linux/mm/memcontrol.c
<<
>>
Prefs
   1/* memcontrol.c - Memory Controller
   2 *
   3 * Copyright IBM Corporation, 2007
   4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   5 *
   6 * Copyright 2007 OpenVZ SWsoft Inc
   7 * Author: Pavel Emelianov <xemul@openvz.org>
   8 *
   9 * Memory thresholds
  10 * Copyright (C) 2009 Nokia Corporation
  11 * Author: Kirill A. Shutemov
  12 *
  13 * Kernel Memory Controller
  14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15 * Authors: Glauber Costa and Suleiman Souhlal
  16 *
  17 * This program is free software; you can redistribute it and/or modify
  18 * it under the terms of the GNU General Public License as published by
  19 * the Free Software Foundation; either version 2 of the License, or
  20 * (at your option) any later version.
  21 *
  22 * This program is distributed in the hope that it will be useful,
  23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  25 * GNU General Public License for more details.
  26 */
  27
  28#include <linux/res_counter.h>
  29#include <linux/memcontrol.h>
  30#include <linux/cgroup.h>
  31#include <linux/mm.h>
  32#include <linux/hugetlb.h>
  33#include <linux/pagemap.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/sort.h>
  49#include <linux/fs.h>
  50#include <linux/seq_file.h>
  51#include <linux/vmalloc.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/page_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include "internal.h"
  59#include <net/sock.h>
  60#include <net/ip.h>
  61#include <net/tcp_memcontrol.h>
  62#include "slab.h"
  63
  64#include <asm/uaccess.h>
  65
  66#include <trace/events/vmscan.h>
  67
  68struct cgroup_subsys mem_cgroup_subsys __read_mostly;
  69EXPORT_SYMBOL(mem_cgroup_subsys);
  70
  71#define MEM_CGROUP_RECLAIM_RETRIES      5
  72static struct mem_cgroup *root_mem_cgroup __read_mostly;
  73
  74#ifdef CONFIG_MEMCG_SWAP
  75/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  76int do_swap_account __read_mostly;
  77
  78/* for remember boot option*/
  79#ifdef CONFIG_MEMCG_SWAP_ENABLED
  80static int really_do_swap_account __initdata = 1;
  81#else
  82static int really_do_swap_account __initdata = 0;
  83#endif
  84
  85#else
  86#define do_swap_account         0
  87#endif
  88
  89
  90static const char * const mem_cgroup_stat_names[] = {
  91        "cache",
  92        "rss",
  93        "rss_huge",
  94        "mapped_file",
  95        "writeback",
  96        "swap",
  97};
  98
  99enum mem_cgroup_events_index {
 100        MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
 101        MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
 102        MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
 103        MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
 104        MEM_CGROUP_EVENTS_NSTATS,
 105};
 106
 107static const char * const mem_cgroup_events_names[] = {
 108        "pgpgin",
 109        "pgpgout",
 110        "pgfault",
 111        "pgmajfault",
 112};
 113
 114static const char * const mem_cgroup_lru_names[] = {
 115        "inactive_anon",
 116        "active_anon",
 117        "inactive_file",
 118        "active_file",
 119        "unevictable",
 120};
 121
 122/*
 123 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 124 * it will be incremated by the number of pages. This counter is used for
 125 * for trigger some periodic events. This is straightforward and better
 126 * than using jiffies etc. to handle periodic memcg event.
 127 */
 128enum mem_cgroup_events_target {
 129        MEM_CGROUP_TARGET_THRESH,
 130        MEM_CGROUP_TARGET_SOFTLIMIT,
 131        MEM_CGROUP_TARGET_NUMAINFO,
 132        MEM_CGROUP_NTARGETS,
 133};
 134#define THRESHOLDS_EVENTS_TARGET 128
 135#define SOFTLIMIT_EVENTS_TARGET 1024
 136#define NUMAINFO_EVENTS_TARGET  1024
 137
 138struct mem_cgroup_stat_cpu {
 139        long count[MEM_CGROUP_STAT_NSTATS];
 140        unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
 141        unsigned long nr_page_events;
 142        unsigned long targets[MEM_CGROUP_NTARGETS];
 143};
 144
 145struct mem_cgroup_reclaim_iter {
 146        /*
 147         * last scanned hierarchy member. Valid only if last_dead_count
 148         * matches memcg->dead_count of the hierarchy root group.
 149         */
 150        struct mem_cgroup *last_visited;
 151        unsigned long last_dead_count;
 152
 153        /* scan generation, increased every round-trip */
 154        unsigned int generation;
 155};
 156
 157/*
 158 * per-zone information in memory controller.
 159 */
 160struct mem_cgroup_per_zone {
 161        struct lruvec           lruvec;
 162        unsigned long           lru_size[NR_LRU_LISTS];
 163
 164        struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
 165
 166        struct rb_node          tree_node;      /* RB tree node */
 167        unsigned long long      usage_in_excess;/* Set to the value by which */
 168                                                /* the soft limit is exceeded*/
 169        bool                    on_tree;
 170        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 171                                                /* use container_of        */
 172};
 173
 174struct mem_cgroup_per_node {
 175        struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 176};
 177
 178/*
 179 * Cgroups above their limits are maintained in a RB-Tree, independent of
 180 * their hierarchy representation
 181 */
 182
 183struct mem_cgroup_tree_per_zone {
 184        struct rb_root rb_root;
 185        spinlock_t lock;
 186};
 187
 188struct mem_cgroup_tree_per_node {
 189        struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
 190};
 191
 192struct mem_cgroup_tree {
 193        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 194};
 195
 196static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 197
 198struct mem_cgroup_threshold {
 199        struct eventfd_ctx *eventfd;
 200        u64 threshold;
 201};
 202
 203/* For threshold */
 204struct mem_cgroup_threshold_ary {
 205        /* An array index points to threshold just below or equal to usage. */
 206        int current_threshold;
 207        /* Size of entries[] */
 208        unsigned int size;
 209        /* Array of thresholds */
 210        struct mem_cgroup_threshold entries[0];
 211};
 212
 213struct mem_cgroup_thresholds {
 214        /* Primary thresholds array */
 215        struct mem_cgroup_threshold_ary *primary;
 216        /*
 217         * Spare threshold array.
 218         * This is needed to make mem_cgroup_unregister_event() "never fail".
 219         * It must be able to store at least primary->size - 1 entries.
 220         */
 221        struct mem_cgroup_threshold_ary *spare;
 222};
 223
 224/* for OOM */
 225struct mem_cgroup_eventfd_list {
 226        struct list_head list;
 227        struct eventfd_ctx *eventfd;
 228};
 229
 230static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 231static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 232
 233/*
 234 * The memory controller data structure. The memory controller controls both
 235 * page cache and RSS per cgroup. We would eventually like to provide
 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 237 * to help the administrator determine what knobs to tune.
 238 *
 239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
 240 * we hit the water mark. May be even add a low water mark, such that
 241 * no reclaim occurs from a cgroup at it's low water mark, this is
 242 * a feature that will be implemented much later in the future.
 243 */
 244struct mem_cgroup {
 245        struct cgroup_subsys_state css;
 246        /*
 247         * the counter to account for memory usage
 248         */
 249        struct res_counter res;
 250
 251        /* vmpressure notifications */
 252        struct vmpressure vmpressure;
 253
 254        /*
 255         * the counter to account for mem+swap usage.
 256         */
 257        struct res_counter memsw;
 258
 259        /*
 260         * the counter to account for kernel memory usage.
 261         */
 262        struct res_counter kmem;
 263        /*
 264         * Should the accounting and control be hierarchical, per subtree?
 265         */
 266        bool use_hierarchy;
 267        unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
 268
 269        bool            oom_lock;
 270        atomic_t        under_oom;
 271        atomic_t        oom_wakeups;
 272
 273        int     swappiness;
 274        /* OOM-Killer disable */
 275        int             oom_kill_disable;
 276
 277        /* set when res.limit == memsw.limit */
 278        bool            memsw_is_minimum;
 279
 280        /* protect arrays of thresholds */
 281        struct mutex thresholds_lock;
 282
 283        /* thresholds for memory usage. RCU-protected */
 284        struct mem_cgroup_thresholds thresholds;
 285
 286        /* thresholds for mem+swap usage. RCU-protected */
 287        struct mem_cgroup_thresholds memsw_thresholds;
 288
 289        /* For oom notifier event fd */
 290        struct list_head oom_notify;
 291
 292        /*
 293         * Should we move charges of a task when a task is moved into this
 294         * mem_cgroup ? And what type of charges should we move ?
 295         */
 296        unsigned long move_charge_at_immigrate;
 297        /*
 298         * set > 0 if pages under this cgroup are moving to other cgroup.
 299         */
 300        atomic_t        moving_account;
 301        /* taken only while moving_account > 0 */
 302        spinlock_t      move_lock;
 303        /*
 304         * percpu counter.
 305         */
 306        struct mem_cgroup_stat_cpu __percpu *stat;
 307        /*
 308         * used when a cpu is offlined or other synchronizations
 309         * See mem_cgroup_read_stat().
 310         */
 311        struct mem_cgroup_stat_cpu nocpu_base;
 312        spinlock_t pcp_counter_lock;
 313
 314        atomic_t        dead_count;
 315#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
 316        struct cg_proto tcp_mem;
 317#endif
 318#if defined(CONFIG_MEMCG_KMEM)
 319        /* analogous to slab_common's slab_caches list. per-memcg */
 320        struct list_head memcg_slab_caches;
 321        /* Not a spinlock, we can take a lot of time walking the list */
 322        struct mutex slab_caches_mutex;
 323        /* Index in the kmem_cache->memcg_params->memcg_caches array */
 324        int kmemcg_id;
 325#endif
 326
 327        int last_scanned_node;
 328#if MAX_NUMNODES > 1
 329        nodemask_t      scan_nodes;
 330        atomic_t        numainfo_events;
 331        atomic_t        numainfo_updating;
 332#endif
 333
 334        struct mem_cgroup_per_node *nodeinfo[0];
 335        /* WARNING: nodeinfo must be the last member here */
 336};
 337
 338static size_t memcg_size(void)
 339{
 340        return sizeof(struct mem_cgroup) +
 341                nr_node_ids * sizeof(struct mem_cgroup_per_node *);
 342}
 343
 344/* internal only representation about the status of kmem accounting. */
 345enum {
 346        KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
 347        KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
 348        KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
 349};
 350
 351/* We account when limit is on, but only after call sites are patched */
 352#define KMEM_ACCOUNTED_MASK \
 353                ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
 354
 355#ifdef CONFIG_MEMCG_KMEM
 356static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
 357{
 358        set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
 359}
 360
 361static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
 362{
 363        return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
 364}
 365
 366static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
 367{
 368        set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
 369}
 370
 371static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
 372{
 373        clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
 374}
 375
 376static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
 377{
 378        /*
 379         * Our caller must use css_get() first, because memcg_uncharge_kmem()
 380         * will call css_put() if it sees the memcg is dead.
 381         */
 382        smp_wmb();
 383        if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
 384                set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
 385}
 386
 387static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
 388{
 389        return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
 390                                  &memcg->kmem_account_flags);
 391}
 392#endif
 393
 394/* Stuffs for move charges at task migration. */
 395/*
 396 * Types of charges to be moved. "move_charge_at_immitgrate" and
 397 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
 398 */
 399enum move_type {
 400        MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
 401        MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
 402        NR_MOVE_TYPE,
 403};
 404
 405/* "mc" and its members are protected by cgroup_mutex */
 406static struct move_charge_struct {
 407        spinlock_t        lock; /* for from, to */
 408        struct mem_cgroup *from;
 409        struct mem_cgroup *to;
 410        unsigned long immigrate_flags;
 411        unsigned long precharge;
 412        unsigned long moved_charge;
 413        unsigned long moved_swap;
 414        struct task_struct *moving_task;        /* a task moving charges */
 415        wait_queue_head_t waitq;                /* a waitq for other context */
 416} mc = {
 417        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 418        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 419};
 420
 421static bool move_anon(void)
 422{
 423        return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
 424}
 425
 426static bool move_file(void)
 427{
 428        return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
 429}
 430
 431/*
 432 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 433 * limit reclaim to prevent infinite loops, if they ever occur.
 434 */
 435#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 436#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 437
 438enum charge_type {
 439        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 440        MEM_CGROUP_CHARGE_TYPE_ANON,
 441        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 442        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 443        NR_CHARGE_TYPE,
 444};
 445
 446/* for encoding cft->private value on file */
 447enum res_type {
 448        _MEM,
 449        _MEMSWAP,
 450        _OOM_TYPE,
 451        _KMEM,
 452};
 453
 454#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 455#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 456#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 457/* Used for OOM nofiier */
 458#define OOM_CONTROL             (0)
 459
 460/*
 461 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 462 */
 463#define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
 464#define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
 465#define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
 466#define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
 467
 468/*
 469 * The memcg_create_mutex will be held whenever a new cgroup is created.
 470 * As a consequence, any change that needs to protect against new child cgroups
 471 * appearing has to hold it as well.
 472 */
 473static DEFINE_MUTEX(memcg_create_mutex);
 474
 475struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
 476{
 477        return s ? container_of(s, struct mem_cgroup, css) : NULL;
 478}
 479
 480/* Some nice accessors for the vmpressure. */
 481struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 482{
 483        if (!memcg)
 484                memcg = root_mem_cgroup;
 485        return &memcg->vmpressure;
 486}
 487
 488struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 489{
 490        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 491}
 492
 493struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
 494{
 495        return &mem_cgroup_from_css(css)->vmpressure;
 496}
 497
 498static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 499{
 500        return (memcg == root_mem_cgroup);
 501}
 502
 503/*
 504 * We restrict the id in the range of [1, 65535], so it can fit into
 505 * an unsigned short.
 506 */
 507#define MEM_CGROUP_ID_MAX       USHRT_MAX
 508
 509static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 510{
 511        /*
 512         * The ID of the root cgroup is 0, but memcg treat 0 as an
 513         * invalid ID, so we return (cgroup_id + 1).
 514         */
 515        return memcg->css.cgroup->id + 1;
 516}
 517
 518static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
 519{
 520        struct cgroup_subsys_state *css;
 521
 522        css = css_from_id(id - 1, &mem_cgroup_subsys);
 523        return mem_cgroup_from_css(css);
 524}
 525
 526/* Writing them here to avoid exposing memcg's inner layout */
 527#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
 528
 529void sock_update_memcg(struct sock *sk)
 530{
 531        if (mem_cgroup_sockets_enabled) {
 532                struct mem_cgroup *memcg;
 533                struct cg_proto *cg_proto;
 534
 535                BUG_ON(!sk->sk_prot->proto_cgroup);
 536
 537                /* Socket cloning can throw us here with sk_cgrp already
 538                 * filled. It won't however, necessarily happen from
 539                 * process context. So the test for root memcg given
 540                 * the current task's memcg won't help us in this case.
 541                 *
 542                 * Respecting the original socket's memcg is a better
 543                 * decision in this case.
 544                 */
 545                if (sk->sk_cgrp) {
 546                        BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
 547                        css_get(&sk->sk_cgrp->memcg->css);
 548                        return;
 549                }
 550
 551                rcu_read_lock();
 552                memcg = mem_cgroup_from_task(current);
 553                cg_proto = sk->sk_prot->proto_cgroup(memcg);
 554                if (!mem_cgroup_is_root(memcg) &&
 555                    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
 556                        sk->sk_cgrp = cg_proto;
 557                }
 558                rcu_read_unlock();
 559        }
 560}
 561EXPORT_SYMBOL(sock_update_memcg);
 562
 563void sock_release_memcg(struct sock *sk)
 564{
 565        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
 566                struct mem_cgroup *memcg;
 567                WARN_ON(!sk->sk_cgrp->memcg);
 568                memcg = sk->sk_cgrp->memcg;
 569                css_put(&sk->sk_cgrp->memcg->css);
 570        }
 571}
 572
 573struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
 574{
 575        if (!memcg || mem_cgroup_is_root(memcg))
 576                return NULL;
 577
 578        return &memcg->tcp_mem;
 579}
 580EXPORT_SYMBOL(tcp_proto_cgroup);
 581
 582static void disarm_sock_keys(struct mem_cgroup *memcg)
 583{
 584        if (!memcg_proto_activated(&memcg->tcp_mem))
 585                return;
 586        static_key_slow_dec(&memcg_socket_limit_enabled);
 587}
 588#else
 589static void disarm_sock_keys(struct mem_cgroup *memcg)
 590{
 591}
 592#endif
 593
 594#ifdef CONFIG_MEMCG_KMEM
 595/*
 596 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 597 * The main reason for not using cgroup id for this:
 598 *  this works better in sparse environments, where we have a lot of memcgs,
 599 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 600 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 601 *  200 entry array for that.
 602 *
 603 * The current size of the caches array is stored in
 604 * memcg_limited_groups_array_size.  It will double each time we have to
 605 * increase it.
 606 */
 607static DEFINE_IDA(kmem_limited_groups);
 608int memcg_limited_groups_array_size;
 609
 610/*
 611 * MIN_SIZE is different than 1, because we would like to avoid going through
 612 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 613 * cgroups is a reasonable guess. In the future, it could be a parameter or
 614 * tunable, but that is strictly not necessary.
 615 *
 616 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 617 * this constant directly from cgroup, but it is understandable that this is
 618 * better kept as an internal representation in cgroup.c. In any case, the
 619 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 620 * increase ours as well if it increases.
 621 */
 622#define MEMCG_CACHES_MIN_SIZE 4
 623#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 624
 625/*
 626 * A lot of the calls to the cache allocation functions are expected to be
 627 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 628 * conditional to this static branch, we'll have to allow modules that does
 629 * kmem_cache_alloc and the such to see this symbol as well
 630 */
 631struct static_key memcg_kmem_enabled_key;
 632EXPORT_SYMBOL(memcg_kmem_enabled_key);
 633
 634static void disarm_kmem_keys(struct mem_cgroup *memcg)
 635{
 636        if (memcg_kmem_is_active(memcg)) {
 637                static_key_slow_dec(&memcg_kmem_enabled_key);
 638                ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
 639        }
 640        /*
 641         * This check can't live in kmem destruction function,
 642         * since the charges will outlive the cgroup
 643         */
 644        WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
 645}
 646#else
 647static void disarm_kmem_keys(struct mem_cgroup *memcg)
 648{
 649}
 650#endif /* CONFIG_MEMCG_KMEM */
 651
 652static void disarm_static_keys(struct mem_cgroup *memcg)
 653{
 654        disarm_sock_keys(memcg);
 655        disarm_kmem_keys(memcg);
 656}
 657
 658static void drain_all_stock_async(struct mem_cgroup *memcg);
 659
 660static struct mem_cgroup_per_zone *
 661mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
 662{
 663        VM_BUG_ON((unsigned)nid >= nr_node_ids);
 664        return &memcg->nodeinfo[nid]->zoneinfo[zid];
 665}
 666
 667struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
 668{
 669        return &memcg->css;
 670}
 671
 672static struct mem_cgroup_per_zone *
 673page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
 674{
 675        int nid = page_to_nid(page);
 676        int zid = page_zonenum(page);
 677
 678        return mem_cgroup_zoneinfo(memcg, nid, zid);
 679}
 680
 681static struct mem_cgroup_tree_per_zone *
 682soft_limit_tree_node_zone(int nid, int zid)
 683{
 684        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 685}
 686
 687static struct mem_cgroup_tree_per_zone *
 688soft_limit_tree_from_page(struct page *page)
 689{
 690        int nid = page_to_nid(page);
 691        int zid = page_zonenum(page);
 692
 693        return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
 694}
 695
 696static void
 697__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
 698                                struct mem_cgroup_per_zone *mz,
 699                                struct mem_cgroup_tree_per_zone *mctz,
 700                                unsigned long long new_usage_in_excess)
 701{
 702        struct rb_node **p = &mctz->rb_root.rb_node;
 703        struct rb_node *parent = NULL;
 704        struct mem_cgroup_per_zone *mz_node;
 705
 706        if (mz->on_tree)
 707                return;
 708
 709        mz->usage_in_excess = new_usage_in_excess;
 710        if (!mz->usage_in_excess)
 711                return;
 712        while (*p) {
 713                parent = *p;
 714                mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
 715                                        tree_node);
 716                if (mz->usage_in_excess < mz_node->usage_in_excess)
 717                        p = &(*p)->rb_left;
 718                /*
 719                 * We can't avoid mem cgroups that are over their soft
 720                 * limit by the same amount
 721                 */
 722                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 723                        p = &(*p)->rb_right;
 724        }
 725        rb_link_node(&mz->tree_node, parent, p);
 726        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 727        mz->on_tree = true;
 728}
 729
 730static void
 731__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 732                                struct mem_cgroup_per_zone *mz,
 733                                struct mem_cgroup_tree_per_zone *mctz)
 734{
 735        if (!mz->on_tree)
 736                return;
 737        rb_erase(&mz->tree_node, &mctz->rb_root);
 738        mz->on_tree = false;
 739}
 740
 741static void
 742mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
 743                                struct mem_cgroup_per_zone *mz,
 744                                struct mem_cgroup_tree_per_zone *mctz)
 745{
 746        spin_lock(&mctz->lock);
 747        __mem_cgroup_remove_exceeded(memcg, mz, mctz);
 748        spin_unlock(&mctz->lock);
 749}
 750
 751
 752static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 753{
 754        unsigned long long excess;
 755        struct mem_cgroup_per_zone *mz;
 756        struct mem_cgroup_tree_per_zone *mctz;
 757        int nid = page_to_nid(page);
 758        int zid = page_zonenum(page);
 759        mctz = soft_limit_tree_from_page(page);
 760
 761        /*
 762         * Necessary to update all ancestors when hierarchy is used.
 763         * because their event counter is not touched.
 764         */
 765        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 766                mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 767                excess = res_counter_soft_limit_excess(&memcg->res);
 768                /*
 769                 * We have to update the tree if mz is on RB-tree or
 770                 * mem is over its softlimit.
 771                 */
 772                if (excess || mz->on_tree) {
 773                        spin_lock(&mctz->lock);
 774                        /* if on-tree, remove it */
 775                        if (mz->on_tree)
 776                                __mem_cgroup_remove_exceeded(memcg, mz, mctz);
 777                        /*
 778                         * Insert again. mz->usage_in_excess will be updated.
 779                         * If excess is 0, no tree ops.
 780                         */
 781                        __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
 782                        spin_unlock(&mctz->lock);
 783                }
 784        }
 785}
 786
 787static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 788{
 789        int node, zone;
 790        struct mem_cgroup_per_zone *mz;
 791        struct mem_cgroup_tree_per_zone *mctz;
 792
 793        for_each_node(node) {
 794                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 795                        mz = mem_cgroup_zoneinfo(memcg, node, zone);
 796                        mctz = soft_limit_tree_node_zone(node, zone);
 797                        mem_cgroup_remove_exceeded(memcg, mz, mctz);
 798                }
 799        }
 800}
 801
 802static struct mem_cgroup_per_zone *
 803__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 804{
 805        struct rb_node *rightmost = NULL;
 806        struct mem_cgroup_per_zone *mz;
 807
 808retry:
 809        mz = NULL;
 810        rightmost = rb_last(&mctz->rb_root);
 811        if (!rightmost)
 812                goto done;              /* Nothing to reclaim from */
 813
 814        mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
 815        /*
 816         * Remove the node now but someone else can add it back,
 817         * we will to add it back at the end of reclaim to its correct
 818         * position in the tree.
 819         */
 820        __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
 821        if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
 822                !css_tryget(&mz->memcg->css))
 823                goto retry;
 824done:
 825        return mz;
 826}
 827
 828static struct mem_cgroup_per_zone *
 829mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
 830{
 831        struct mem_cgroup_per_zone *mz;
 832
 833        spin_lock(&mctz->lock);
 834        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 835        spin_unlock(&mctz->lock);
 836        return mz;
 837}
 838
 839/*
 840 * Implementation Note: reading percpu statistics for memcg.
 841 *
 842 * Both of vmstat[] and percpu_counter has threshold and do periodic
 843 * synchronization to implement "quick" read. There are trade-off between
 844 * reading cost and precision of value. Then, we may have a chance to implement
 845 * a periodic synchronizion of counter in memcg's counter.
 846 *
 847 * But this _read() function is used for user interface now. The user accounts
 848 * memory usage by memory cgroup and he _always_ requires exact value because
 849 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 850 * have to visit all online cpus and make sum. So, for now, unnecessary
 851 * synchronization is not implemented. (just implemented for cpu hotplug)
 852 *
 853 * If there are kernel internal actions which can make use of some not-exact
 854 * value, and reading all cpu value can be performance bottleneck in some
 855 * common workload, threashold and synchonization as vmstat[] should be
 856 * implemented.
 857 */
 858static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
 859                                 enum mem_cgroup_stat_index idx)
 860{
 861        long val = 0;
 862        int cpu;
 863
 864        get_online_cpus();
 865        for_each_online_cpu(cpu)
 866                val += per_cpu(memcg->stat->count[idx], cpu);
 867#ifdef CONFIG_HOTPLUG_CPU
 868        spin_lock(&memcg->pcp_counter_lock);
 869        val += memcg->nocpu_base.count[idx];
 870        spin_unlock(&memcg->pcp_counter_lock);
 871#endif
 872        put_online_cpus();
 873        return val;
 874}
 875
 876static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
 877                                         bool charge)
 878{
 879        int val = (charge) ? 1 : -1;
 880        this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
 881}
 882
 883static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
 884                                            enum mem_cgroup_events_index idx)
 885{
 886        unsigned long val = 0;
 887        int cpu;
 888
 889        get_online_cpus();
 890        for_each_online_cpu(cpu)
 891                val += per_cpu(memcg->stat->events[idx], cpu);
 892#ifdef CONFIG_HOTPLUG_CPU
 893        spin_lock(&memcg->pcp_counter_lock);
 894        val += memcg->nocpu_base.events[idx];
 895        spin_unlock(&memcg->pcp_counter_lock);
 896#endif
 897        put_online_cpus();
 898        return val;
 899}
 900
 901static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 902                                         struct page *page,
 903                                         bool anon, int nr_pages)
 904{
 905        preempt_disable();
 906
 907        /*
 908         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 909         * counted as CACHE even if it's on ANON LRU.
