linux/kernel/sched/sched.h
<<
>>
Prefs
   1
   2#include <linux/sched.h>
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/mutex.h>
   6#include <linux/spinlock.h>
   7#include <linux/stop_machine.h>
   8#include <linux/tick.h>
   9#include <linux/slab.h>
  10
  11#include "cpupri.h"
  12#include "cpuacct.h"
  13
  14struct rq;
  15
  16extern __read_mostly int scheduler_running;
  17
  18extern unsigned long calc_load_update;
  19extern atomic_long_t calc_load_tasks;
  20
  21extern long calc_load_fold_active(struct rq *this_rq);
  22extern void update_cpu_load_active(struct rq *this_rq);
  23
  24/*
  25 * Convert user-nice values [ -20 ... 0 ... 19 ]
  26 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  27 * and back.
  28 */
  29#define NICE_TO_PRIO(nice)      (MAX_RT_PRIO + (nice) + 20)
  30#define PRIO_TO_NICE(prio)      ((prio) - MAX_RT_PRIO - 20)
  31#define TASK_NICE(p)            PRIO_TO_NICE((p)->static_prio)
  32
  33/*
  34 * 'User priority' is the nice value converted to something we
  35 * can work with better when scaling various scheduler parameters,
  36 * it's a [ 0 ... 39 ] range.
  37 */
  38#define USER_PRIO(p)            ((p)-MAX_RT_PRIO)
  39#define TASK_USER_PRIO(p)       USER_PRIO((p)->static_prio)
  40#define MAX_USER_PRIO           (USER_PRIO(MAX_PRIO))
  41
  42/*
  43 * Helpers for converting nanosecond timing to jiffy resolution
  44 */
  45#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  46
  47/*
  48 * Increase resolution of nice-level calculations for 64-bit architectures.
  49 * The extra resolution improves shares distribution and load balancing of
  50 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  51 * hierarchies, especially on larger systems. This is not a user-visible change
  52 * and does not change the user-interface for setting shares/weights.
  53 *
  54 * We increase resolution only if we have enough bits to allow this increased
  55 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  56 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  57 * increased costs.
  58 */
  59#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  60# define SCHED_LOAD_RESOLUTION  10
  61# define scale_load(w)          ((w) << SCHED_LOAD_RESOLUTION)
  62# define scale_load_down(w)     ((w) >> SCHED_LOAD_RESOLUTION)
  63#else
  64# define SCHED_LOAD_RESOLUTION  0
  65# define scale_load(w)          (w)
  66# define scale_load_down(w)     (w)
  67#endif
  68
  69#define SCHED_LOAD_SHIFT        (10 + SCHED_LOAD_RESOLUTION)
  70#define SCHED_LOAD_SCALE        (1L << SCHED_LOAD_SHIFT)
  71
  72#define NICE_0_LOAD             SCHED_LOAD_SCALE
  73#define NICE_0_SHIFT            SCHED_LOAD_SHIFT
  74
  75/*
  76 * These are the 'tuning knobs' of the scheduler:
  77 */
  78
  79/*
  80 * single value that denotes runtime == period, ie unlimited time.
  81 */
  82#define RUNTIME_INF     ((u64)~0ULL)
  83
  84static inline int rt_policy(int policy)
  85{
  86        if (policy == SCHED_FIFO || policy == SCHED_RR)
  87                return 1;
  88        return 0;
  89}
  90
  91static inline int task_has_rt_policy(struct task_struct *p)
  92{
  93        return rt_policy(p->policy);
  94}
  95
  96/*
  97 * This is the priority-queue data structure of the RT scheduling class:
  98 */
  99struct rt_prio_array {
 100        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 101        struct list_head queue[MAX_RT_PRIO];
 102};
 103
 104struct rt_bandwidth {
 105        /* nests inside the rq lock: */
 106        raw_spinlock_t          rt_runtime_lock;
 107        ktime_t                 rt_period;
 108        u64                     rt_runtime;
 109        struct hrtimer          rt_period_timer;
 110};
 111
 112extern struct mutex sched_domains_mutex;
 113
 114#ifdef CONFIG_CGROUP_SCHED
 115
 116#include <linux/cgroup.h>
 117
 118struct cfs_rq;
 119struct rt_rq;
 120
 121extern struct list_head task_groups;
 122
 123struct cfs_bandwidth {
 124#ifdef CONFIG_CFS_BANDWIDTH
 125        raw_spinlock_t lock;
 126        ktime_t period;
 127        u64 quota, runtime;
 128        s64 hierarchal_quota;
 129        u64 runtime_expires;
 130
 131        int idle, timer_active;
 132        struct hrtimer period_timer, slack_timer;
 133        struct list_head throttled_cfs_rq;
 134
 135        /* statistics */
 136        int nr_periods, nr_throttled;
 137        u64 throttled_time;
 138#endif
 139};
 140
 141/* task group related information */
 142struct task_group {
 143        struct cgroup_subsys_state css;
 144
 145#ifdef CONFIG_FAIR_GROUP_SCHED
 146        /* schedulable entities of this group on each cpu */
 147        struct sched_entity **se;
 148        /* runqueue "owned" by this group on each cpu */
 149        struct cfs_rq **cfs_rq;
 150        unsigned long shares;
 151
 152#ifdef  CONFIG_SMP
 153        atomic_long_t load_avg;
 154        atomic_t runnable_avg;
 155#endif
 156#endif
 157
 158#ifdef CONFIG_RT_GROUP_SCHED
 159        struct sched_rt_entity **rt_se;
 160        struct rt_rq **rt_rq;
 161
 162        struct rt_bandwidth rt_bandwidth;
 163#endif
 164
 165        struct rcu_head rcu;
 166        struct list_head list;
 167
 168        struct task_group *parent;
 169        struct list_head siblings;
 170        struct list_head children;
 171
 172#ifdef CONFIG_SCHED_AUTOGROUP
 173        struct autogroup *autogroup;
 174#endif
 175
 176        struct cfs_bandwidth cfs_bandwidth;
 177};
 178
 179#ifdef CONFIG_FAIR_GROUP_SCHED
 180#define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
 181
 182/*
 183 * A weight of 0 or 1 can cause arithmetics problems.
