sched_domain_sysctl();
6053
6054        mutex_unlock(&sched_domains_mutex);
6055}
6056
6057static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
6058
6059/*
6060 * Update cpusets according to cpu_active mask.  If cpusets are
6061 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6062 * around partition_sched_domains().
6063 *
6064 * If we come here as part of a suspend/resume, don't touch cpusets because we
6065 * want to restore it back to its original state upon resume anyway.
6066 */
6067static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6068                             void *hcpu)
6069{
6070        switch (action) {
6071        case CPU_ONLINE_FROZEN:
6072        case CPU_DOWN_FAILED_FROZEN:
6073
6074                /*
6075                 * num_cpus_frozen tracks how many CPUs are involved in suspend
6076                 * resume sequence. As long as this is not the last online
6077                 * operation in the resume sequence, just build a single sched
6078                 * domain, ignoring cpusets.
6079                 */
6080                num_cpus_frozen--;
6081                if (likely(num_cpus_frozen)) {
6082                        partition_sched_domains(1, NULL, NULL);
6083                        break;
6084                }
6085
6086                /*
6087                 * This is the last CPU online operation. So fall through and
6088                 * restore the original sched domains by considering the
6089                 * cpuset configurations.
6090                 */
6091
6092        case CPU_ONLINE:
6093        case CPU_DOWN_FAILED:
6094                cpuset_update_active_cpus(true);
6095                break;
6096        default:
6097                return NOTIFY_DONE;
6098        }
6099        return NOTIFY_OK;
6100}
6101
6102static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6103                               void *hcpu)
6104{
6105        switch (action) {
6106        case CPU_DOWN_PREPARE:
6107                cpuset_update_active_cpus(false);
6108                break;
6109        case CPU_DOWN_PREPARE_FROZEN:
6110                num_cpus_frozen++;
6111                partition_sched_domains(1, NULL, NULL);
6112                break;
6113        default:
6114                return NOTIFY_DONE;
6115        }
6116        return NOTIFY_OK;
6117}
6118
6119void __init sched_init_smp(void)
6120{
6121        cpumask_var_t non_isolated_cpus;
6122
6123        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6124        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6125
6126        sched_init_numa();
6127
6128        /*
6129         * There's no userspace yet to cause hotplug operations; hence all the
6130         * cpu masks are stable and all blatant races in the below code cannot
6131         * happen.
6132         */
6133        mutex_lock(&sched_domains_mutex);
6134        init_sched_domains(cpu_active_mask);
6135        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6136        if (cpumask_empty(non_isolated_cpus))
6137                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6138        mutex_unlock(&sched_domains_mutex);
6139
6140        hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6141        hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6142        hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6143
6144        init_hrtick();
6145
6146        /* Move init over to a non-isolated CPU */
6147        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6148                BUG();
6149        sched_init_granularity();
6150        free_cpumask_var(non_isolated_cpus);
6151
6152        init_sched_rt_class();
6153}
6154#else
6155void __init sched_init_smp(void)
6156{
6157        sched_init_granularity();
6158}
6159#endif /* CONFIG_SMP */
6160
6161const_debug unsigned int sysctl_timer_migration = 1;
6162
6163int in_sched_functions(unsigned long addr)
6164{
6165        return in_lock_functions(addr) ||
6166                (addr >= (unsigned long)__sched_text_start
6167                && addr < (unsigned long)__sched_text_end);
6168}
6169
6170#ifdef CONFIG_CGROUP_SCHED
6171/*
6172 * Default task group.
6173 * Every task in system belongs to this group at bootup.
6174 */
6175struct task_group root_task_group;
6176LIST_HEAD(task_groups);
6177#endif
6178
6179DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6180
6181void __init sched_init(void)
6182{
6183        int i, j;
6184        unsigned long alloc_size = 0, ptr;
6185
6186#ifdef CONFIG_FAIR_GROUP_SCHED
6187        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6188#endif
6189#ifdef CONFIG_RT_GROUP_SCHED
6190        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6191#endif
6192#ifdef CONFIG_CPUMASK_OFFSTACK
6193        alloc_size += num_possible_cpus() * cpumask_size();
6194#endif
6195        if (alloc_size) {
6196                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6197
6198#ifdef CONFIG_FAIR_GROUP_SCHED
6199                root_task_group.se = (struct sched_entity **)ptr;
6200                ptr += nr_cpu_ids * sizeof(void **);
6201
6202                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6203                ptr += nr_cpu_ids * sizeof(void **);
6204
6205#endif /* CONFIG_FAIR_GROUP_SCHED */
6206#ifdef CONFIG_RT_GROUP_SCHED