 910         */
 911        if (anon)
 912                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
 913                                nr_pages);
 914        else
 915                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
 916                                nr_pages);
 917
 918        if (PageTransHuge(page))
 919                __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
 920                                nr_pages);
 921
 922        /* pagein of a big page is an event. So, ignore page size */
 923        if (nr_pages > 0)
 924                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
 925        else {
 926                __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
 927                nr_pages = -nr_pages; /* for event */
 928        }
 929
 930        __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
 931
 932        preempt_enable();
 933}
 934
 935unsigned long
 936mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
 937{
 938        struct mem_cgroup_per_zone *mz;
 939
 940        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
 941        return mz->lru_size[lru];
 942}
 943
 944static unsigned long
 945mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
 946                        unsigned int lru_mask)
 947{
 948        struct mem_cgroup_per_zone *mz;
 949        enum lru_list lru;
 950        unsigned long ret = 0;
 951
 952        mz = mem_cgroup_zoneinfo(memcg, nid, zid);
 953
 954        for_each_lru(lru) {
 955                if (BIT(lru) & lru_mask)
 956                        ret += mz->lru_size[lru];
 957        }
 958        return ret;
 959}
 960
 961static unsigned long
 962mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
 963                        int nid, unsigned int lru_mask)
 964{
 965        u64 total = 0;
 966        int zid;
 967
 968        for (zid = 0; zid < MAX_NR_ZONES; zid++)
 969                total += mem_cgroup_zone_nr_lru_pages(memcg,
 970                                                nid, zid, lru_mask);
 971
 972        return total;
 973}
 974
 975static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
 976                        unsigned int lru_mask)
 977{
 978        int nid;
 979        u64 total = 0;
 980
 981        for_each_node_state(nid, N_MEMORY)
 982                total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
 983        return total;
 984}
 985
 986static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 987                                       enum mem_cgroup_events_target target)
 988{
 989        unsigned long val, next;
 990
 991        val = __this_cpu_read(memcg->stat->nr_page_events);
 992        next = __this_cpu_read(memcg->stat->targets[target]);
 993        /* from time_after() in jiffies.h */
 994        if ((long)next - (long)val < 0) {
 995                switch (target) {
 996                case MEM_CGROUP_TARGET_THRESH:
 997                        next = val + THRESHOLDS_EVENTS_TARGET;
 998                        break;
 999                case MEM_CGROUP_TARGET_SOFTLIMIT:
1000                        next = val + SOFTLIMIT_EVENTS_TARGET;
1001                        break;
1002                case MEM_CGROUP_TARGET_NUMAINFO:
1003                        next = val + NUMAINFO_EVENTS_TARGET;
1004                        break;
1005                default:
1006                        break;
1007                }
1008                __this_cpu_write(memcg->stat->targets[target], next);
1009                return true;
1010        }
1011        return false;
1012}
1013
1014/*
1015 * Check events in order.
1016 *
1017 */
1018static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1019{
1020        preempt_disable();
1021        /* threshold event is triggered in finer grain than soft limit */
1022        if (unlikely(mem_cgroup_event_ratelimit(memcg,
1023                                                MEM_CGROUP_TARGET_THRESH))) {
1024                bool do_softlimit;
1025                bool do_numainfo __maybe_unused;
1026
1027                do_softlimit = mem_cgroup_event_ratelimit(memcg,
1028                                                MEM_CGROUP_TARGET_SOFTLIMIT);
1029#if MAX_NUMNODES > 1
1030                do_numainfo = mem_cgroup_event_ratelimit(memcg,
1031                                                MEM_CGROUP_TARGET_NUMAINFO);
1032#endif
1033                preempt_enable();
1034
1035                mem_cgroup_threshold(memcg);
1036                if (unlikely(do_softlimit))
1037                        mem_cgroup_update_tree(memcg, page);
1038#if MAX_NUMNODES > 1
1039                if (unlikely(do_numainfo))
1040                        atomic_inc(&memcg->numainfo_events);
1041#endif
1042        } else
1043                preempt_enable();
1044}
1045
1046struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047{
1048        /*
1049         * mm_update_next_owner() may clear mm->owner to NULL
1050         * if it races with swapoff, page migration, etc.
1051         * So this can be called with p == NULL.
1052         */
1053        if (unlikely(!p))
1054                return NULL;
1055
1056        return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1057}
1058
1059struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1060{
1061        struct mem_cgroup *memcg = NULL;
1062
1063        if (!mm)
1064                return NULL;
1065        /*
1066         * Because we have no locks, mm->owner's may be being moved to other
1067         * cgroup. We use css_tryget() here even if this looks
1068         * pessimistic (rather than adding locks here).
1069         */
1070        rcu_read_lock();
1071        do {
1072                memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073                if (unlikely(!memcg))
1074                        break;
1075        } while (!css_tryget(&memcg->css));
1076        rcu_read_unlock();
1077        return memcg;
1078}
1079
1080/*
1081 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1082 * ref. count) or NULL if the whole root's subtree has been visited.
1083 *
1084 * helper function to be used by mem_cgroup_iter
1085 */
1086static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1087                struct mem_cgroup *last_visited)
1088{
1089        struct cgroup_subsys_state *prev_css, *next_css;
1090
1091        prev_css = last_visited ? &last_visited->css : NULL;
1092skip_node:
1093        next_css = css_next_descendant_pre(prev_css, &root->css);
1094
1095        /*
1096         * Even if we found a group we have to make sure it is
1097         * alive. css && !memcg means that the groups should be
1098         * skipped and we should continue the tree walk.
1099         * last_visited css is safe to use because it is
1100         * protected by css_get and the tree walk is rcu safe.
1101         */
1102        if (next_css) {
1103                struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1104
1105                if (css_tryget(&mem->css))
1106                        return mem;
1107                else {
1108                        prev_css = next_css;
1109                        goto skip_node;
1110                }
1111        }
1112
1113        return NULL;
1114}
1115
1116static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1117{
1118        /*
1119         * When a group in the hierarchy below root is destroyed, the
1120         * hierarchy iterator can no longer be trusted since it might
1121         * have pointed to the destroyed group.  Invalidate it.
1122         */
1123        atomic_inc(&root->dead_count);
1124}
1125
1126static struct mem_cgroup *
1127mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1128                     struct mem_cgroup *root,
1129                     int *sequence)
1130{
1131        struct mem_cgroup *position = NULL;
1132        /*
1133         * A cgroup destruction happens in two stages: offlining and
1134         * release.  They are separated by a RCU grace period.
1135         *
1136         * If the iterator is valid, we may still race with an
1137         * offlining.  The RCU lock ensures the object won't be
1138         * released, tryget will fail if we lost the race.
1139         */
1140        *sequence = atomic_read(&root->dead_count);
1141        if (iter->last_dead_count == *sequence) {
1142                smp_rmb();
1143                position = iter->last_visited;
1144                if (position && !css_tryget(&position->css))
1145                        position = NULL;
1146        }
1147        return position;
1148}
1149
1150static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1151                                   struct mem_cgroup *last_visited,
1152                                   struct mem_cgroup *new_position,
1153                                   int sequence)
1154{
1155        if (last_visited)
1156                css_put(&last_visited->css);
1157        /*
1158         * We store the sequence count from the time @last_visited was
1159         * loaded successfully instead of rereading it here so that we
1160         * don't lose destruction events in between.  We could have
1161         * raced with the destruction of @new_position after all.
1162         */
1163        iter->last_visited = new_position;
1164        smp_wmb();
1165        iter->last_dead_count = sequence;
1166}
1167
1168/**
1169 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1170 * @root: hierarchy root
1171 * @prev: previously returned memcg, NULL on first invocation
1172 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1173 *
1174 * Returns references to children of the hierarchy below @root, or
1175 * @root itself, or %NULL after a full round-trip.
1176 *
1177 * Caller must pass the return value in @prev on subsequent
1178 * invocations for reference counting, or use mem_cgroup_iter_break()
1179 * to cancel a hierarchy walk before the round-trip is complete.
1180 *
1181 * Reclaimers can specify a zone and a priority level in @reclaim to
1182 * divide up the memcgs in the hierarchy among all concurrent
1183 * reclaimers operating on the same zone and priority.
1184 */
1185struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1186                                   struct mem_cgroup *prev,
1187                                   struct mem_cgroup_reclaim_cookie *reclaim)
1188{
1189        struct mem_cgroup *memcg = NULL;
1190        struct mem_cgroup *last_visited = NULL;
1191
1192        if (mem_cgroup_disabled())
1193                return NULL;
1194
1195        if (!root)
1196                root = root_mem_cgroup;
1197
1198        if (prev && !reclaim)
1199                last_visited = prev;
1200
1201        if (!root->use_hierarchy && root != root_mem_cgroup) {
1202                if (prev)
1203                        goto out_css_put;
1204                return root;
1205        }
1206
1207        rcu_read_lock();
1208        while (!memcg) {
1209                struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1210                int uninitialized_var(seq);
1211
1212                if (reclaim) {
1213                        int nid = zone_to_nid(reclaim->zone);
1214                        int zid = zone_idx(reclaim->zone);
1215                        struct mem_cgroup_per_zone *mz;
1216
1217                        mz = mem_cgroup_zoneinfo(root, nid, zid);
1218                        iter = &mz->reclaim_iter[reclaim->priority];
1219                        if (prev && reclaim->generation != iter->generation) {
1220                                iter->last_visited = NULL;
1221                                goto out_unlock;
1222                        }
1223
1224                        last_visited = mem_cgroup_iter_load(iter, root, &seq);
1225                }
1226
1227                memcg = __mem_cgroup_iter_next(root, last_visited);
1228
1229                if (reclaim) {
1230                        mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1231
1232                        if (!memcg)
1233                                iter->generation++;
1234                        else if (!prev && memcg)
1235                                reclaim->generation = iter->generation;
1236                }
1237
1238                if (prev && !memcg)
1239                        goto out_unlock;
1240        }
1241out_unlock:
1242        rcu_read_unlock();
1243out_css_put:
1244        if (prev && prev != root)
1245                css_put(&prev->css);
1246
1247        return memcg;
1248}
1249
1250/**
1251 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1252 * @root: hierarchy root
1253 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1254 */
1255void mem_cgroup_iter_break(struct mem_cgroup *root,
1256                           struct mem_cgroup *prev)
1257{
1258        if (!root)
1259                root = root_mem_cgroup;
1260        if (prev && prev != root)
1261                css_put(&prev->css);
1262}
1263
1264/*
1265 * Iteration constructs for visiting all cgroups (under a tree).  If
1266 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1267 * be used for reference counting.
1268 */
1269#define for_each_mem_cgroup_tree(iter, root)            \
1270        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
1271             iter != NULL;                              \
1272             iter = mem_cgroup_iter(root, iter, NULL))
1273
1274#define for_each_mem_cgroup(iter)                       \
1275        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
1276             iter != NULL;                              \
1277             iter = mem_cgroup_iter(NULL, iter, NULL))
1278
1279void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1280{
1281        struct mem_cgroup *memcg;
1282
1283        rcu_read_lock();
1284        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1285        if (unlikely(!memcg))
1286                goto out;
1287
1288        switch (idx) {
1289        case PGFAULT:
1290                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1291                break;
1292        case PGMAJFAULT:
1293                this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1294                break;
1295        default:
1296                BUG();
1297        }
1298out:
1299        rcu_read_unlock();
1300}
1301EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1302
1303/**
1304 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1305 * @zone: zone of the wanted lruvec
1306 * @memcg: memcg of the wanted lruvec
1307 *
1308 * Returns the lru list vector holding pages for the given @zone and
1309 * @mem.  This can be the global zone lruvec, if the memory controller
1310 * is disabled.
1311 */
1312struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1313                                      struct mem_cgroup *memcg)
1314{
1315        struct mem_cgroup_per_zone *mz;
1316        struct lruvec *lruvec;
1317
1318        if (mem_cgroup_disabled()) {
1319                lruvec = &zone->lruvec;
1320                goto out;
1321        }
1322
1323        mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1324        lruvec = &mz->lruvec;
1325out:
1326        /*
1327         * Since a node can be onlined after the mem_cgroup was created,
1328         * we have to be prepared to initialize lruvec->zone here;
1329         * and if offlined then reonlined, we need to reinitialize it.
1330         */
1331        if (unlikely(lruvec->zone != zone))
1332                lruvec->zone = zone;
1333        return lruvec;
1334}
1335
1336/*
1337 * Following LRU functions are allowed to be used without PCG_LOCK.
1338 * Operations are called by routine of global LRU independently from memcg.
1339 * What we have to take care of here is validness of pc->mem_cgroup.
1340 *
1341 * Changes to pc->mem_cgroup happens when
1342 * 1. charge
1343 * 2. moving account
1344 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1345 * It is added to LRU before charge.
1346 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1347 * When moving account, the page is not on LRU. It's isolated.
1348 */
1349
1350/**
1351 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1352 * @page: the page
1353 * @zone: zone of the page
1354 */
1355struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1356{
1357        struct mem_cgroup_per_zone *mz;
1358        struct mem_cgroup *memcg;
1359        struct page_cgroup *pc;
1360        struct lruvec *lruvec;
1361
1362        if (mem_cgroup_disabled()) {
1363                lruvec = &zone->lruvec;
1364                goto out;
1365        }
1366
1367        pc = lookup_page_cgroup(page);
1368        memcg = pc->mem_cgroup;
1369
1370        /*
1371         * Surreptitiously switch any uncharged offlist page to root:
1372         * an uncharged page off lru does nothing to secure
1373         * its former mem_cgroup from sudden removal.
1374         *
1375         * Our caller holds lru_lock, and PageCgroupUsed is updated
1376         * under page_cgroup lock: between them, they make all uses
1377         * of pc->mem_cgroup safe.
1378         */
1379        if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1380                pc->mem_cgroup = memcg = root_mem_cgroup;
1381
1382        mz = page_cgroup_zoneinfo(memcg, page);
1383        lruvec = &mz->lruvec;
1384out:
1385        /*
1386         * Since a node can be onlined after the mem_cgroup was created,
1387         * we have to be prepared to initialize lruvec->zone here;
1388         * and if offlined then reonlined, we need to reinitialize it.
1389         */
1390        if (unlikely(lruvec->zone != zone))
1391                lruvec->zone = zone;
1392        return lruvec;
1393}
1394
1395/**
1396 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397 * @lruvec: mem_cgroup per zone lru vector
1398 * @lru: index of lru list the page is sitting on
1399 * @nr_pages: positive when adding or negative when removing
1400 *
1401 * This function must be called when a page is added to or removed from an
1402 * lru list.
1403 */
1404void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1405                                int nr_pages)
1406{
1407        struct mem_cgroup_per_zone *mz;
1408        unsigned long *lru_size;
1409
1410        if (mem_cgroup_disabled())
1411                return;
1412
1413        mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1414        lru_size = mz->lru_size + lru;
1415        *lru_size += nr_pages;
1416        VM_BUG_ON((long)(*lru_size) < 0);
1417}
1418
1419/*
1420 * Checks whether given mem is same or in the root_mem_cgroup's
1421 * hierarchy subtree
1422 */
1423bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1424                                  struct mem_cgroup *memcg)
1425{
1426        if (root_memcg == memcg)
1427                return true;
1428        if (!root_memcg->use_hierarchy || !memcg)
1429                return false;
1430        return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1431}
1432
1433static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1434                                       struct mem_cgroup *memcg)
1435{
1436        bool ret;
1437
1438        rcu_read_lock();
1439        ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1440        rcu_read_unlock();
1441        return ret;
1442}
1443
1444bool task_in_mem_cgroup(struct task_struct *task,
1445                        const struct mem_cgroup *memcg)
1446{
1447        struct mem_cgroup *curr = NULL;
1448        struct task_struct *p;
1449        bool ret;
1450
1451        p = find_lock_task_mm(task);
1452        if (p) {
1453                curr = try_get_mem_cgroup_from_mm(p->mm);
1454                task_unlock(p);
1455        } else {
1456                /*
1457                 * All threads may have already detached their mm's, but the oom
1458                 * killer still needs to detect if they have already been oom
1459                 * killed to prevent needlessly killing additional tasks.
1460                 */
1461                rcu_read_lock();
1462                curr = mem_cgroup_from_task(task);
1463                if (curr)
1464                        css_get(&curr->css);
1465                rcu_read_unlock();
1466        }
1467        if (!curr)
1468                return false;
1469        /*
1470         * We should check use_hierarchy of "memcg" not "curr". Because checking
1471         * use_hierarchy of "curr" here make this function true if hierarchy is
1472         * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1473         * hierarchy(even if use_hierarchy is disabled in "memcg").
1474         */
1475        ret = mem_cgroup_same_or_subtree(memcg, curr);
1476        css_put(&curr->css);
1477        return ret;
1478}
1479
1480int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1481{
1482        unsigned long inactive_ratio;
1483        unsigned long inactive;
1484        unsigned long active;
1485        unsigned long gb;
1486
1487        inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1488        active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1489
1490        gb = (inactive + active) >> (30 - PAGE_SHIFT);
1491        if (gb)
1492                inactive_ratio = int_sqrt(10 * gb);
1493        else
1494                inactive_ratio = 1;
1495
1496        return inactive * inactive_ratio < active;
1497}
1498
1499#define mem_cgroup_from_res_counter(counter, member)    \
1500        container_of(counter, struct mem_cgroup, member)
1501
1502/**
1503 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1504 * @memcg: the memory cgroup
1505 *
1506 * Returns the maximum amount of memory @mem can be charged with, in
1507 * pages.
1508 */
1509static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1510{
1511        unsigned long long margin;
1512
1513        margin = res_counter_margin(&memcg->res);
1514        if (do_swap_account)
1515                margin = min(margin, res_counter_margin(&memcg->memsw));
1516        return margin >> PAGE_SHIFT;
1517}
1518
1519int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1520{
1521        /* root ? */
1522        if (!css_parent(&memcg->css))
1523                return vm_swappiness;
1524
1525        return memcg->swappiness;
1526}
1527
1528/*
1529 * memcg->moving_account is used for checking possibility that some thread is
1530 * calling move_account(). When a thread on CPU-A starts moving pages under
1531 * a memcg, other threads should check memcg->moving_account under
1532 * rcu_read_lock(), like this:
1533 *
1534 *         CPU-A                                    CPU-B
1535 *                                              rcu_read_lock()
1536 *         memcg->moving_account+1              if (memcg->mocing_account)
1537 *                                                   take heavy locks.
1538 *         synchronize_rcu()                    update something.
1539 *                                              rcu_read_unlock()
1540 *         start move here.
1541 */
1542
1543/* for quick checking without looking up memcg */
1544atomic_t memcg_moving __read_mostly;
1545
1546static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1547{
1548        atomic_inc(&memcg_moving);
1549        atomic_inc(&memcg->moving_account);
1550        synchronize_rcu();
1551}
1552
1553static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1554{
1555        /*
1556         * Now, mem_cgroup_clear_mc() may call this function with NULL.
1557         * We check NULL in callee rather than caller.
1558         */
1559        if (memcg) {
1560                atomic_dec(&memcg_moving);
1561                atomic_dec(&memcg->moving_account);
1562        }
1563}
1564
1565/*
1566 * 2 routines for checking "mem" is under move_account() or not.
1567 *
1568 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1569 *                        is used for avoiding races in accounting.  If true,
1570 *                        pc->mem_cgroup may be overwritten.
1571 *
1572 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1573 *                        under hierarchy of moving cgroups. This is for
1574 *                        waiting at hith-memory prressure caused by "move".
1575 */
1576
1577static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1578{
1579        VM_BUG_ON(!rcu_read_lock_held());
1580        return atomic_read(&memcg->moving_account) > 0;
1581}
1582
1583static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1584{
1585        struct mem_cgroup *from;
1586        struct mem_cgroup *to;
1587        bool ret = false;
1588        /*
1589         * Unlike task_move routines, we access mc.to, mc.from not under
1590         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1591         */
1592        spin_lock(&mc.lock);
1593        from = mc.from;
1594        to = mc.to;
1595        if (!from)
1596                goto unlock;
1597
1598        ret = mem_cgroup_same_or_subtree(memcg, from)
1599                || mem_cgroup_same_or_subtree(memcg, to);
1600unlock:
1601        spin_unlock(&mc.lock);
1602        return ret;
1603}
1604
1605static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1606{
1607        if (mc.moving_task && current != mc.moving_task) {
1608                if (mem_cgroup_under_move(memcg)) {
1609                        DEFINE_WAIT(wait);
1610                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1611                        /* moving charge context might have finished. */
1612                        if (mc.moving_task)
1613                                schedule();
1614                        finish_wait(&mc.waitq, &wait);
1615                        return true;
1616                }
1617        }
1618        return false;
1619}
1620
1621/*
1622 * Take this lock when
1623 * - a code tries to modify page's memcg while it's USED.
1624 * - a code tries to modify page state accounting in a memcg.
1625 * see mem_cgroup_stolen(), too.
1626 */
1627static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628                                  unsigned long *flags)
1629{
1630        spin_lock_irqsave(&memcg->move_lock, *flags);
1631}
1632
1633static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634                                unsigned long *flags)
1635{
1636        spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637}
1638
1639#define K(x) ((x) << (PAGE_SHIFT-10))
1640/**
1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649{
1650        struct cgroup *task_cgrp;
1651        struct cgroup *mem_cgrp;
1652        /*
1653         * Need a buffer in BSS, can't rely on allocations. The code relies
1654         * on the assumption that OOM is serialized for memory controller.
1655         * If this assumption is broken, revisit this code.
1656         */
1657        static char memcg_name[PATH_MAX];
1658        int ret;
1659        struct mem_cgroup *iter;
1660        unsigned int i;
1661
1662        if (!p)
1663                return;
1664
1665        rcu_read_lock();
1666
1667        mem_cgrp = memcg->css.cgroup;
1668        task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1669
1670        ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1671        if (ret < 0) {
1672                /*
1673                 * Unfortunately, we are unable to convert to a useful name
1674                 * But we'll still print out the usage information
1675                 */
1676                rcu_read_unlock();
1677                goto done;
1678        }
1679        rcu_read_unlock();
1680
1681        pr_info("Task in %s killed", memcg_name);
1682
1683        rcu_read_lock();
1684        ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1685        if (ret < 0) {
1686                rcu_read_unlock();
1687                goto done;
1688        }
1689        rcu_read_unlock();
1690
1691        /*
1692         * Continues from above, so we don't need an KERN_ level
1693         */
1694        pr_cont(" as a result of limit of %s\n", memcg_name);
1695done:
1696
1697        pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1698                res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1699                res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1700                res_counter_read_u64(&memcg->res, RES_FAILCNT));
1701        pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1702                res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1703                res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1704                res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1705        pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1706                res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1707                res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1708                res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1709
1710        for_each_mem_cgroup_tree(iter, memcg) {
1711                pr_info("Memory cgroup stats");
1712
1713                rcu_read_lock();
1714                ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1715                if (!ret)
1716                        pr_cont(" for %s", memcg_name);
1717                rcu_read_unlock();
1718                pr_cont(":");
1719
1720                for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1721                        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1722                                continue;
1723                        pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1724                                K(mem_cgroup_read_stat(iter, i)));
1725                }
1726
1727                for (i = 0; i < NR_LRU_LISTS; i++)
1728                        pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1729                                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1730
1731                pr_cont("\n");
1732        }
1733}
1734
1735/*
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1738 */
1739static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740{
1741        int num = 0;
1742        struct mem_cgroup *iter;
1743
1744        for_each_mem_cgroup_tree(iter, memcg)
1745                num++;
1746        return num;
1747}
1748
1749/*
1750 * Return the memory (and swap, if configured) limit for a memcg.
1751 */
1752static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1753{
1754        u64 limit;
1755
1756        limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1757
1758        /*
1759         * Do not consider swap space if we cannot swap due to swappiness
1760         */
1761        if (mem_cgroup_swappiness(memcg)) {
1762                u64 memsw;
1763
1764                limit += total_swap_pages << PAGE_SHIFT;
1765                memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766
1767                /*
1768                 * If memsw is finite and limits the amount of swap space
1769                 * available to this memcg, return that limit.
1770                 */
1771                limit = min(limit, memsw);
1772        }
1773
1774        return limit;
1775}
1776
1777static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778                                     int order)
1779{
1780        struct mem_cgroup *iter;
1781        unsigned long chosen_points = 0;
1782        unsigned long totalpages;
1783        unsigned int points = 0;
1784        struct task_struct *chosen = NULL;
1785
1786        /*
1787         * If current has a pending SIGKILL or is exiting, then automatically
1788         * select it.  The goal is to allow it to allocate so that it may
1789         * quickly exit and free its memory.
1790         */
1791        if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792                set_thread_flag(TIF_MEMDIE);
1793                return;
1794        }
1795
1796        check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797        totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798        for_each_mem_cgroup_tree(iter, memcg) {
1799                struct css_task_iter it;
1800                struct task_struct *task;
1801
1802                css_task_iter_start(&iter->css, &it);
1803                while ((task = css_task_iter_next(&it))) {
1804                        switch (oom_scan_process_thread(task, totalpages, NULL,
1805                                                        false)) {
1806                        case OOM_SCAN_SELECT:
1807                                if (chosen)
1808                                        put_task_struct(chosen);
1809                                chosen = task;
1810                                chosen_points = ULONG_MAX;
1811                                get_task_struct(chosen);
1812                                /* fall through */
1813                        case OOM_SCAN_CONTINUE:
1814                                continue;
1815                        case OOM_SCAN_ABORT:
1816                                css_task_iter_end(&it);
1817                                mem_cgroup_iter_break(memcg, iter);
1818                                if (chosen)
1819                                        put_task_struct(chosen);
1820                                return;
1821                        case OOM_SCAN_OK:
1822                                break;
1823                        };
1824                        points = oom_badness(task, memcg, NULL, totalpages);
1825                        if (points > chosen_points) {
1826                                if (chosen)
1827                                        put_task_struct(chosen);
1828                                chosen = task;
1829                                chosen_points = points;
1830                                get_task_struct(chosen);
1831                        }
1832                }
1833                css_task_iter_end(&it);
1834        }
1835
1836        if (!chosen)
1837                return;
1838        points = chosen_points * 1000 / totalpages;
1839        oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1840                         NULL, "Memory cgroup out of memory");
1841}
1842
1843static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1844                                        gfp_t gfp_mask,
1845                                        unsigned long flags)
1846{
1847        unsigned long total = 0;
1848        bool noswap = false;
1849        int loop;
1850
1851        if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1852                noswap = true;
1853        if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1854                noswap = true;
1855
1856        for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1857                if (loop)
1858                        drain_all_stock_async(memcg);
1859                total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1860                /*
1861                 * Allow limit shrinkers, which are triggered directly
1862                 * by userspace, to catch signals and stop reclaim
1863                 * after minimal progress, regardless of the margin.
1864                 */
1865                if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1866                        break;
1867                if (mem_cgroup_margin(memcg))
1868                        break;
1869                /*
1870                 * If nothing was reclaimed after two attempts, there
1871                 * may be no reclaimable pages in this hierarchy.
