linux/mm/mempolicy.c
<<
>>
Prefs
   1/*
   2 * Simple NUMA memory policy for the Linux kernel.
   3 *
   4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
   5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
   6 * Subject to the GNU Public License, version 2.
   7 *
   8 * NUMA policy allows the user to give hints in which node(s) memory should
   9 * be allocated.
  10 *
  11 * Support four policies per VMA and per process:
  12 *
  13 * The VMA policy has priority over the process policy for a page fault.
  14 *
  15 * interleave     Allocate memory interleaved over a set of nodes,
  16 *                with normal fallback if it fails.
  17 *                For VMA based allocations this interleaves based on the
  18 *                offset into the backing object or offset into the mapping
  19 *                for anonymous memory. For process policy an process counter
  20 *                is used.
  21 *
  22 * bind           Only allocate memory on a specific set of nodes,
  23 *                no fallback.
  24 *                FIXME: memory is allocated starting with the first node
  25 *                to the last. It would be better if bind would truly restrict
  26 *                the allocation to memory nodes instead
  27 *
  28 * preferred       Try a specific node first before normal fallback.
  29 *                As a special case NUMA_NO_NODE here means do the allocation
  30 *                on the local CPU. This is normally identical to default,
  31 *                but useful to set in a VMA when you have a non default
  32 *                process policy.
  33 *
  34 * default        Allocate on the local node first, or when on a VMA
  35 *                use the process policy. This is what Linux always did
  36 *                in a NUMA aware kernel and still does by, ahem, default.
  37 *
  38 * The process policy is applied for most non interrupt memory allocations
  39 * in that process' context. Interrupts ignore the policies and always
  40 * try to allocate on the local CPU. The VMA policy is only applied for memory
  41 * allocations for a VMA in the VM.
  42 *
  43 * Currently there are a few corner cases in swapping where the policy
  44 * is not applied, but the majority should be handled. When process policy
  45 * is used it is not remembered over swap outs/swap ins.
  46 *
  47 * Only the highest zone in the zone hierarchy gets policied. Allocations
  48 * requesting a lower zone just use default policy. This implies that
  49 * on systems with highmem kernel lowmem allocation don't get policied.
  50 * Same with GFP_DMA allocations.
  51 *
  52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
  53 * all users and remembered even when nobody has memory mapped.
  54 */
  55
  56/* Notebook:
  57   fix mmap readahead to honour policy and enable policy for any page cache
  58   object
  59   statistics for bigpages
  60   global policy for page cache? currently it uses process policy. Requires
  61   first item above.
  62   handle mremap for shared memory (currently ignored for the policy)
  63   grows down?
  64   make bind policy root only? It can trigger oom much faster and the
  65   kernel is not always grateful with that.
  66*/
  67
  68#include <linux/mempolicy.h>
  69#include <linux/mm.h>
  70#include <linux/highmem.h>
  71#include <linux/hugetlb.h>
  72#include <linux/kernel.h>
  73#include <linux/sched.h>
  74#include <linux/nodemask.h>
  75#include <linux/cpuset.h>
  76#include <linux/slab.h>
  77#include <linux/string.h>
  78#include <linux/export.h>
  79#include <linux/nsproxy.h>
  80#include <linux/interrupt.h>
  81#include <linux/init.h>
  82#include <linux/compat.h>
  83#include <linux/swap.h>
  84#include <linux/seq_file.h>
  85#include <linux/proc_fs.h>
  86#include <linux/migrate.h>
  87#include <linux/ksm.h>
  88#include <linux/rmap.h>
  89#include <linux/security.h>
  90#include <linux/syscalls.h>
  91#include <linux/ctype.h>
  92#include <linux/mm_inline.h>
  93#include <linux/mmu_notifier.h>
  94
  95#include <asm/tlbflush.h>
  96#include <asm/uaccess.h>
  97#include <linux/random.h>
  98
  99#include "internal.h"
 100
 101/* Internal flags */
 102#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)    /* Skip checks for continuous vmas */
 103#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)          /* Invert check for nodemask */
 104
 105static struct kmem_cache *policy_cache;
 106static struct kmem_cache *sn_cache;
 107
 108/* Highest zone. An specific allocation for a zone below that is not
 109   policied. */
 110enum zone_type policy_zone = 0;
 111
 112/*
 113 * run-time system-wide default policy => local allocation
 114 */
 115static struct mempolicy default_policy = {
 116        .refcnt = ATOMIC_INIT(1), /* never free it */
 117        .mode = MPOL_PREFERRED,
 118        .flags = MPOL_F_LOCAL,
 119};
 120
 121static struct mempolicy preferred_node_policy[MAX_NUMNODES];
 122
 123static struct mempolicy *get_task_policy(struct task_struct *p)
 124{
 125        struct mempolicy *pol = p->mempolicy;
 126
 127        if (!pol) {
 128                int node = numa_node_id();
 129
 130                if (node != NUMA_NO_NODE) {
 131                        pol = &preferred_node_policy[node];
 132                        /*
 133                         * preferred_node_policy is not initialised early in
 134                         * boot
 135                         */
 136                        if (!pol->mode)
 137                                pol = NULL;
 138                }
 139        }
 140
 141        return pol;
 142}
 143
 144static const struct mempolicy_operations {
 145        int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
 146        /*
 147         * If read-side task has no lock to protect task->mempolicy, write-side
 148         * task will rebind the task->mempolicy by two step. The first step is
 149         * setting all the newly nodes, and the second step is cleaning all the
 150         * disallowed nodes. In this way, we can avoid finding no node to alloc
 151         * page.