6207                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6208                ptr += nr_cpu_ids * sizeof(void **);
6209
6210                root_task_group.rt_rq = (struct rt_rq **)ptr;
6211                ptr += nr_cpu_ids * sizeof(void **);
6212
6213#endif /* CONFIG_RT_GROUP_SCHED */
6214#ifdef CONFIG_CPUMASK_OFFSTACK
6215                for_each_possible_cpu(i) {
6216                        per_cpu(load_balance_mask, i) = (void *)ptr;
6217                        ptr += cpumask_size();
6218                }
6219#endif /* CONFIG_CPUMASK_OFFSTACK */
6220        }
6221
6222#ifdef CONFIG_SMP
6223        init_defrootdomain();
6224#endif
6225
6226        init_rt_bandwidth(&def_rt_bandwidth,
6227                        global_rt_period(), global_rt_runtime());
6228
6229#ifdef CONFIG_RT_GROUP_SCHED
6230        init_rt_bandwidth(&root_task_group.rt_bandwidth,
6231                        global_rt_period(), global_rt_runtime());
6232#endif /* CONFIG_RT_GROUP_SCHED */
6233
6234#ifdef CONFIG_CGROUP_SCHED
6235        list_add(&root_task_group.list, &task_groups);
6236        INIT_LIST_HEAD(&root_task_group.children);
6237        INIT_LIST_HEAD(&root_task_group.siblings);
6238        autogroup_init(&init_task);
6239
6240#endif /* CONFIG_CGROUP_SCHED */
6241
6242        for_each_possible_cpu(i) {
6243                struct rq *rq;
6244
6245                rq = cpu_rq(i);
6246                raw_spin_lock_init(&rq->lock);
6247                rq->nr_running = 0;
6248                rq->calc_load_active = 0;
6249                rq->calc_load_update = jiffies + LOAD_FREQ;
6250                init_cfs_rq(&rq->cfs);
6251                init_rt_rq(&rq->rt, rq);
6252#ifdef CONFIG_FAIR_GROUP_SCHED
6253                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6254                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6255                /*
6256                 * How much cpu bandwidth does root_task_group get?
6257                 *
6258                 * In case of task-groups formed thr' the cgroup filesystem, it
6259                 * gets 100% of the cpu resources in the system. This overall
6260                 * system cpu resource is divided among the tasks of
6261                 * root_task_group and its child task-groups in a fair manner,
6262                 * based on each entity's (task or task-group's) weight
6263                 * (se->load.weight).
6264                 *
6265                 * In other words, if root_task_group has 10 tasks of weight
6266                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6267                 * then A0's share of the cpu resource is:
6268                 *
6269                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6270                 *
6271                 * We achieve this by letting root_task_group's tasks sit
6272                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6273                 */
6274                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6275                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6276#endif /* CONFIG_FAIR_GROUP_SCHED */
6277
6278                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6279#ifdef CONFIG_RT_GROUP_SCHED
6280                INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6281                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6282#endif
6283
6284                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6285                        rq->cpu_load[j] = 0;
6286
6287                rq->last_load_update_tick = jiffies;
6288
6289#ifdef CONFIG_SMP
6290                rq->sd = NULL;
6291                rq->rd = NULL;
6292                rq->cpu_power = SCHED_POWER_SCALE;
6293                rq->post_schedule = 0;
6294                rq->active_balance = 0;
6295                rq->next_balance = jiffies;
6296                rq->push_cpu = 0;
6297                rq->cpu = i;
6298                rq->online = 0;
6299                rq->idle_stamp = 0;
6300                rq->avg_idle = 2*sysctl_sched_migration_cost;
6301                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6302
6303                INIT_LIST_HEAD(&rq->cfs_tasks);
6304
6305                rq_attach_root(rq, &def_root_domain);
6306#ifdef CONFIG_NO_HZ_COMMON
6307                rq->nohz_flags = 0;
6308#endif
6309#ifdef CONFIG_NO_HZ_FULL
6310                rq->last_sched_tick = 0;
6311#endif
6312#endif
6313                init_rq_hrtick(rq);
6314                atomic_set(&rq->nr_iowait, 0);
6315        }
6316
6317        set_load_weight(&init_task);
6318
6319#ifdef CONFIG_PREEMPT_NOTIFIERS
6320        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6321#endif
6322
6323#ifdef CONFIG_RT_MUTEXES
6324        plist_head_init(&init_task.pi_waiters);
6325#endif
6326
6327        /*
6328         * The boot idle thread does lazy MMU switching as well:
6329         */
6330        atomic_inc(&init_mm.mm_count);
6331        enter_lazy_tlb(&init_mm, current);
6332
6333        /*
6334         * Make us the idle thread. Technically, schedule() should not be
6335         * called from this thread, however somewhere below it might be,
6336         * but because we are the idle thread, we just pick up running again
6337         * when this runqueue becomes "idle".