1872                 */
1873                if (loop && !total)
1874                        break;
1875        }
1876        return total;
1877}
1878
1879/**
1880 * test_mem_cgroup_node_reclaimable
1881 * @memcg: the target memcg
1882 * @nid: the node ID to be checked.
1883 * @noswap : specify true here if the user wants flle only information.
1884 *
1885 * This function returns whether the specified memcg contains any
1886 * reclaimable pages on a node. Returns true if there are any reclaimable
1887 * pages in the node.
1888 */
1889static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1890                int nid, bool noswap)
1891{
1892        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1893                return true;
1894        if (noswap || !total_swap_pages)
1895                return false;
1896        if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1897                return true;
1898        return false;
1899
1900}
1901#if MAX_NUMNODES > 1
1902
1903/*
1904 * Always updating the nodemask is not very good - even if we have an empty
1905 * list or the wrong list here, we can start from some node and traverse all
1906 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1907 *
1908 */
1909static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1910{
1911        int nid;
1912        /*
1913         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1914         * pagein/pageout changes since the last update.
1915         */
1916        if (!atomic_read(&memcg->numainfo_events))
1917                return;
1918        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1919                return;
1920
1921        /* make a nodemask where this memcg uses memory from */
1922        memcg->scan_nodes = node_states[N_MEMORY];
1923
1924        for_each_node_mask(nid, node_states[N_MEMORY]) {
1925
1926                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1927                        node_clear(nid, memcg->scan_nodes);
1928        }
1929
1930        atomic_set(&memcg->numainfo_events, 0);
1931        atomic_set(&memcg->numainfo_updating, 0);
1932}
1933
1934/*
1935 * Selecting a node where we start reclaim from. Because what we need is just
1936 * reducing usage counter, start from anywhere is O,K. Considering
1937 * memory reclaim from current node, there are pros. and cons.
1938 *
1939 * Freeing memory from current node means freeing memory from a node which
1940 * we'll use or we've used. So, it may make LRU bad. And if several threads
1941 * hit limits, it will see a contention on a node. But freeing from remote
1942 * node means more costs for memory reclaim because of memory latency.
1943 *
1944 * Now, we use round-robin. Better algorithm is welcomed.
1945 */
1946int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1947{
1948        int node;
1949
1950        mem_cgroup_may_update_nodemask(memcg);
1951        node = memcg->last_scanned_node;
1952
1953        node = next_node(node, memcg->scan_nodes);
1954        if (node == MAX_NUMNODES)
1955                node = first_node(memcg->scan_nodes);
1956        /*
1957         * We call this when we hit limit, not when pages are added to LRU.
1958         * No LRU may hold pages because all pages are UNEVICTABLE or
1959         * memcg is too small and all pages are not on LRU. In that case,
1960         * we use curret node.
1961         */
1962        if (unlikely(node == MAX_NUMNODES))
1963                node = numa_node_id();
1964
1965        memcg->last_scanned_node = node;
1966        return node;
1967}
1968
1969/*
1970 * Check all nodes whether it contains reclaimable pages or not.
1971 * For quick scan, we make use of scan_nodes. This will allow us to skip
1972 * unused nodes. But scan_nodes is lazily updated and may not cotain
1973 * enough new information. We need to do double check.
1974 */
1975static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1976{
1977        int nid;
1978
1979        /*
1980         * quick check...making use of scan_node.
1981         * We can skip unused nodes.
1982         */
1983        if (!nodes_empty(memcg->scan_nodes)) {
1984                for (nid = first_node(memcg->scan_nodes);
1985                     nid < MAX_NUMNODES;
1986                     nid = next_node(nid, memcg->scan_nodes)) {
1987
1988                        if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1989                                return true;
1990                }
1991        }
1992        /*
1993         * Check rest of nodes.
1994         */
1995        for_each_node_state(nid, N_MEMORY) {
1996                if (node_isset(nid, memcg->scan_nodes))
1997                        continue;
1998                if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999                        return true;
2000        }
2001        return false;
2002}
2003
2004#else
2005int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2006{
2007        return 0;
2008}
2009
2010static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2011{
2012        return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2013}
2014#endif
2015
2016static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2017                                   struct zone *zone,
2018                                   gfp_t gfp_mask,
2019                                   unsigned long *total_scanned)
2020{
2021        struct mem_cgroup *victim = NULL;
2022        int total = 0;
2023        int loop = 0;
2024        unsigned long excess;
2025        unsigned long nr_scanned;
2026        struct mem_cgroup_reclaim_cookie reclaim = {
2027                .zone = zone,
2028                .priority = 0,
2029        };
2030
2031        excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2032
2033        while (1) {
2034                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2035                if (!victim) {
2036                        loop++;
2037                        if (loop >= 2) {
2038                                /*
2039                                 * If we have not been able to reclaim
2040                                 * anything, it might because there are
2041                                 * no reclaimable pages under this hierarchy
2042                                 */
2043                                if (!total)
2044                                        break;
2045                                /*
2046                                 * We want to do more targeted reclaim.
2047                                 * excess >> 2 is not to excessive so as to
2048                                 * reclaim too much, nor too less that we keep
2049                                 * coming back to reclaim from this cgroup
2050                                 */
2051                                if (total >= (excess >> 2) ||
2052                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2053                                        break;
2054                        }
2055                        continue;
2056                }
2057                if (!mem_cgroup_reclaimable(victim, false))
2058                        continue;
2059                total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2060                                                     zone, &nr_scanned);
2061                *total_scanned += nr_scanned;
2062                if (!res_counter_soft_limit_excess(&root_memcg->res))
2063                        break;
2064        }
2065        mem_cgroup_iter_break(root_memcg, victim);
2066        return total;
2067}
2068
2069#ifdef CONFIG_LOCKDEP
2070static struct lockdep_map memcg_oom_lock_dep_map = {
2071        .name = "memcg_oom_lock",
2072};
2073#endif
2074
2075static DEFINE_SPINLOCK(memcg_oom_lock);
2076
2077/*
2078 * Check OOM-Killer is already running under our hierarchy.
2079 * If someone is running, return false.
2080 */
2081static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2082{
2083        struct mem_cgroup *iter, *failed = NULL;
2084
2085        spin_lock(&memcg_oom_lock);
2086
2087        for_each_mem_cgroup_tree(iter, memcg) {
2088                if (iter->oom_lock) {
2089                        /*
2090                         * this subtree of our hierarchy is already locked
2091                         * so we cannot give a lock.
2092                         */
2093                        failed = iter;
2094                        mem_cgroup_iter_break(memcg, iter);
2095                        break;
2096                } else
2097                        iter->oom_lock = true;
2098        }
2099
2100        if (failed) {
2101                /*
2102                 * OK, we failed to lock the whole subtree so we have
2103                 * to clean up what we set up to the failing subtree
2104                 */
2105                for_each_mem_cgroup_tree(iter, memcg) {
2106                        if (iter == failed) {
2107                                mem_cgroup_iter_break(memcg, iter);
2108                                break;
2109                        }
2110                        iter->oom_lock = false;
2111                }
2112        } else
2113                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2114
2115        spin_unlock(&memcg_oom_lock);
2116
2117        return !failed;
2118}
2119
2120static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2121{
2122        struct mem_cgroup *iter;
2123
2124        spin_lock(&memcg_oom_lock);
2125        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2126        for_each_mem_cgroup_tree(iter, memcg)
2127                iter->oom_lock = false;
2128        spin_unlock(&memcg_oom_lock);
2129}
2130
2131static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2132{
2133        struct mem_cgroup *iter;
2134
2135        for_each_mem_cgroup_tree(iter, memcg)
2136                atomic_inc(&iter->under_oom);
2137}
2138
2139static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2140{
2141        struct mem_cgroup *iter;
2142
2143        /*
2144         * When a new child is created while the hierarchy is under oom,
2145         * mem_cgroup_oom_lock() may not be called. We have to use
2146         * atomic_add_unless() here.
2147         */
2148        for_each_mem_cgroup_tree(iter, memcg)
2149                atomic_add_unless(&iter->under_oom, -1, 0);
2150}
2151
2152static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2153
2154struct oom_wait_info {
2155        struct mem_cgroup *memcg;
2156        wait_queue_t    wait;
2157};
2158
2159static int memcg_oom_wake_function(wait_queue_t *wait,
2160        unsigned mode, int sync, void *arg)
2161{
2162        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163        struct mem_cgroup *oom_wait_memcg;
2164        struct oom_wait_info *oom_wait_info;
2165
2166        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2167        oom_wait_memcg = oom_wait_info->memcg;
2168
2169        /*
2170         * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2171         * Then we can use css_is_ancestor without taking care of RCU.
2172         */
2173        if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174                && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2175                return 0;
2176        return autoremove_wake_function(wait, mode, sync, arg);
2177}
2178
2179static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2180{
2181        atomic_inc(&memcg->oom_wakeups);
2182        /* for filtering, pass "memcg" as argument. */
2183        __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2184}
2185
2186static void memcg_oom_recover(struct mem_cgroup *memcg)
2187{
2188        if (memcg && atomic_read(&memcg->under_oom))
2189                memcg_wakeup_oom(memcg);
2190}
2191
2192static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2193{
2194        if (!current->memcg_oom.may_oom)
2195                return;
2196        /*
2197         * We are in the middle of the charge context here, so we
2198         * don't want to block when potentially sitting on a callstack
2199         * that holds all kinds of filesystem and mm locks.
2200         *
2201         * Also, the caller may handle a failed allocation gracefully
2202         * (like optional page cache readahead) and so an OOM killer
2203         * invocation might not even be necessary.
2204         *
2205         * That's why we don't do anything here except remember the
2206         * OOM context and then deal with it at the end of the page
2207         * fault when the stack is unwound, the locks are released,
2208         * and when we know whether the fault was overall successful.
2209         */
2210        css_get(&memcg->css);
2211        current->memcg_oom.memcg = memcg;
2212        current->memcg_oom.gfp_mask = mask;
2213        current->memcg_oom.order = order;
2214}
2215
2216/**
2217 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2218 * @handle: actually kill/wait or just clean up the OOM state
2219 *
2220 * This has to be called at the end of a page fault if the memcg OOM
2221 * handler was enabled.
2222 *
2223 * Memcg supports userspace OOM handling where failed allocations must
2224 * sleep on a waitqueue until the userspace task resolves the
2225 * situation.  Sleeping directly in the charge context with all kinds
2226 * of locks held is not a good idea, instead we remember an OOM state
2227 * in the task and mem_cgroup_oom_synchronize() has to be called at
2228 * the end of the page fault to complete the OOM handling.
2229 *
2230 * Returns %true if an ongoing memcg OOM situation was detected and
2231 * completed, %false otherwise.
2232 */
2233bool mem_cgroup_oom_synchronize(bool handle)
2234{
2235        struct mem_cgroup *memcg = current->memcg_oom.memcg;
2236        struct oom_wait_info owait;
2237        bool locked;
2238
2239        /* OOM is global, do not handle */
2240        if (!memcg)
2241                return false;
2242
2243        if (!handle)
2244                goto cleanup;
2245
2246        owait.memcg = memcg;
2247        owait.wait.flags = 0;
2248        owait.wait.func = memcg_oom_wake_function;
2249        owait.wait.private = current;
2250        INIT_LIST_HEAD(&owait.wait.task_list);
2251
2252        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2253        mem_cgroup_mark_under_oom(memcg);
2254
2255        locked = mem_cgroup_oom_trylock(memcg);
2256
2257        if (locked)
2258                mem_cgroup_oom_notify(memcg);
2259
2260        if (locked && !memcg->oom_kill_disable) {
2261                mem_cgroup_unmark_under_oom(memcg);
2262                finish_wait(&memcg_oom_waitq, &owait.wait);
2263                mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2264                                         current->memcg_oom.order);
2265        } else {
2266                schedule();
2267                mem_cgroup_unmark_under_oom(memcg);
2268                finish_wait(&memcg_oom_waitq, &owait.wait);
2269        }
2270
2271        if (locked) {
2272                mem_cgroup_oom_unlock(memcg);
2273                /*
2274                 * There is no guarantee that an OOM-lock contender
2275                 * sees the wakeups triggered by the OOM kill
2276                 * uncharges.  Wake any sleepers explicitely.
2277                 */
2278                memcg_oom_recover(memcg);
2279        }
2280cleanup:
2281        current->memcg_oom.memcg = NULL;
2282        css_put(&memcg->css);
2283        return true;
2284}
2285
2286/*
2287 * Currently used to update mapped file statistics, but the routine can be
2288 * generalized to update other statistics as well.
2289 *
2290 * Notes: Race condition
2291 *
2292 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2293 * it tends to be costly. But considering some conditions, we doesn't need
2294 * to do so _always_.
2295 *
2296 * Considering "charge", lock_page_cgroup() is not required because all
2297 * file-stat operations happen after a page is attached to radix-tree. There
2298 * are no race with "charge".
2299 *
2300 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2301 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2302 * if there are race with "uncharge". Statistics itself is properly handled
2303 * by flags.
2304 *
2305 * Considering "move", this is an only case we see a race. To make the race
2306 * small, we check mm->moving_account and detect there are possibility of race
2307 * If there is, we take a lock.
2308 */
2309
2310void __mem_cgroup_begin_update_page_stat(struct page *page,
2311                                bool *locked, unsigned long *flags)
2312{
2313        struct mem_cgroup *memcg;
2314        struct page_cgroup *pc;
2315
2316        pc = lookup_page_cgroup(page);
2317again:
2318        memcg = pc->mem_cgroup;
2319        if (unlikely(!memcg || !PageCgroupUsed(pc)))
2320                return;
2321        /*
2322         * If this memory cgroup is not under account moving, we don't
2323         * need to take move_lock_mem_cgroup(). Because we already hold
2324         * rcu_read_lock(), any calls to move_account will be delayed until
2325         * rcu_read_unlock() if mem_cgroup_stolen() == true.
2326         */
2327        if (!mem_cgroup_stolen(memcg))
2328                return;
2329
2330        move_lock_mem_cgroup(memcg, flags);
2331        if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2332                move_unlock_mem_cgroup(memcg, flags);
2333                goto again;
2334        }
2335        *locked = true;
2336}
2337
2338void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2339{
2340        struct page_cgroup *pc = lookup_page_cgroup(page);
2341
2342        /*
2343         * It's guaranteed that pc->mem_cgroup never changes while
2344         * lock is held because a routine modifies pc->mem_cgroup
2345         * should take move_lock_mem_cgroup().
2346         */
2347        move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2348}
2349
2350void mem_cgroup_update_page_stat(struct page *page,
2351                                 enum mem_cgroup_stat_index idx, int val)
2352{
2353        struct mem_cgroup *memcg;
2354        struct page_cgroup *pc = lookup_page_cgroup(page);
2355        unsigned long uninitialized_var(flags);
2356
2357        if (mem_cgroup_disabled())
2358                return;
2359
2360        VM_BUG_ON(!rcu_read_lock_held());
2361        memcg = pc->mem_cgroup;
2362        if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363                return;
2364
2365        this_cpu_add(memcg->stat->count[idx], val);
2366}
2367
2368/*
2369 * size of first charge trial. "32" comes from vmscan.c's magic value.
2370 * TODO: maybe necessary to use big numbers in big irons.
2371 */
2372#define CHARGE_BATCH    32U
2373struct memcg_stock_pcp {
2374        struct mem_cgroup *cached; /* this never be root cgroup */
2375        unsigned int nr_pages;
2376        struct work_struct work;
2377        unsigned long flags;
2378#define FLUSHING_CACHED_CHARGE  0
2379};
2380static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2381static DEFINE_MUTEX(percpu_charge_mutex);
2382
2383/**
2384 * consume_stock: Try to consume stocked charge on this cpu.
2385 * @memcg: memcg to consume from.
2386 * @nr_pages: how many pages to charge.
2387 *
2388 * The charges will only happen if @memcg matches the current cpu's memcg
2389 * stock, and at least @nr_pages are available in that stock.  Failure to
2390 * service an allocation will refill the stock.
2391 *
2392 * returns true if successful, false otherwise.
2393 */
2394static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2395{
2396        struct memcg_stock_pcp *stock;
2397        bool ret = true;
2398
2399        if (nr_pages > CHARGE_BATCH)
2400                return false;
2401
2402        stock = &get_cpu_var(memcg_stock);
2403        if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2404                stock->nr_pages -= nr_pages;
2405        else /* need to call res_counter_charge */
2406                ret = false;
2407        put_cpu_var(memcg_stock);
2408        return ret;
2409}
2410
2411/*
2412 * Returns stocks cached in percpu to res_counter and reset cached information.
2413 */
2414static void drain_stock(struct memcg_stock_pcp *stock)
2415{
2416        struct mem_cgroup *old = stock->cached;
2417
2418        if (stock->nr_pages) {
2419                unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2420
2421                res_counter_uncharge(&old->res, bytes);
2422                if (do_swap_account)
2423                        res_counter_uncharge(&old->memsw, bytes);
2424                stock->nr_pages = 0;
2425        }
2426        stock->cached = NULL;
2427}
2428
2429/*
2430 * This must be called under preempt disabled or must be called by
2431 * a thread which is pinned to local cpu.
2432 */
2433static void drain_local_stock(struct work_struct *dummy)
2434{
2435        struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2436        drain_stock(stock);
2437        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2438}
2439
2440static void __init memcg_stock_init(void)
2441{
2442        int cpu;
2443
2444        for_each_possible_cpu(cpu) {
2445                struct memcg_stock_pcp *stock =
2446                                        &per_cpu(memcg_stock, cpu);
2447                INIT_WORK(&stock->work, drain_local_stock);
2448        }
2449}
2450
2451/*
2452 * Cache charges(val) which is from res_counter, to local per_cpu area.
2453 * This will be consumed by consume_stock() function, later.
2454 */
2455static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2456{
2457        struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2458
2459        if (stock->cached != memcg) { /* reset if necessary */
2460                drain_stock(stock);
2461                stock->cached = memcg;
2462        }
2463        stock->nr_pages += nr_pages;
2464        put_cpu_var(memcg_stock);
2465}
2466
2467/*
2468 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2469 * of the hierarchy under it. sync flag says whether we should block
2470 * until the work is done.
2471 */
2472static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2473{
2474        int cpu, curcpu;
2475
2476        /* Notify other cpus that system-wide "drain" is running */
2477        get_online_cpus();
2478        curcpu = get_cpu();
2479        for_each_online_cpu(cpu) {
2480                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2481                struct mem_cgroup *memcg;
2482
2483                memcg = stock->cached;
2484                if (!memcg || !stock->nr_pages)
2485                        continue;
2486                if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2487                        continue;
2488                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2489                        if (cpu == curcpu)
2490                                drain_local_stock(&stock->work);
2491                        else
2492                                schedule_work_on(cpu, &stock->work);
2493                }
2494        }
2495        put_cpu();
2496
2497        if (!sync)
2498                goto out;
2499
2500        for_each_online_cpu(cpu) {
2501                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2502                if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2503                        flush_work(&stock->work);
2504        }
2505out:
2506        put_online_cpus();
2507}
2508
2509/*
2510 * Tries to drain stocked charges in other cpus. This function is asynchronous
2511 * and just put a work per cpu for draining localy on each cpu. Caller can
2512 * expects some charges will be back to res_counter later but cannot wait for
2513 * it.
2514 */
2515static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2516{
2517        /*
2518         * If someone calls draining, avoid adding more kworker runs.
2519         */
2520        if (!mutex_trylock(&percpu_charge_mutex))
2521                return;
2522        drain_all_stock(root_memcg, false);
2523        mutex_unlock(&percpu_charge_mutex);
2524}
2525
2526/* This is a synchronous drain interface. */
2527static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2528{
2529        /* called when force_empty is called */
2530        mutex_lock(&percpu_charge_mutex);
2531        drain_all_stock(root_memcg, true);
2532        mutex_unlock(&percpu_charge_mutex);
2533}
2534
2535/*
2536 * This function drains percpu counter value from DEAD cpu and
2537 * move it to local cpu. Note that this function can be preempted.
2538 */
2539static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2540{
2541        int i;
2542
2543        spin_lock(&memcg->pcp_counter_lock);
2544        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2545                long x = per_cpu(memcg->stat->count[i], cpu);
2546
2547                per_cpu(memcg->stat->count[i], cpu) = 0;
2548                memcg->nocpu_base.count[i] += x;
2549        }
2550        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2551                unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2552
2553                per_cpu(memcg->stat->events[i], cpu) = 0;
2554                memcg->nocpu_base.events[i] += x;
2555        }
2556        spin_unlock(&memcg->pcp_counter_lock);
2557}
2558
2559static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2560                                        unsigned long action,
2561                                        void *hcpu)
2562{
2563        int cpu = (unsigned long)hcpu;
2564        struct memcg_stock_pcp *stock;
2565        struct mem_cgroup *iter;
2566
2567        if (action == CPU_ONLINE)
2568                return NOTIFY_OK;
2569
2570        if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2571                return NOTIFY_OK;
2572
2573        for_each_mem_cgroup(iter)
2574                mem_cgroup_drain_pcp_counter(iter, cpu);
2575
2576        stock = &per_cpu(memcg_stock, cpu);
2577        drain_stock(stock);
2578        return NOTIFY_OK;
2579}
2580
2581
2582/* See __mem_cgroup_try_charge() for details */
2583enum {
2584        CHARGE_OK,              /* success */
2585        CHARGE_RETRY,           /* need to retry but retry is not bad */
2586        CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2587        CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2588};
2589
2590static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2591                                unsigned int nr_pages, unsigned int min_pages,
2592                                bool invoke_oom)
2593{
2594        unsigned long csize = nr_pages * PAGE_SIZE;
2595        struct mem_cgroup *mem_over_limit;
2596        struct res_counter *fail_res;
2597        unsigned long flags = 0;
2598        int ret;
2599
2600        ret = res_counter_charge(&memcg->res, csize, &fail_res);
2601
2602        if (likely(!ret)) {
2603                if (!do_swap_account)
2604                        return CHARGE_OK;
2605                ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2606                if (likely(!ret))
2607                        return CHARGE_OK;
2608
2609                res_counter_uncharge(&memcg->res, csize);
2610                mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2611                flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2612        } else
2613                mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2614        /*
2615         * Never reclaim on behalf of optional batching, retry with a
2616         * single page instead.
2617         */
2618        if (nr_pages > min_pages)
2619                return CHARGE_RETRY;
2620
2621        if (!(gfp_mask & __GFP_WAIT))
2622                return CHARGE_WOULDBLOCK;
2623
2624        if (gfp_mask & __GFP_NORETRY)
2625                return CHARGE_NOMEM;
2626
2627        ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2628        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2629                return CHARGE_RETRY;
2630        /*
2631         * Even though the limit is exceeded at this point, reclaim
2632         * may have been able to free some pages.  Retry the charge
2633         * before killing the task.
2634         *
2635         * Only for regular pages, though: huge pages are rather
2636         * unlikely to succeed so close to the limit, and we fall back
2637         * to regular pages anyway in case of failure.
2638         */
2639        if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2640                return CHARGE_RETRY;
2641
2642        /*
2643         * At task move, charge accounts can be doubly counted. So, it's
2644         * better to wait until the end of task_move if something is going on.
2645         */
2646        if (mem_cgroup_wait_acct_move(mem_over_limit))
2647                return CHARGE_RETRY;
2648
2649        if (invoke_oom)
2650                mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2651
2652        return CHARGE_NOMEM;
2653}
2654
2655/*
2656 * __mem_cgroup_try_charge() does
2657 * 1. detect memcg to be charged against from passed *mm and *ptr,
2658 * 2. update res_counter
2659 * 3. call memory reclaim if necessary.
2660 *
2661 * In some special case, if the task is fatal, fatal_signal_pending() or
2662 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2663 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2664 * as possible without any hazards. 2: all pages should have a valid
2665 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2666 * pointer, that is treated as a charge to root_mem_cgroup.
2667 *
2668 * So __mem_cgroup_try_charge() will return
2669 *  0       ...  on success, filling *ptr with a valid memcg pointer.
2670 *  -ENOMEM ...  charge failure because of resource limits.
2671 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2672 *
2673 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2674 * the oom-killer can be invoked.
2675 */
2676static int __mem_cgroup_try_charge(struct mm_struct *mm,
2677                                   gfp_t gfp_mask,
2678                                   unsigned int nr_pages,
2679                                   struct mem_cgroup **ptr,
2680                                   bool oom)
2681{
2682        unsigned int batch = max(CHARGE_BATCH, nr_pages);
2683        int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2684        struct mem_cgroup *memcg = NULL;
2685        int ret;
2686
2687        /*
2688         * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2689         * in system level. So, allow to go ahead dying process in addition to
2690         * MEMDIE process.
2691         */
2692        if (unlikely(test_thread_flag(TIF_MEMDIE)
2693                     || fatal_signal_pending(current)))
2694                goto bypass;
2695
2696        if (unlikely(task_in_memcg_oom(current)))
2697                goto nomem;
2698
2699        if (gfp_mask & __GFP_NOFAIL)
2700                oom = false;
2701
2702        /*
2703         * We always charge the cgroup the mm_struct belongs to.
2704         * The mm_struct's mem_cgroup changes on task migration if the
2705         * thread group leader migrates. It's possible that mm is not
2706         * set, if so charge the root memcg (happens for pagecache usage).
2707         */
2708        if (!*ptr && !mm)
2709                *ptr = root_mem_cgroup;
2710again:
2711        if (*ptr) { /* css should be a valid one */
2712                memcg = *ptr;
2713                if (mem_cgroup_is_root(memcg))
2714                        goto done;
2715                if (consume_stock(memcg, nr_pages))
2716                        goto done;
2717                css_get(&memcg->css);
2718        } else {
2719                struct task_struct *p;
2720
2721                rcu_read_lock();
2722                p = rcu_dereference(mm->owner);
2723                /*
2724                 * Because we don't have task_lock(), "p" can exit.
2725                 * In that case, "memcg" can point to root or p can be NULL with
2726                 * race with swapoff. Then, we have small risk of mis-accouning.
2727                 * But such kind of mis-account by race always happens because
2728                 * we don't have cgroup_mutex(). It's overkill and we allo that
2729                 * small race, here.
2730                 * (*) swapoff at el will charge against mm-struct not against
2731                 * task-struct. So, mm->owner can be NULL.
2732                 */
2733                memcg = mem_cgroup_from_task(p);
2734                if (!memcg)
2735                        memcg = root_mem_cgroup;
2736                if (mem_cgroup_is_root(memcg)) {
2737                        rcu_read_unlock();
2738                        goto done;
2739                }
2740                if (consume_stock(memcg, nr_pages)) {
2741                        /*
2742                         * It seems dagerous to access memcg without css_get().