 152         * If we have a lock to protect task->mempolicy in read-side, we do
 153         * rebind directly.
 154         *
 155         * step:
 156         *      MPOL_REBIND_ONCE - do rebind work at once
 157         *      MPOL_REBIND_STEP1 - set all the newly nodes
 158         *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 159         */
 160        void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
 161                        enum mpol_rebind_step step);
 162} mpol_ops[MPOL_MAX];
 163
 164/* Check that the nodemask contains at least one populated zone */
 165static int is_valid_nodemask(const nodemask_t *nodemask)
 166{
 167        return nodes_intersects(*nodemask, node_states[N_MEMORY]);
 168}
 169
 170static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
 171{
 172        return pol->flags & MPOL_MODE_FLAGS;
 173}
 174
 175static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
 176                                   const nodemask_t *rel)
 177{
 178        nodemask_t tmp;
 179        nodes_fold(tmp, *orig, nodes_weight(*rel));
 180        nodes_onto(*ret, tmp, *rel);
 181}
 182
 183static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
 184{
 185        if (nodes_empty(*nodes))
 186                return -EINVAL;
 187        pol->v.nodes = *nodes;
 188        return 0;
 189}
 190
 191static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
 192{
 193        if (!nodes)
 194                pol->flags |= MPOL_F_LOCAL;     /* local allocation */
 195        else if (nodes_empty(*nodes))
 196                return -EINVAL;                 /*  no allowed nodes */
 197        else
 198                pol->v.preferred_node = first_node(*nodes);
 199        return 0;
 200}
 201
 202static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
 203{
 204        if (!is_valid_nodemask(nodes))
 205                return -EINVAL;
 206        pol->v.nodes = *nodes;
 207        return 0;
 208}
 209
 210/*
 211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
 212 * any, for the new policy.  mpol_new() has already validated the nodes
 213 * parameter with respect to the policy mode and flags.  But, we need to
 214 * handle an empty nodemask with MPOL_PREFERRED here.
 215 *
 216 * Must be called holding task's alloc_lock to protect task's mems_allowed
 217 * and mempolicy.  May also be called holding the mmap_semaphore for write.
 218 */
 219static int mpol_set_nodemask(struct mempolicy *pol,
 220                     const nodemask_t *nodes, struct nodemask_scratch *nsc)
 221{
 222        int ret;
 223
 224        /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
 225        if (pol == NULL)
 226                return 0;
 227        /* Check N_MEMORY */
 228        nodes_and(nsc->mask1,
 229                  cpuset_current_mems_allowed, node_states[N_MEMORY]);
 230
 231        VM_BUG_ON(!nodes);
 232        if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
 233                nodes = NULL;   /* explicit local allocation */
 234        else {
 235                if (pol->flags & MPOL_F_RELATIVE_NODES)
 236                        mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
 237                else
 238                        nodes_and(nsc->mask2, *nodes, nsc->mask1);
 239
 240                if (mpol_store_user_nodemask(pol))
 241                        pol->w.user_nodemask = *nodes;
 242                else
 243                        pol->w.cpuset_mems_allowed =
 244                                                cpuset_current_mems_allowed;
 245        }
 246
 247        if (nodes)
 248                ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
 249        else
 250                ret = mpol_ops[pol->mode].create(pol, NULL);
 251        return ret;
 252}
 253
 254/*
 255 * This function just creates a new policy, does some check and simple
 256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
 257 */
 258static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
 259                                  nodemask_t *nodes)
 260{
 261        struct mempolicy *policy;
 262
 263        pr_debug("setting mode %d flags %d nodes[0] %lx\n",
 264                 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
 265
 266        if (mode == MPOL_DEFAULT) {
 267                if (nodes && !nodes_empty(*nodes))
 268                        return ERR_PTR(-EINVAL);
 269                return NULL;
 270        }
 271        VM_BUG_ON(!nodes);
 272
 273        /*
 274         * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
 275         * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
 276         * All other modes require a valid pointer to a non-empty nodemask.