 184 * A weight of a cfs_rq is the sum of weights of which entities
 185 * are queued on this cfs_rq, so a weight of a entity should not be
 186 * too large, so as the shares value of a task group.
 187 * (The default weight is 1024 - so there's no practical
 188 *  limitation from this.)
 189 */
 190#define MIN_SHARES      (1UL <<  1)
 191#define MAX_SHARES      (1UL << 18)
 192#endif
 193
 194typedef int (*tg_visitor)(struct task_group *, void *);
 195
 196extern int walk_tg_tree_from(struct task_group *from,
 197                             tg_visitor down, tg_visitor up, void *data);
 198
 199/*
 200 * Iterate the full tree, calling @down when first entering a node and @up when
 201 * leaving it for the final time.
 202 *
 203 * Caller must hold rcu_lock or sufficient equivalent.
 204 */
 205static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 206{
 207        return walk_tg_tree_from(&root_task_group, down, up, data);
 208}
 209
 210extern int tg_nop(struct task_group *tg, void *data);
 211
 212extern void free_fair_sched_group(struct task_group *tg);
 213extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 214extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
 215extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 216                        struct sched_entity *se, int cpu,
 217                        struct sched_entity *parent);
 218extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 219extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 220
 221extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 222extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 223extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 224
 225extern void free_rt_sched_group(struct task_group *tg);
 226extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 227extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 228                struct sched_rt_entity *rt_se, int cpu,
 229                struct sched_rt_entity *parent);
 230
 231extern struct task_group *sched_create_group(struct task_group *parent);
 232extern void sched_online_group(struct task_group *tg,
 233                               struct task_group *parent);
 234extern void sched_destroy_group(struct task_group *tg);
 235extern void sched_offline_group(struct task_group *tg);
 236
 237extern void sched_move_task(struct task_struct *tsk);
 238
 239#ifdef CONFIG_FAIR_GROUP_SCHED
 240extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 241#endif
 242
 243#else /* CONFIG_CGROUP_SCHED */
 244
 245struct cfs_bandwidth { };
 246
 247#endif  /* CONFIG_CGROUP_SCHED */
 248
 249/* CFS-related fields in a runqueue */
 250struct cfs_rq {
 251        struct load_weight load;
 252        unsigned int nr_running, h_nr_running;
 253
 254        u64 exec_clock;
 255        u64 min_vruntime;
 256#ifndef CONFIG_64BIT
 257        u64 min_vruntime_copy;
 258#endif
 259
 260        struct rb_root tasks_timeline;
 261        struct rb_node *rb_leftmost;
 262
 263        /*
 264         * 'curr' points to currently running entity on this cfs_rq.
 265         * It is set to NULL otherwise (i.e when none are currently running).
 266         */
 267        struct sched_entity *curr, *next, *last, *skip;
 268
 269#ifdef  CONFIG_SCHED_DEBUG
 270        unsigned int nr_spread_over;
 271#endif
 272
 273#ifdef CONFIG_SMP
 274        /*
 275         * CFS Load tracking
 276         * Under CFS, load is tracked on a per-entity basis and aggregated up.
 277         * This allows for the description of both thread and group usage (in
 278         * the FAIR_GROUP_SCHED case).
 279         */
 280        unsigned long runnable_load_avg, blocked_load_avg;
 281        atomic64_t decay_counter;
 282        u64 last_decay;
 283        atomic_long_t removed_load;
 284
 285#ifdef CONFIG_FAIR_GROUP_SCHED
 286        /* Required to track per-cpu representation of a task_group */
 287        u32 tg_runnable_contrib;
 288        unsigned long tg_load_contrib;
 289
 290        /*
 291         *   h_load = weight * f(tg)
 292         *
 293         * Where f(tg) is the recursive weight fraction assigned to
 294         * this group.
 295         */
 296        unsigned long h_load;
 297        u64 last_h_load_update;
 298        struct sched_entity *h_load_next;
 299#endif /* CONFIG_FAIR_GROUP_SCHED */
 300#endif /* CONFIG_SMP */
 301
 302#ifdef CONFIG_FAIR_GROUP_SCHED
 303        struct rq *rq;  /* cpu runqueue to which this cfs_rq is attached */
 304
 305        /*
 306         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 307         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 308         * (like users, containers etc.)
 309         *
 310         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 311         * list is used during load balance.