2743                         * But considering how consume_stok works, it's not
2744                         * necessary. If consume_stock success, some charges
2745                         * from this memcg are cached on this cpu. So, we
2746                         * don't need to call css_get()/css_tryget() before
2747                         * calling consume_stock().
2748                         */
2749                        rcu_read_unlock();
2750                        goto done;
2751                }
2752                /* after here, we may be blocked. we need to get refcnt */
2753                if (!css_tryget(&memcg->css)) {
2754                        rcu_read_unlock();
2755                        goto again;
2756                }
2757                rcu_read_unlock();
2758        }
2759
2760        do {
2761                bool invoke_oom = oom && !nr_oom_retries;
2762
2763                /* If killed, bypass charge */
2764                if (fatal_signal_pending(current)) {
2765                        css_put(&memcg->css);
2766                        goto bypass;
2767                }
2768
2769                ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2770                                           nr_pages, invoke_oom);
2771                switch (ret) {
2772                case CHARGE_OK:
2773                        break;
2774                case CHARGE_RETRY: /* not in OOM situation but retry */
2775                        batch = nr_pages;
2776                        css_put(&memcg->css);
2777                        memcg = NULL;
2778                        goto again;
2779                case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2780                        css_put(&memcg->css);
2781                        goto nomem;
2782                case CHARGE_NOMEM: /* OOM routine works */
2783                        if (!oom || invoke_oom) {
2784                                css_put(&memcg->css);
2785                                goto nomem;
2786                        }
2787                        nr_oom_retries--;
2788                        break;
2789                }
2790        } while (ret != CHARGE_OK);
2791
2792        if (batch > nr_pages)
2793                refill_stock(memcg, batch - nr_pages);
2794        css_put(&memcg->css);
2795done:
2796        *ptr = memcg;
2797        return 0;
2798nomem:
2799        if (!(gfp_mask & __GFP_NOFAIL)) {
2800                *ptr = NULL;
2801                return -ENOMEM;
2802        }
2803bypass:
2804        *ptr = root_mem_cgroup;
2805        return -EINTR;
2806}
2807
2808/*
2809 * Somemtimes we have to undo a charge we got by try_charge().
2810 * This function is for that and do uncharge, put css's refcnt.
2811 * gotten by try_charge().
2812 */
2813static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2814                                       unsigned int nr_pages)
2815{
2816        if (!mem_cgroup_is_root(memcg)) {
2817                unsigned long bytes = nr_pages * PAGE_SIZE;
2818
2819                res_counter_uncharge(&memcg->res, bytes);
2820                if (do_swap_account)
2821                        res_counter_uncharge(&memcg->memsw, bytes);
2822        }
2823}
2824
2825/*
2826 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2827 * This is useful when moving usage to parent cgroup.
2828 */
2829static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2830                                        unsigned int nr_pages)
2831{
2832        unsigned long bytes = nr_pages * PAGE_SIZE;
2833
2834        if (mem_cgroup_is_root(memcg))
2835                return;
2836
2837        res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2838        if (do_swap_account)
2839                res_counter_uncharge_until(&memcg->memsw,
2840                                                memcg->memsw.parent, bytes);
2841}
2842
2843/*
2844 * A helper function to get mem_cgroup from ID. must be called under
2845 * rcu_read_lock().  The caller is responsible for calling css_tryget if
2846 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2847 * called against removed memcg.)
2848 */
2849static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2850{
2851        /* ID 0 is unused ID */
2852        if (!id)
2853                return NULL;
2854        return mem_cgroup_from_id(id);
2855}
2856
2857struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2858{
2859        struct mem_cgroup *memcg = NULL;
2860        struct page_cgroup *pc;
2861        unsigned short id;
2862        swp_entry_t ent;
2863
2864        VM_BUG_ON(!PageLocked(page));
2865
2866        pc = lookup_page_cgroup(page);
2867        lock_page_cgroup(pc);
2868        if (PageCgroupUsed(pc)) {
2869                memcg = pc->mem_cgroup;
2870                if (memcg && !css_tryget(&memcg->css))
2871                        memcg = NULL;
2872        } else if (PageSwapCache(page)) {
2873                ent.val = page_private(page);
2874                id = lookup_swap_cgroup_id(ent);
2875                rcu_read_lock();
2876                memcg = mem_cgroup_lookup(id);
2877                if (memcg && !css_tryget(&memcg->css))
2878                        memcg = NULL;
2879                rcu_read_unlock();
2880        }
2881        unlock_page_cgroup(pc);
2882        return memcg;
2883}
2884
2885static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2886                                       struct page *page,
2887                                       unsigned int nr_pages,
2888                                       enum charge_type ctype,
2889                                       bool lrucare)
2890{
2891        struct page_cgroup *pc = lookup_page_cgroup(page);
2892        struct zone *uninitialized_var(zone);
2893        struct lruvec *lruvec;
2894        bool was_on_lru = false;
2895        bool anon;
2896
2897        lock_page_cgroup(pc);
2898        VM_BUG_ON(PageCgroupUsed(pc));
2899        /*
2900         * we don't need page_cgroup_lock about tail pages, becase they are not
2901         * accessed by any other context at this point.
2902         */
2903
2904        /*
2905         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2906         * may already be on some other mem_cgroup's LRU.  Take care of it.
2907         */
2908        if (lrucare) {
2909                zone = page_zone(page);
2910                spin_lock_irq(&zone->lru_lock);
2911                if (PageLRU(page)) {
2912                        lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2913                        ClearPageLRU(page);
2914                        del_page_from_lru_list(page, lruvec, page_lru(page));
2915                        was_on_lru = true;
2916                }
2917        }
2918
2919        pc->mem_cgroup = memcg;
2920        /*
2921         * We access a page_cgroup asynchronously without lock_page_cgroup().
2922         * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2923         * is accessed after testing USED bit. To make pc->mem_cgroup visible
2924         * before USED bit, we need memory barrier here.
2925         * See mem_cgroup_add_lru_list(), etc.
2926         */
2927        smp_wmb();
2928        SetPageCgroupUsed(pc);
2929
2930        if (lrucare) {
2931                if (was_on_lru) {
2932                        lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2933                        VM_BUG_ON(PageLRU(page));
2934                        SetPageLRU(page);
2935                        add_page_to_lru_list(page, lruvec, page_lru(page));
2936                }
2937                spin_unlock_irq(&zone->lru_lock);
2938        }
2939
2940        if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2941                anon = true;
2942        else
2943                anon = false;
2944
2945        mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2946        unlock_page_cgroup(pc);
2947
2948        /*
2949         * "charge_statistics" updated event counter. Then, check it.
2950         * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2951         * if they exceeds softlimit.
2952         */
2953        memcg_check_events(memcg, page);
2954}
2955
2956static DEFINE_MUTEX(set_limit_mutex);
2957
2958#ifdef CONFIG_MEMCG_KMEM
2959static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2960{
2961        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2962                (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2963}
2964
2965/*
2966 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2967 * in the memcg_cache_params struct.
2968 */
2969static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2970{
2971        struct kmem_cache *cachep;
2972
2973        VM_BUG_ON(p->is_root_cache);
2974        cachep = p->root_cache;
2975        return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2976}
2977
2978#ifdef CONFIG_SLABINFO
2979static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2980                                    struct cftype *cft, struct seq_file *m)
2981{
2982        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2983        struct memcg_cache_params *params;
2984
2985        if (!memcg_can_account_kmem(memcg))
2986                return -EIO;
2987
2988        print_slabinfo_header(m);
2989
2990        mutex_lock(&memcg->slab_caches_mutex);
2991        list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2992                cache_show(memcg_params_to_cache(params), m);
2993        mutex_unlock(&memcg->slab_caches_mutex);
2994
2995        return 0;
2996}
2997#endif
2998
2999static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3000{
3001        struct res_counter *fail_res;
3002        struct mem_cgroup *_memcg;
3003        int ret = 0;
3004
3005        ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3006        if (ret)
3007                return ret;
3008
3009        _memcg = memcg;
3010        ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3011                                      &_memcg, oom_gfp_allowed(gfp));
3012
3013        if (ret == -EINTR)  {
3014                /*
3015                 * __mem_cgroup_try_charge() chosed to bypass to root due to
3016                 * OOM kill or fatal signal.  Since our only options are to
3017                 * either fail the allocation or charge it to this cgroup, do
3018                 * it as a temporary condition. But we can't fail. From a
3019                 * kmem/slab perspective, the cache has already been selected,
3020                 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3021                 * our minds.
3022                 *
3023                 * This condition will only trigger if the task entered
3024                 * memcg_charge_kmem in a sane state, but was OOM-killed during
3025                 * __mem_cgroup_try_charge() above. Tasks that were already
3026                 * dying when the allocation triggers should have been already
3027                 * directed to the root cgroup in memcontrol.h
3028                 */
3029                res_counter_charge_nofail(&memcg->res, size, &fail_res);
3030                if (do_swap_account)
3031                        res_counter_charge_nofail(&memcg->memsw, size,
3032                                                  &fail_res);
3033                ret = 0;
3034        } else if (ret)
3035                res_counter_uncharge(&memcg->kmem, size);
3036
3037        return ret;
3038}
3039
3040static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3041{
3042        res_counter_uncharge(&memcg->res, size);
3043        if (do_swap_account)
3044                res_counter_uncharge(&memcg->memsw, size);
3045
3046        /* Not down to 0 */
3047        if (res_counter_uncharge(&memcg->kmem, size))
3048                return;
3049
3050        /*
3051         * Releases a reference taken in kmem_cgroup_css_offline in case
3052         * this last uncharge is racing with the offlining code or it is
3053         * outliving the memcg existence.
3054         *
3055         * The memory barrier imposed by test&clear is paired with the
3056         * explicit one in memcg_kmem_mark_dead().
3057         */
3058        if (memcg_kmem_test_and_clear_dead(memcg))
3059                css_put(&memcg->css);
3060}
3061
3062void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3063{
3064        if (!memcg)
3065                return;
3066
3067        mutex_lock(&memcg->slab_caches_mutex);
3068        list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3069        mutex_unlock(&memcg->slab_caches_mutex);
3070}
3071
3072/*
3073 * helper for acessing a memcg's index. It will be used as an index in the
3074 * child cache array in kmem_cache, and also to derive its name. This function
3075 * will return -1 when this is not a kmem-limited memcg.
3076 */
3077int memcg_cache_id(struct mem_cgroup *memcg)
3078{
3079        return memcg ? memcg->kmemcg_id : -1;
3080}
3081
3082/*
3083 * This ends up being protected by the set_limit mutex, during normal
3084 * operation, because that is its main call site.
3085 *
3086 * But when we create a new cache, we can call this as well if its parent
3087 * is kmem-limited. That will have to hold set_limit_mutex as well.
3088 */
3089int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3090{
3091        int num, ret;
3092
3093        num = ida_simple_get(&kmem_limited_groups,
3094                                0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3095        if (num < 0)
3096                return num;
3097        /*
3098         * After this point, kmem_accounted (that we test atomically in
3099         * the beginning of this conditional), is no longer 0. This
3100         * guarantees only one process will set the following boolean
3101         * to true. We don't need test_and_set because we're protected
3102         * by the set_limit_mutex anyway.
3103         */
3104        memcg_kmem_set_activated(memcg);
3105
3106        ret = memcg_update_all_caches(num+1);
3107        if (ret) {
3108                ida_simple_remove(&kmem_limited_groups, num);
3109                memcg_kmem_clear_activated(memcg);
3110                return ret;
3111        }
3112
3113        memcg->kmemcg_id = num;
3114        INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3115        mutex_init(&memcg->slab_caches_mutex);
3116        return 0;
3117}
3118
3119static size_t memcg_caches_array_size(int num_groups)
3120{
3121        ssize_t size;
3122        if (num_groups <= 0)
3123                return 0;
3124
3125        size = 2 * num_groups;
3126        if (size < MEMCG_CACHES_MIN_SIZE)
3127                size = MEMCG_CACHES_MIN_SIZE;
3128        else if (size > MEMCG_CACHES_MAX_SIZE)
3129                size = MEMCG_CACHES_MAX_SIZE;
3130
3131        return size;
3132}
3133
3134/*
3135 * We should update the current array size iff all caches updates succeed. This
3136 * can only be done from the slab side. The slab mutex needs to be held when
3137 * calling this.
3138 */
3139void memcg_update_array_size(int num)
3140{
3141        if (num > memcg_limited_groups_array_size)
3142                memcg_limited_groups_array_size = memcg_caches_array_size(num);
3143}
3144
3145static void kmem_cache_destroy_work_func(struct work_struct *w);
3146
3147int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3148{
3149        struct memcg_cache_params *cur_params = s->memcg_params;
3150
3151        VM_BUG_ON(!is_root_cache(s));
3152
3153        if (num_groups > memcg_limited_groups_array_size) {
3154                int i;
3155                ssize_t size = memcg_caches_array_size(num_groups);
3156
3157                size *= sizeof(void *);
3158                size += offsetof(struct memcg_cache_params, memcg_caches);
3159
3160                s->memcg_params = kzalloc(size, GFP_KERNEL);
3161                if (!s->memcg_params) {
3162                        s->memcg_params = cur_params;
3163                        return -ENOMEM;
3164                }
3165
3166                s->memcg_params->is_root_cache = true;
3167
3168                /*
3169                 * There is the chance it will be bigger than
3170                 * memcg_limited_groups_array_size, if we failed an allocation
3171                 * in a cache, in which case all caches updated before it, will
3172                 * have a bigger array.
3173                 *
3174                 * But if that is the case, the data after
3175                 * memcg_limited_groups_array_size is certainly unused
3176                 */
3177                for (i = 0; i < memcg_limited_groups_array_size; i++) {
3178                        if (!cur_params->memcg_caches[i])
3179                                continue;
3180                        s->memcg_params->memcg_caches[i] =
3181                                                cur_params->memcg_caches[i];
3182                }
3183
3184                /*
3185                 * Ideally, we would wait until all caches succeed, and only
3186                 * then free the old one. But this is not worth the extra
3187                 * pointer per-cache we'd have to have for this.
3188                 *
3189                 * It is not a big deal if some caches are left with a size
3190                 * bigger than the others. And all updates will reset this
3191                 * anyway.
3192                 */
3193                kfree(cur_params);
3194        }
3195        return 0;
3196}
3197
3198int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3199                         struct kmem_cache *root_cache)
3200{
3201        size_t size;
3202
3203        if (!memcg_kmem_enabled())
3204                return 0;
3205
3206        if (!memcg) {
3207                size = offsetof(struct memcg_cache_params, memcg_caches);
3208                size += memcg_limited_groups_array_size * sizeof(void *);
3209        } else
3210                size = sizeof(struct memcg_cache_params);
3211
3212        s->memcg_params = kzalloc(size, GFP_KERNEL);
3213        if (!s->memcg_params)
3214                return -ENOMEM;
3215
3216        if (memcg) {
3217                s->memcg_params->memcg = memcg;
3218                s->memcg_params->root_cache = root_cache;
3219                INIT_WORK(&s->memcg_params->destroy,
3220                                kmem_cache_destroy_work_func);
3221        } else
3222                s->memcg_params->is_root_cache = true;
3223
3224        return 0;
3225}
3226
3227void memcg_release_cache(struct kmem_cache *s)
3228{
3229        struct kmem_cache *root;
3230        struct mem_cgroup *memcg;
3231        int id;
3232
3233        /*
3234         * This happens, for instance, when a root cache goes away before we
3235         * add any memcg.
3236         */
3237        if (!s->memcg_params)
3238                return;
3239
3240        if (s->memcg_params->is_root_cache)
3241                goto out;
3242
3243        memcg = s->memcg_params->memcg;
3244        id  = memcg_cache_id(memcg);
3245
3246        root = s->memcg_params->root_cache;
3247        root->memcg_params->memcg_caches[id] = NULL;
3248
3249        mutex_lock(&memcg->slab_caches_mutex);
3250        list_del(&s->memcg_params->list);
3251        mutex_unlock(&memcg->slab_caches_mutex);
3252
3253        css_put(&memcg->css);
3254out:
3255        kfree(s->memcg_params);
3256}
3257
3258/*
3259 * During the creation a new cache, we need to disable our accounting mechanism
3260 * altogether. This is true even if we are not creating, but rather just
3261 * enqueing new caches to be created.
3262 *
3263 * This is because that process will trigger allocations; some visible, like
3264 * explicit kmallocs to auxiliary data structures, name strings and internal
3265 * cache structures; some well concealed, like INIT_WORK() that can allocate
3266 * objects during debug.
3267 *
3268 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3269 * to it. This may not be a bounded recursion: since the first cache creation
3270 * failed to complete (waiting on the allocation), we'll just try to create the
3271 * cache again, failing at the same point.
3272 *
3273 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3274 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3275 * inside the following two functions.
3276 */
3277static inline void memcg_stop_kmem_account(void)
3278{
3279        VM_BUG_ON(!current->mm);
3280        current->memcg_kmem_skip_account++;
3281}
3282
3283static inline void memcg_resume_kmem_account(void)
3284{
3285        VM_BUG_ON(!current->mm);
3286        current->memcg_kmem_skip_account--;
3287}
3288
3289static void kmem_cache_destroy_work_func(struct work_struct *w)
3290{
3291        struct kmem_cache *cachep;
3292        struct memcg_cache_params *p;
3293
3294        p = container_of(w, struct memcg_cache_params, destroy);
3295
3296        cachep = memcg_params_to_cache(p);
3297
3298        /*
3299         * If we get down to 0 after shrink, we could delete right away.
3300         * However, memcg_release_pages() already puts us back in the workqueue
3301         * in that case. If we proceed deleting, we'll get a dangling
3302         * reference, and removing the object from the workqueue in that case
3303         * is unnecessary complication. We are not a fast path.
3304         *
3305         * Note that this case is fundamentally different from racing with
3306         * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3307         * kmem_cache_shrink, not only we would be reinserting a dead cache
3308         * into the queue, but doing so from inside the worker racing to
3309         * destroy it.
3310         *
3311         * So if we aren't down to zero, we'll just schedule a worker and try
3312         * again
3313         */
3314        if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3315                kmem_cache_shrink(cachep);
3316                if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3317                        return;
3318        } else
3319                kmem_cache_destroy(cachep);
3320}
3321
3322void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3323{
3324        if (!cachep->memcg_params->dead)
3325                return;
3326
3327        /*
3328         * There are many ways in which we can get here.
3329         *
3330         * We can get to a memory-pressure situation while the delayed work is
3331         * still pending to run. The vmscan shrinkers can then release all
3332         * cache memory and get us to destruction. If this is the case, we'll
3333         * be executed twice, which is a bug (the second time will execute over
3334         * bogus data). In this case, cancelling the work should be fine.
3335         *
3336         * But we can also get here from the worker itself, if
3337         * kmem_cache_shrink is enough to shake all the remaining objects and
3338         * get the page count to 0. In this case, we'll deadlock if we try to
3339         * cancel the work (the worker runs with an internal lock held, which
3340         * is the same lock we would hold for cancel_work_sync().)
3341         *
3342         * Since we can't possibly know who got us here, just refrain from
3343         * running if there is already work pending
3344         */
3345        if (work_pending(&cachep->memcg_params->destroy))
3346                return;
3347        /*
3348         * We have to defer the actual destroying to a workqueue, because
3349         * we might currently be in a context that cannot sleep.
3350         */
3351        schedule_work(&cachep->memcg_params->destroy);
3352}
3353
3354/*
3355 * This lock protects updaters, not readers. We want readers to be as fast as
3356 * they can, and they will either see NULL or a valid cache value. Our model
3357 * allow them to see NULL, in which case the root memcg will be selected.
3358 *
3359 * We need this lock because multiple allocations to the same cache from a non
3360 * will span more than one worker. Only one of them can create the cache.
3361 */
3362static DEFINE_MUTEX(memcg_cache_mutex);
3363
3364/*
3365 * Called with memcg_cache_mutex held
3366 */
3367static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3368                                         struct kmem_cache *s)
3369{
3370        struct kmem_cache *new;
3371        static char *tmp_name = NULL;
3372
3373        lockdep_assert_held(&memcg_cache_mutex);
3374
3375        /*
3376         * kmem_cache_create_memcg duplicates the given name and
3377         * cgroup_name for this name requires RCU context.
3378         * This static temporary buffer is used to prevent from
3379         * pointless shortliving allocation.
3380         */
3381        if (!tmp_name) {
3382                tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3383                if (!tmp_name)
3384                        return NULL;
3385        }
3386
3387        rcu_read_lock();
3388        snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3389                         memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3390        rcu_read_unlock();
3391
3392        new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3393                                      (s->flags & ~SLAB_PANIC), s->ctor, s);
3394
3395        if (new)
3396                new->allocflags |= __GFP_KMEMCG;
3397
3398        return new;
3399}
3400
3401static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3402                                                  struct kmem_cache *cachep)
3403{
3404        struct kmem_cache *new_cachep;
3405        int idx;
3406
3407        BUG_ON(!memcg_can_account_kmem(memcg));
3408
3409        idx = memcg_cache_id(memcg);
3410
3411        mutex_lock(&memcg_cache_mutex);
3412        new_cachep = cache_from_memcg_idx(cachep, idx);
3413        if (new_cachep) {
3414                css_put(&memcg->css);
3415                goto out;
3416        }
3417
3418        new_cachep = kmem_cache_dup(memcg, cachep);
3419        if (new_cachep == NULL) {
3420                new_cachep = cachep;
3421                css_put(&memcg->css);
3422                goto out;
3423        }
3424
3425        atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3426
3427        cachep->memcg_params->memcg_caches[idx] = new_cachep;
3428        /*
3429         * the readers won't lock, make sure everybody sees the updated value,
3430         * so they won't put stuff in the queue again for no reason
3431         */
3432        wmb();
3433out:
3434        mutex_unlock(&memcg_cache_mutex);
3435        return new_cachep;
3436}
3437
3438void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3439{
3440        struct kmem_cache *c;
3441        int i;
3442
3443        if (!s->memcg_params)
3444                return;
3445        if (!s->memcg_params->is_root_cache)
3446                return;
3447
3448        /*
3449         * If the cache is being destroyed, we trust that there is no one else
3450         * requesting objects from it. Even if there are, the sanity checks in
3451         * kmem_cache_destroy should caught this ill-case.
3452         *
3453         * Still, we don't want anyone else freeing memcg_caches under our
3454         * noses, which can happen if a new memcg comes to life. As usual,
3455         * we'll take the set_limit_mutex to protect ourselves against this.
3456         */
3457        mutex_lock(&set_limit_mutex);
3458        for_each_memcg_cache_index(i) {
3459                c = cache_from_memcg_idx(s, i);
3460                if (!c)
3461                        continue;
3462
3463                /*
3464                 * We will now manually delete the caches, so to avoid races
3465                 * we need to cancel all pending destruction workers and
3466                 * proceed with destruction ourselves.
3467                 *
3468                 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3469                 * and that could spawn the workers again: it is likely that
3470                 * the cache still have active pages until this very moment.
3471                 * This would lead us back to mem_cgroup_destroy_cache.
3472                 *
3473                 * But that will not execute at all if the "dead" flag is not
3474                 * set, so flip it down to guarantee we are in control.
3475                 */
3476                c->memcg_params->dead = false;
3477                cancel_work_sync(&c->memcg_params->destroy);
3478                kmem_cache_destroy(c);
3479        }
3480        mutex_unlock(&set_limit_mutex);
3481}
3482
3483struct create_work {
3484        struct mem_cgroup *memcg;
3485        struct kmem_cache *cachep;
3486        struct work_struct work;
3487};
3488
3489static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3490{
3491        struct kmem_cache *cachep;
3492        struct memcg_cache_params *params;
3493
3494        if (!memcg_kmem_is_active(memcg))
3495                return;
3496
3497        mutex_lock(&memcg->slab_caches_mutex);
3498        list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3499                cachep = memcg_params_to_cache(params);
3500                cachep->memcg_params->dead = true;
3501                schedule_work(&cachep->memcg_params->destroy);
3502        }
3503        mutex_unlock(&memcg->slab_caches_mutex);
3504}
3505
3506static void memcg_create_cache_work_func(struct work_struct *w)
3507{
3508        struct create_work *cw;
3509
3510        cw = container_of(w, struct create_work, work);
3511        memcg_create_kmem_cache(cw->memcg, cw->cachep);
3512        kfree(cw);
3513}
3514
3515/*
3516 * Enqueue the creation of a per-memcg kmem_cache.
3517 */
3518static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3519                                         struct kmem_cache *cachep)
3520{
3521        struct create_work *cw;
3522
3523        cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3524        if (cw == NULL) {
3525                css_put(&memcg->css);
3526                return;
3527        }
3528
3529        cw->memcg = memcg;
3530        cw->cachep = cachep;
3531
3532        INIT_WORK(&cw->work, memcg_create_cache_work_func);
3533        schedule_work(&cw->work);
3534}
3535
3536static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3537                                       struct kmem_cache *cachep)
3538{
3539        /*
3540         * We need to stop accounting when we kmalloc, because if the
3541         * corresponding kmalloc cache is not yet created, the first allocation
3542         * in __memcg_create_cache_enqueue will recurse.
3543         *
3544         * However, it is better to enclose the whole function. Depending on
3545         * the debugging options enabled, INIT_WORK(), for instance, can
3546         * trigger an allocation. This too, will make us recurse. Because at
3547         * this point we can't allow ourselves back into memcg_kmem_get_cache,
3548         * the safest choice is to do it like this, wrapping the whole function.
3549         */
3550        memcg_stop_kmem_account();
3551        __memcg_create_cache_enqueue(memcg, cachep);
3552        memcg_resume_kmem_account();
3553}
3554/*
3555 * Return the kmem_cache we're supposed to use for a slab allocation.
3556 * We try to use the current memcg's version of the cache.
3557 *
3558 * If the cache does not exist yet, if we are the first user of it,
3559 * we either create it immediately, if possible, or create it asynchronously
3560 * in a workqueue.
3561 * In the latter case, we will let the current allocation go through with
3562 * the original cache.
3563 *
3564 * Can't be called in interrupt context or from kernel threads.
3565 * This function needs to be called with rcu_read_lock() held.
3566 */
3567struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3568                                          gfp_t gfp)
3569{
3570        struct mem_cgroup *memcg;
3571        int idx;
3572
3573        VM_BUG_ON(!cachep->memcg_params);
3574        VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3575
3576        if (!current->mm || current->memcg_kmem_skip_account)
3577                return cachep;
3578
3579        rcu_read_lock();
3580        memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3581
3582        if (!memcg_can_account_kmem(memcg))
3583                goto out;
3584
3585        idx = memcg_cache_id(memcg);
3586
3587        /*
3588         * barrier to mare sure we're always seeing the up to date value.  The
3589         * code updating memcg_caches will issue a write barrier to match this.