 277         */
 278        if (mode == MPOL_PREFERRED) {
 279                if (nodes_empty(*nodes)) {
 280                        if (((flags & MPOL_F_STATIC_NODES) ||
 281                             (flags & MPOL_F_RELATIVE_NODES)))
 282                                return ERR_PTR(-EINVAL);
 283                }
 284        } else if (mode == MPOL_LOCAL) {
 285                if (!nodes_empty(*nodes))
 286                        return ERR_PTR(-EINVAL);
 287                mode = MPOL_PREFERRED;
 288        } else if (nodes_empty(*nodes))
 289                return ERR_PTR(-EINVAL);
 290        policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
 291        if (!policy)
 292                return ERR_PTR(-ENOMEM);
 293        atomic_set(&policy->refcnt, 1);
 294        policy->mode = mode;
 295        policy->flags = flags;
 296
 297        return policy;
 298}
 299
 300/* Slow path of a mpol destructor. */
 301void __mpol_put(struct mempolicy *p)
 302{
 303        if (!atomic_dec_and_test(&p->refcnt))
 304                return;
 305        kmem_cache_free(policy_cache, p);
 306}
 307
 308static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
 309                                enum mpol_rebind_step step)
 310{
 311}
 312
 313/*
 314 * step:
 315 *      MPOL_REBIND_ONCE  - do rebind work at once
 316 *      MPOL_REBIND_STEP1 - set all the newly nodes
 317 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 318 */
 319static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
 320                                 enum mpol_rebind_step step)
 321{
 322        nodemask_t tmp;
 323
 324        if (pol->flags & MPOL_F_STATIC_NODES)
 325                nodes_and(tmp, pol->w.user_nodemask, *nodes);
 326        else if (pol->flags & MPOL_F_RELATIVE_NODES)
 327                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 328        else {
 329                /*
 330                 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
 331                 * result
 332                 */
 333                if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
 334                        nodes_remap(tmp, pol->v.nodes,
 335                                        pol->w.cpuset_mems_allowed, *nodes);
 336                        pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
 337                } else if (step == MPOL_REBIND_STEP2) {
 338                        tmp = pol->w.cpuset_mems_allowed;
 339                        pol->w.cpuset_mems_allowed = *nodes;
 340                } else
 341                        BUG();
 342        }
 343
 344        if (nodes_empty(tmp))
 345                tmp = *nodes;
 346
 347        if (step == MPOL_REBIND_STEP1)
 348                nodes_or(pol->v.nodes, pol->v.nodes, tmp);
 349        else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
 350                pol->v.nodes = tmp;
 351        else
 352                BUG();
 353
 354        if (!node_isset(current->il_next, tmp)) {
 355                current->il_next = next_node(current->il_next, tmp);
 356                if (current->il_next >= MAX_NUMNODES)
 357                        current->il_next = first_node(tmp);
 358                if (current->il_next >= MAX_NUMNODES)
 359                        current->il_next = numa_node_id();
 360        }
 361}
 362
 363static void mpol_rebind_preferred(struct mempolicy *pol,
 364                                  const nodemask_t *nodes,
 365                                  enum mpol_rebind_step step)
 366{
 367        nodemask_t tmp;
 368
 369        if (pol->flags & MPOL_F_STATIC_NODES) {
 370                int node = first_node(pol->w.user_nodemask);
 371
 372                if (node_isset(node, *nodes)) {
 373                        pol->v.preferred_node = node;
 374                        pol->flags &= ~MPOL_F_LOCAL;
 375                } else
 376                        pol->flags |= MPOL_F_LOCAL;
 377        } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
 378                mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
 379                pol->v.preferred_node = first_node(tmp);
 380        } else if (!(pol->flags & MPOL_F_LOCAL)) {
 381                pol->v.preferred_node = node_remap(pol->v.preferred_node,
 382                                                   pol->w.cpuset_mems_allowed,
 383                                                   *nodes);
 384                pol->w.cpuset_mems_allowed = *nodes;
 385        }
 386}
 387
 388/*
 389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
 390 *
 391 * If read-side task has no lock to protect task->mempolicy, write-side
 392 * task will rebind the task->mempolicy by two step. The first step is
 393 * setting all the newly nodes, and the second step is cleaning all the
 394 * disallowed nodes. In this way, we can avoid finding no node to alloc
 395 * page.
 396 * If we have a lock to protect task->mempolicy in read-side, we do
 397 * rebind directly.
 398 *
 399 * step:
 400 *      MPOL_REBIND_ONCE  - do rebind work at once
 401 *      MPOL_REBIND_STEP1 - set all the newly nodes
 402 *      MPOL_REBIND_STEP2 - clean all the disallowed nodes
 403 */
 404static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
 405                                enum mpol_rebind_step step)
 406{
 407        if (!pol)
 408                return;
 409        if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
 410            nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
 411                return;
 412
 413        if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
 414                return;
 415
 416        if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
 417                BUG();
 418
 419        if (step == MPOL_REBIND_STEP1)
 420                pol->flags |= MPOL_F_REBINDING;
 421        else if (step == MPOL_REBIND_STEP2)
 422                pol->flags &= ~MPOL_F_REBINDING;
 423        else if (step >= MPOL_REBIND_NSTEP)
 424                BUG();
 425
 426        mpol_ops[pol->mode].rebind(pol, newmask, step);
 427}
 428
 429/*
 430 * Wrapper for mpol_rebind_policy() that just requires task
 431 * pointer, and updates task mempolicy.
 432 *
 433 * Called with task's alloc_lock held.