 312         */
 313        int on_list;
 314        struct list_head leaf_cfs_rq_list;
 315        struct task_group *tg;  /* group that "owns" this runqueue */
 316
 317#ifdef CONFIG_CFS_BANDWIDTH
 318        int runtime_enabled;
 319        u64 runtime_expires;
 320        s64 runtime_remaining;
 321
 322        u64 throttled_clock, throttled_clock_task;
 323        u64 throttled_clock_task_time;
 324        int throttled, throttle_count;
 325        struct list_head throttled_list;
 326#endif /* CONFIG_CFS_BANDWIDTH */
 327#endif /* CONFIG_FAIR_GROUP_SCHED */
 328};
 329
 330static inline int rt_bandwidth_enabled(void)
 331{
 332        return sysctl_sched_rt_runtime >= 0;
 333}
 334
 335/* Real-Time classes' related field in a runqueue: */
 336struct rt_rq {
 337        struct rt_prio_array active;
 338        unsigned int rt_nr_running;
 339#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 340        struct {
 341                int curr; /* highest queued rt task prio */
 342#ifdef CONFIG_SMP
 343                int next; /* next highest */
 344#endif
 345        } highest_prio;
 346#endif
 347#ifdef CONFIG_SMP
 348        unsigned long rt_nr_migratory;
 349        unsigned long rt_nr_total;
 350        int overloaded;
 351        struct plist_head pushable_tasks;
 352#endif
 353        int rt_throttled;
 354        u64 rt_time;
 355        u64 rt_runtime;
 356        /* Nests inside the rq lock: */
 357        raw_spinlock_t rt_runtime_lock;
 358
 359#ifdef CONFIG_RT_GROUP_SCHED
 360        unsigned long rt_nr_boosted;
 361
 362        struct rq *rq;
 363        struct task_group *tg;
 364#endif
 365};
 366
 367#ifdef CONFIG_SMP
 368
 369/*
 370 * We add the notion of a root-domain which will be used to define per-domain
 371 * variables. Each exclusive cpuset essentially defines an island domain by
 372 * fully partitioning the member cpus from any other cpuset. Whenever a new
 373 * exclusive cpuset is created, we also create and attach a new root-domain
 374 * object.
 375 *
 376 */
 377struct root_domain {
 378        atomic_t refcount;
 379        atomic_t rto_count;
 380        struct rcu_head rcu;
 381        cpumask_var_t span;
 382        cpumask_var_t online;
 383
 384        /*
 385         * The "RT overload" flag: it gets set if a CPU has more than
 386         * one runnable RT task.
 387         */
 388        cpumask_var_t rto_mask;
 389        struct cpupri cpupri;
 390};
 391
 392extern struct root_domain def_root_domain;
 393
 394#endif /* CONFIG_SMP */
 395
 396/*
 397 * This is the main, per-CPU runqueue data structure.
 398 *
 399 * Locking rule: those places that want to lock multiple runqueues
 400 * (such as the load balancing or the thread migration code), lock
 401 * acquire operations must be ordered by ascending &runqueue.
 402 */
 403struct rq {
 404        /* runqueue lock: */
 405        raw_spinlock_t lock;
 406
 407        /*
 408         * nr_running and cpu_load should be in the same cacheline because
 409         * remote CPUs use both these fields when doing load calculation.
 410         */
 411        unsigned int nr_running;
 412#ifdef CONFIG_NUMA_BALANCING
 413        unsigned int nr_numa_running;
 414        unsigned int nr_preferred_running;
 415#endif
 416        #define CPU_LOAD_IDX_MAX 5
 417        unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 418        unsigned long last_load_update_tick;
 419#ifdef CONFIG_NO_HZ_COMMON
 420        u64 nohz_stamp;
 421        unsigned long nohz_flags;
 422#endif
 423#ifdef CONFIG_NO_HZ_FULL
 424        unsigned long last_sched_tick;
 425#endif
 426        int skip_clock_update;
 427
 428        /* capture load from *all* tasks on this cpu: */
 429        struct load_weight load;
 430        unsigned long nr_load_updates;
 431        u64 nr_switches;
 432
 433        struct cfs_rq cfs;
 434        struct rt_rq rt;
 435
 436#ifdef CONFIG_FAIR_GROUP_SCHED
 437        /* list of leaf cfs_rq on this cpu: */
 438        struct list_head leaf_cfs_rq_list;
 439#endif /* CONFIG_FAIR_GROUP_SCHED */
 440
 441#ifdef CONFIG_RT_GROUP_SCHED
 442        struct list_head leaf_rt_rq_list;
 443#endif
 444
 445        /*
 446         * This is part of a global counter where only the total sum
 447         * over all CPUs matters. A task can increase this counter on
 448         * one CPU and if it got migrated afterwards it may decrease
 449         * it on another CPU. Always updated under the runqueue lock:
 450         */
 451        unsigned long nr_uninterruptible;
 452
 453        struct task_struct *curr, *idle, *stop;
 454        unsigned long next_balance;
 455        struct mm_struct *prev_mm;
 456
 457        u64 clock;
 458        u64 clock_task;
 459
 460        atomic_t nr_iowait;
 461
 462#ifdef CONFIG_SMP
 463        struct root_domain *rd;
 464        struct sched_domain *sd;
 465
 466        unsigned long cpu_power;
 467
 468        unsigned char idle_balance;
 469        /* For active balancing */
 470        int post_schedule;
 471        int active_balance;
 472        int push_cpu;
 473        struct cpu_stop_work active_balance_work;
 474        /* cpu of this runqueue: */
 475        int cpu;
 476        int online;
 477
 478        struct list_head cfs_tasks;
 479
 480        u64 rt_avg;
 481        u64 age_stamp;
 482        u64 idle_stamp;
 483        u64 avg_idle;
 484
 485        /* This is used to determine avg_idle's max value */
 486        u64 max_idle_balance_cost;
 487#endif
 488
 489#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 490        u64 prev_irq_time;
 491#endif
 492#ifdef CONFIG_PARAVIRT
 493        u64 prev_steal_time;
 494#endif