3590         */
3591        read_barrier_depends();
3592        if (likely(cache_from_memcg_idx(cachep, idx))) {
3593                cachep = cache_from_memcg_idx(cachep, idx);
3594                goto out;
3595        }
3596
3597        /* The corresponding put will be done in the workqueue. */
3598        if (!css_tryget(&memcg->css))
3599                goto out;
3600        rcu_read_unlock();
3601
3602        /*
3603         * If we are in a safe context (can wait, and not in interrupt
3604         * context), we could be be predictable and return right away.
3605         * This would guarantee that the allocation being performed
3606         * already belongs in the new cache.
3607         *
3608         * However, there are some clashes that can arrive from locking.
3609         * For instance, because we acquire the slab_mutex while doing
3610         * kmem_cache_dup, this means no further allocation could happen
3611         * with the slab_mutex held.
3612         *
3613         * Also, because cache creation issue get_online_cpus(), this
3614         * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3615         * that ends up reversed during cpu hotplug. (cpuset allocates
3616         * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3617         * better to defer everything.
3618         */
3619        memcg_create_cache_enqueue(memcg, cachep);
3620        return cachep;
3621out:
3622        rcu_read_unlock();
3623        return cachep;
3624}
3625EXPORT_SYMBOL(__memcg_kmem_get_cache);
3626
3627/*
3628 * We need to verify if the allocation against current->mm->owner's memcg is
3629 * possible for the given order. But the page is not allocated yet, so we'll
3630 * need a further commit step to do the final arrangements.
3631 *
3632 * It is possible for the task to switch cgroups in this mean time, so at
3633 * commit time, we can't rely on task conversion any longer.  We'll then use
3634 * the handle argument to return to the caller which cgroup we should commit
3635 * against. We could also return the memcg directly and avoid the pointer
3636 * passing, but a boolean return value gives better semantics considering
3637 * the compiled-out case as well.
3638 *
3639 * Returning true means the allocation is possible.
3640 */
3641bool
3642__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3643{
3644        struct mem_cgroup *memcg;
3645        int ret;
3646
3647        *_memcg = NULL;
3648
3649        /*
3650         * Disabling accounting is only relevant for some specific memcg
3651         * internal allocations. Therefore we would initially not have such
3652         * check here, since direct calls to the page allocator that are marked
3653         * with GFP_KMEMCG only happen outside memcg core. We are mostly
3654         * concerned with cache allocations, and by having this test at
3655         * memcg_kmem_get_cache, we are already able to relay the allocation to
3656         * the root cache and bypass the memcg cache altogether.
3657         *
3658         * There is one exception, though: the SLUB allocator does not create
3659         * large order caches, but rather service large kmallocs directly from
3660         * the page allocator. Therefore, the following sequence when backed by
3661         * the SLUB allocator:
3662         *
3663         *      memcg_stop_kmem_account();
3664         *      kmalloc(<large_number>)
3665         *      memcg_resume_kmem_account();
3666         *
3667         * would effectively ignore the fact that we should skip accounting,
3668         * since it will drive us directly to this function without passing
3669         * through the cache selector memcg_kmem_get_cache. Such large
3670         * allocations are extremely rare but can happen, for instance, for the
3671         * cache arrays. We bring this test here.
3672         */
3673        if (!current->mm || current->memcg_kmem_skip_account)
3674                return true;
3675
3676        memcg = try_get_mem_cgroup_from_mm(current->mm);
3677
3678        /*
3679         * very rare case described in mem_cgroup_from_task. Unfortunately there
3680         * isn't much we can do without complicating this too much, and it would
3681         * be gfp-dependent anyway. Just let it go
3682         */
3683        if (unlikely(!memcg))
3684                return true;
3685
3686        if (!memcg_can_account_kmem(memcg)) {
3687                css_put(&memcg->css);
3688                return true;
3689        }
3690
3691        ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3692        if (!ret)
3693                *_memcg = memcg;
3694
3695        css_put(&memcg->css);
3696        return (ret == 0);
3697}
3698
3699void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3700                              int order)
3701{
3702        struct page_cgroup *pc;
3703
3704        VM_BUG_ON(mem_cgroup_is_root(memcg));
3705
3706        /* The page allocation failed. Revert */
3707        if (!page) {
3708                memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3709                return;
3710        }
3711
3712        pc = lookup_page_cgroup(page);
3713        lock_page_cgroup(pc);
3714        pc->mem_cgroup = memcg;
3715        SetPageCgroupUsed(pc);
3716        unlock_page_cgroup(pc);
3717}
3718
3719void __memcg_kmem_uncharge_pages(struct page *page, int order)
3720{
3721        struct mem_cgroup *memcg = NULL;
3722        struct page_cgroup *pc;
3723
3724
3725        pc = lookup_page_cgroup(page);
3726        /*
3727         * Fast unlocked return. Theoretically might have changed, have to
3728         * check again after locking.
3729         */
3730        if (!PageCgroupUsed(pc))
3731                return;
3732
3733        lock_page_cgroup(pc);
3734        if (PageCgroupUsed(pc)) {
3735                memcg = pc->mem_cgroup;
3736                ClearPageCgroupUsed(pc);
3737        }
3738        unlock_page_cgroup(pc);
3739
3740        /*
3741         * We trust that only if there is a memcg associated with the page, it
3742         * is a valid allocation
3743         */
3744        if (!memcg)
3745                return;
3746
3747        VM_BUG_ON(mem_cgroup_is_root(memcg));
3748        memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3749}
3750#else
3751static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3752{
3753}
3754#endif /* CONFIG_MEMCG_KMEM */
3755
3756#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3757
3758#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3759/*
3760 * Because tail pages are not marked as "used", set it. We're under
3761 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3762 * charge/uncharge will be never happen and move_account() is done under
3763 * compound_lock(), so we don't have to take care of races.
3764 */
3765void mem_cgroup_split_huge_fixup(struct page *head)
3766{
3767        struct page_cgroup *head_pc = lookup_page_cgroup(head);
3768        struct page_cgroup *pc;
3769        struct mem_cgroup *memcg;
3770        int i;
3771
3772        if (mem_cgroup_disabled())
3773                return;
3774
3775        memcg = head_pc->mem_cgroup;
3776        for (i = 1; i < HPAGE_PMD_NR; i++) {
3777                pc = head_pc + i;
3778                pc->mem_cgroup = memcg;
3779                smp_wmb();/* see __commit_charge() */
3780                pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3781        }
3782        __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3783                       HPAGE_PMD_NR);
3784}
3785#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3786
3787static inline
3788void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3789                                        struct mem_cgroup *to,
3790                                        unsigned int nr_pages,
3791                                        enum mem_cgroup_stat_index idx)
3792{
3793        /* Update stat data for mem_cgroup */
3794        preempt_disable();
3795        __this_cpu_sub(from->stat->count[idx], nr_pages);
3796        __this_cpu_add(to->stat->count[idx], nr_pages);
3797        preempt_enable();
3798}
3799
3800/**
3801 * mem_cgroup_move_account - move account of the page
3802 * @page: the page
3803 * @nr_pages: number of regular pages (>1 for huge pages)
3804 * @pc: page_cgroup of the page.
3805 * @from: mem_cgroup which the page is moved from.
3806 * @to: mem_cgroup which the page is moved to. @from != @to.
3807 *
3808 * The caller must confirm following.
3809 * - page is not on LRU (isolate_page() is useful.)
3810 * - compound_lock is held when nr_pages > 1
3811 *
3812 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3813 * from old cgroup.
3814 */
3815static int mem_cgroup_move_account(struct page *page,
3816                                   unsigned int nr_pages,
3817                                   struct page_cgroup *pc,
3818                                   struct mem_cgroup *from,
3819                                   struct mem_cgroup *to)
3820{
3821        unsigned long flags;
3822        int ret;
3823        bool anon = PageAnon(page);
3824
3825        VM_BUG_ON(from == to);
3826        VM_BUG_ON(PageLRU(page));
3827        /*
3828         * The page is isolated from LRU. So, collapse function
3829         * will not handle this page. But page splitting can happen.
3830         * Do this check under compound_page_lock(). The caller should
3831         * hold it.
3832         */
3833        ret = -EBUSY;
3834        if (nr_pages > 1 && !PageTransHuge(page))
3835                goto out;
3836
3837        lock_page_cgroup(pc);
3838
3839        ret = -EINVAL;
3840        if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3841                goto unlock;
3842
3843        move_lock_mem_cgroup(from, &flags);
3844
3845        if (!anon && page_mapped(page))
3846                mem_cgroup_move_account_page_stat(from, to, nr_pages,
3847                        MEM_CGROUP_STAT_FILE_MAPPED);
3848
3849        if (PageWriteback(page))
3850                mem_cgroup_move_account_page_stat(from, to, nr_pages,
3851                        MEM_CGROUP_STAT_WRITEBACK);
3852
3853        mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3854
3855        /* caller should have done css_get */
3856        pc->mem_cgroup = to;
3857        mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3858        move_unlock_mem_cgroup(from, &flags);
3859        ret = 0;
3860unlock:
3861        unlock_page_cgroup(pc);
3862        /*
3863         * check events
3864         */
3865        memcg_check_events(to, page);
3866        memcg_check_events(from, page);
3867out:
3868        return ret;
3869}
3870
3871/**
3872 * mem_cgroup_move_parent - moves page to the parent group
3873 * @page: the page to move
3874 * @pc: page_cgroup of the page
3875 * @child: page's cgroup
3876 *
3877 * move charges to its parent or the root cgroup if the group has no
3878 * parent (aka use_hierarchy==0).
3879 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3880 * mem_cgroup_move_account fails) the failure is always temporary and
3881 * it signals a race with a page removal/uncharge or migration. In the
3882 * first case the page is on the way out and it will vanish from the LRU
3883 * on the next attempt and the call should be retried later.
3884 * Isolation from the LRU fails only if page has been isolated from
3885 * the LRU since we looked at it and that usually means either global
3886 * reclaim or migration going on. The page will either get back to the
3887 * LRU or vanish.
3888 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3889 * (!PageCgroupUsed) or moved to a different group. The page will
3890 * disappear in the next attempt.
3891 */
3892static int mem_cgroup_move_parent(struct page *page,
3893                                  struct page_cgroup *pc,
3894                                  struct mem_cgroup *child)
3895{
3896        struct mem_cgroup *parent;
3897        unsigned int nr_pages;
3898        unsigned long uninitialized_var(flags);
3899        int ret;
3900
3901        VM_BUG_ON(mem_cgroup_is_root(child));
3902
3903        ret = -EBUSY;
3904        if (!get_page_unless_zero(page))
3905                goto out;
3906        if (isolate_lru_page(page))
3907                goto put;
3908
3909        nr_pages = hpage_nr_pages(page);
3910
3911        parent = parent_mem_cgroup(child);
3912        /*
3913         * If no parent, move charges to root cgroup.
3914         */
3915        if (!parent)
3916                parent = root_mem_cgroup;
3917
3918        if (nr_pages > 1) {
3919                VM_BUG_ON(!PageTransHuge(page));
3920                flags = compound_lock_irqsave(page);
3921        }
3922
3923        ret = mem_cgroup_move_account(page, nr_pages,
3924                                pc, child, parent);
3925        if (!ret)
3926                __mem_cgroup_cancel_local_charge(child, nr_pages);
3927
3928        if (nr_pages > 1)
3929                compound_unlock_irqrestore(page, flags);
3930        putback_lru_page(page);
3931put:
3932        put_page(page);
3933out:
3934        return ret;
3935}
3936
3937/*
3938 * Charge the memory controller for page usage.
3939 * Return
3940 * 0 if the charge was successful
3941 * < 0 if the cgroup is over its limit
3942 */
3943static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3944                                gfp_t gfp_mask, enum charge_type ctype)
3945{
3946        struct mem_cgroup *memcg = NULL;
3947        unsigned int nr_pages = 1;
3948        bool oom = true;
3949        int ret;
3950
3951        if (PageTransHuge(page)) {
3952                nr_pages <<= compound_order(page);
3953                VM_BUG_ON(!PageTransHuge(page));
3954                /*
3955                 * Never OOM-kill a process for a huge page.  The
3956                 * fault handler will fall back to regular pages.
3957                 */
3958                oom = false;
3959        }
3960
3961        ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3962        if (ret == -ENOMEM)
3963                return ret;
3964        __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3965        return 0;
3966}
3967
3968int mem_cgroup_newpage_charge(struct page *page,
3969                              struct mm_struct *mm, gfp_t gfp_mask)
3970{
3971        if (mem_cgroup_disabled())
3972                return 0;
3973        VM_BUG_ON(page_mapped(page));
3974        VM_BUG_ON(page->mapping && !PageAnon(page));
3975        VM_BUG_ON(!mm);
3976        return mem_cgroup_charge_common(page, mm, gfp_mask,
3977                                        MEM_CGROUP_CHARGE_TYPE_ANON);
3978}
3979
3980/*
3981 * While swap-in, try_charge -> commit or cancel, the page is locked.
3982 * And when try_charge() successfully returns, one refcnt to memcg without
3983 * struct page_cgroup is acquired. This refcnt will be consumed by
3984 * "commit()" or removed by "cancel()"
3985 */
3986static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3987                                          struct page *page,
3988                                          gfp_t mask,
3989                                          struct mem_cgroup **memcgp)
3990{
3991        struct mem_cgroup *memcg;
3992        struct page_cgroup *pc;
3993        int ret;
3994
3995        pc = lookup_page_cgroup(page);
3996        /*
3997         * Every swap fault against a single page tries to charge the
3998         * page, bail as early as possible.  shmem_unuse() encounters
3999         * already charged pages, too.  The USED bit is protected by
4000         * the page lock, which serializes swap cache removal, which
4001         * in turn serializes uncharging.
4002         */
4003        if (PageCgroupUsed(pc))
4004                return 0;
4005        if (!do_swap_account)
4006                goto charge_cur_mm;
4007        memcg = try_get_mem_cgroup_from_page(page);
4008        if (!memcg)
4009                goto charge_cur_mm;
4010        *memcgp = memcg;
4011        ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4012        css_put(&memcg->css);
4013        if (ret == -EINTR)
4014                ret = 0;
4015        return ret;
4016charge_cur_mm:
4017        ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4018        if (ret == -EINTR)
4019                ret = 0;
4020        return ret;
4021}
4022
4023int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4024                                 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4025{
4026        *memcgp = NULL;
4027        if (mem_cgroup_disabled())
4028                return 0;
4029        /*
4030         * A racing thread's fault, or swapoff, may have already
4031         * updated the pte, and even removed page from swap cache: in
4032         * those cases unuse_pte()'s pte_same() test will fail; but
4033         * there's also a KSM case which does need to charge the page.
4034         */
4035        if (!PageSwapCache(page)) {
4036                int ret;
4037
4038                ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4039                if (ret == -EINTR)
4040                        ret = 0;
4041                return ret;
4042        }
4043        return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4044}
4045
4046void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4047{
4048        if (mem_cgroup_disabled())
4049                return;
4050        if (!memcg)
4051                return;
4052        __mem_cgroup_cancel_charge(memcg, 1);
4053}
4054
4055static void
4056__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4057                                        enum charge_type ctype)
4058{
4059        if (mem_cgroup_disabled())
4060                return;
4061        if (!memcg)
4062                return;
4063
4064        __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4065        /*
4066         * Now swap is on-memory. This means this page may be
4067         * counted both as mem and swap....double count.
4068         * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4069         * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4070         * may call delete_from_swap_cache() before reach here.
4071         */
4072        if (do_swap_account && PageSwapCache(page)) {
4073                swp_entry_t ent = {.val = page_private(page)};
4074                mem_cgroup_uncharge_swap(ent);
4075        }
4076}
4077
4078void mem_cgroup_commit_charge_swapin(struct page *page,
4079                                     struct mem_cgroup *memcg)
4080{
4081        __mem_cgroup_commit_charge_swapin(page, memcg,
4082                                          MEM_CGROUP_CHARGE_TYPE_ANON);
4083}
4084
4085int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4086                                gfp_t gfp_mask)
4087{
4088        struct mem_cgroup *memcg = NULL;
4089        enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4090        int ret;
4091
4092        if (mem_cgroup_disabled())
4093                return 0;
4094        if (PageCompound(page))
4095                return 0;
4096
4097        if (!PageSwapCache(page))
4098                ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4099        else { /* page is swapcache/shmem */
4100                ret = __mem_cgroup_try_charge_swapin(mm, page,
4101                                                     gfp_mask, &memcg);
4102                if (!ret)
4103                        __mem_cgroup_commit_charge_swapin(page, memcg, type);
4104        }
4105        return ret;
4106}
4107
4108static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4109                                   unsigned int nr_pages,
4110                                   const enum charge_type ctype)
4111{
4112        struct memcg_batch_info *batch = NULL;
4113        bool uncharge_memsw = true;
4114
4115        /* If swapout, usage of swap doesn't decrease */
4116        if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4117                uncharge_memsw = false;
4118
4119        batch = &current->memcg_batch;
4120        /*
4121         * In usual, we do css_get() when we remember memcg pointer.
4122         * But in this case, we keep res->usage until end of a series of
4123         * uncharges. Then, it's ok to ignore memcg's refcnt.
4124         */
4125        if (!batch->memcg)
4126                batch->memcg = memcg;
4127        /*
4128         * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4129         * In those cases, all pages freed continuously can be expected to be in
4130         * the same cgroup and we have chance to coalesce uncharges.
4131         * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4132         * because we want to do uncharge as soon as possible.
4133         */
4134
4135        if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4136                goto direct_uncharge;
4137
4138        if (nr_pages > 1)
4139                goto direct_uncharge;
4140
4141        /*
4142         * In typical case, batch->memcg == mem. This means we can
4143         * merge a series of uncharges to an uncharge of res_counter.
4144         * If not, we uncharge res_counter ony by one.
4145         */
4146        if (batch->memcg != memcg)
4147                goto direct_uncharge;
4148        /* remember freed charge and uncharge it later */
4149        batch->nr_pages++;
4150        if (uncharge_memsw)
4151                batch->memsw_nr_pages++;
4152        return;
4153direct_uncharge:
4154        res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4155        if (uncharge_memsw)
4156                res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4157        if (unlikely(batch->memcg != memcg))
4158                memcg_oom_recover(memcg);
4159}
4160
4161/*
4162 * uncharge if !page_mapped(page)
4163 */
4164static struct mem_cgroup *
4165__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4166                             bool end_migration)
4167{
4168        struct mem_cgroup *memcg = NULL;
4169        unsigned int nr_pages = 1;
4170        struct page_cgroup *pc;
4171        bool anon;
4172
4173        if (mem_cgroup_disabled())
4174                return NULL;
4175
4176        if (PageTransHuge(page)) {
4177                nr_pages <<= compound_order(page);
4178                VM_BUG_ON(!PageTransHuge(page));
4179        }
4180        /*
4181         * Check if our page_cgroup is valid
4182         */
4183        pc = lookup_page_cgroup(page);
4184        if (unlikely(!PageCgroupUsed(pc)))
4185                return NULL;
4186
4187        lock_page_cgroup(pc);
4188
4189        memcg = pc->mem_cgroup;
4190
4191        if (!PageCgroupUsed(pc))
4192                goto unlock_out;
4193
4194        anon = PageAnon(page);
4195
4196        switch (ctype) {
4197        case MEM_CGROUP_CHARGE_TYPE_ANON:
4198                /*
4199                 * Generally PageAnon tells if it's the anon statistics to be
4200                 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4201                 * used before page reached the stage of being marked PageAnon.
4202                 */
4203                anon = true;
4204                /* fallthrough */
4205        case MEM_CGROUP_CHARGE_TYPE_DROP:
4206                /* See mem_cgroup_prepare_migration() */
4207                if (page_mapped(page))
4208                        goto unlock_out;
4209                /*
4210                 * Pages under migration may not be uncharged.  But
4211                 * end_migration() /must/ be the one uncharging the
4212                 * unused post-migration page and so it has to call
4213                 * here with the migration bit still set.  See the
4214                 * res_counter handling below.
4215                 */
4216                if (!end_migration && PageCgroupMigration(pc))
4217                        goto unlock_out;
4218                break;
4219        case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4220                if (!PageAnon(page)) {  /* Shared memory */
4221                        if (page->mapping && !page_is_file_cache(page))
4222                                goto unlock_out;
4223                } else if (page_mapped(page)) /* Anon */
4224                                goto unlock_out;
4225                break;
4226        default:
4227                break;
4228        }
4229
4230        mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4231
4232        ClearPageCgroupUsed(pc);
4233        /*
4234         * pc->mem_cgroup is not cleared here. It will be accessed when it's
4235         * freed from LRU. This is safe because uncharged page is expected not
4236         * to be reused (freed soon). Exception is SwapCache, it's handled by
4237         * special functions.
4238         */
4239
4240        unlock_page_cgroup(pc);
4241        /*
4242         * even after unlock, we have memcg->res.usage here and this memcg
4243         * will never be freed, so it's safe to call css_get().
4244         */
4245        memcg_check_events(memcg, page);
4246        if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4247                mem_cgroup_swap_statistics(memcg, true);
4248                css_get(&memcg->css);
4249        }
4250        /*
4251         * Migration does not charge the res_counter for the
4252         * replacement page, so leave it alone when phasing out the
4253         * page that is unused after the migration.
4254         */
4255        if (!end_migration && !mem_cgroup_is_root(memcg))
4256                mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4257
4258        return memcg;
4259
4260unlock_out:
4261        unlock_page_cgroup(pc);
4262        return NULL;
4263}
4264
4265void mem_cgroup_uncharge_page(struct page *page)
4266{
4267        /* early check. */
4268        if (page_mapped(page))
4269                return;
4270        VM_BUG_ON(page->mapping && !PageAnon(page));
4271        /*
4272         * If the page is in swap cache, uncharge should be deferred
4273         * to the swap path, which also properly accounts swap usage
4274         * and handles memcg lifetime.
4275         *
4276         * Note that this check is not stable and reclaim may add the
4277         * page to swap cache at any time after this.  However, if the
4278         * page is not in swap cache by the time page->mapcount hits
4279         * 0, there won't be any page table references to the swap
4280         * slot, and reclaim will free it and not actually write the
4281         * page to disk.
4282         */
4283        if (PageSwapCache(page))
4284                return;
4285        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4286}
4287
4288void mem_cgroup_uncharge_cache_page(struct page *page)
4289{
4290        VM_BUG_ON(page_mapped(page));
4291        VM_BUG_ON(page->mapping);
4292        __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4293}
4294
4295/*
4296 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4297 * In that cases, pages are freed continuously and we can expect pages
4298 * are in the same memcg. All these calls itself limits the number of
4299 * pages freed at once, then uncharge_start/end() is called properly.
4300 * This may be called prural(2) times in a context,
4301 */
4302
4303void mem_cgroup_uncharge_start(void)
4304{
4305        current->memcg_batch.do_batch++;
4306        /* We can do nest. */
4307        if (current->memcg_batch.do_batch == 1) {
4308                current->memcg_batch.memcg = NULL;
4309                current->memcg_batch.nr_pages = 0;
4310                current->memcg_batch.memsw_nr_pages = 0;
4311        }
4312}
4313
4314void mem_cgroup_uncharge_end(void)
4315{
4316        struct memcg_batch_info *batch = &current->memcg_batch;
4317
4318        if (!batch->do_batch)
4319                return;
4320
4321        batch->do_batch--;
4322        if (batch->do_batch) /* If stacked, do nothing. */
4323                return;
4324
4325        if (!batch->memcg)
4326                return;
4327        /*
4328         * This "batch->memcg" is valid without any css_get/put etc...
4329         * bacause we hide charges behind us.
4330         */
4331        if (batch->nr_pages)
4332                res_counter_uncharge(&batch->memcg->res,
4333                                     batch->nr_pages * PAGE_SIZE);
4334        if (batch->memsw_nr_pages)
4335                res_counter_uncharge(&batch->memcg->memsw,
4336                                     batch->memsw_nr_pages * PAGE_SIZE);
4337        memcg_oom_recover(batch->memcg);
4338        /* forget this pointer (for sanity check) */
4339        batch->memcg = NULL;
4340}
4341
4342#ifdef CONFIG_SWAP
4343/*
4344 * called after __delete_from_swap_cache() and drop "page" account.
4345 * memcg information is recorded to swap_cgroup of "ent"
4346 */
4347void
4348mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4349{
4350        struct mem_cgroup *memcg;
4351        int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4352
4353        if (!swapout) /* this was a swap cache but the swap is unused ! */
4354                ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4355
4356        memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4357
4358        /*
4359         * record memcg information,  if swapout && memcg != NULL,
4360         * css_get() was called in uncharge().
4361         */
4362        if (do_swap_account && swapout && memcg)
4363                swap_cgroup_record(ent, mem_cgroup_id(memcg));
4364}
4365#endif
4366
4367#ifdef CONFIG_MEMCG_SWAP
4368/*
4369 * called from swap_entry_free(). remove record in swap_cgroup and
4370 * uncharge "memsw" account.
4371 */
4372void mem_cgroup_uncharge_swap(swp_entry_t ent)
4373{
4374        struct mem_cgroup *memcg;
4375        unsigned short id;
4376
4377        if (!do_swap_account)
4378                return;
4379
4380        id = swap_cgroup_record(ent, 0);
4381        rcu_read_lock();
4382        memcg = mem_cgroup_lookup(id);
4383        if (memcg) {
4384                /*
4385                 * We uncharge this because swap is freed.
4386                 * This memcg can be obsolete one. We avoid calling css_tryget
4387                 */
4388                if (!mem_cgroup_is_root(memcg))
4389                        res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4390                mem_cgroup_swap_statistics(memcg, false);
4391                css_put(&memcg->css);
4392        }
4393        rcu_read_unlock();
4394}
4395
4396/**
4397 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4398 * @entry: swap entry to be moved
4399 * @from:  mem_cgroup which the entry is moved from
4400 * @to:  mem_cgroup which the entry is moved to
4401 *
4402 * It succeeds only when the swap_cgroup's record for this entry is the same
4403 * as the mem_cgroup's id of @from.
4404 *
4405 * Returns 0 on success, -EINVAL on failure.
4406 *
4407 * The caller must have charged to @to, IOW, called res_counter_charge() about
4408 * both res and memsw, and called css_get().
4409 */
4410static int mem_cgroup_move_swap_account(swp_entry_t entry,
4411                                struct mem_cgroup *from, struct mem_cgroup *to)
4412{
4413        unsigned short old_id, new_id;
4414
4415        old_id = mem_cgroup_id(from);
4416        new_id = mem_cgroup_id(to);
4417
4418        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4419                mem_cgroup_swap_statistics(from, false);
4420                mem_cgroup_swap_statistics(to, true);
4421                /*
4422                 * This function is only called from task migration context now.