6338         */
6339        init_idle(current, smp_processor_id());
6340
6341        calc_load_update = jiffies + LOAD_FREQ;
6342
6343        /*
6344         * During early bootup we pretend to be a normal task:
6345         */
6346        current->sched_class = &fair_sched_class;
6347
6348#ifdef CONFIG_SMP
6349        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6350        /* May be allocated at isolcpus cmdline parse time */
6351        if (cpu_isolated_map == NULL)
6352                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6353        idle_thread_set_boot_cpu();
6354#endif
6355        init_sched_fair_class();
6356
6357        scheduler_running = 1;
6358}
6359
6360#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6361static inline int preempt_count_equals(int preempt_offset)
6362{
6363        int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6364
6365        return (nested == preempt_offset);
6366}
6367
6368void __might_sleep(const char *file, int line, int preempt_offset)
6369{
6370        static unsigned long prev_jiffy;        /* ratelimiting */
6371
6372        rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6373        if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6374            system_state != SYSTEM_RUNNING || oops_in_progress)
6375                return;
6376        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6377                return;
6378        prev_jiffy = jiffies;
6379
6380        printk(KERN_ERR
6381                "BUG: sleeping function called from invalid context at %s:%d\n",
6382                        file, line);
6383        printk(KERN_ERR
6384                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6385                        in_atomic(), irqs_disabled(),
6386                        current->pid, current->comm);
6387
6388        debug_show_held_locks(current);
6389        if (irqs_disabled())
6390                print_irqtrace_events(current);
6391        dump_stack();
6392}
6393EXPORT_SYMBOL(__might_sleep);
6394#endif
6395
6396#ifdef CONFIG_MAGIC_SYSRQ
6397static void normalize_task(struct rq *rq, struct task_struct *p)
6398{
6399        const struct sched_class *prev_class = p->sched_class;
6400        int old_prio = p->prio;
6401        int on_rq;
6402
6403        on_rq = p->on_rq;
6404        if (on_rq)
6405                dequeue_task(rq, p, 0);
6406        __setscheduler(rq, p, SCHED_NORMAL, 0);
6407        if (on_rq) {
6408                enqueue_task(rq, p, 0);
6409                resched_task(rq->curr);
6410        }
6411
6412        check_class_changed(rq, p, prev_class, old_prio);
6413}
6414
6415void normalize_rt_tasks(void)
6416{
6417        struct task_struct *g, *p;
6418        unsigned long flags;
6419        struct rq *rq;
6420
6421        read_lock_irqsave(&tasklist_lock, flags);
6422        do_each_thread(g, p) {
6423                /*
6424                 * Only normalize user tasks:
6425                 */
6426                if (!p->mm)
6427                        continue;
6428
6429                p->se.exec_start                = 0;
6430#ifdef CONFIG_SCHEDSTATS
6431                p->se.statistics.wait_start     = 0;
6432                p->se.statistics.sleep_start    = 0;
6433                p->se.statistics.block_start    = 0;
6434#endif
6435
6436                if (!rt_task(p)) {
6437                        /*
6438                         * Renice negative nice level userspace
6439                         * tasks back to 0:
6440                         */
6441                        if (TASK_NICE(p) < 0 && p->mm)
6442                                set_user_nice(p, 0);
6443                        continue;
6444                }
6445
6446                raw_spin_lock(&p->pi_lock);
6447                rq = __task_rq_lock(p);
6448
6449                normalize_task(rq, p);
6450
6451                __task_rq_unlock(rq);
6452                raw_spin_unlock(&p->pi_lock);
6453        } while_each_thread(g, p);
6454
6455        read_unlock_irqrestore(&tasklist_lock, flags);
6456}
6457
6458#endif /* CONFIG_MAGIC_SYSRQ */
6459
6460#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6461/*
6462 * These functions are only useful for the IA64 MCA handling, or kdb.
6463 *
6464 * They can only be called when the whole system has been
6465 * stopped - every CPU needs to be quiescent, and no scheduling
6466 * activity can take place. Using them for anything else would
6467 * be a serious bug, and as a result, they aren't even visible
6468 * under any other configuration.
6469 */
6470
6471/**
6472 * curr_task - return the current task for a given cpu.
6473 * @cpu: the processor in question.
6474 *
6475 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6476 *
6477 * Return: The current task for @cpu.
6478 */
6479struct task_struct *curr_task(int cpu)
6480{
6481        return cpu_curr(cpu);
6482}
6483
6484#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6485
6486#ifdef CONFIG_IA64
6487/**
6488 * set_curr_task - set the current task for a given cpu.
6489 * @cpu: the processor in question.
6490 * @p: the task pointer to set.
6491 *
6492 * Description: This function must only be used when non-maskable interrupts
6493 * are serviced on a separate stack. It allows the architecture to switch the
6494 * notion of the current task on a cpu in a non-blocking manner. This function
6495 * must be called with all CPU's synchronized, and interrupts disabled, the
6496 * and caller must save the original value of the current task (see
6497 * curr_task() above) and restore that value before reenabling interrupts and
6498 * re-starting the system.