 495#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 496        u64 prev_steal_time_rq;
 497#endif
 498
 499        /* calc_load related fields */
 500        unsigned long calc_load_update;
 501        long calc_load_active;
 502
 503#ifdef CONFIG_SCHED_HRTICK
 504#ifdef CONFIG_SMP
 505        int hrtick_csd_pending;
 506        struct call_single_data hrtick_csd;
 507#endif
 508        struct hrtimer hrtick_timer;
 509#endif
 510
 511#ifdef CONFIG_SCHEDSTATS
 512        /* latency stats */
 513        struct sched_info rq_sched_info;
 514        unsigned long long rq_cpu_time;
 515        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 516
 517        /* sys_sched_yield() stats */
 518        unsigned int yld_count;
 519
 520        /* schedule() stats */
 521        unsigned int sched_count;
 522        unsigned int sched_goidle;
 523
 524        /* try_to_wake_up() stats */
 525        unsigned int ttwu_count;
 526        unsigned int ttwu_local;
 527#endif
 528
 529#ifdef CONFIG_SMP
 530        struct llist_head wake_list;
 531#endif
 532
 533        struct sched_avg avg;
 534};
 535
 536static inline int cpu_of(struct rq *rq)
 537{
 538#ifdef CONFIG_SMP
 539        return rq->cpu;
 540#else
 541        return 0;
 542#endif
 543}
 544
 545DECLARE_PER_CPU(struct rq, runqueues);
 546
 547#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
 548#define this_rq()               (&__get_cpu_var(runqueues))
 549#define task_rq(p)              cpu_rq(task_cpu(p))
 550#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
 551#define raw_rq()                (&__raw_get_cpu_var(runqueues))
 552
 553static inline u64 rq_clock(struct rq *rq)
 554{
 555        return rq->clock;
 556}
 557
 558static inline u64 rq_clock_task(struct rq *rq)
 559{
 560        return rq->clock_task;
 561}
 562
 563#ifdef CONFIG_NUMA_BALANCING
 564extern void sched_setnuma(struct task_struct *p, int node);
 565extern int migrate_task_to(struct task_struct *p, int cpu);
 566extern int migrate_swap(struct task_struct *, struct task_struct *);
 567#endif /* CONFIG_NUMA_BALANCING */
 568
 569#ifdef CONFIG_SMP
 570
 571#define rcu_dereference_check_sched_domain(p) \
 572        rcu_dereference_check((p), \
 573                              lockdep_is_held(&sched_domains_mutex))
 574
 575/*
 576 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 577 * See detach_destroy_domains: synchronize_sched for details.
 578 *
 579 * The domain tree of any CPU may only be accessed from within
 580 * preempt-disabled sections.
 581 */
 582#define for_each_domain(cpu, __sd) \
 583        for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 584                        __sd; __sd = __sd->parent)
 585
 586#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 587
 588/**
 589 * highest_flag_domain - Return highest sched_domain containing flag.
 590 * @cpu:        The cpu whose highest level of sched domain is to
 591 *              be returned.
 592 * @flag:       The flag to check for the highest sched_domain
 593 *              for the given cpu.
 594 *
 595 * Returns the highest sched_domain of a cpu which contains the given flag.
 596 */
 597static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 598{
 599        struct sched_domain *sd, *hsd = NULL;
 600
 601        for_each_domain(cpu, sd) {
 602                if (!(sd->flags & flag))
 603                        break;
 604                hsd = sd;
 605        }
 606
 607        return hsd;
 608}
 609
 610static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 611{
 612        struct sched_domain *sd;
 613
 614        for_each_domain(cpu, sd) {
 615                if (sd->flags & flag)
 616                        break;
 617        }
 618
 619        return sd;
 620}
 621
 622DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 623DECLARE_PER_CPU(int, sd_llc_size);
 624DECLARE_PER_CPU(int, sd_llc_id);
 625DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 626DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 627DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 628
 629struct sched_group_power {
 630        atomic_t ref;
 631        /*
 632         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
 633         * single CPU.
 634         */
 635        unsigned int power, power_orig;
 636        unsigned long next_update;
 637        int imbalance; /* XXX unrelated to power but shared group state */
 638        /*
 639         * Number of busy cpus in this group.
 640         */
 641        atomic_t nr_busy_cpus;
 642
 643        unsigned long cpumask[0]; /* iteration mask */
 644};
 645
 646struct sched_group {
 647        struct sched_group *next;       /* Must be a circular list */
 648        atomic_t ref;
 649
 650        unsigned int group_weight;
 651        struct sched_group_power *sgp;
 652
 653        /*
 654         * The CPUs this group covers.
 655         *
 656         * NOTE: this field is variable length. (Allocated dynamically
 657         * by attaching extra space to the end of the structure,
 658         * depending on how many CPUs the kernel has booted up with)
 659         */
 660        unsigned long cpumask[0];
 661};
 662
 663static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 664{
 665        return to_cpumask(sg->cpumask);
 666}
 667
 668/*
 669 * cpumask masking which cpus in the group are allowed to iterate up the domain
 670 * tree.
 671 */
 672static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 673{
 674        return to_cpumask(sg->sgp->cpumask);
 675}
 676
 677/**
 678 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 679 * @group: The group whose first cpu is to be returned.