4423                 * It postpones res_counter and refcount handling till the end
4424                 * of task migration(mem_cgroup_clear_mc()) for performance
4425                 * improvement. But we cannot postpone css_get(to)  because if
4426                 * the process that has been moved to @to does swap-in, the
4427                 * refcount of @to might be decreased to 0.
4428                 *
4429                 * We are in attach() phase, so the cgroup is guaranteed to be
4430                 * alive, so we can just call css_get().
4431                 */
4432                css_get(&to->css);
4433                return 0;
4434        }
4435        return -EINVAL;
4436}
4437#else
4438static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4439                                struct mem_cgroup *from, struct mem_cgroup *to)
4440{
4441        return -EINVAL;
4442}
4443#endif
4444
4445/*
4446 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4447 * page belongs to.
4448 */
4449void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4450                                  struct mem_cgroup **memcgp)
4451{
4452        struct mem_cgroup *memcg = NULL;
4453        unsigned int nr_pages = 1;
4454        struct page_cgroup *pc;
4455        enum charge_type ctype;
4456
4457        *memcgp = NULL;
4458
4459        if (mem_cgroup_disabled())
4460                return;
4461
4462        if (PageTransHuge(page))
4463                nr_pages <<= compound_order(page);
4464
4465        pc = lookup_page_cgroup(page);
4466        lock_page_cgroup(pc);
4467        if (PageCgroupUsed(pc)) {
4468                memcg = pc->mem_cgroup;
4469                css_get(&memcg->css);
4470                /*
4471                 * At migrating an anonymous page, its mapcount goes down
4472                 * to 0 and uncharge() will be called. But, even if it's fully
4473                 * unmapped, migration may fail and this page has to be
4474                 * charged again. We set MIGRATION flag here and delay uncharge
4475                 * until end_migration() is called
4476                 *
4477                 * Corner Case Thinking
4478                 * A)
4479                 * When the old page was mapped as Anon and it's unmap-and-freed
4480                 * while migration was ongoing.
4481                 * If unmap finds the old page, uncharge() of it will be delayed
4482                 * until end_migration(). If unmap finds a new page, it's
4483                 * uncharged when it make mapcount to be 1->0. If unmap code
4484                 * finds swap_migration_entry, the new page will not be mapped
4485                 * and end_migration() will find it(mapcount==0).
4486                 *
4487                 * B)
4488                 * When the old page was mapped but migraion fails, the kernel
4489                 * remaps it. A charge for it is kept by MIGRATION flag even
4490                 * if mapcount goes down to 0. We can do remap successfully
4491                 * without charging it again.
4492                 *
4493                 * C)
4494                 * The "old" page is under lock_page() until the end of
4495                 * migration, so, the old page itself will not be swapped-out.
4496                 * If the new page is swapped out before end_migraton, our
4497                 * hook to usual swap-out path will catch the event.
4498                 */
4499                if (PageAnon(page))
4500                        SetPageCgroupMigration(pc);
4501        }
4502        unlock_page_cgroup(pc);
4503        /*
4504         * If the page is not charged at this point,
4505         * we return here.
4506         */
4507        if (!memcg)
4508                return;
4509
4510        *memcgp = memcg;
4511        /*
4512         * We charge new page before it's used/mapped. So, even if unlock_page()
4513         * is called before end_migration, we can catch all events on this new
4514         * page. In the case new page is migrated but not remapped, new page's
4515         * mapcount will be finally 0 and we call uncharge in end_migration().
4516         */
4517        if (PageAnon(page))
4518                ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4519        else
4520                ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4521        /*
4522         * The page is committed to the memcg, but it's not actually
4523         * charged to the res_counter since we plan on replacing the
4524         * old one and only one page is going to be left afterwards.
4525         */
4526        __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4527}
4528
4529/* remove redundant charge if migration failed*/
4530void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4531        struct page *oldpage, struct page *newpage, bool migration_ok)
4532{
4533        struct page *used, *unused;
4534        struct page_cgroup *pc;
4535        bool anon;
4536
4537        if (!memcg)
4538                return;
4539
4540        if (!migration_ok) {
4541                used = oldpage;
4542                unused = newpage;
4543        } else {
4544                used = newpage;
4545                unused = oldpage;
4546        }
4547        anon = PageAnon(used);
4548        __mem_cgroup_uncharge_common(unused,
4549                                     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4550                                     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4551                                     true);
4552        css_put(&memcg->css);
4553        /*
4554         * We disallowed uncharge of pages under migration because mapcount
4555         * of the page goes down to zero, temporarly.
4556         * Clear the flag and check the page should be charged.
4557         */
4558        pc = lookup_page_cgroup(oldpage);
4559        lock_page_cgroup(pc);
4560        ClearPageCgroupMigration(pc);
4561        unlock_page_cgroup(pc);
4562
4563        /*
4564         * If a page is a file cache, radix-tree replacement is very atomic
4565         * and we can skip this check. When it was an Anon page, its mapcount
4566         * goes down to 0. But because we added MIGRATION flage, it's not
4567         * uncharged yet. There are several case but page->mapcount check
4568         * and USED bit check in mem_cgroup_uncharge_page() will do enough
4569         * check. (see prepare_charge() also)
4570         */
4571        if (anon)
4572                mem_cgroup_uncharge_page(used);
4573}
4574
4575/*
4576 * At replace page cache, newpage is not under any memcg but it's on
4577 * LRU. So, this function doesn't touch res_counter but handles LRU
4578 * in correct way. Both pages are locked so we cannot race with uncharge.
4579 */
4580void mem_cgroup_replace_page_cache(struct page *oldpage,
4581                                  struct page *newpage)
4582{
4583        struct mem_cgroup *memcg = NULL;
4584        struct page_cgroup *pc;
4585        enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4586
4587        if (mem_cgroup_disabled())
4588                return;
4589
4590        pc = lookup_page_cgroup(oldpage);
4591        /* fix accounting on old pages */
4592        lock_page_cgroup(pc);
4593        if (PageCgroupUsed(pc)) {
4594                memcg = pc->mem_cgroup;
4595                mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4596                ClearPageCgroupUsed(pc);
4597        }
4598        unlock_page_cgroup(pc);
4599
4600        /*
4601         * When called from shmem_replace_page(), in some cases the
4602         * oldpage has already been charged, and in some cases not.
4603         */
4604        if (!memcg)
4605                return;
4606        /*
4607         * Even if newpage->mapping was NULL before starting replacement,
4608         * the newpage may be on LRU(or pagevec for LRU) already. We lock
4609         * LRU while we overwrite pc->mem_cgroup.
4610         */
4611        __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4612}
4613
4614#ifdef CONFIG_DEBUG_VM
4615static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4616{
4617        struct page_cgroup *pc;
4618
4619        pc = lookup_page_cgroup(page);
4620        /*
4621         * Can be NULL while feeding pages into the page allocator for
4622         * the first time, i.e. during boot or memory hotplug;
4623         * or when mem_cgroup_disabled().
4624         */
4625        if (likely(pc) && PageCgroupUsed(pc))
4626                return pc;
4627        return NULL;
4628}
4629
4630bool mem_cgroup_bad_page_check(struct page *page)
4631{
4632        if (mem_cgroup_disabled())
4633                return false;
4634
4635        return lookup_page_cgroup_used(page) != NULL;
4636}
4637
4638void mem_cgroup_print_bad_page(struct page *page)
4639{
4640        struct page_cgroup *pc;
4641
4642        pc = lookup_page_cgroup_used(page);
4643        if (pc) {
4644                pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4645                         pc, pc->flags, pc->mem_cgroup);
4646        }
4647}
4648#endif
4649
4650static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4651                                unsigned long long val)
4652{
4653        int retry_count;
4654        u64 memswlimit, memlimit;
4655        int ret = 0;
4656        int children = mem_cgroup_count_children(memcg);
4657        u64 curusage, oldusage;
4658        int enlarge;
4659
4660        /*
4661         * For keeping hierarchical_reclaim simple, how long we should retry
4662         * is depends on callers. We set our retry-count to be function
4663         * of # of children which we should visit in this loop.
4664         */
4665        retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4666
4667        oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4668
4669        enlarge = 0;
4670        while (retry_count) {
4671                if (signal_pending(current)) {
4672                        ret = -EINTR;
4673                        break;
4674                }
4675                /*
4676                 * Rather than hide all in some function, I do this in
4677                 * open coded manner. You see what this really does.
4678                 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4679                 */
4680                mutex_lock(&set_limit_mutex);
4681                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4682                if (memswlimit < val) {
4683                        ret = -EINVAL;
4684                        mutex_unlock(&set_limit_mutex);
4685                        break;
4686                }
4687
4688                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4689                if (memlimit < val)
4690                        enlarge = 1;
4691
4692                ret = res_counter_set_limit(&memcg->res, val);
4693                if (!ret) {
4694                        if (memswlimit == val)
4695                                memcg->memsw_is_minimum = true;
4696                        else
4697                                memcg->memsw_is_minimum = false;
4698                }
4699                mutex_unlock(&set_limit_mutex);
4700
4701                if (!ret)
4702                        break;
4703
4704                mem_cgroup_reclaim(memcg, GFP_KERNEL,
4705                                   MEM_CGROUP_RECLAIM_SHRINK);
4706                curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4707                /* Usage is reduced ? */
4708                if (curusage >= oldusage)
4709                        retry_count--;
4710                else
4711                        oldusage = curusage;
4712        }
4713        if (!ret && enlarge)
4714                memcg_oom_recover(memcg);
4715
4716        return ret;
4717}
4718
4719static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4720                                        unsigned long long val)
4721{
4722        int retry_count;
4723        u64 memlimit, memswlimit, oldusage, curusage;
4724        int children = mem_cgroup_count_children(memcg);
4725        int ret = -EBUSY;
4726        int enlarge = 0;
4727
4728        /* see mem_cgroup_resize_res_limit */
4729        retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4730        oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4731        while (retry_count) {
4732                if (signal_pending(current)) {
4733                        ret = -EINTR;
4734                        break;
4735                }
4736                /*
4737                 * Rather than hide all in some function, I do this in
4738                 * open coded manner. You see what this really does.
4739                 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4740                 */
4741                mutex_lock(&set_limit_mutex);
4742                memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4743                if (memlimit > val) {
4744                        ret = -EINVAL;
4745                        mutex_unlock(&set_limit_mutex);
4746                        break;
4747                }
4748                memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4749                if (memswlimit < val)
4750                        enlarge = 1;
4751                ret = res_counter_set_limit(&memcg->memsw, val);
4752                if (!ret) {
4753                        if (memlimit == val)
4754                                memcg->memsw_is_minimum = true;
4755                        else
4756                                memcg->memsw_is_minimum = false;
4757                }
4758                mutex_unlock(&set_limit_mutex);
4759
4760                if (!ret)
4761                        break;
4762
4763                mem_cgroup_reclaim(memcg, GFP_KERNEL,
4764                                   MEM_CGROUP_RECLAIM_NOSWAP |
4765                                   MEM_CGROUP_RECLAIM_SHRINK);
4766                curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4767                /* Usage is reduced ? */
4768                if (curusage >= oldusage)
4769                        retry_count--;
4770                else
4771                        oldusage = curusage;
4772        }
4773        if (!ret && enlarge)
4774                memcg_oom_recover(memcg);
4775        return ret;
4776}
4777
4778unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4779                                            gfp_t gfp_mask,
4780                                            unsigned long *total_scanned)
4781{
4782        unsigned long nr_reclaimed = 0;
4783        struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4784        unsigned long reclaimed;
4785        int loop = 0;
4786        struct mem_cgroup_tree_per_zone *mctz;
4787        unsigned long long excess;
4788        unsigned long nr_scanned;
4789
4790        if (order > 0)
4791                return 0;
4792
4793        mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4794        /*
4795         * This loop can run a while, specially if mem_cgroup's continuously
4796         * keep exceeding their soft limit and putting the system under
4797         * pressure
4798         */
4799        do {
4800                if (next_mz)
4801                        mz = next_mz;
4802                else
4803                        mz = mem_cgroup_largest_soft_limit_node(mctz);
4804                if (!mz)
4805                        break;
4806
4807                nr_scanned = 0;
4808                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4809                                                    gfp_mask, &nr_scanned);
4810                nr_reclaimed += reclaimed;
4811                *total_scanned += nr_scanned;
4812                spin_lock(&mctz->lock);
4813
4814                /*
4815                 * If we failed to reclaim anything from this memory cgroup
4816                 * it is time to move on to the next cgroup
4817                 */
4818                next_mz = NULL;
4819                if (!reclaimed) {
4820                        do {
4821                                /*
4822                                 * Loop until we find yet another one.
4823                                 *
4824                                 * By the time we get the soft_limit lock
4825                                 * again, someone might have aded the
4826                                 * group back on the RB tree. Iterate to
4827                                 * make sure we get a different mem.
4828                                 * mem_cgroup_largest_soft_limit_node returns
4829                                 * NULL if no other cgroup is present on
4830                                 * the tree
4831                                 */
4832                                next_mz =
4833                                __mem_cgroup_largest_soft_limit_node(mctz);
4834                                if (next_mz == mz)
4835                                        css_put(&next_mz->memcg->css);
4836                                else /* next_mz == NULL or other memcg */
4837                                        break;
4838                        } while (1);
4839                }
4840                __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4841                excess = res_counter_soft_limit_excess(&mz->memcg->res);
4842                /*
4843                 * One school of thought says that we should not add
4844                 * back the node to the tree if reclaim returns 0.
4845                 * But our reclaim could return 0, simply because due
4846                 * to priority we are exposing a smaller subset of
4847                 * memory to reclaim from. Consider this as a longer
4848                 * term TODO.
4849                 */
4850                /* If excess == 0, no tree ops */
4851                __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4852                spin_unlock(&mctz->lock);
4853                css_put(&mz->memcg->css);
4854                loop++;
4855                /*
4856                 * Could not reclaim anything and there are no more
4857                 * mem cgroups to try or we seem to be looping without
4858                 * reclaiming anything.
4859                 */
4860                if (!nr_reclaimed &&
4861                        (next_mz == NULL ||
4862                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4863                        break;
4864        } while (!nr_reclaimed);
4865        if (next_mz)
4866                css_put(&next_mz->memcg->css);
4867        return nr_reclaimed;
4868}
4869
4870/**
4871 * mem_cgroup_force_empty_list - clears LRU of a group
4872 * @memcg: group to clear
4873 * @node: NUMA node
4874 * @zid: zone id
4875 * @lru: lru to to clear
4876 *
4877 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4878 * reclaim the pages page themselves - pages are moved to the parent (or root)
4879 * group.
4880 */
4881static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4882                                int node, int zid, enum lru_list lru)
4883{
4884        struct lruvec *lruvec;
4885        unsigned long flags;
4886        struct list_head *list;
4887        struct page *busy;
4888        struct zone *zone;
4889
4890        zone = &NODE_DATA(node)->node_zones[zid];
4891        lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4892        list = &lruvec->lists[lru];
4893
4894        busy = NULL;
4895        do {
4896                struct page_cgroup *pc;
4897                struct page *page;
4898
4899                spin_lock_irqsave(&zone->lru_lock, flags);
4900                if (list_empty(list)) {
4901                        spin_unlock_irqrestore(&zone->lru_lock, flags);
4902                        break;
4903                }
4904                page = list_entry(list->prev, struct page, lru);
4905                if (busy == page) {
4906                        list_move(&page->lru, list);
4907                        busy = NULL;
4908                        spin_unlock_irqrestore(&zone->lru_lock, flags);
4909                        continue;
4910                }
4911                spin_unlock_irqrestore(&zone->lru_lock, flags);
4912
4913                pc = lookup_page_cgroup(page);
4914
4915                if (mem_cgroup_move_parent(page, pc, memcg)) {
4916                        /* found lock contention or "pc" is obsolete. */
4917                        busy = page;
4918                        cond_resched();
4919                } else
4920                        busy = NULL;
4921        } while (!list_empty(list));
4922}
4923
4924/*
4925 * make mem_cgroup's charge to be 0 if there is no task by moving
4926 * all the charges and pages to the parent.
4927 * This enables deleting this mem_cgroup.
4928 *
4929 * Caller is responsible for holding css reference on the memcg.
4930 */
4931static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4932{
4933        int node, zid;
4934        u64 usage;
4935
4936        do {
4937                /* This is for making all *used* pages to be on LRU. */
4938                lru_add_drain_all();
4939                drain_all_stock_sync(memcg);
4940                mem_cgroup_start_move(memcg);
4941                for_each_node_state(node, N_MEMORY) {
4942                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4943                                enum lru_list lru;
4944                                for_each_lru(lru) {
4945                                        mem_cgroup_force_empty_list(memcg,
4946                                                        node, zid, lru);
4947                                }
4948                        }
4949                }
4950                mem_cgroup_end_move(memcg);
4951                memcg_oom_recover(memcg);
4952                cond_resched();
4953
4954                /*
4955                 * Kernel memory may not necessarily be trackable to a specific
4956                 * process. So they are not migrated, and therefore we can't
4957                 * expect their value to drop to 0 here.
4958                 * Having res filled up with kmem only is enough.
4959                 *
4960                 * This is a safety check because mem_cgroup_force_empty_list
4961                 * could have raced with mem_cgroup_replace_page_cache callers
4962                 * so the lru seemed empty but the page could have been added
4963                 * right after the check. RES_USAGE should be safe as we always
4964                 * charge before adding to the LRU.
4965                 */
4966                usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4967                        res_counter_read_u64(&memcg->kmem, RES_USAGE);
4968        } while (usage > 0);
4969}
4970
4971static inline bool memcg_has_children(struct mem_cgroup *memcg)
4972{
4973        lockdep_assert_held(&memcg_create_mutex);
4974        /*
4975         * The lock does not prevent addition or deletion to the list
4976         * of children, but it prevents a new child from being
4977         * initialized based on this parent in css_online(), so it's
4978         * enough to decide whether hierarchically inherited
4979         * attributes can still be changed or not.
4980         */
4981        return memcg->use_hierarchy &&
4982                !list_empty(&memcg->css.cgroup->children);
4983}
4984
4985/*
4986 * Reclaims as many pages from the given memcg as possible and moves
4987 * the rest to the parent.
4988 *
4989 * Caller is responsible for holding css reference for memcg.
4990 */
4991static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4992{
4993        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4994        struct cgroup *cgrp = memcg->css.cgroup;
4995
4996        /* returns EBUSY if there is a task or if we come here twice. */
4997        if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4998                return -EBUSY;
4999
5000        /* we call try-to-free pages for make this cgroup empty */
5001        lru_add_drain_all();
5002        /* try to free all pages in this cgroup */
5003        while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5004                int progress;
5005
5006                if (signal_pending(current))
5007                        return -EINTR;
5008
5009                progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5010                                                false);
5011                if (!progress) {
5012                        nr_retries--;
5013                        /* maybe some writeback is necessary */
5014                        congestion_wait(BLK_RW_ASYNC, HZ/10);
5015                }
5016
5017        }
5018        lru_add_drain();
5019        mem_cgroup_reparent_charges(memcg);
5020
5021        return 0;
5022}
5023
5024static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5025                                        unsigned int event)
5026{
5027        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5028
5029        if (mem_cgroup_is_root(memcg))
5030                return -EINVAL;
5031        return mem_cgroup_force_empty(memcg);
5032}
5033
5034static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5035                                     struct cftype *cft)
5036{
5037        return mem_cgroup_from_css(css)->use_hierarchy;
5038}
5039
5040static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5041                                      struct cftype *cft, u64 val)
5042{
5043        int retval = 0;
5044        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5046
5047        mutex_lock(&memcg_create_mutex);
5048
5049        if (memcg->use_hierarchy == val)
5050                goto out;
5051
5052        /*
5053         * If parent's use_hierarchy is set, we can't make any modifications
5054         * in the child subtrees. If it is unset, then the change can
5055         * occur, provided the current cgroup has no children.
5056         *
5057         * For the root cgroup, parent_mem is NULL, we allow value to be
5058         * set if there are no children.
5059         */
5060        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5061                                (val == 1 || val == 0)) {
5062                if (list_empty(&memcg->css.cgroup->children))
5063                        memcg->use_hierarchy = val;
5064                else
5065                        retval = -EBUSY;
5066        } else
5067                retval = -EINVAL;
5068
5069out:
5070        mutex_unlock(&memcg_create_mutex);
5071
5072        return retval;
5073}
5074
5075
5076static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5077                                               enum mem_cgroup_stat_index idx)
5078{
5079        struct mem_cgroup *iter;
5080        long val = 0;
5081
5082        /* Per-cpu values can be negative, use a signed accumulator */
5083        for_each_mem_cgroup_tree(iter, memcg)
5084                val += mem_cgroup_read_stat(iter, idx);
5085
5086        if (val < 0) /* race ? */
5087                val = 0;
5088        return val;
5089}
5090
5091static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5092{
5093        u64 val;
5094
5095        if (!mem_cgroup_is_root(memcg)) {
5096                if (!swap)
5097                        return res_counter_read_u64(&memcg->res, RES_USAGE);
5098                else
5099                        return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5100        }
5101
5102        /*
5103         * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5104         * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5105         */
5106        val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5107        val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5108
5109        if (swap)
5110                val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5111
5112        return val << PAGE_SHIFT;
5113}
5114
5115static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5116                               struct cftype *cft, struct file *file,
5117                               char __user *buf, size_t nbytes, loff_t *ppos)
5118{
5119        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5120        char str[64];
5121        u64 val;
5122        int name, len;
5123        enum res_type type;
5124
5125        type = MEMFILE_TYPE(cft->private);
5126        name = MEMFILE_ATTR(cft->private);
5127
5128        switch (type) {
5129        case _MEM:
5130                if (name == RES_USAGE)
5131                        val = mem_cgroup_usage(memcg, false);
5132                else
5133                        val = res_counter_read_u64(&memcg->res, name);
5134                break;
5135        case _MEMSWAP:
5136                if (name == RES_USAGE)
5137                        val = mem_cgroup_usage(memcg, true);
5138                else
5139                        val = res_counter_read_u64(&memcg->memsw, name);
5140                break;
5141        case _KMEM:
5142                val = res_counter_read_u64(&memcg->kmem, name);
5143                break;
5144        default:
5145                BUG();
5146        }
5147
5148        len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5149        return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5150}
5151
5152static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5153{
5154        int ret = -EINVAL;
5155#ifdef CONFIG_MEMCG_KMEM
5156        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157        /*
5158         * For simplicity, we won't allow this to be disabled.  It also can't
5159         * be changed if the cgroup has children already, or if tasks had
5160         * already joined.
5161         *
5162         * If tasks join before we set the limit, a person looking at
5163         * kmem.usage_in_bytes will have no way to determine when it took
5164         * place, which makes the value quite meaningless.
5165         *
5166         * After it first became limited, changes in the value of the limit are
5167         * of course permitted.
5168         */
5169        mutex_lock(&memcg_create_mutex);
5170        mutex_lock(&set_limit_mutex);
5171        if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5172                if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5173                        ret = -EBUSY;
5174                        goto out;
5175                }
5176                ret = res_counter_set_limit(&memcg->kmem, val);
5177                VM_BUG_ON(ret);
5178
5179                ret = memcg_update_cache_sizes(memcg);
5180                if (ret) {
5181                        res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5182                        goto out;
5183                }
5184                static_key_slow_inc(&memcg_kmem_enabled_key);
5185                /*
5186                 * setting the active bit after the inc will guarantee no one
5187                 * starts accounting before all call sites are patched
5188                 */
5189                memcg_kmem_set_active(memcg);
5190        } else
5191                ret = res_counter_set_limit(&memcg->kmem, val);
5192out:
5193        mutex_unlock(&set_limit_mutex);
5194        mutex_unlock(&memcg_create_mutex);
5195#endif
5196        return ret;
5197}
5198
5199#ifdef CONFIG_MEMCG_KMEM
5200static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5201{
5202        int ret = 0;
5203        struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5204        if (!parent)
5205                goto out;
5206
5207        memcg->kmem_account_flags = parent->kmem_account_flags;
5208        /*
5209         * When that happen, we need to disable the static branch only on those
5210         * memcgs that enabled it. To achieve this, we would be forced to
5211         * complicate the code by keeping track of which memcgs were the ones
5212         * that actually enabled limits, and which ones got it from its
5213         * parents.
5214         *
5215         * It is a lot simpler just to do static_key_slow_inc() on every child
5216         * that is accounted.
5217         */
5218        if (!memcg_kmem_is_active(memcg))
5219                goto out;
5220
5221        /*
5222         * __mem_cgroup_free() will issue static_key_slow_dec() because this
5223         * memcg is active already. If the later initialization fails then the
5224         * cgroup core triggers the cleanup so we do not have to do it here.
5225         */
5226        static_key_slow_inc(&memcg_kmem_enabled_key);
5227
5228        mutex_lock(&set_limit_mutex);
5229        memcg_stop_kmem_account();
5230        ret = memcg_update_cache_sizes(memcg);
5231        memcg_resume_kmem_account();
5232        mutex_unlock(&set_limit_mutex);
5233out:
5234        return ret;
5235}
5236#endif /* CONFIG_MEMCG_KMEM */
5237
5238/*
5239 * The user of this function is...
5240 * RES_LIMIT.