 434 */
 435
 436void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
 437                        enum mpol_rebind_step step)
 438{
 439        mpol_rebind_policy(tsk->mempolicy, new, step);
 440}
 441
 442/*
 443 * Rebind each vma in mm to new nodemask.
 444 *
 445 * Call holding a reference to mm.  Takes mm->mmap_sem during call.
 446 */
 447
 448void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
 449{
 450        struct vm_area_struct *vma;
 451
 452        down_write(&mm->mmap_sem);
 453        for (vma = mm->mmap; vma; vma = vma->vm_next)
 454                mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
 455        up_write(&mm->mmap_sem);
 456}
 457
 458static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
 459        [MPOL_DEFAULT] = {
 460                .rebind = mpol_rebind_default,
 461        },
 462        [MPOL_INTERLEAVE] = {
 463                .create = mpol_new_interleave,
 464                .rebind = mpol_rebind_nodemask,
 465        },
 466        [MPOL_PREFERRED] = {
 467                .create = mpol_new_preferred,
 468                .rebind = mpol_rebind_preferred,
 469        },
 470        [MPOL_BIND] = {
 471                .create = mpol_new_bind,
 472                .rebind = mpol_rebind_nodemask,
 473        },
 474};
 475
 476static void migrate_page_add(struct page *page, struct list_head *pagelist,
 477                                unsigned long flags);
 478
 479/*
 480 * Scan through pages checking if pages follow certain conditions,
 481 * and move them to the pagelist if they do.
 482 */
 483static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
 484                unsigned long addr, unsigned long end,
 485                const nodemask_t *nodes, unsigned long flags,
 486                void *private)
 487{
 488        pte_t *orig_pte;
 489        pte_t *pte;
 490        spinlock_t *ptl;
 491
 492        orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 493        do {
 494                struct page *page;
 495                int nid;
 496
 497                if (!pte_present(*pte))
 498                        continue;
 499                page = vm_normal_page(vma, addr, *pte);
 500                if (!page)
 501                        continue;
 502                /*
 503                 * vm_normal_page() filters out zero pages, but there might
 504                 * still be PageReserved pages to skip, perhaps in a VDSO.
 505                 */
 506                if (PageReserved(page))
 507                        continue;
 508                nid = page_to_nid(page);
 509                if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 510                        continue;
 511
 512                if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
 513                        migrate_page_add(page, private, flags);
 514                else
 515                        break;
 516        } while (pte++, addr += PAGE_SIZE, addr != end);
 517        pte_unmap_unlock(orig_pte, ptl);
 518        return addr != end;
 519}
 520
 521static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
 522                pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
 523                                    void *private)
 524{
 525#ifdef CONFIG_HUGETLB_PAGE
 526        int nid;
 527        struct page *page;
 528        spinlock_t *ptl;
 529
 530        ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
 531        page = pte_page(huge_ptep_get((pte_t *)pmd));
 532        nid = page_to_nid(page);
 533        if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
 534                goto unlock;
 535        /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
 536        if (flags & (MPOL_MF_MOVE_ALL) ||
 537            (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
 538                isolate_huge_page(page, private);
 539unlock:
 540        spin_unlock(ptl);
 541#else
 542        BUG();
 543#endif
 544}
 545
 546static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
 547                unsigned long addr, unsigned long end,
 548                const nodemask_t *nodes, unsigned long flags,
 549                void *private)
 550{
 551        pmd_t *pmd;
 552        unsigned long next;
 553
 554        pmd = pmd_offset(pud, addr);
 555        do {
 556                next = pmd_addr_end(addr, end);
 557                if (!pmd_present(*pmd))
 558                        continue;
 559                if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
 560                        queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
 561                                                flags, private);
 562                        continue;
 563                }
 564                split_huge_page_pmd(vma, addr, pmd);
 565                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
 566                        continue;
 567                if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
 568                                    flags, private))
 569                        return -EIO;
 570        } while (pmd++, addr = next, addr != end);
 571        return 0;
 572}
 573
 574static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
 575                unsigned long addr, unsigned long end,
 576                const nodemask_t *nodes, unsigned long flags,
 577                void *private)
 578{
 579        pud_t *pud;
 580        unsigned long next;
 581
 582        pud = pud_offset(pgd, addr);
 583        do {
 584                next = pud_addr_end(addr, end);
 585                if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
 586                        continue;
 587                if (pud_none_or_clear_bad(pud))
 588                        continue;
 589                if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
 590                                    flags, private))
 591                        return -EIO;
 592        } while (pud++, addr = next, addr != end);
 593        return 0;
 594}
 595
 596static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
 597                unsigned long addr, unsigned long end,
 598                const nodemask_t *nodes, unsigned long flags,
 599                void *private)
 600{
 601        pgd_t *pgd;
 602        unsigned long next;
 603
 604        pgd = pgd_offset(vma->vm_mm, addr);
 605        do {
 606                next = pgd_addr_end(addr, end);
 607                if (pgd_none_or_clear_bad(pgd))
 608                        continue;
 609                if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
 610                                    flags, private))
 611                        return -EIO;
 612        } while (pgd++, addr = next, addr != end);
 613        return 0;
 614}
 615
 616#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
 617/*
 618 * This is used to mark a range of virtual addresses to be inaccessible.