 680 */
 681static inline unsigned int group_first_cpu(struct sched_group *group)
 682{
 683        return cpumask_first(sched_group_cpus(group));
 684}
 685
 686extern int group_balance_cpu(struct sched_group *sg);
 687
 688#endif /* CONFIG_SMP */
 689
 690#include "stats.h"
 691#include "auto_group.h"
 692
 693#ifdef CONFIG_CGROUP_SCHED
 694
 695/*
 696 * Return the group to which this tasks belongs.
 697 *
 698 * We cannot use task_css() and friends because the cgroup subsystem
 699 * changes that value before the cgroup_subsys::attach() method is called,
 700 * therefore we cannot pin it and might observe the wrong value.
 701 *
 702 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 703 * core changes this before calling sched_move_task().
 704 *
 705 * Instead we use a 'copy' which is updated from sched_move_task() while
 706 * holding both task_struct::pi_lock and rq::lock.
 707 */
 708static inline struct task_group *task_group(struct task_struct *p)
 709{
 710        return p->sched_task_group;
 711}
 712
 713/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 714static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 715{
 716#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 717        struct task_group *tg = task_group(p);
 718#endif
 719
 720#ifdef CONFIG_FAIR_GROUP_SCHED
 721        p->se.cfs_rq = tg->cfs_rq[cpu];
 722        p->se.parent = tg->se[cpu];
 723#endif
 724
 725#ifdef CONFIG_RT_GROUP_SCHED
 726        p->rt.rt_rq  = tg->rt_rq[cpu];
 727        p->rt.parent = tg->rt_se[cpu];
 728#endif
 729}
 730
 731#else /* CONFIG_CGROUP_SCHED */
 732
 733static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 734static inline struct task_group *task_group(struct task_struct *p)
 735{
 736        return NULL;
 737}
 738
 739#endif /* CONFIG_CGROUP_SCHED */
 740
 741static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 742{
 743        set_task_rq(p, cpu);
 744#ifdef CONFIG_SMP
 745        /*
 746         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 747         * successfuly executed on another CPU. We must ensure that updates of
 748         * per-task data have been completed by this moment.
 749         */
 750        smp_wmb();
 751        task_thread_info(p)->cpu = cpu;
 752        p->wake_cpu = cpu;
 753#endif
 754}
 755
 756/*
 757 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 758 */
 759#ifdef CONFIG_SCHED_DEBUG
 760# include <linux/static_key.h>
 761# define const_debug __read_mostly
 762#else
 763# define const_debug const
 764#endif
 765
 766extern const_debug unsigned int sysctl_sched_features;
 767
 768#define SCHED_FEAT(name, enabled)       \
 769        __SCHED_FEAT_##name ,
 770
 771enum {
 772#include "features.h"
 773        __SCHED_FEAT_NR,
 774};
 775
 776#undef SCHED_FEAT
 777
 778#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 779static __always_inline bool static_branch__true(struct static_key *key)
 780{
 781        return static_key_true(key); /* Not out of line branch. */
 782}
 783
 784static __always_inline bool static_branch__false(struct static_key *key)
 785{
 786        return static_key_false(key); /* Out of line branch. */
 787}
 788
 789#define SCHED_FEAT(name, enabled)                                       \
 790static __always_inline bool static_branch_##name(struct static_key *key) \
 791{                                                                       \
 792        return static_branch__##enabled(key);                           \
 793}
 794
 795#include "features.h"
 796
 797#undef SCHED_FEAT
 798
 799extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
 800#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
 801#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 802#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
 803#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 804
 805#ifdef CONFIG_NUMA_BALANCING
 806#define sched_feat_numa(x) sched_feat(x)
 807#ifdef CONFIG_SCHED_DEBUG
 808#define numabalancing_enabled sched_feat_numa(NUMA)
 809#else
 810extern bool numabalancing_enabled;
 811#endif /* CONFIG_SCHED_DEBUG */
 812#else
 813#define sched_feat_numa(x) (0)
 814#define numabalancing_enabled (0)
 815#endif /* CONFIG_NUMA_BALANCING */
 816
 817static inline u64 global_rt_period(void)
 818{
 819        return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
 820}
 821
 822static inline u64 global_rt_runtime(void)
 823{
 824        if (sysctl_sched_rt_runtime < 0)
 825                return RUNTIME_INF;
 826
 827        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
 828}
 829
 830
 831
 832static inline int task_current(struct rq *rq, struct task_struct *p)
 833{
 834        return rq->curr == p;
 835}
 836
 837static inline int task_running(struct rq *rq, struct task_struct *p)
 838{
 839#ifdef CONFIG_SMP
 840        return p->on_cpu;
 841#else
 842        return task_current(rq, p);
 843#endif
 844}
 845
 846
 847#ifndef prepare_arch_switch
 848# define prepare_arch_switch(next)      do { } while (0)
 849#endif
 850#ifndef finish_arch_switch
 851# define finish_arch_switch(prev)       do { } while (0)
 852#endif
 853#ifndef finish_arch_post_lock_switch
 854# define finish_arch_post_lock_switch() do { } while (0)
 855#endif
 856
 857#ifndef __ARCH_WANT_UNLOCKED_CTXSW
 858static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 859{
 860#ifdef CONFIG_SMP
 861        /*
 862         * We can optimise this out completely for !SMP, because the
 863         * SMP rebalancing from interrupt is the only thing that cares
 864         * here.