5241 */
5242static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5243                            const char *buffer)
5244{
5245        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5246        enum res_type type;
5247        int name;
5248        unsigned long long val;
5249        int ret;
5250
5251        type = MEMFILE_TYPE(cft->private);
5252        name = MEMFILE_ATTR(cft->private);
5253
5254        switch (name) {
5255        case RES_LIMIT:
5256                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5257                        ret = -EINVAL;
5258                        break;
5259                }
5260                /* This function does all necessary parse...reuse it */
5261                ret = res_counter_memparse_write_strategy(buffer, &val);
5262                if (ret)
5263                        break;
5264                if (type == _MEM)
5265                        ret = mem_cgroup_resize_limit(memcg, val);
5266                else if (type == _MEMSWAP)
5267                        ret = mem_cgroup_resize_memsw_limit(memcg, val);
5268                else if (type == _KMEM)
5269                        ret = memcg_update_kmem_limit(css, val);
5270                else
5271                        return -EINVAL;
5272                break;
5273        case RES_SOFT_LIMIT:
5274                ret = res_counter_memparse_write_strategy(buffer, &val);
5275                if (ret)
5276                        break;
5277                /*
5278                 * For memsw, soft limits are hard to implement in terms
5279                 * of semantics, for now, we support soft limits for
5280                 * control without swap
5281                 */
5282                if (type == _MEM)
5283                        ret = res_counter_set_soft_limit(&memcg->res, val);
5284                else
5285                        ret = -EINVAL;
5286                break;
5287        default:
5288                ret = -EINVAL; /* should be BUG() ? */
5289                break;
5290        }
5291        return ret;
5292}
5293
5294static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5295                unsigned long long *mem_limit, unsigned long long *memsw_limit)
5296{
5297        unsigned long long min_limit, min_memsw_limit, tmp;
5298
5299        min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5300        min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5301        if (!memcg->use_hierarchy)
5302                goto out;
5303
5304        while (css_parent(&memcg->css)) {
5305                memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5306                if (!memcg->use_hierarchy)
5307                        break;
5308                tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5309                min_limit = min(min_limit, tmp);
5310                tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5311                min_memsw_limit = min(min_memsw_limit, tmp);
5312        }
5313out:
5314        *mem_limit = min_limit;
5315        *memsw_limit = min_memsw_limit;
5316}
5317
5318static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5319{
5320        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321        int name;
5322        enum res_type type;
5323
5324        type = MEMFILE_TYPE(event);
5325        name = MEMFILE_ATTR(event);
5326
5327        switch (name) {
5328        case RES_MAX_USAGE:
5329                if (type == _MEM)
5330                        res_counter_reset_max(&memcg->res);
5331                else if (type == _MEMSWAP)
5332                        res_counter_reset_max(&memcg->memsw);
5333                else if (type == _KMEM)
5334                        res_counter_reset_max(&memcg->kmem);
5335                else
5336                        return -EINVAL;
5337                break;
5338        case RES_FAILCNT:
5339                if (type == _MEM)
5340                        res_counter_reset_failcnt(&memcg->res);
5341                else if (type == _MEMSWAP)
5342                        res_counter_reset_failcnt(&memcg->memsw);
5343                else if (type == _KMEM)
5344                        res_counter_reset_failcnt(&memcg->kmem);
5345                else
5346                        return -EINVAL;
5347                break;
5348        }
5349
5350        return 0;
5351}
5352
5353static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5354                                        struct cftype *cft)
5355{
5356        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5357}
5358
5359#ifdef CONFIG_MMU
5360static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5361                                        struct cftype *cft, u64 val)
5362{
5363        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5364
5365        if (val >= (1 << NR_MOVE_TYPE))
5366                return -EINVAL;
5367
5368        /*
5369         * No kind of locking is needed in here, because ->can_attach() will
5370         * check this value once in the beginning of the process, and then carry
5371         * on with stale data. This means that changes to this value will only
5372         * affect task migrations starting after the change.
5373         */
5374        memcg->move_charge_at_immigrate = val;
5375        return 0;
5376}
5377#else
5378static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5379                                        struct cftype *cft, u64 val)
5380{
5381        return -ENOSYS;
5382}
5383#endif
5384
5385#ifdef CONFIG_NUMA
5386static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5387                                struct cftype *cft, struct seq_file *m)
5388{
5389        struct numa_stat {
5390                const char *name;
5391                unsigned int lru_mask;
5392        };
5393
5394        static const struct numa_stat stats[] = {
5395                { "total", LRU_ALL },
5396                { "file", LRU_ALL_FILE },
5397                { "anon", LRU_ALL_ANON },
5398                { "unevictable", BIT(LRU_UNEVICTABLE) },
5399        };
5400        const struct numa_stat *stat;
5401        int nid;
5402        unsigned long nr;
5403        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5404
5405        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5406                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5407                seq_printf(m, "%s=%lu", stat->name, nr);
5408                for_each_node_state(nid, N_MEMORY) {
5409                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5410                                                          stat->lru_mask);
5411                        seq_printf(m, " N%d=%lu", nid, nr);
5412                }
5413                seq_putc(m, '\n');
5414        }
5415
5416        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5417                struct mem_cgroup *iter;
5418
5419                nr = 0;
5420                for_each_mem_cgroup_tree(iter, memcg)
5421                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5422                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5423                for_each_node_state(nid, N_MEMORY) {
5424                        nr = 0;
5425                        for_each_mem_cgroup_tree(iter, memcg)
5426                                nr += mem_cgroup_node_nr_lru_pages(
5427                                        iter, nid, stat->lru_mask);
5428                        seq_printf(m, " N%d=%lu", nid, nr);
5429                }
5430                seq_putc(m, '\n');
5431        }
5432
5433        return 0;
5434}
5435#endif /* CONFIG_NUMA */
5436
5437static inline void mem_cgroup_lru_names_not_uptodate(void)
5438{
5439        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5440}
5441
5442static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5443                                 struct seq_file *m)
5444{
5445        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446        struct mem_cgroup *mi;
5447        unsigned int i;
5448
5449        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5450                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5451                        continue;
5452                seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5453                           mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5454        }
5455
5456        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5457                seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5458                           mem_cgroup_read_events(memcg, i));
5459
5460        for (i = 0; i < NR_LRU_LISTS; i++)
5461                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5462                           mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5463
5464        /* Hierarchical information */
5465        {
5466                unsigned long long limit, memsw_limit;
5467                memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5468                seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5469                if (do_swap_account)
5470                        seq_printf(m, "hierarchical_memsw_limit %llu\n",
5471                                   memsw_limit);
5472        }
5473
5474        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5475                long long val = 0;
5476
5477                if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5478                        continue;
5479                for_each_mem_cgroup_tree(mi, memcg)
5480                        val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5481                seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5482        }
5483
5484        for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5485                unsigned long long val = 0;
5486
5487                for_each_mem_cgroup_tree(mi, memcg)
5488                        val += mem_cgroup_read_events(mi, i);
5489                seq_printf(m, "total_%s %llu\n",
5490                           mem_cgroup_events_names[i], val);
5491        }
5492
5493        for (i = 0; i < NR_LRU_LISTS; i++) {
5494                unsigned long long val = 0;
5495
5496                for_each_mem_cgroup_tree(mi, memcg)
5497                        val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5498                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5499        }
5500
5501#ifdef CONFIG_DEBUG_VM
5502        {
5503                int nid, zid;
5504                struct mem_cgroup_per_zone *mz;
5505                struct zone_reclaim_stat *rstat;
5506                unsigned long recent_rotated[2] = {0, 0};
5507                unsigned long recent_scanned[2] = {0, 0};
5508
5509                for_each_online_node(nid)
5510                        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5511                                mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5512                                rstat = &mz->lruvec.reclaim_stat;
5513
5514                                recent_rotated[0] += rstat->recent_rotated[0];
5515                                recent_rotated[1] += rstat->recent_rotated[1];
5516                                recent_scanned[0] += rstat->recent_scanned[0];
5517                                recent_scanned[1] += rstat->recent_scanned[1];
5518                        }
5519                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5520                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5521                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5522                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5523        }
5524#endif
5525
5526        return 0;
5527}
5528
5529static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5530                                      struct cftype *cft)
5531{
5532        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5533
5534        return mem_cgroup_swappiness(memcg);
5535}
5536
5537static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5538                                       struct cftype *cft, u64 val)
5539{
5540        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5541        struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5542
5543        if (val > 100 || !parent)
5544                return -EINVAL;
5545
5546        mutex_lock(&memcg_create_mutex);
5547
5548        /* If under hierarchy, only empty-root can set this value */
5549        if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5550                mutex_unlock(&memcg_create_mutex);
5551                return -EINVAL;
5552        }
5553
5554        memcg->swappiness = val;
5555
5556        mutex_unlock(&memcg_create_mutex);
5557
5558        return 0;
5559}
5560
5561static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5562{
5563        struct mem_cgroup_threshold_ary *t;
5564        u64 usage;
5565        int i;
5566
5567        rcu_read_lock();
5568        if (!swap)
5569                t = rcu_dereference(memcg->thresholds.primary);
5570        else
5571                t = rcu_dereference(memcg->memsw_thresholds.primary);
5572
5573        if (!t)
5574                goto unlock;
5575
5576        usage = mem_cgroup_usage(memcg, swap);
5577
5578        /*
5579         * current_threshold points to threshold just below or equal to usage.
5580         * If it's not true, a threshold was crossed after last
5581         * call of __mem_cgroup_threshold().
5582         */
5583        i = t->current_threshold;
5584
5585        /*
5586         * Iterate backward over array of thresholds starting from
5587         * current_threshold and check if a threshold is crossed.
5588         * If none of thresholds below usage is crossed, we read
5589         * only one element of the array here.
5590         */
5591        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5592                eventfd_signal(t->entries[i].eventfd, 1);
5593
5594        /* i = current_threshold + 1 */
5595        i++;
5596
5597        /*
5598         * Iterate forward over array of thresholds starting from
5599         * current_threshold+1 and check if a threshold is crossed.
5600         * If none of thresholds above usage is crossed, we read
5601         * only one element of the array here.
5602         */
5603        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5604                eventfd_signal(t->entries[i].eventfd, 1);
5605
5606        /* Update current_threshold */
5607        t->current_threshold = i - 1;
5608unlock:
5609        rcu_read_unlock();
5610}
5611
5612static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5613{
5614        while (memcg) {
5615                __mem_cgroup_threshold(memcg, false);
5616                if (do_swap_account)
5617                        __mem_cgroup_threshold(memcg, true);
5618
5619                memcg = parent_mem_cgroup(memcg);
5620        }
5621}
5622
5623static int compare_thresholds(const void *a, const void *b)
5624{
5625        const struct mem_cgroup_threshold *_a = a;
5626        const struct mem_cgroup_threshold *_b = b;
5627
5628        if (_a->threshold > _b->threshold)
5629                return 1;
5630
5631        if (_a->threshold < _b->threshold)
5632                return -1;
5633
5634        return 0;
5635}
5636
5637static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5638{
5639        struct mem_cgroup_eventfd_list *ev;
5640
5641        list_for_each_entry(ev, &memcg->oom_notify, list)
5642                eventfd_signal(ev->eventfd, 1);
5643        return 0;
5644}
5645
5646static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5647{
5648        struct mem_cgroup *iter;
5649
5650        for_each_mem_cgroup_tree(iter, memcg)
5651                mem_cgroup_oom_notify_cb(iter);
5652}
5653
5654static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5655        struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5656{
5657        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5658        struct mem_cgroup_thresholds *thresholds;
5659        struct mem_cgroup_threshold_ary *new;
5660        enum res_type type = MEMFILE_TYPE(cft->private);
5661        u64 threshold, usage;
5662        int i, size, ret;
5663
5664        ret = res_counter_memparse_write_strategy(args, &threshold);
5665        if (ret)
5666                return ret;
5667
5668        mutex_lock(&memcg->thresholds_lock);
5669
5670        if (type == _MEM)
5671                thresholds = &memcg->thresholds;
5672        else if (type == _MEMSWAP)
5673                thresholds = &memcg->memsw_thresholds;
5674        else
5675                BUG();
5676
5677        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5678
5679        /* Check if a threshold crossed before adding a new one */
5680        if (thresholds->primary)
5681                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5682
5683        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5684
5685        /* Allocate memory for new array of thresholds */
5686        new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5687                        GFP_KERNEL);
5688        if (!new) {
5689                ret = -ENOMEM;
5690                goto unlock;
5691        }
5692        new->size = size;
5693
5694        /* Copy thresholds (if any) to new array */
5695        if (thresholds->primary) {
5696                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5697                                sizeof(struct mem_cgroup_threshold));
5698        }
5699
5700        /* Add new threshold */
5701        new->entries[size - 1].eventfd = eventfd;
5702        new->entries[size - 1].threshold = threshold;
5703
5704        /* Sort thresholds. Registering of new threshold isn't time-critical */
5705        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5706                        compare_thresholds, NULL);
5707
5708        /* Find current threshold */
5709        new->current_threshold = -1;
5710        for (i = 0; i < size; i++) {
5711                if (new->entries[i].threshold <= usage) {
5712                        /*
5713                         * new->current_threshold will not be used until
5714                         * rcu_assign_pointer(), so it's safe to increment
5715                         * it here.
5716                         */
5717                        ++new->current_threshold;
5718                } else
5719                        break;
5720        }
5721
5722        /* Free old spare buffer and save old primary buffer as spare */
5723        kfree(thresholds->spare);
5724        thresholds->spare = thresholds->primary;
5725
5726        rcu_assign_pointer(thresholds->primary, new);
5727
5728        /* To be sure that nobody uses thresholds */
5729        synchronize_rcu();
5730
5731unlock:
5732        mutex_unlock(&memcg->thresholds_lock);
5733
5734        return ret;
5735}
5736
5737static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5738        struct cftype *cft, struct eventfd_ctx *eventfd)
5739{
5740        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5741        struct mem_cgroup_thresholds *thresholds;
5742        struct mem_cgroup_threshold_ary *new;
5743        enum res_type type = MEMFILE_TYPE(cft->private);
5744        u64 usage;
5745        int i, j, size;
5746
5747        mutex_lock(&memcg->thresholds_lock);
5748        if (type == _MEM)
5749                thresholds = &memcg->thresholds;
5750        else if (type == _MEMSWAP)
5751                thresholds = &memcg->memsw_thresholds;
5752        else
5753                BUG();
5754
5755        if (!thresholds->primary)
5756                goto unlock;
5757
5758        usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5759
5760        /* Check if a threshold crossed before removing */
5761        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5762
5763        /* Calculate new number of threshold */
5764        size = 0;
5765        for (i = 0; i < thresholds->primary->size; i++) {
5766                if (thresholds->primary->entries[i].eventfd != eventfd)
5767                        size++;
5768        }
5769
5770        new = thresholds->spare;
5771
5772        /* Set thresholds array to NULL if we don't have thresholds */
5773        if (!size) {
5774                kfree(new);
5775                new = NULL;
5776                goto swap_buffers;
5777        }
5778
5779        new->size = size;
5780
5781        /* Copy thresholds and find current threshold */
5782        new->current_threshold = -1;
5783        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5784                if (thresholds->primary->entries[i].eventfd == eventfd)
5785                        continue;
5786
5787                new->entries[j] = thresholds->primary->entries[i];
5788                if (new->entries[j].threshold <= usage) {
5789                        /*
5790                         * new->current_threshold will not be used
5791                         * until rcu_assign_pointer(), so it's safe to increment
5792                         * it here.
5793                         */
5794                        ++new->current_threshold;
5795                }
5796                j++;
5797        }
5798
5799swap_buffers:
5800        /* Swap primary and spare array */
5801        thresholds->spare = thresholds->primary;
5802        /* If all events are unregistered, free the spare array */
5803        if (!new) {
5804                kfree(thresholds->spare);
5805                thresholds->spare = NULL;
5806        }
5807
5808        rcu_assign_pointer(thresholds->primary, new);
5809
5810        /* To be sure that nobody uses thresholds */
5811        synchronize_rcu();
5812unlock:
5813        mutex_unlock(&memcg->thresholds_lock);
5814}
5815
5816static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5817        struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5818{
5819        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5820        struct mem_cgroup_eventfd_list *event;
5821        enum res_type type = MEMFILE_TYPE(cft->private);
5822
5823        BUG_ON(type != _OOM_TYPE);
5824        event = kmalloc(sizeof(*event), GFP_KERNEL);
5825        if (!event)
5826                return -ENOMEM;
5827
5828        spin_lock(&memcg_oom_lock);
5829
5830        event->eventfd = eventfd;
5831        list_add(&event->list, &memcg->oom_notify);
5832
5833        /* already in OOM ? */
5834        if (atomic_read(&memcg->under_oom))
5835                eventfd_signal(eventfd, 1);
5836        spin_unlock(&memcg_oom_lock);
5837
5838        return 0;
5839}
5840
5841static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5842        struct cftype *cft, struct eventfd_ctx *eventfd)
5843{
5844        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5845        struct mem_cgroup_eventfd_list *ev, *tmp;
5846        enum res_type type = MEMFILE_TYPE(cft->private);
5847
5848        BUG_ON(type != _OOM_TYPE);
5849
5850        spin_lock(&memcg_oom_lock);
5851
5852        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5853                if (ev->eventfd == eventfd) {
5854                        list_del(&ev->list);
5855                        kfree(ev);
5856                }
5857        }
5858
5859        spin_unlock(&memcg_oom_lock);
5860}
5861
5862static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5863        struct cftype *cft,  struct cgroup_map_cb *cb)
5864{
5865        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5866
5867        cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5868
5869        if (atomic_read(&memcg->under_oom))
5870                cb->fill(cb, "under_oom", 1);
5871        else
5872                cb->fill(cb, "under_oom", 0);
5873        return 0;
5874}
5875
5876static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5877        struct cftype *cft, u64 val)
5878{
5879        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5880        struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5881
5882        /* cannot set to root cgroup and only 0 and 1 are allowed */
5883        if (!parent || !((val == 0) || (val == 1)))
5884                return -EINVAL;
5885
5886        mutex_lock(&memcg_create_mutex);
5887        /* oom-kill-disable is a flag for subhierarchy. */
5888        if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5889                mutex_unlock(&memcg_create_mutex);
5890                return -EINVAL;
5891        }
5892        memcg->oom_kill_disable = val;
5893        if (!val)
5894                memcg_oom_recover(memcg);
5895        mutex_unlock(&memcg_create_mutex);
5896        return 0;
5897}
5898
5899#ifdef CONFIG_MEMCG_KMEM
5900static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5901{
5902        int ret;
5903
5904        memcg->kmemcg_id = -1;
5905        ret = memcg_propagate_kmem(memcg);
5906        if (ret)
5907                return ret;
5908
5909        return mem_cgroup_sockets_init(memcg, ss);
5910}
5911
5912static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5913{
5914        mem_cgroup_sockets_destroy(memcg);
5915}
5916
5917static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5918{
5919        if (!memcg_kmem_is_active(memcg))
5920                return;
5921
5922        /*
5923         * kmem charges can outlive the cgroup. In the case of slab
5924         * pages, for instance, a page contain objects from various
5925         * processes. As we prevent from taking a reference for every
5926         * such allocation we have to be careful when doing uncharge
5927         * (see memcg_uncharge_kmem) and here during offlining.
5928         *
5929         * The idea is that that only the _last_ uncharge which sees
5930         * the dead memcg will drop the last reference. An additional
5931         * reference is taken here before the group is marked dead
5932         * which is then paired with css_put during uncharge resp. here.
5933         *
5934         * Although this might sound strange as this path is called from
5935         * css_offline() when the referencemight have dropped down to 0
5936         * and shouldn't be incremented anymore (css_tryget would fail)
5937         * we do not have other options because of the kmem allocations
5938         * lifetime.
5939         */
5940        css_get(&memcg->css);
5941
5942        memcg_kmem_mark_dead(memcg);
5943
5944        if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5945                return;
5946
5947        if (memcg_kmem_test_and_clear_dead(memcg))
5948                css_put(&memcg->css);
5949}
5950#else
5951static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5952{
5953        return 0;
5954}
5955
5956static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5957{
5958}
5959
5960static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5961{
5962}
5963#endif
5964
5965static struct cftype mem_cgroup_files[] = {
5966        {
5967                .name = "usage_in_bytes",
5968                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5969                .read = mem_cgroup_read,
5970                .register_event = mem_cgroup_usage_register_event,
5971                .unregister_event = mem_cgroup_usage_unregister_event,
5972        },
5973        {
5974                .name = "max_usage_in_bytes",
5975                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5976                .trigger = mem_cgroup_reset,
5977                .read = mem_cgroup_read,
5978        },
5979        {
5980                .name = "limit_in_bytes",
5981                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5982                .write_string = mem_cgroup_write,
5983                .read = mem_cgroup_read,
5984        },
5985        {
5986                .name = "soft_limit_in_bytes",
5987                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5988                .write_string = mem_cgroup_write,
5989                .read = mem_cgroup_read,
5990        },
5991        {
5992                .name = "failcnt",
5993                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5994                .trigger = mem_cgroup_reset,
5995                .read = mem_cgroup_read,
5996        },
5997        {
5998                .name = "stat",
5999                .read_seq_string = memcg_stat_show,
6000        },
6001        {
6002                .name = "force_empty",
6003                .trigger = mem_cgroup_force_empty_write,
6004        },
6005        {
6006                .name = "use_hierarchy",
6007                .flags = CFTYPE_INSANE,
6008                .write_u64 = mem_cgroup_hierarchy_write,
6009                .read_u64 = mem_cgroup_hierarchy_read,
6010        },
6011        {
6012                .name = "swappiness",
6013                .read_u64 = mem_cgroup_swappiness_read,
6014                .write_u64 = mem_cgroup_swappiness_write,
6015        },
6016        {
6017                .name = "move_charge_at_immigrate",
6018                .read_u64 = mem_cgroup_move_charge_read,
6019                .write_u64 = mem_cgroup_move_charge_write,
6020        },
6021        {
6022                .name = "oom_control",
6023                .read_map = mem_cgroup_oom_control_read,
6024                .write_u64 = mem_cgroup_oom_control_write,
6025                .register_event = mem_cgroup_oom_register_event,
6026                .unregister_event = mem_cgroup_oom_unregister_event,
6027                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6028        },
6029        {
6030                .name = "pressure_level",
6031                .register_event = vmpressure_register_event,
6032                .unregister_event = vmpressure_unregister_event,
6033        },
6034#ifdef CONFIG_NUMA
6035        {
6036                .name = "numa_stat",
6037                .read_seq_string = memcg_numa_stat_show,
6038        },
6039#endif
6040#ifdef CONFIG_MEMCG_KMEM
6041        {
6042                .name = "kmem.limit_in_bytes",
6043                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6044                .write_string = mem_cgroup_write,
6045                .read = mem_cgroup_read,
6046        },
6047        {
6048                .name = "kmem.usage_in_bytes",
6049                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6050                .read = mem_cgroup_read,
6051        },
6052        {
6053                .name = "kmem.failcnt",
6054                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6055                .trigger = mem_cgroup_reset,
6056                .read = mem_cgroup_read,
6057        },
6058        {
6059                .name = "kmem.max_usage_in_bytes",
6060                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6061                .trigger = mem_cgroup_reset,
6062                .read = mem_cgroup_read,
6063        },
6064#ifdef CONFIG_SLABINFO
6065        {
6066                .name = "kmem.slabinfo",
6067                .read_seq_string = mem_cgroup_slabinfo_read,
6068        },
6069#endif
6070#endif
6071        { },    /* terminate */
6072};
6073
6074#ifdef CONFIG_MEMCG_SWAP
6075static struct cftype memsw_cgroup_files[] = {
6076        {
6077                .name = "memsw.usage_in_bytes",
6078                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6079                .read = mem_cgroup_read,
6080                .register_event = mem_cgroup_usage_register_event,
6081                .unregister_event = mem_cgroup_usage_unregister_event,
6082        },
6083        {
6084                .name = "memsw.max_usage_in_bytes",
6085                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6086                .trigger = mem_cgroup_reset,
6087                .read = mem_cgroup_read,
6088        },
6089        {
6090                .name = "memsw.limit_in_bytes",
6091                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6092                .write_string = mem_cgroup_write,
6093                .read = mem_cgroup_read,
6094        },
6095        {
6096                .name = "memsw.failcnt",
6097                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6098                .trigger = mem_cgroup_reset,
6099                .read = mem_cgroup_read,
6100        },
6101        { },    /* terminate */
6102};
6103#endif
6104static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6105{
6106        struct mem_cgroup_per_node *pn;
6107        struct mem_cgroup_per_zone *mz;
6108        int zone, tmp = node;
6109        /*
6110         * This routine is called against possible nodes.
6111         * But it's BUG to call kmalloc() against offline node.
6112         *
6113         * TODO: this routine can waste much memory for nodes which will
6114         *       never be onlined. It's better to use memory hotplug callback
6115         *       function.
6116         */
6117        if (!node_state(node, N_NORMAL_MEMORY))
6118                tmp = -1;
6119        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6120        if (!pn)
6121                return 1;
6122
6123        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6124                mz = &pn->zoneinfo[zone];
6125                lruvec_init(&mz->lruvec);
6126                mz->usage_in_excess = 0;
6127                mz->on_tree = false;
6128                mz->memcg = memcg;
6129        }
6130        memcg->nodeinfo[node] = pn;
6131        return 0;
6132}
6133
6134static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6135{
6136        kfree(memcg->nodeinfo[node]);
6137}
6138
6139static struct mem_cgroup *mem_cgroup_alloc(void)
6140{
6141        struct mem_cgroup *memcg;
6142        size_t size = memcg_size();
6143
6144        /* Can be very big if nr_node_ids is very big */
6145        if (size < PAGE_SIZE)
6146                memcg = kzalloc(size, GFP_KERNEL);
6147        else
6148                memcg = vzalloc(size);
6149
6150        if (!memcg)
6151                return NULL;
6152
6153        memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6154        if (!memcg->stat)
6155                goto out_free;
6156        spin_lock_init(&memcg->pcp_counter_lock);
6157        return memcg;
6158
6159out_free:
6160        if (size < PAGE_SIZE)
6161                kfree(memcg);
6162        else
6163                vfree(memcg);
6164        return NULL;
6165}
6166
6167/*
6168 * At destroying mem_cgroup, references from swap_cgroup can remain.
6169 * (scanning all at force_empty is too costly...)
6170 *
6171 * Instead of clearing all references at force_empty, we remember
6172 * the number of reference from swap_cgroup and free mem_cgroup when
6173 * it goes down to 0.
6174 *
6175 * Removal of cgroup itself succeeds regardless of refs from swap.
6176 */
6177
6178static void __mem_cgroup_free(struct mem_cgroup *memcg)
6179{
6180        int node;
6181        size_t size = memcg_size();
6182
6183        mem_cgroup_remove_from_trees(memcg);
6184
6185        for_each_node(node)
6186                free_mem_cgroup_per_zone_info(memcg, node);
6187
6188        free_percpu(memcg->stat);
6189
6190        /*
6191         * We need to make sure that (at least for now), the jump label
6192         * destruction code runs outside of the cgroup lock. This is because
6193         * get_online_cpus(), which is called from the static_branch update,
6194         * can't be called inside the cgroup_lock. cpusets are the ones
6195         * enforcing this dependency, so if they ever change, we might as well.
6196         *
6197         * schedule_work() will guarantee this happens. Be careful if you need
6198         * to move this code around, and make sure it is outside
6199         * the cgroup_lock.