6499 *
6500 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6501 */
6502void set_curr_task(int cpu, struct task_struct *p)
6503{
6504        cpu_curr(cpu) = p;
6505}
6506
6507#endif
6508
6509#ifdef CONFIG_CGROUP_SCHED
6510/* task_group_lock serializes the addition/removal of task groups */
6511static DEFINE_SPINLOCK(task_group_lock);
6512
6513static void free_sched_group(struct task_group *tg)
6514{
6515        free_fair_sched_group(tg);
6516        free_rt_sched_group(tg);
6517        autogroup_free(tg);
6518        kfree(tg);
6519}
6520
6521/* allocate runqueue etc for a new task group */
6522struct task_group *sched_create_group(struct task_group *parent)
6523{
6524        struct task_group *tg;
6525
6526        tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6527        if (!tg)
6528                return ERR_PTR(-ENOMEM);
6529
6530        if (!alloc_fair_sched_group(tg, parent))
6531                goto err;
6532
6533        if (!alloc_rt_sched_group(tg, parent))
6534                goto err;
6535
6536        return tg;
6537
6538err:
6539        free_sched_group(tg);
6540        return ERR_PTR(-ENOMEM);
6541}
6542
6543void sched_online_group(struct task_group *tg, struct task_group *parent)
6544{
6545        unsigned long flags;
6546
6547        spin_lock_irqsave(&task_group_lock, flags);
6548        list_add_rcu(&tg->list, &task_groups);
6549
6550        WARN_ON(!parent); /* root should already exist */
6551
6552        tg->parent = parent;
6553        INIT_LIST_HEAD(&tg->children);
6554        list_add_rcu(&tg->siblings, &parent->children);
6555        spin_unlock_irqrestore(&task_group_lock, flags);
6556}
6557
6558/* rcu callback to free various structures associated with a task group */
6559static void free_sched_group_rcu(struct rcu_head *rhp)
6560{
6561        /* now it should be safe to free those cfs_rqs */
6562        free_sched_group(container_of(rhp, struct task_group, rcu));
6563}
6564
6565/* Destroy runqueue etc associated with a task group */
6566void sched_destroy_group(struct task_group *tg)
6567{
6568        /* wait for possible concurrent references to cfs_rqs complete */
6569        call_rcu(&tg->rcu, free_sched_group_rcu);
6570}
6571
6572void sched_offline_group(struct task_group *tg)
6573{
6574        unsigned long flags;
6575        int i;
6576
6577        /* end participation in shares distribution */
6578        for_each_possible_cpu(i)
6579                unregister_fair_sched_group(tg, i);
6580
6581        spin_lock_irqsave(&task_group_lock, flags);
6582        list_del_rcu(&tg->list);
6583        list_del_rcu(&tg->siblings);
6584        spin_unlock_irqrestore(&task_group_lock, flags);
6585}
6586
6587/* change task's runqueue when it moves between groups.
6588 *      The caller of this function should have put the task in its new group
6589 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6590 *      reflect its new group.
6591 */
6592void sched_move_task(struct task_struct *tsk)
6593{
6594        struct task_group *tg;
6595        int on_rq, running;
6596        unsigned long flags;
6597        struct rq *rq;
6598
6599        rq = task_rq_lock(tsk, &flags);
6600
6601        running = task_current(rq, tsk);
6602        on_rq = tsk->on_rq;
6603
6604        if (on_rq)
6605                dequeue_task(rq, tsk, 0);
6606        if (unlikely(running))
6607                tsk->sched_class->put_prev_task(rq, tsk);
6608
6609        tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
6610                                lockdep_is_held(&tsk->sighand->siglock)),
6611                          struct task_group, css);
6612        tg = autogroup_task_group(tsk, tg);
6613        tsk->sched_task_group = tg;
6614
6615#ifdef CONFIG_FAIR_GROUP_SCHED
6616        if (tsk->sched_class->task_move_group)
6617                tsk->sched_class->task_move_group(tsk, on_rq);
6618        else
6619#endif
6620                set_task_rq(tsk, task_cpu(tsk));
6621
6622        if (unlikely(running))
6623                tsk->sched_class->set_curr_task(rq);
6624        if (on_rq)
6625                enqueue_task(rq, tsk, 0);
6626
6627        task_rq_unlock(rq, tsk, &flags);
6628}
6629#endif /* CONFIG_CGROUP_SCHED */
6630
6631#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
6632static unsigned long to_ratio(u64 period, u64 runtime)
6633{
6634        if (runtime == RUNTIME_INF)
6635                return 1ULL << 20;
6636
6637        return div64_u64(runtime << 20, period);
6638}
6639#endif
6640
6641#ifdef CONFIG_RT_GROUP_SCHED
6642/*
6643 * Ensure that the real time constraints are schedulable.
6644 */
6645static DEFINE_MUTEX(rt_constraints_mutex);
6646
6647/* Must be called with tasklist_lock held */
6648static inline int tg_has_rt_tasks(struct task_group *tg)
6649{
6650        struct task_struct *g, *p;
6651
6652        do_each_thread(g, p) {
6653                if (rt_task(p) && task_rq(p)->rt.tg == tg)
6654                        return 1;
6655        } while_each_thread(g, p);
6656
6657        return 0;
6658}
6659
6660struct rt_schedulable_data {
6661        struct task_group *tg;
6662        u64 rt_period;
6663        u64 rt_runtime;
6664};
6665
6666static int tg_rt_schedulable(struct task_group *tg, void *data)
6667{
6668        struct rt_schedulable_data *d = data;
6669        struct task_group *child;
6670        unsigned long total, sum = 0;
6671        u64 period, runtime;
6672
6673        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6674        runtime = tg->rt_bandwidth.rt_runtime;
6675
6676        if (tg == d->tg) {
6677                period = d->rt_period;
6678                runtime = d->rt_runtime;
6679        }
6680
6681        /*
6682         * Cannot have more runtime than the period.