 619 * These are later cleared by a NUMA hinting fault. Depending on these
 620 * faults, pages may be migrated for better NUMA placement.
 621 *
 622 * This is assuming that NUMA faults are handled using PROT_NONE. If
 623 * an architecture makes a different choice, it will need further
 624 * changes to the core.
 625 */
 626unsigned long change_prot_numa(struct vm_area_struct *vma,
 627                        unsigned long addr, unsigned long end)
 628{
 629        int nr_updated;
 630        BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
 631
 632        nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
 633        if (nr_updated)
 634                count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
 635
 636        return nr_updated;
 637}
 638#else
 639static unsigned long change_prot_numa(struct vm_area_struct *vma,
 640                        unsigned long addr, unsigned long end)
 641{
 642        return 0;
 643}
 644#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
 645
 646/*
 647 * Walk through page tables and collect pages to be migrated.
 648 *
 649 * If pages found in a given range are on a set of nodes (determined by
 650 * @nodes and @flags,) it's isolated and queued to the pagelist which is
 651 * passed via @private.)
 652 */
 653static struct vm_area_struct *
 654queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
 655                const nodemask_t *nodes, unsigned long flags, void *private)
 656{
 657        int err;
 658        struct vm_area_struct *first, *vma, *prev;
 659
 660
 661        first = find_vma(mm, start);
 662        if (!first)
 663                return ERR_PTR(-EFAULT);
 664        prev = NULL;
 665        for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
 666                unsigned long endvma = vma->vm_end;
 667
 668                if (endvma > end)
 669                        endvma = end;
 670                if (vma->vm_start > start)
 671                        start = vma->vm_start;
 672
 673                if (!(flags & MPOL_MF_DISCONTIG_OK)) {
 674                        if (!vma->vm_next && vma->vm_end < end)
 675                                return ERR_PTR(-EFAULT);
 676                        if (prev && prev->vm_end < vma->vm_start)
 677                                return ERR_PTR(-EFAULT);
 678                }
 679
 680                if (flags & MPOL_MF_LAZY) {
 681                        change_prot_numa(vma, start, endvma);
 682                        goto next;
 683                }
 684
 685                if ((flags & MPOL_MF_STRICT) ||
 686                     ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
 687                      vma_migratable(vma))) {
 688
 689                        err = queue_pages_pgd_range(vma, start, endvma, nodes,
 690                                                flags, private);
 691                        if (err) {
 692                                first = ERR_PTR(err);
 693                                break;
 694                        }
 695                }
 696next:
 697                prev = vma;
 698        }
 699        return first;
 700}
 701
 702/*
 703 * Apply policy to a single VMA
 704 * This must be called with the mmap_sem held for writing.
 705 */
 706static int vma_replace_policy(struct vm_area_struct *vma,
 707                                                struct mempolicy *pol)
 708{
 709        int err;
 710        struct mempolicy *old;
 711        struct mempolicy *new;
 712
 713        pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
 714                 vma->vm_start, vma->vm_end, vma->vm_pgoff,
 715                 vma->vm_ops, vma->vm_file,
 716                 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
 717
 718        new = mpol_dup(pol);
 719        if (IS_ERR(new))
 720                return PTR_ERR(new);
 721
 722        if (vma->vm_ops && vma->vm_ops->set_policy) {
 723                err = vma->vm_ops->set_policy(vma, new);
 724                if (err)
 725                        goto err_out;
 726        }
 727
 728        old = vma->vm_policy;
 729        vma->vm_policy = new; /* protected by mmap_sem */
 730        mpol_put(old);
 731
 732        return 0;
 733 err_out:
 734        mpol_put(new);
 735        return err;
 736}
 737
 738/* Step 2: apply policy to a range and do splits. */
 739static int mbind_range(struct mm_struct *mm, unsigned long start,
 740                       unsigned long end, struct mempolicy *new_pol)
 741{
 742        struct vm_area_struct *next;
 743        struct vm_area_struct *prev;
 744        struct vm_area_struct *vma;
 745        int err = 0;
 746        pgoff_t pgoff;
 747        unsigned long vmstart;
 748        unsigned long vmend;
 749
 750        vma = find_vma(mm, start);
 751        if (!vma || vma->vm_start > start)
 752                return -EFAULT;
 753
 754        prev = vma->vm_prev;
 755        if (start > vma->vm_start)
 756                prev = vma;
 757
 758        for (; vma && vma->vm_start < end; prev = vma, vma = next) {
 759                next = vma->vm_next;
 760                vmstart = max(start, vma->vm_start);
 761                vmend   = min(end, vma->vm_end);
 762
 763                if (mpol_equal(vma_policy(vma), new_pol))
 764                        continue;
 765
 766                pgoff = vma->vm_pgoff +
 767                        ((vmstart - vma->vm_start) >> PAGE_SHIFT);
 768                prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
 769                                  vma->anon_vma, vma->vm_file, pgoff,
 770                                  new_pol);
 771                if (prev) {
 772                        vma = prev;
 773                        next = vma->vm_next;
 774                        if (mpol_equal(vma_policy(vma), new_pol))
 775                                continue;
 776                        /* vma_merge() joined vma && vma->next, case 8 */
 777                        goto replace;
 778                }
 779                if (vma->vm_start != vmstart) {
 780                        err = split_vma(vma->vm_mm, vma, vmstart, 1);
 781                        if (err)
 782                                goto out;
 783                }
 784                if (vma->vm_end != vmend) {
 785                        err = split_vma(vma->vm_mm, vma, vmend, 0);
 786                        if (err)
 787                                goto out;
 788                }
 789 replace:
 790                err = vma_replace_policy(vma, new_pol);
 791                if (err)
 792                        goto out;
 793        }
 794
 795 out:
 796        return err;
 797}
 798
 799/*
 800 * Update task->flags PF_MEMPOLICY bit: set iff non-default
 801 * mempolicy.  Allows more rapid checking of this (combined perhaps
 802 * with other PF_* flag bits) on memory allocation hot code paths.