6200         */
6201        disarm_static_keys(memcg);
6202        if (size < PAGE_SIZE)
6203                kfree(memcg);
6204        else
6205                vfree(memcg);
6206}
6207
6208/*
6209 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6210 */
6211struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6212{
6213        if (!memcg->res.parent)
6214                return NULL;
6215        return mem_cgroup_from_res_counter(memcg->res.parent, res);
6216}
6217EXPORT_SYMBOL(parent_mem_cgroup);
6218
6219static void __init mem_cgroup_soft_limit_tree_init(void)
6220{
6221        struct mem_cgroup_tree_per_node *rtpn;
6222        struct mem_cgroup_tree_per_zone *rtpz;
6223        int tmp, node, zone;
6224
6225        for_each_node(node) {
6226                tmp = node;
6227                if (!node_state(node, N_NORMAL_MEMORY))
6228                        tmp = -1;
6229                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6230                BUG_ON(!rtpn);
6231
6232                soft_limit_tree.rb_tree_per_node[node] = rtpn;
6233
6234                for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6235                        rtpz = &rtpn->rb_tree_per_zone[zone];
6236                        rtpz->rb_root = RB_ROOT;
6237                        spin_lock_init(&rtpz->lock);
6238                }
6239        }
6240}
6241
6242static struct cgroup_subsys_state * __ref
6243mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6244{
6245        struct mem_cgroup *memcg;
6246        long error = -ENOMEM;
6247        int node;
6248
6249        memcg = mem_cgroup_alloc();
6250        if (!memcg)
6251                return ERR_PTR(error);
6252
6253        for_each_node(node)
6254                if (alloc_mem_cgroup_per_zone_info(memcg, node))
6255                        goto free_out;
6256
6257        /* root ? */
6258        if (parent_css == NULL) {
6259                root_mem_cgroup = memcg;
6260                res_counter_init(&memcg->res, NULL);
6261                res_counter_init(&memcg->memsw, NULL);
6262                res_counter_init(&memcg->kmem, NULL);
6263        }
6264
6265        memcg->last_scanned_node = MAX_NUMNODES;
6266        INIT_LIST_HEAD(&memcg->oom_notify);
6267        memcg->move_charge_at_immigrate = 0;
6268        mutex_init(&memcg->thresholds_lock);
6269        spin_lock_init(&memcg->move_lock);
6270        vmpressure_init(&memcg->vmpressure);
6271
6272        return &memcg->css;
6273
6274free_out:
6275        __mem_cgroup_free(memcg);
6276        return ERR_PTR(error);
6277}
6278
6279static int
6280mem_cgroup_css_online(struct cgroup_subsys_state *css)
6281{
6282        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6283        struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6284        int error = 0;
6285
6286        if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6287                return -ENOSPC;
6288
6289        if (!parent)
6290                return 0;
6291
6292        mutex_lock(&memcg_create_mutex);
6293
6294        memcg->use_hierarchy = parent->use_hierarchy;
6295        memcg->oom_kill_disable = parent->oom_kill_disable;
6296        memcg->swappiness = mem_cgroup_swappiness(parent);
6297
6298        if (parent->use_hierarchy) {
6299                res_counter_init(&memcg->res, &parent->res);
6300                res_counter_init(&memcg->memsw, &parent->memsw);
6301                res_counter_init(&memcg->kmem, &parent->kmem);
6302
6303                /*
6304                 * No need to take a reference to the parent because cgroup
6305                 * core guarantees its existence.
6306                 */
6307        } else {
6308                res_counter_init(&memcg->res, NULL);
6309                res_counter_init(&memcg->memsw, NULL);
6310                res_counter_init(&memcg->kmem, NULL);
6311                /*
6312                 * Deeper hierachy with use_hierarchy == false doesn't make
6313                 * much sense so let cgroup subsystem know about this
6314                 * unfortunate state in our controller.
6315                 */
6316                if (parent != root_mem_cgroup)
6317                        mem_cgroup_subsys.broken_hierarchy = true;
6318        }
6319
6320        error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6321        mutex_unlock(&memcg_create_mutex);
6322        return error;
6323}
6324
6325/*
6326 * Announce all parents that a group from their hierarchy is gone.
6327 */
6328static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6329{
6330        struct mem_cgroup *parent = memcg;
6331
6332        while ((parent = parent_mem_cgroup(parent)))
6333                mem_cgroup_iter_invalidate(parent);
6334
6335        /*
6336         * if the root memcg is not hierarchical we have to check it
6337         * explicitely.
6338         */
6339        if (!root_mem_cgroup->use_hierarchy)
6340                mem_cgroup_iter_invalidate(root_mem_cgroup);
6341}
6342
6343static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6344{
6345        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6346
6347        kmem_cgroup_css_offline(memcg);
6348
6349        mem_cgroup_invalidate_reclaim_iterators(memcg);
6350        mem_cgroup_reparent_charges(memcg);
6351        mem_cgroup_destroy_all_caches(memcg);
6352        vmpressure_cleanup(&memcg->vmpressure);
6353}
6354
6355static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6356{
6357        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6358        /*
6359         * XXX: css_offline() would be where we should reparent all
6360         * memory to prepare the cgroup for destruction.  However,
6361         * memcg does not do css_tryget() and res_counter charging
6362         * under the same RCU lock region, which means that charging
6363         * could race with offlining.  Offlining only happens to
6364         * cgroups with no tasks in them but charges can show up
6365         * without any tasks from the swapin path when the target
6366         * memcg is looked up from the swapout record and not from the
6367         * current task as it usually is.  A race like this can leak
6368         * charges and put pages with stale cgroup pointers into
6369         * circulation:
6370         *
6371         * #0                        #1
6372         *                           lookup_swap_cgroup_id()
6373         *                           rcu_read_lock()
6374         *                           mem_cgroup_lookup()
6375         *                           css_tryget()
6376         *                           rcu_read_unlock()
6377         * disable css_tryget()
6378         * call_rcu()
6379         *   offline_css()
6380         *     reparent_charges()
6381         *                           res_counter_charge()
6382         *                           css_put()
6383         *                             css_free()
6384         *                           pc->mem_cgroup = dead memcg
6385         *                           add page to lru
6386         *
6387         * The bulk of the charges are still moved in offline_css() to
6388         * avoid pinning a lot of pages in case a long-term reference
6389         * like a swapout record is deferring the css_free() to long
6390         * after offlining.  But this makes sure we catch any charges
6391         * made after offlining:
6392         */
6393        mem_cgroup_reparent_charges(memcg);
6394
6395        memcg_destroy_kmem(memcg);
6396        __mem_cgroup_free(memcg);
6397}
6398
6399#ifdef CONFIG_MMU
6400/* Handlers for move charge at task migration. */
6401#define PRECHARGE_COUNT_AT_ONCE 256
6402static int mem_cgroup_do_precharge(unsigned long count)
6403{
6404        int ret = 0;
6405        int batch_count = PRECHARGE_COUNT_AT_ONCE;
6406        struct mem_cgroup *memcg = mc.to;
6407
6408        if (mem_cgroup_is_root(memcg)) {
6409                mc.precharge += count;
6410                /* we don't need css_get for root */
6411                return ret;
6412        }
6413        /* try to charge at once */
6414        if (count > 1) {
6415                struct res_counter *dummy;
6416                /*
6417                 * "memcg" cannot be under rmdir() because we've already checked
6418                 * by cgroup_lock_live_cgroup() that it is not removed and we
6419                 * are still under the same cgroup_mutex. So we can postpone
6420                 * css_get().
6421                 */
6422                if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6423                        goto one_by_one;
6424                if (do_swap_account && res_counter_charge(&memcg->memsw,
6425                                                PAGE_SIZE * count, &dummy)) {
6426                        res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6427                        goto one_by_one;
6428                }
6429                mc.precharge += count;
6430                return ret;
6431        }
6432one_by_one:
6433        /* fall back to one by one charge */
6434        while (count--) {
6435                if (signal_pending(current)) {
6436                        ret = -EINTR;
6437                        break;
6438                }
6439                if (!batch_count--) {
6440                        batch_count = PRECHARGE_COUNT_AT_ONCE;
6441                        cond_resched();
6442                }
6443                ret = __mem_cgroup_try_charge(NULL,
6444                                        GFP_KERNEL, 1, &memcg, false);
6445                if (ret)
6446                        /* mem_cgroup_clear_mc() will do uncharge later */
6447                        return ret;
6448                mc.precharge++;
6449        }
6450        return ret;
6451}
6452
6453/**
6454 * get_mctgt_type - get target type of moving charge
6455 * @vma: the vma the pte to be checked belongs
6456 * @addr: the address corresponding to the pte to be checked
6457 * @ptent: the pte to be checked
6458 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6459 *
6460 * Returns
6461 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6462 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6463 *     move charge. if @target is not NULL, the page is stored in target->page
6464 *     with extra refcnt got(Callers should handle it).
6465 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6466 *     target for charge migration. if @target is not NULL, the entry is stored
6467 *     in target->ent.
6468 *
6469 * Called with pte lock held.
6470 */
6471union mc_target {
6472        struct page     *page;
6473        swp_entry_t     ent;
6474};
6475
6476enum mc_target_type {
6477        MC_TARGET_NONE = 0,
6478        MC_TARGET_PAGE,
6479        MC_TARGET_SWAP,
6480};
6481
6482static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6483                                                unsigned long addr, pte_t ptent)
6484{
6485        struct page *page = vm_normal_page(vma, addr, ptent);
6486
6487        if (!page || !page_mapped(page))
6488                return NULL;
6489        if (PageAnon(page)) {
6490                /* we don't move shared anon */
6491                if (!move_anon())
6492                        return NULL;
6493        } else if (!move_file())
6494                /* we ignore mapcount for file pages */
6495                return NULL;
6496        if (!get_page_unless_zero(page))
6497                return NULL;
6498
6499        return page;
6500}
6501
6502#ifdef CONFIG_SWAP
6503static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6504                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
6505{
6506        struct page *page = NULL;
6507        swp_entry_t ent = pte_to_swp_entry(ptent);
6508
6509        if (!move_anon() || non_swap_entry(ent))
6510                return NULL;
6511        /*
6512         * Because lookup_swap_cache() updates some statistics counter,
6513         * we call find_get_page() with swapper_space directly.
6514         */
6515        page = find_get_page(swap_address_space(ent), ent.val);
6516        if (do_swap_account)
6517                entry->val = ent.val;
6518
6519        return page;
6520}
6521#else
6522static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6523                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
6524{
6525        return NULL;
6526}
6527#endif
6528
6529static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6530                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
6531{
6532        struct page *page = NULL;
6533        struct address_space *mapping;
6534        pgoff_t pgoff;
6535
6536        if (!vma->vm_file) /* anonymous vma */
6537                return NULL;
6538        if (!move_file())
6539                return NULL;
6540
6541        mapping = vma->vm_file->f_mapping;
6542        if (pte_none(ptent))
6543                pgoff = linear_page_index(vma, addr);
6544        else /* pte_file(ptent) is true */
6545                pgoff = pte_to_pgoff(ptent);
6546
6547        /* page is moved even if it's not RSS of this task(page-faulted). */
6548        page = find_get_page(mapping, pgoff);
6549
6550#ifdef CONFIG_SWAP
6551        /* shmem/tmpfs may report page out on swap: account for that too. */
6552        if (radix_tree_exceptional_entry(page)) {
6553                swp_entry_t swap = radix_to_swp_entry(page);
6554                if (do_swap_account)
6555                        *entry = swap;
6556                page = find_get_page(swap_address_space(swap), swap.val);
6557        }
6558#endif
6559        return page;
6560}
6561
6562static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6563                unsigned long addr, pte_t ptent, union mc_target *target)
6564{
6565        struct page *page = NULL;
6566        struct page_cgroup *pc;
6567        enum mc_target_type ret = MC_TARGET_NONE;
6568        swp_entry_t ent = { .val = 0 };
6569
6570        if (pte_present(ptent))
6571                page = mc_handle_present_pte(vma, addr, ptent);
6572        else if (is_swap_pte(ptent))
6573                page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6574        else if (pte_none(ptent) || pte_file(ptent))
6575                page = mc_handle_file_pte(vma, addr, ptent, &ent);
6576
6577        if (!page && !ent.val)
6578                return ret;
6579        if (page) {
6580                pc = lookup_page_cgroup(page);
6581                /*
6582                 * Do only loose check w/o page_cgroup lock.
6583                 * mem_cgroup_move_account() checks the pc is valid or not under
6584                 * the lock.
6585                 */
6586                if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6587                        ret = MC_TARGET_PAGE;
6588                        if (target)
6589                                target->page = page;
6590                }
6591                if (!ret || !target)
6592                        put_page(page);
6593        }
6594        /* There is a swap entry and a page doesn't exist or isn't charged */
6595        if (ent.val && !ret &&
6596            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6597                ret = MC_TARGET_SWAP;
6598                if (target)
6599                        target->ent = ent;
6600        }
6601        return ret;
6602}
6603
6604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6605/*
6606 * We don't consider swapping or file mapped pages because THP does not
6607 * support them for now.
6608 * Caller should make sure that pmd_trans_huge(pmd) is true.
6609 */
6610static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6611                unsigned long addr, pmd_t pmd, union mc_target *target)
6612{
6613        struct page *page = NULL;
6614        struct page_cgroup *pc;
6615        enum mc_target_type ret = MC_TARGET_NONE;
6616
6617        page = pmd_page(pmd);
6618        VM_BUG_ON(!page || !PageHead(page));
6619        if (!move_anon())
6620                return ret;
6621        pc = lookup_page_cgroup(page);
6622        if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6623                ret = MC_TARGET_PAGE;
6624                if (target) {
6625                        get_page(page);
6626                        target->page = page;
6627                }
6628        }
6629        return ret;
6630}
6631#else
6632static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6633                unsigned long addr, pmd_t pmd, union mc_target *target)
6634{
6635        return MC_TARGET_NONE;
6636}
6637#endif
6638
6639static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6640                                        unsigned long addr, unsigned long end,
6641                                        struct mm_walk *walk)
6642{
6643        struct vm_area_struct *vma = walk->private;
6644        pte_t *pte;
6645        spinlock_t *ptl;
6646
6647        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6648                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6649                        mc.precharge += HPAGE_PMD_NR;
6650                spin_unlock(ptl);
6651                return 0;
6652        }
6653
6654        if (pmd_trans_unstable(pmd))
6655                return 0;
6656        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6657        for (; addr != end; pte++, addr += PAGE_SIZE)
6658                if (get_mctgt_type(vma, addr, *pte, NULL))
6659                        mc.precharge++; /* increment precharge temporarily */
6660        pte_unmap_unlock(pte - 1, ptl);
6661        cond_resched();
6662
6663        return 0;
6664}
6665
6666static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6667{
6668        unsigned long precharge;
6669        struct vm_area_struct *vma;
6670
6671        down_read(&mm->mmap_sem);
6672        for (vma = mm->mmap; vma; vma = vma->vm_next) {
6673                struct mm_walk mem_cgroup_count_precharge_walk = {
6674                        .pmd_entry = mem_cgroup_count_precharge_pte_range,
6675                        .mm = mm,
6676                        .private = vma,
6677                };
6678                if (is_vm_hugetlb_page(vma))
6679                        continue;
6680                walk_page_range(vma->vm_start, vma->vm_end,
6681                                        &mem_cgroup_count_precharge_walk);
6682        }
6683        up_read(&mm->mmap_sem);
6684
6685        precharge = mc.precharge;
6686        mc.precharge = 0;
6687
6688        return precharge;
6689}
6690
6691static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6692{
6693        unsigned long precharge = mem_cgroup_count_precharge(mm);
6694
6695        VM_BUG_ON(mc.moving_task);
6696        mc.moving_task = current;
6697        return mem_cgroup_do_precharge(precharge);
6698}
6699
6700/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6701static void __mem_cgroup_clear_mc(void)
6702{
6703        struct mem_cgroup *from = mc.from;
6704        struct mem_cgroup *to = mc.to;
6705        int i;
6706
6707        /* we must uncharge all the leftover precharges from mc.to */
6708        if (mc.precharge) {
6709                __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6710                mc.precharge = 0;
6711        }
6712        /*
6713         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6714         * we must uncharge here.
6715         */
6716        if (mc.moved_charge) {
6717                __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6718                mc.moved_charge = 0;
6719        }
6720        /* we must fixup refcnts and charges */
6721        if (mc.moved_swap) {
6722                /* uncharge swap account from the old cgroup */
6723                if (!mem_cgroup_is_root(mc.from))
6724                        res_counter_uncharge(&mc.from->memsw,
6725                                                PAGE_SIZE * mc.moved_swap);
6726
6727                for (i = 0; i < mc.moved_swap; i++)
6728                        css_put(&mc.from->css);
6729
6730                if (!mem_cgroup_is_root(mc.to)) {
6731                        /*
6732                         * we charged both to->res and to->memsw, so we should
6733                         * uncharge to->res.
6734                         */
6735                        res_counter_uncharge(&mc.to->res,
6736                                                PAGE_SIZE * mc.moved_swap);
6737                }
6738                /* we've already done css_get(mc.to) */
6739                mc.moved_swap = 0;
6740        }
6741        memcg_oom_recover(from);
6742        memcg_oom_recover(to);
6743        wake_up_all(&mc.waitq);
6744}
6745
6746static void mem_cgroup_clear_mc(void)
6747{
6748        struct mem_cgroup *from = mc.from;
6749
6750        /*
6751         * we must clear moving_task before waking up waiters at the end of
6752         * task migration.
6753         */
6754        mc.moving_task = NULL;
6755        __mem_cgroup_clear_mc();
6756        spin_lock(&mc.lock);
6757        mc.from = NULL;
6758        mc.to = NULL;
6759        spin_unlock(&mc.lock);
6760        mem_cgroup_end_move(from);
6761}
6762
6763static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6764                                 struct cgroup_taskset *tset)
6765{
6766        struct task_struct *p = cgroup_taskset_first(tset);
6767        int ret = 0;
6768        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6769        unsigned long move_charge_at_immigrate;
6770
6771        /*
6772         * We are now commited to this value whatever it is. Changes in this
6773         * tunable will only affect upcoming migrations, not the current one.
6774         * So we need to save it, and keep it going.
6775         */
6776        move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6777        if (move_charge_at_immigrate) {
6778                struct mm_struct *mm;
6779                struct mem_cgroup *from = mem_cgroup_from_task(p);
6780
6781                VM_BUG_ON(from == memcg);
6782
6783                mm = get_task_mm(p);
6784                if (!mm)
6785                        return 0;
6786                /* We move charges only when we move a owner of the mm */
6787                if (mm->owner == p) {
6788                        VM_BUG_ON(mc.from);
6789                        VM_BUG_ON(mc.to);
6790                        VM_BUG_ON(mc.precharge);
6791                        VM_BUG_ON(mc.moved_charge);
6792                        VM_BUG_ON(mc.moved_swap);
6793                        mem_cgroup_start_move(from);
6794                        spin_lock(&mc.lock);
6795                        mc.from = from;
6796                        mc.to = memcg;
6797                        mc.immigrate_flags = move_charge_at_immigrate;
6798                        spin_unlock(&mc.lock);
6799                        /* We set mc.moving_task later */
6800
6801                        ret = mem_cgroup_precharge_mc(mm);
6802                        if (ret)
6803                                mem_cgroup_clear_mc();
6804                }
6805                mmput(mm);
6806        }
6807        return ret;
6808}
6809
6810static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6811                                     struct cgroup_taskset *tset)
6812{
6813        mem_cgroup_clear_mc();
6814}
6815
6816static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6817                                unsigned long addr, unsigned long end,
6818                                struct mm_walk *walk)
6819{
6820        int ret = 0;
6821        struct vm_area_struct *vma = walk->private;
6822        pte_t *pte;
6823        spinlock_t *ptl;
6824        enum mc_target_type target_type;
6825        union mc_target target;
6826        struct page *page;
6827        struct page_cgroup *pc;
6828
6829        /*
6830         * We don't take compound_lock() here but no race with splitting thp
6831         * happens because:
6832         *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6833         *    under splitting, which means there's no concurrent thp split,
6834         *  - if another thread runs into split_huge_page() just after we
6835         *    entered this if-block, the thread must wait for page table lock
6836         *    to be unlocked in __split_huge_page_splitting(), where the main
6837         *    part of thp split is not executed yet.
6838         */
6839        if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6840                if (mc.precharge < HPAGE_PMD_NR) {
6841                        spin_unlock(ptl);
6842                        return 0;
6843                }
6844                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6845                if (target_type == MC_TARGET_PAGE) {
6846                        page = target.page;
6847                        if (!isolate_lru_page(page)) {
6848                                pc = lookup_page_cgroup(page);
6849                                if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6850                                                        pc, mc.from, mc.to)) {
6851                                        mc.precharge -= HPAGE_PMD_NR;
6852                                        mc.moved_charge += HPAGE_PMD_NR;
6853                                }
6854                                putback_lru_page(page);
6855                        }
6856                        put_page(page);
6857                }
6858                spin_unlock(ptl);
6859                return 0;
6860        }
6861
6862        if (pmd_trans_unstable(pmd))
6863                return 0;
6864retry:
6865        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6866        for (; addr != end; addr += PAGE_SIZE) {
6867                pte_t ptent = *(pte++);
6868                swp_entry_t ent;
6869
6870                if (!mc.precharge)
6871                        break;
6872
6873                switch (get_mctgt_type(vma, addr, ptent, &target)) {
6874                case MC_TARGET_PAGE:
6875                        page = target.page;
6876                        if (isolate_lru_page(page))
6877                                goto put;
6878                        pc = lookup_page_cgroup(page);
6879                        if (!mem_cgroup_move_account(page, 1, pc,
6880                                                     mc.from, mc.to)) {
6881                                mc.precharge--;
6882                                /* we uncharge from mc.from later. */
6883                                mc.moved_charge++;
6884                        }
6885                        putback_lru_page(page);
6886put:                    /* get_mctgt_type() gets the page */
6887                        put_page(page);
6888                        break;
6889                case MC_TARGET_SWAP:
6890                        ent = target.ent;
6891                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6892                                mc.precharge--;
6893                                /* we fixup refcnts and charges later. */
6894                                mc.moved_swap++;
6895                        }
6896                        break;
6897                default:
6898                        break;
6899                }
6900        }
6901        pte_unmap_unlock(pte - 1, ptl);
6902        cond_resched();
6903
6904        if (addr != end) {
6905                /*
6906                 * We have consumed all precharges we got in can_attach().
6907                 * We try charge one by one, but don't do any additional
6908                 * charges to mc.to if we have failed in charge once in attach()
6909                 * phase.
6910                 */
6911                ret = mem_cgroup_do_precharge(1);
6912                if (!ret)
6913                        goto retry;
6914        }
6915
6916        return ret;
6917}
6918
6919static void mem_cgroup_move_charge(struct mm_struct *mm)
6920{
6921        struct vm_area_struct *vma;
6922
6923        lru_add_drain_all();
6924retry:
6925        if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6926                /*
6927                 * Someone who are holding the mmap_sem might be waiting in
6928                 * waitq. So we cancel all extra charges, wake up all waiters,
6929                 * and retry. Because we cancel precharges, we might not be able
6930                 * to move enough charges, but moving charge is a best-effort
6931                 * feature anyway, so it wouldn't be a big problem.
6932                 */
6933                __mem_cgroup_clear_mc();
6934                cond_resched();
6935                goto retry;
6936        }
6937        for (vma = mm->mmap; vma; vma = vma->vm_next) {
6938                int ret;
6939                struct mm_walk mem_cgroup_move_charge_walk = {
6940                        .pmd_entry = mem_cgroup_move_charge_pte_range,
6941                        .mm = mm,
6942                        .private = vma,
6943                };
6944                if (is_vm_hugetlb_page(vma))
6945                        continue;
6946                ret = walk_page_range(vma->vm_start, vma->vm_end,
6947                                                &mem_cgroup_move_charge_walk);
6948                if (ret)
6949                        /*
6950                         * means we have consumed all precharges and failed in
6951                         * doing additional charge. Just abandon here.
6952                         */
6953                        break;
6954        }
6955        up_read(&mm->mmap_sem);
6956}
6957
6958static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6959                                 struct cgroup_taskset *tset)
6960{
6961        struct task_struct *p = cgroup_taskset_first(tset);
6962        struct mm_struct *mm = get_task_mm(p);
6963
6964        if (mm) {
6965                if (mc.to)
6966                        mem_cgroup_move_charge(mm);
6967                mmput(mm);
6968        }
6969        if (mc.to)
6970                mem_cgroup_clear_mc();
6971}
6972#else   /* !CONFIG_MMU */
6973static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6974                                 struct cgroup_taskset *tset)
6975{
6976        return 0;
6977}
6978static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6979                                     struct cgroup_taskset *tset)
6980{
6981}
6982static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6983                                 struct cgroup_taskset *tset)
6984{
6985}
6986#endif
6987
6988/*
6989 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6990 * to verify sane_behavior flag on each mount attempt.
6991 */
6992static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6993{
6994        /*
6995         * use_hierarchy is forced with sane_behavior.  cgroup core
6996         * guarantees that @root doesn't have any children, so turning it
6997         * on for the root memcg is enough.
6998         */
6999        if (cgroup_sane_behavior(root_css->cgroup))
7000                mem_cgroup_from_css(root_css)->use_hierarchy = true;
7001}
7002
7003struct cgroup_subsys mem_cgroup_subsys = {
7004        .name = "memory",
7005        .subsys_id = mem_cgroup_subsys_id,
7006        .css_alloc = mem_cgroup_css_alloc,
7007        .css_online = mem_cgroup_css_online,
7008        .css_offline = mem_cgroup_css_offline,
7009        .css_free = mem_cgroup_css_free,
7010        .can_attach = mem_cgroup_can_attach,
7011        .cancel_attach = mem_cgroup_cancel_attach,
7012        .attach = mem_cgroup_move_task,
7013        .bind = mem_cgroup_bind,
7014        .base_cftypes = mem_cgroup_files,
7015        .early_init = 0,
7016};
7017
7018#ifdef CONFIG_MEMCG_SWAP
7019static int __init enable_swap_account(char *s)
7020{
7021        if (!strcmp(s, "1"))
7022                really_do_swap_account = 1;
7023        else if (!strcmp(s, "0"))
7024                really_do_swap_account = 0;
7025        return 1;
7026}
7027__setup("swapaccount=", enable_swap_account);
7028
7029static void __init memsw_file_init(void)
7030{
7031        WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7032}
7033
7034static void __init enable_swap_cgroup(void)
7035{
7036        if (!mem_cgroup_disabled() && really_do_swap_account) {
7037                do_swap_account = 1;
7038                memsw_file_init();
7039        }
7040}
7041
7042#else
7043static void __init enable_swap_cgroup(void)
7044{
7045}
7046#endif
7047
7048/*
7049 * subsys_initcall() for memory controller.
7050 *
7051 * Some parts like hotcpu_notifier() have to be initialized from this context
7052 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7053 * everything that doesn't depend on a specific mem_cgroup structure should
7054 * be initialized from here.
7055 */
7056static int __init mem_cgroup_init(void)
7057{
7058        hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7059        enable_swap_cgroup();
7060        mem_cgroup_soft_limit_tree_init();
7061        memcg_stock_init();
7062        return 0;
7063}
7064subsys_initcall(mem_cgroup_init);
7065