6683         */
6684        if (runtime > period && runtime != RUNTIME_INF)
6685                return -EINVAL;
6686
6687        /*
6688         * Ensure we don't starve existing RT tasks.
6689         */
6690        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6691                return -EBUSY;
6692
6693        total = to_ratio(period, runtime);
6694
6695        /*
6696         * Nobody can have more than the global setting allows.
6697         */
6698        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6699                return -EINVAL;
6700
6701        /*
6702         * The sum of our children's runtime should not exceed our own.
6703         */
6704        list_for_each_entry_rcu(child, &tg->children, siblings) {
6705                period = ktime_to_ns(child->rt_bandwidth.rt_period);
6706                runtime = child->rt_bandwidth.rt_runtime;
6707
6708                if (child == d->tg) {
6709                        period = d->rt_period;
6710                        runtime = d->rt_runtime;
6711                }
6712
6713                sum += to_ratio(period, runtime);
6714        }
6715
6716        if (sum > total)
6717                return -EINVAL;
6718
6719        return 0;
6720}
6721
6722static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6723{
6724        int ret;
6725
6726        struct rt_schedulable_data data = {
6727                .tg = tg,
6728                .rt_period = period,
6729                .rt_runtime = runtime,
6730        };
6731
6732        rcu_read_lock();
6733        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6734        rcu_read_unlock();
6735
6736        return ret;
6737}
6738
6739static int tg_set_rt_bandwidth(struct task_group *tg,
6740                u64 rt_period, u64 rt_runtime)
6741{
6742        int i, err = 0;
6743
6744        mutex_lock(&rt_constraints_mutex);
6745        read_lock(&tasklist_lock);
6746        err = __rt_schedulable(tg, rt_period, rt_runtime);
6747        if (err)
6748                goto unlock;
6749
6750        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6751        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6752        tg->rt_bandwidth.rt_runtime = rt_runtime;
6753
6754        for_each_possible_cpu(i) {
6755                struct rt_rq *rt_rq = tg->rt_rq[i];
6756
6757                raw_spin_lock(&rt_rq->rt_runtime_lock);
6758                rt_rq->rt_runtime = rt_runtime;
6759                raw_spin_unlock(&rt_rq->rt_runtime_lock);
6760        }
6761        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
6762unlock:
6763        read_unlock(&tasklist_lock);
6764        mutex_unlock(&rt_constraints_mutex);
6765
6766        return err;
6767}
6768
6769static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
6770{
6771        u64 rt_runtime, rt_period;
6772
6773        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6774        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6775        if (rt_runtime_us < 0)
6776                rt_runtime = RUNTIME_INF;
6777
6778        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6779}
6780
6781static long sched_group_rt_runtime(struct task_group *tg)
6782{
6783        u64 rt_runtime_us;
6784
6785        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
6786                return -1;
6787
6788        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
6789        do_div(rt_runtime_us, NSEC_PER_USEC);
6790        return rt_runtime_us;
6791}
6792
6793static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
6794{
6795        u64 rt_runtime, rt_period;
6796
6797        rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6798        rt_runtime = tg->rt_bandwidth.rt_runtime;
6799
6800        if (rt_period == 0)
6801                return -EINVAL;
6802
6803        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
6804}
6805
6806static long sched_group_rt_period(struct task_group *tg)
6807{
6808        u64 rt_period_us;
6809
6810        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6811        do_div(rt_period_us, NSEC_PER_USEC);
6812        return rt_period_us;
6813}
6814
6815static int sched_rt_global_constraints(void)
6816{
6817        u64 runtime, period;
6818        int ret = 0;
6819
6820        if (sysctl_sched_rt_period <= 0)
6821                return -EINVAL;
6822
6823        runtime = global_rt_runtime();
6824        period = global_rt_period();
6825
6826        /*
6827         * Sanity check on the sysctl variables.
6828         */
6829        if (runtime > period && runtime != RUNTIME_INF)
6830                return -EINVAL;
6831
6832        mutex_lock(&rt_constraints_mutex);
6833        read_lock(&tasklist_lock);
6834        ret = __rt_schedulable(NULL, 0, 0);
6835        read_unlock(&tasklist_lock);
6836        mutex_unlock(&rt_constraints_mutex);
6837
6838        return ret;
6839}
6840
6841static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
6842{
6843        /* Don't accept realtime tasks when there is no way for them to run */
6844        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6845                return 0;
6846
6847        return 1;
6848}
6849
6850#else /* !CONFIG_RT_GROUP_SCHED */
6851static int sched_rt_global_constraints(void)
6852{
6853        unsigned long flags;
6854        int i;
6855
6856        if (sysctl_sched_rt_period <= 0)
6857                return -EINVAL;
6858
6859        /*
6860         * There's always some RT tasks in the root group
6861         * -- migration, kstopmachine etc..