 803 *
 804 * If called from outside this file, the task 'p' should -only- be
 805 * a newly forked child not yet visible on the task list, because
 806 * manipulating the task flags of a visible task is not safe.
 807 *
 808 * The above limitation is why this routine has the funny name
 809 * mpol_fix_fork_child_flag().
 810 *
 811 * It is also safe to call this with a task pointer of current,
 812 * which the static wrapper mpol_set_task_struct_flag() does,
 813 * for use within this file.
 814 */
 815
 816void mpol_fix_fork_child_flag(struct task_struct *p)
 817{
 818        if (p->mempolicy)
 819                p->flags |= PF_MEMPOLICY;
 820        else
 821                p->flags &= ~PF_MEMPOLICY;
 822}
 823
 824static void mpol_set_task_struct_flag(void)
 825{
 826        mpol_fix_fork_child_flag(current);
 827}
 828
 829/* Set the process memory policy */
 830static long do_set_mempolicy(unsigned short mode, unsigned short flags,
 831                             nodemask_t *nodes)
 832{
 833        struct mempolicy *new, *old;
 834        struct mm_struct *mm = current->mm;
 835        NODEMASK_SCRATCH(scratch);
 836        int ret;
 837
 838        if (!scratch)
 839                return -ENOMEM;
 840
 841        new = mpol_new(mode, flags, nodes);
 842        if (IS_ERR(new)) {
 843                ret = PTR_ERR(new);
 844                goto out;
 845        }
 846        /*
 847         * prevent changing our mempolicy while show_numa_maps()
 848         * is using it.
 849         * Note:  do_set_mempolicy() can be called at init time
 850         * with no 'mm'.
 851         */
 852        if (mm)
 853                down_write(&mm->mmap_sem);
 854        task_lock(current);
 855        ret = mpol_set_nodemask(new, nodes, scratch);
 856        if (ret) {
 857                task_unlock(current);
 858                if (mm)
 859                        up_write(&mm->mmap_sem);
 860                mpol_put(new);
 861                goto out;
 862        }
 863        old = current->mempolicy;
 864        current->mempolicy = new;
 865        mpol_set_task_struct_flag();
 866        if (new && new->mode == MPOL_INTERLEAVE &&
 867            nodes_weight(new->v.nodes))
 868                current->il_next = first_node(new->v.nodes);
 869        task_unlock(current);
 870        if (mm)
 871                up_write(&mm->mmap_sem);
 872
 873        mpol_put(old);
 874        ret = 0;
 875out:
 876        NODEMASK_SCRATCH_FREE(scratch);
 877        return ret;
 878}
 879
 880/*
 881 * Return nodemask for policy for get_mempolicy() query
 882 *
 883 * Called with task's alloc_lock held
 884 */
 885static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
 886{
 887        nodes_clear(*nodes);
 888        if (p == &default_policy)
 889                return;
 890
 891        switch (p->mode) {
 892        case MPOL_BIND:
 893                /* Fall through */
 894        case MPOL_INTERLEAVE:
 895                *nodes = p->v.nodes;
 896                break;
 897        case MPOL_PREFERRED:
 898                if (!(p->flags & MPOL_F_LOCAL))
 899                        node_set(p->v.preferred_node, *nodes);
 900                /* else return empty node mask for local allocation */
 901                break;
 902        default:
 903                BUG();
 904        }
 905}
 906
 907static int lookup_node(struct mm_struct *mm, unsigned long addr)
 908{
 909        struct page *p;
 910        int err;
 911
 912        err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
 913        if (err >= 0) {
 914                err = page_to_nid(p);
 915                put_page(p);
 916        }
 917        return err;
 918}
 919
 920/* Retrieve NUMA policy */
 921static long do_get_mempolicy(int *policy, nodemask_t *nmask,
 922                             unsigned long addr, unsigned long flags)
 923{
 924        int err;
 925        struct mm_struct *mm = current->mm;
 926        struct vm_area_struct *vma = NULL;
 927        struct mempolicy *pol = current->mempolicy;
 928
 929        if (flags &
 930                ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
 931                return -EINVAL;
 932
 933        if (flags & MPOL_F_MEMS_ALLOWED) {
 934                if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
 935                        return -EINVAL;
 936                *policy = 0;    /* just so it's initialized */
 937                task_lock(current);
 938                *nmask  = cpuset_current_mems_allowed;
 939                task_unlock(current);
 940                return 0;
 941        }
 942
 943        if (flags & MPOL_F_ADDR) {
 944                /*
 945                 * Do NOT fall back to task policy if the
 946                 * vma/shared policy at addr is NULL.  We
 947                 * want to return MPOL_DEFAULT in this case.