 865         */
 866        next->on_cpu = 1;
 867#endif
 868}
 869
 870static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 871{
 872#ifdef CONFIG_SMP
 873        /*
 874         * After ->on_cpu is cleared, the task can be moved to a different CPU.
 875         * We must ensure this doesn't happen until the switch is completely
 876         * finished.
 877         */
 878        smp_wmb();
 879        prev->on_cpu = 0;
 880#endif
 881#ifdef CONFIG_DEBUG_SPINLOCK
 882        /* this is a valid case when another task releases the spinlock */
 883        rq->lock.owner = current;
 884#endif
 885        /*
 886         * If we are tracking spinlock dependencies then we have to
 887         * fix up the runqueue lock - which gets 'carried over' from
 888         * prev into current:
 889         */
 890        spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
 891
 892        raw_spin_unlock_irq(&rq->lock);
 893}
 894
 895#else /* __ARCH_WANT_UNLOCKED_CTXSW */
 896static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
 897{
 898#ifdef CONFIG_SMP
 899        /*
 900         * We can optimise this out completely for !SMP, because the
 901         * SMP rebalancing from interrupt is the only thing that cares
 902         * here.
 903         */
 904        next->on_cpu = 1;
 905#endif
 906        raw_spin_unlock(&rq->lock);
 907}
 908
 909static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
 910{
 911#ifdef CONFIG_SMP
 912        /*
 913         * After ->on_cpu is cleared, the task can be moved to a different CPU.
 914         * We must ensure this doesn't happen until the switch is completely
 915         * finished.
 916         */
 917        smp_wmb();
 918        prev->on_cpu = 0;
 919#endif
 920        local_irq_enable();
 921}
 922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
 923
 924/*
 925 * wake flags
 926 */
 927#define WF_SYNC         0x01            /* waker goes to sleep after wakeup */
 928#define WF_FORK         0x02            /* child wakeup after fork */
 929#define WF_MIGRATED     0x4             /* internal use, task got migrated */
 930
 931/*
 932 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 933 * of tasks with abnormal "nice" values across CPUs the contribution that
 934 * each task makes to its run queue's load is weighted according to its
 935 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 936 * scaled version of the new time slice allocation that they receive on time
 937 * slice expiry etc.
 938 */
 939
 940#define WEIGHT_IDLEPRIO                3
 941#define WMULT_IDLEPRIO         1431655765
 942
 943/*
 944 * Nice levels are multiplicative, with a gentle 10% change for every
 945 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 946 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 947 * that remained on nice 0.
 948 *
 949 * The "10% effect" is relative and cumulative: from _any_ nice level,
 950 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
 951 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 952 * If a task goes up by ~10% and another task goes down by ~10% then
 953 * the relative distance between them is ~25%.)
 954 */
 955static const int prio_to_weight[40] = {
 956 /* -20 */     88761,     71755,     56483,     46273,     36291,
 957 /* -15 */     29154,     23254,     18705,     14949,     11916,
 958 /* -10 */      9548,      7620,      6100,      4904,      3906,
 959 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 960 /*   0 */      1024,       820,       655,       526,       423,
 961 /*   5 */       335,       272,       215,       172,       137,
 962 /*  10 */       110,        87,        70,        56,        45,
 963 /*  15 */        36,        29,        23,        18,        15,
 964};
 965
 966/*
 967 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 968 *
 969 * In cases where the weight does not change often, we can use the
 970 * precalculated inverse to speed up arithmetics by turning divisions
 971 * into multiplications:
 972 */
 973static const u32 prio_to_wmult[40] = {
 974 /* -20 */     48388,     59856,     76040,     92818,    118348,
 975 /* -15 */    147320,    184698,    229616,    287308,    360437,
 976 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 977 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 978 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 979 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 980 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 981 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
 982};
 983
 984#define ENQUEUE_WAKEUP          1
 985#define ENQUEUE_HEAD            2
 986#ifdef CONFIG_SMP
 987#define ENQUEUE_WAKING          4       /* sched_class::task_waking was called */
 988#else
 989#define ENQUEUE_WAKING          0
 990#endif
 991
 992#define DEQUEUE_SLEEP           1
 993
 994struct sched_class {
 995        const struct sched_class *next;
 996
 997        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
 998        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
 999        void (*yield_task) (struct rq *rq);
1000        bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1001
1002        void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1003
1004        struct task_struct * (*pick_next_task) (struct rq *rq);
1005        void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1006
1007#ifdef CONFIG_SMP
1008        int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1009        void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1010
1011        void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1012        void (*post_schedule) (struct rq *this_rq);
1013        void (*task_waking) (struct task_struct *task);
1014        void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1015
1016        void (*set_cpus_allowed)(struct task_struct *p,
1017                                 const struct cpumask *newmask);
1018
1019        void (*rq_online)(struct rq *rq);