6862         */
6863        if (sysctl_sched_rt_runtime == 0)
6864                return -EBUSY;
6865
6866        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
6867        for_each_possible_cpu(i) {
6868                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6869
6870                raw_spin_lock(&rt_rq->rt_runtime_lock);
6871                rt_rq->rt_runtime = global_rt_runtime();
6872                raw_spin_unlock(&rt_rq->rt_runtime_lock);
6873        }
6874        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
6875
6876        return 0;
6877}
6878#endif /* CONFIG_RT_GROUP_SCHED */
6879
6880int sched_rr_handler(struct ctl_table *table, int write,
6881                void __user *buffer, size_t *lenp,
6882                loff_t *ppos)
6883{
6884        int ret;
6885        static DEFINE_MUTEX(mutex);
6886
6887        mutex_lock(&mutex);
6888        ret = proc_dointvec(table, write, buffer, lenp, ppos);
6889        /* make sure that internally we keep jiffies */
6890        /* also, writing zero resets timeslice to default */
6891        if (!ret && write) {
6892                sched_rr_timeslice = sched_rr_timeslice <= 0 ?
6893                        RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
6894        }
6895        mutex_unlock(&mutex);
6896        return ret;
6897}
6898
6899int sched_rt_handler(struct ctl_table *table, int write,
6900                void __user *buffer, size_t *lenp,
6901                loff_t *ppos)
6902{
6903        int ret;
6904        int old_period, old_runtime;
6905        static DEFINE_MUTEX(mutex);
6906
6907        mutex_lock(&mutex);
6908        old_period = sysctl_sched_rt_period;
6909        old_runtime = sysctl_sched_rt_runtime;
6910
6911        ret = proc_dointvec(table, write, buffer, lenp, ppos);
6912
6913        if (!ret && write) {
6914                ret = sched_rt_global_constraints();
6915                if (ret) {
6916                        sysctl_sched_rt_period = old_period;
6917                        sysctl_sched_rt_runtime = old_runtime;
6918                } else {
6919                        def_rt_bandwidth.rt_runtime = global_rt_runtime();
6920                        def_rt_bandwidth.rt_period =
6921                                ns_to_ktime(global_rt_period());
6922                }
6923        }
6924        mutex_unlock(&mutex);
6925
6926        return ret;
6927}
6928
6929#ifdef CONFIG_CGROUP_SCHED
6930
6931static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6932{
6933        return css ? container_of(css, struct task_group, css) : NULL;
6934}
6935
6936static struct cgroup_subsys_state *
6937cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6938{
6939        struct task_group *parent = css_tg(parent_css);
6940        struct task_group *tg;
6941
6942        if (!parent) {
6943                /* This is early initialization for the top cgroup */
6944                return &root_task_group.css;
6945        }
6946
6947        tg = sched_create_group(parent);
6948        if (IS_ERR(tg))
6949                return ERR_PTR(-ENOMEM);
6950
6951        return &tg->css;
6952}
6953
6954static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6955{
6956        struct task_group *tg = css_tg(css);
6957        struct task_group *parent = css_tg(css_parent(css));
6958
6959        if (parent)
6960                sched_online_group(tg, parent);
6961        return 0;
6962}
6963
6964static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6965{
6966        struct task_group *tg = css_tg(css);
6967
6968        sched_destroy_group(tg);
6969}
6970
6971static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
6972{
6973        struct task_group *tg = css_tg(css);
6974
6975        sched_offline_group(tg);
6976}
6977
6978static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
6979                                 struct cgroup_taskset *tset)
6980{
6981        struct task_struct *task;
6982
6983        cgroup_taskset_for_each(task, css, tset) {
6984#ifdef CONFIG_RT_GROUP_SCHED
6985                if (!sched_rt_can_attach(css_tg(css), task))
6986                        return -EINVAL;
6987#else
6988                /* We don't support RT-tasks being in separate groups */
6989                if (task->sched_class != &fair_sched_class)
6990                        return -EINVAL;
6991#endif
6992        }
6993        return 0;
6994}
6995
6996static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
6997                              struct cgroup_taskset *tset)
6998{
6999        struct task_struct *task;
7000
7001        cgroup_taskset_for_each(task, css, tset)
7002                sched_move_task(task);
7003}
7004
7005static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7006                            struct cgroup_subsys_state *old_css,
7007                            struct task_struct *task)
7008{
7009        /*
7010         * cgroup_exit() is called in the copy_process() failure path.
7011         * Ignore this case since the task hasn't ran yet, this avoids
7012         * trying to poke a half freed task state from generic code.