 948                 */
 949                down_read(&mm->mmap_sem);
 950                vma = find_vma_intersection(mm, addr, addr+1);
 951                if (!vma) {
 952                        up_read(&mm->mmap_sem);
 953                        return -EFAULT;
 954                }
 955                if (vma->vm_ops && vma->vm_ops->get_policy)
 956                        pol = vma->vm_ops->get_policy(vma, addr);
 957                else
 958                        pol = vma->vm_policy;
 959        } else if (addr)
 960                return -EINVAL;
 961
 962        if (!pol)
 963                pol = &default_policy;  /* indicates default behavior */
 964
 965        if (flags & MPOL_F_NODE) {
 966                if (flags & MPOL_F_ADDR) {
 967                        err = lookup_node(mm, addr);
 968                        if (err < 0)
 969                                goto out;
 970                        *policy = err;
 971                } else if (pol == current->mempolicy &&
 972                                pol->mode == MPOL_INTERLEAVE) {
 973                        *policy = current->il_next;
 974                } else {
 975                        err = -EINVAL;
 976                        goto out;
 977                }
 978        } else {
 979                *policy = pol == &default_policy ? MPOL_DEFAULT :
 980                                                pol->mode;
 981                /*
 982                 * Internal mempolicy flags must be masked off before exposing
 983                 * the policy to userspace.
 984                 */
 985                *policy |= (pol->flags & MPOL_MODE_FLAGS);
 986        }
 987
 988        if (vma) {
 989                up_read(&current->mm->mmap_sem);
 990                vma = NULL;
 991        }
 992
 993        err = 0;
 994        if (nmask) {
 995                if (mpol_store_user_nodemask(pol)) {
 996                        *nmask = pol->w.user_nodemask;
 997                } else {
 998                        task_lock(current);
 999                        get_policy_nodemask(pol, nmask);
1000                        task_unlock(current);
1001                }
1002        }
1003
1004 out:
1005        mpol_cond_put(pol);
1006        if (vma)
1007                up_read(&current->mm->mmap_sem);
1008        return err;
1009}
1010
1011#ifdef CONFIG_MIGRATION
1012/*
1013 * page migration
1014 */
1015static void migrate_page_add(struct page *page, struct list_head *pagelist,
1016                                unsigned long flags)
1017{
1018        /*
1019         * Avoid migrating a page that is shared with others.
1020         */
1021        if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
1022                if (!isolate_lru_page(page)) {
1023                        list_add_tail(&page->lru, pagelist);
1024                        inc_zone_page_state(page, NR_ISOLATED_ANON +
1025                                            page_is_file_cache(page));
1026                }
1027        }
1028}
1029
1030static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1031{
1032        if (PageHuge(page))
1033                return alloc_huge_page_node(page_hstate(compound_head(page)),
1034                                        node);
1035        else
1036                return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1037}
1038
1039/*
1040 * Migrate pages from one node to a target node.
1041 * Returns error or the number of pages not migrated.
1042 */
1043static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1044                           int flags)
1045{
1046        nodemask_t nmask;
1047        LIST_HEAD(pagelist);
1048        int err = 0;
1049
1050        nodes_clear(nmask);
1051        node_set(source, nmask);
1052
1053        /*
1054         * This does not "check" the range but isolates all pages that
1055         * need migration.  Between passing in the full user address
1056         * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1057         */
1058        VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1059        queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1060                        flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1061
1062        if (!list_empty(&pagelist)) {
1063                err = migrate_pages(&pagelist, new_node_page, dest,
1064                                        MIGRATE_SYNC, MR_SYSCALL);
1065                if (err)
1066                        putback_movable_pages(&pagelist);
1067        }
1068
1069        return err;
1070}
1071
1072/*
1073 * Move pages between the two nodesets so as to preserve the physical
1074 * layout as much as possible.
1075 *
1076 * Returns the number of page that could not be moved.
1077 */
1078int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1079                     const nodemask_t *to, int flags)
1080{
1081        int busy = 0;
1082        int err;
1083        nodemask_t tmp;
1084
1085        err = migrate_prep();
1086        if (err)
1087                return err;
1088
1089        down_read(&mm->mmap_sem);
1090
1091        err = migrate_vmas(mm, from, to, flags);
1092        if (err)
1093                goto out;
1094
1095        /*
1096         * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1097         * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1098         * bit in 'tmp', and return that <source, dest> pair for migration.