1020        void (*rq_offline)(struct rq *rq);
1021#endif
1022
1023        void (*set_curr_task) (struct rq *rq);
1024        void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1025        void (*task_fork) (struct task_struct *p);
1026
1027        void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1028        void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1029        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1030                             int oldprio);
1031
1032        unsigned int (*get_rr_interval) (struct rq *rq,
1033                                         struct task_struct *task);
1034
1035#ifdef CONFIG_FAIR_GROUP_SCHED
1036        void (*task_move_group) (struct task_struct *p, int on_rq);
1037#endif
1038};
1039
1040#define sched_class_highest (&stop_sched_class)
1041#define for_each_class(class) \
1042   for (class = sched_class_highest; class; class = class->next)
1043
1044extern const struct sched_class stop_sched_class;
1045extern const struct sched_class rt_sched_class;
1046extern const struct sched_class fair_sched_class;
1047extern const struct sched_class idle_sched_class;
1048
1049
1050#ifdef CONFIG_SMP
1051
1052extern void update_group_power(struct sched_domain *sd, int cpu);
1053
1054extern void trigger_load_balance(struct rq *rq, int cpu);
1055extern void idle_balance(int this_cpu, struct rq *this_rq);
1056
1057extern void idle_enter_fair(struct rq *this_rq);
1058extern void idle_exit_fair(struct rq *this_rq);
1059
1060#else   /* CONFIG_SMP */
1061
1062static inline void idle_balance(int cpu, struct rq *rq)
1063{
1064}
1065
1066#endif
1067
1068extern void sysrq_sched_debug_show(void);
1069extern void sched_init_granularity(void);
1070extern void update_max_interval(void);
1071extern void init_sched_rt_class(void);
1072extern void init_sched_fair_class(void);
1073
1074extern void resched_task(struct task_struct *p);
1075extern void resched_cpu(int cpu);
1076
1077extern struct rt_bandwidth def_rt_bandwidth;
1078extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1079
1080extern void update_idle_cpu_load(struct rq *this_rq);
1081
1082extern void init_task_runnable_average(struct task_struct *p);
1083
1084#ifdef CONFIG_PARAVIRT
1085static inline u64 steal_ticks(u64 steal)
1086{
1087        if (unlikely(steal > NSEC_PER_SEC))
1088                return div_u64(steal, TICK_NSEC);
1089
1090        return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1091}
1092#endif
1093
1094static inline void inc_nr_running(struct rq *rq)
1095{
1096        rq->nr_running++;
1097
1098#ifdef CONFIG_NO_HZ_FULL
1099        if (rq->nr_running == 2) {
1100                if (tick_nohz_full_cpu(rq->cpu)) {
1101                        /* Order rq->nr_running write against the IPI */
1102                        smp_wmb();
1103                        smp_send_reschedule(rq->cpu);
1104                }
1105       }
1106#endif
1107}
1108
1109static inline void dec_nr_running(struct rq *rq)
1110{
1111        rq->nr_running--;
1112}
1113
1114static inline void rq_last_tick_reset(struct rq *rq)
1115{
1116#ifdef CONFIG_NO_HZ_FULL
1117        rq->last_sched_tick = jiffies;
1118#endif
1119}
1120
1121extern void update_rq_clock(struct rq *rq);
1122
1123extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1124extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1125
1126extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1127
1128extern const_debug unsigned int sysctl_sched_time_avg;
1129extern const_debug unsigned int sysctl_sched_nr_migrate;
1130extern const_debug unsigned int sysctl_sched_migration_cost;
1131
1132static inline u64 sched_avg_period(void)
1133{
1134        return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1135}
1136
1137#ifdef CONFIG_SCHED_HRTICK
1138
1139/*
1140 * Use hrtick when:
1141 *  - enabled by features
1142 *  - hrtimer is actually high res
1143 */
1144static inline int hrtick_enabled(struct rq *rq)
1145{
1146        if (!sched_feat(HRTICK))
1147                return 0;
1148        if (!cpu_active(cpu_of(rq)))
1149                return 0;
1150        return hrtimer_is_hres_active(&rq->hrtick_timer);
1151}
1152
1153void hrtick_start(struct rq *rq, u64 delay);
1154
1155#else
1156
1157static inline int hrtick_enabled(struct rq *rq)
1158{
1159        return 0;
1160}
1161
1162#endif /* CONFIG_SCHED_HRTICK */
1163
1164#ifdef CONFIG_SMP
1165extern void sched_avg_update(struct rq *rq);
1166static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1167{
1168        rq->rt_avg += rt_delta;
1169        sched_avg_update(rq);
1170}
1171#else
1172static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1173static inline void sched_avg_update(struct rq *rq) { }
1174#endif
1175
1176extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1177
1178#ifdef CONFIG_SMP
1179#ifdef CONFIG_PREEMPT
1180
1181static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1182
1183/*
1184 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1185 * way at the expense of forcing extra atomic operations in all
1186 * invocations.  This assures that the double_lock is acquired using the
1187 * same underlying policy as the spinlock_t on this architecture, which
1188 * reduces latency compared to the unfair variant below.  However, it
1189 * also adds more overhead and therefore may reduce throughput.
1190 */
1191static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1192        __releases(this_rq->lock)
1193        __acquires(busiest->lock)
1194        __acquires(this_rq->lock)
1195{
1196        raw_spin_unlock(&this_rq->lock);
1197        double_rq_lock(this_rq, busiest);
1198
1199        return 1;
1200}
1201
1202#else
1203/*
1204 * Unfair double_lock_balance: Optimizes throughput at the expense of
1205 * latency by eliminating extra atomic operations when the locks are
1206 * already in proper order on entry.  This favors lower cpu-ids and will
1207 * grant the double lock to lower cpus over higher ids under contention,
1208 * regardless of entry order into the function.