7013         */
7014        if (!(task->flags & PF_EXITING))
7015                return;
7016
7017        sched_move_task(task);
7018}
7019
7020#ifdef CONFIG_FAIR_GROUP_SCHED
7021static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7022                                struct cftype *cftype, u64 shareval)
7023{
7024        return sched_group_set_shares(css_tg(css), scale_load(shareval));
7025}
7026
7027static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7028                               struct cftype *cft)
7029{
7030        struct task_group *tg = css_tg(css);
7031
7032        return (u64) scale_load_down(tg->shares);
7033}
7034
7035#ifdef CONFIG_CFS_BANDWIDTH
7036static DEFINE_MUTEX(cfs_constraints_mutex);
7037
7038const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7039const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7040
7041static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7042
7043static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7044{
7045        int i, ret = 0, runtime_enabled, runtime_was_enabled;
7046        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7047
7048        if (tg == &root_task_group)
7049                return -EINVAL;
7050
7051        /*
7052         * Ensure we have at some amount of bandwidth every period.  This is
7053         * to prevent reaching a state of large arrears when throttled via
7054         * entity_tick() resulting in prolonged exit starvation.
7055         */
7056        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7057                return -EINVAL;
7058
7059        /*
7060         * Likewise, bound things on the otherside by preventing insane quota
7061         * periods.  This also allows us to normalize in computing quota
7062         * feasibility.
7063         */
7064        if (period > max_cfs_quota_period)
7065                return -EINVAL;
7066
7067        mutex_lock(&cfs_constraints_mutex);
7068        ret = __cfs_schedulable(tg, period, quota);
7069        if (ret)
7070                goto out_unlock;
7071
7072        runtime_enabled = quota != RUNTIME_INF;
7073        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7074        /*
7075         * If we need to toggle cfs_bandwidth_used, off->on must occur
7076         * before making related changes, and on->off must occur afterwards
7077         */
7078        if (runtime_enabled && !runtime_was_enabled)
7079                cfs_bandwidth_usage_inc();
7080        raw_spin_lock_irq(&cfs_b->lock);
7081        cfs_b->period = ns_to_ktime(period);
7082        cfs_b->quota = quota;
7083
7084        __refill_cfs_bandwidth_runtime(cfs_b);
7085        /* restart the period timer (if active) to handle new period expiry */
7086        if (runtime_enabled && cfs_b->timer_active) {
7087                /* force a reprogram */
7088                cfs_b->timer_active = 0;
7089                __start_cfs_bandwidth(cfs_b);
7090        }
7091        raw_spin_unlock_irq(&cfs_b->lock);
7092
7093        for_each_possible_cpu(i) {
7094                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7095                struct rq *rq = cfs_rq->rq;
7096
7097                raw_spin_lock_irq(&rq->lock);
7098                cfs_rq->runtime_enabled = runtime_enabled;
7099                cfs_rq->runtime_remaining = 0;
7100
7101                if (cfs_rq->throttled)
7102                        unthrottle_cfs_rq(cfs_rq);
7103                raw_spin_unlock_irq(&rq->lock);
7104        }
7105        if (runtime_was_enabled && !runtime_enabled)
7106                cfs_bandwidth_usage_dec();
7107out_unlock:
7108        mutex_unlock(&cfs_constraints_mutex);
7109
7110        return ret;
7111}
7112
7113int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7114{
7115        u64 quota, period;
7116
7117        period = ktime_to_ns(tg->cfs_bandwidth.period);
7118        if (cfs_quota_us < 0)
7119                quota = RUNTIME_INF;
7120        else
7121                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7122
7123        return tg_set_cfs_bandwidth(tg, period, quota);
7124}
7125
7126long tg_get_cfs_quota(struct task_group *tg)
7127{
7128        u64 quota_us;
7129
7130        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7131                return -1;
7132
7133        quota_us = tg->cfs_bandwidth.quota;
7134        do_div(quota_us, NSEC_PER_USEC);
7135
7136        return quota_us;
7137}
7138
7139int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7140{
7141        u64 quota, period;
7142
7143        period = (u64)cfs_period_us * NSEC_PER_USEC;
7144        quota = tg->cfs_bandwidth.quota;
7145
7146        return tg_set_cfs_bandwidth(tg, period, quota);
7147}
7148
7149long tg_get_cfs_period(struct task_group *tg)
7150{
7151        u64 cfs_period_us;
7152
7153        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7154        do_div(cfs_period_us, NSEC_PER_USEC);
7155
7156        return cfs_period_us;
7157}
7158
7159static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7160                                  struct cftype *cft)
7161{
7162        return tg_get_cfs_quota(css_tg(css));
7163}
7164
7165static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7166                                   struct cftype *cftype, s64 cfs_quota_us)
7167{
7168        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7169}
7170
7171static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7172                                   struct cftype *cft)
7173{
7174        return tg_get_cfs_period(css_tg(css));
7175}
7176
7177static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7178                                    struct cftype *cftype, u64 cfs_period_us)
7179{
7180        return tg_set_cfs_period(css_tg(css), cfs_period_us);
7181}
7182
7183struct cfs_schedulable_data {
7184        struct task_group *tg;
7185        u64 period, quota;
7186};
7187
7188/*
7189 * normalize group quota/period to be quota/max_period
7190 * note: units are usecs
7191 */
7192static u64 normalize_cfs_quota(struct task_group *tg,
7193                               struct cfs_schedulable_data *d)
7194{
7195        u64 quota, period;
7196
7197        if (tg == d->tg) {
7198                period = d->period;
7199                quota = d->quota;
7200        } else {
7201                period = tg_get_cfs_period(tg);
7202                quota = tg_get_cfs_quota(tg);
7203        }
7204
7205        /* note: these should typically be equivalent */
7206        if (quota == RUNTIME_INF || quota == -1)
7207                return RUNTIME_INF;
7208
7209        return to_ratio(period, quota);
7210}
7211
7212static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7213{
7214        struct cfs_schedulable_data *d = data;
7215        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7216        s64 quota = 0, parent_quota = -1;
7217
7218        if (!tg->parent) {
7219                quota = RUNTIME_INF;
7220        } else {
7221                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7222
7223                quota = normalize_cfs_quota(tg, d);
7224                parent_quota = parent_b->hierarchal_quota;
7225
7226                /*
7227                 * ensure max(child_quota) <= parent_quota, inherit when no
7228                 * limit is set
7229                 */
7230                if (quota == RUNTIME_INF)
7231                        quota = parent_quota;
7232                else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7233                        return -EINVAL;
7234        }
7235        cfs_b->hierarchal_quota = quota;
7236
7237        return 0;
7238}
7239
7240static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7241{
7242        int ret;
7243        struct cfs_schedulable_data data = {
7244                .tg = tg,
7245                .period = period,
7246                .quota = quota,
7247        };
7248
7249        if (quota != RUNTIME_INF) {
7250                do_div(data.period, NSEC_PER_USEC);
7251                do_div(data.quota, NSEC_PER_USEC);
7252        }
7253
7254        rcu_read_lock();
7255        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7256        rcu_read_unlock();
7257
7258        return ret;
7259}
7260
7261static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
7262                struct cgroup_map_cb *cb)
7263{
7264        struct task_group *tg = css_tg(css);
7265        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7266
7267        cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7268        cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7269        cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7270
7271        return 0;
7272}
7273#endif /* CONFIG_CFS_BANDWIDTH */
7274#endif /* CONFIG_FAIR_GROUP_SCHED */
7275
7276#ifdef CONFIG_RT_GROUP_SCHED
7277static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7278                                struct cftype *cft, s64 val)
7279{
7280        return sched_group_set_rt_runtime(css_tg(css), val);
7281}
7282
7283static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7284                               struct cftype *cft)
7285{
7286        return sched_group_rt_runtime(css_tg(css));
7287}
7288
7289static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7290                                    struct cftype *cftype, u64 rt_period_us)
7291{
7292        return sched_group_set_rt_period(css_tg(css), rt_period_us);
7293}
7294
7295static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7296                                   struct cftype *cft)
7297{
7298        return sched_group_rt_period(css_tg(css));
7299}
7300#endif /* CONFIG_RT_GROUP_SCHED */
7301
7302static struct cftype cpu_files[] = {
7303#ifdef CONFIG_FAIR_GROUP_SCHED
7304        {
7305                .name = "shares",
7306                .read_u64 = cpu_shares_read_u64,
7307                .write_u64 = cpu_shares_write_u64,
7308        },
7309#endif
7310#ifdef CONFIG_CFS_BANDWIDTH
7311        {
7312                .name = "cfs_quota_us",
7313                .read_s64 = cpu_cfs_quota_read_s64,
7314                .write_s64 = cpu_cfs_quota_write_s64,
7315        },
7316        {
7317                .name = "cfs_period_us",
7318                .read_u64 = cpu_cfs_period_read_u64,
7319                .write_u64 = cpu_cfs_period_write_u64,
7320        },
7321        {
7322                .name = "stat",
7323                .read_map = cpu_stats_show,
7324        },
7325#endif
7326#ifdef CONFIG_RT_GROUP_SCHED
7327        {
7328                .name = "rt_runtime_us",
7329                .read_s64 = cpu_rt_runtime_read,
7330                .write_s64 = cpu_rt_runtime_write,
7331        },
7332        {
7333                .name = "rt_period_us",
7334                .read_u64 = cpu_rt_period_read_uint,
7335                .write_u64 = cpu_rt_period_write_uint,
7336        },
7337#endif
7338        { }     /* terminate */
7339};
7340
7341struct cgroup_subsys cpu_cgroup_subsys = {
7342        .name           = "cpu",
7343        .css_alloc      = cpu_cgroup_css_alloc,
7344        .css_free       = cpu_cgroup_css_free,
7345        .css_online     = cpu_cgroup_css_online,
7346        .css_offline    = cpu_cgroup_css_offline,
7347        .can_attach     = cpu_cgroup_can_attach,
7348        .attach         = cpu_cgroup_attach,
7349        .exit           = cpu_cgroup_exit,
7350        .subsys_id      = cpu_cgroup_subsys_id,
7351        .base_cftypes   = cpu_files,
7352        .early_init     = 1,
7353};
7354
7355#endif  /* CONFIG_CGROUP_SCHED */
7356
7357void dump_cpu_task(int cpu)
7358{
7359        pr_info("Task dump for CPU %d:\n", cpu);
7360        sched_show_task(cpu_curr(cpu));
7361}
7362