1209 */
1210static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1211        __releases(this_rq->lock)
1212        __acquires(busiest->lock)
1213        __acquires(this_rq->lock)
1214{
1215        int ret = 0;
1216
1217        if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1218                if (busiest < this_rq) {
1219                        raw_spin_unlock(&this_rq->lock);
1220                        raw_spin_lock(&busiest->lock);
1221                        raw_spin_lock_nested(&this_rq->lock,
1222                                              SINGLE_DEPTH_NESTING);
1223                        ret = 1;
1224                } else
1225                        raw_spin_lock_nested(&busiest->lock,
1226                                              SINGLE_DEPTH_NESTING);
1227        }
1228        return ret;
1229}
1230
1231#endif /* CONFIG_PREEMPT */
1232
1233/*
1234 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1235 */
1236static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1237{
1238        if (unlikely(!irqs_disabled())) {
1239                /* printk() doesn't work good under rq->lock */
1240                raw_spin_unlock(&this_rq->lock);
1241                BUG_ON(1);
1242        }
1243
1244        return _double_lock_balance(this_rq, busiest);
1245}
1246
1247static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1248        __releases(busiest->lock)
1249{
1250        raw_spin_unlock(&busiest->lock);
1251        lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1252}
1253
1254static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1255{
1256        if (l1 > l2)
1257                swap(l1, l2);
1258
1259        spin_lock(l1);
1260        spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1261}
1262
1263static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1264{
1265        if (l1 > l2)
1266                swap(l1, l2);
1267
1268        raw_spin_lock(l1);
1269        raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1270}
1271
1272/*
1273 * double_rq_lock - safely lock two runqueues
1274 *
1275 * Note this does not disable interrupts like task_rq_lock,
1276 * you need to do so manually before calling.
1277 */
1278static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1279        __acquires(rq1->lock)
1280        __acquires(rq2->lock)
1281{
1282        BUG_ON(!irqs_disabled());
1283        if (rq1 == rq2) {
1284                raw_spin_lock(&rq1->lock);
1285                __acquire(rq2->lock);   /* Fake it out ;) */
1286        } else {
1287                if (rq1 < rq2) {
1288                        raw_spin_lock(&rq1->lock);
1289                        raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1290                } else {
1291                        raw_spin_lock(&rq2->lock);
1292                        raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1293                }
1294        }
1295}
1296
1297/*
1298 * double_rq_unlock - safely unlock two runqueues
1299 *
1300 * Note this does not restore interrupts like task_rq_unlock,
1301 * you need to do so manually after calling.
1302 */
1303static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1304        __releases(rq1->lock)
1305        __releases(rq2->lock)
1306{
1307        raw_spin_unlock(&rq1->lock);
1308        if (rq1 != rq2)
1309                raw_spin_unlock(&rq2->lock);
1310        else
1311                __release(rq2->lock);
1312}
1313
1314#else /* CONFIG_SMP */
1315
1316/*
1317 * double_rq_lock - safely lock two runqueues
1318 *
1319 * Note this does not disable interrupts like task_rq_lock,
1320 * you need to do so manually before calling.
1321 */
1322static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1323        __acquires(rq1->lock)
1324        __acquires(rq2->lock)
1325{
1326        BUG_ON(!irqs_disabled());
1327        BUG_ON(rq1 != rq2);
1328        raw_spin_lock(&rq1->lock);
1329        __acquire(rq2->lock);   /* Fake it out ;) */
1330}
1331
1332/*
1333 * double_rq_unlock - safely unlock two runqueues
1334 *
1335 * Note this does not restore interrupts like task_rq_unlock,
1336 * you need to do so manually after calling.
1337 */
1338static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1339        __releases(rq1->lock)
1340        __releases(rq2->lock)
1341{
1342        BUG_ON(rq1 != rq2);
1343        raw_spin_unlock(&rq1->lock);
1344        __release(rq2->lock);
1345}
1346
1347#endif
1348
1349extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1350extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1351extern void print_cfs_stats(struct seq_file *m, int cpu);
1352extern void print_rt_stats(struct seq_file *m, int cpu);
1353
1354extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1355extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1356
1357extern void cfs_bandwidth_usage_inc(void);
1358extern void cfs_bandwidth_usage_dec(void);
1359
1360#ifdef CONFIG_NO_HZ_COMMON
1361enum rq_nohz_flag_bits {
1362        NOHZ_TICK_STOPPED,
1363        NOHZ_BALANCE_KICK,
1364};
1365
1366#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1367#endif
1368
1369#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1370
1371DECLARE_PER_CPU(u64, cpu_hardirq_time);
1372DECLARE_PER_CPU(u64, cpu_softirq_time);
1373
1374#ifndef CONFIG_64BIT
1375DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1376
1377static inline void irq_time_write_begin(void)
1378{
1379        __this_cpu_inc(irq_time_seq.sequence);
1380        smp_wmb();
1381}
1382
1383static inline void irq_time_write_end(void)
1384{
1385        smp_wmb();
1386        __this_cpu_inc(irq_time_seq.sequence);
1387}
1388
1389static inline u64 irq_time_read(int cpu)
1390{
1391        u64 irq_time;
1392        unsigned seq;
1393
1394        do {
1395                seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1396                irq_time = per_cpu(cpu_softirq_time, cpu) +
1397                           per_cpu(cpu_hardirq_time, cpu);
1398        } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1399
1400        return irq_time;
1401}
1402#else /* CONFIG_64BIT */
1403static inline void irq_time_write_begin(void)
1404{
1405}
1406
1407static inline void irq_time_write_end(void)
1408{
1409}
1410
1411static inline u64 irq_time_read(int cpu)
1412{
1413        return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1414}
1415#endif /* CONFIG_64BIT */
1416#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1417