1099         * The pair of nodemasks 'to' and 'from' define the map.
1100         *
1101         * If no pair of bits is found that way, fallback to picking some
1102         * pair of 'source' and 'dest' bits that are not the same.  If the
1103         * 'source' and 'dest' bits are the same, this represents a node
1104         * that will be migrating to itself, so no pages need move.
1105         *
1106         * If no bits are left in 'tmp', or if all remaining bits left
1107         * in 'tmp' correspond to the same bit in 'to', return false
1108         * (nothing left to migrate).
1109         *
1110         * This lets us pick a pair of nodes to migrate between, such that
1111         * if possible the dest node is not already occupied by some other
1112         * source node, minimizing the risk of overloading the memory on a
1113         * node that would happen if we migrated incoming memory to a node
1114         * before migrating outgoing memory source that same node.
1115         *
1116         * A single scan of tmp is sufficient.  As we go, we remember the
1117         * most recent <s, d> pair that moved (s != d).  If we find a pair
1118         * that not only moved, but what's better, moved to an empty slot
1119         * (d is not set in tmp), then we break out then, with that pair.
1120         * Otherwise when we finish scanning from_tmp, we at least have the
1121         * most recent <s, d> pair that moved.  If we get all the way through
1122         * the scan of tmp without finding any node that moved, much less
1123         * moved to an empty node, then there is nothing left worth migrating.
1124         */
1125
1126        tmp = *from;
1127        while (!nodes_empty(tmp)) {
1128                int s,d;
1129                int source = NUMA_NO_NODE;
1130                int dest = 0;
1131
1132                for_each_node_mask(s, tmp) {
1133
1134                        /*
1135                         * do_migrate_pages() tries to maintain the relative
1136                         * node relationship of the pages established between
1137                         * threads and memory areas.
1138                         *
1139                         * However if the number of source nodes is not equal to
1140                         * the number of destination nodes we can not preserve
1141                         * this node relative relationship.  In that case, skip
1142                         * copying memory from a node that is in the destination
1143                         * mask.
1144                         *
1145                         * Example: [2,3,4] -> [3,4,5] moves everything.
1146                         *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1147                         */
1148
1149                        if ((nodes_weight(*from) != nodes_weight(*to)) &&
1150                                                (node_isset(s, *to)))
1151                                continue;
1152
1153                        d = node_remap(s, *from, *to);
1154                        if (s == d)
1155                                continue;
1156
1157                        source = s;     /* Node moved. Memorize */
1158                        dest = d;
1159
1160                        /* dest not in remaining from nodes? */
1161                        if (!node_isset(dest, tmp))
1162                                break;
1163                }
1164                if (source == NUMA_NO_NODE)
1165                        break;
1166
1167                node_clear(source, tmp);
1168                err = migrate_to_node(mm, source, dest, flags);
1169                if (err > 0)
1170                        busy += err;
1171                if (err < 0)
1172                        break;
1173        }
1174out:
1175        up_read(&mm->mmap_sem);
1176        if (err < 0)
1177                return err;
1178        return busy;
1179
1180}
1181
1182/*
1183 * Allocate a new page for page migration based on vma policy.
1184 * Start assuming that page is mapped by vma pointed to by @private.
1185 * Search forward from there, if not.  N.B., this assumes that the
1186 * list of pages handed to migrate_pages()--which is how we get here--
1187 * is in virtual address order.
1188 */
1189static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1190{
1191        struct vm_area_struct *vma = (struct vm_area_struct *)private;
1192        unsigned long uninitialized_var(address);
1193
1194        while (vma) {
1195                address = page_address_in_vma(page, vma);
1196                if (address != -EFAULT)
1197                        break;
1198                vma = vma->vm_next;
1199        }
1200
1201        if (PageHuge(page)) {
1202                if (vma)
1203                        return alloc_huge_page_noerr(vma, address, 1);
1204                else
1205                        return NULL;
1206        }
1207        /*
1208         * if !vma, alloc_page_vma() will use task or system default policy
1209         */
1210        return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1211}
1212#else
1213
1214static void migrate_page_add(struct page *page, struct list_head *pagelist,
1215                                unsigned long flags)
1216{
1217}
1218
1219int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1220                     const nodemask_t *to, int flags)
1221{
1222        return -ENOSYS;
1223}
1224
1225static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1226{
1227        return NULL;
1228}
1229#endif
1230
1231static long do_mbind(unsigned long start, unsigned long len,
1232                     unsigned short mode, unsigned short mode_flags,
1233                     nodemask_t *nmask, unsigned long flags)
1234{
1235        struct vm_area_struct *vma;
1236        struct mm_struct *mm = current->mm;
1237        struct mempolicy *new;
1238        unsigned long end;
1239        int err;
1240        LIST_HEAD(pagelist);
1241
1242        if (flags & ~(unsigned long)MPOL_MF_VALID)
1243                return -EINVAL;
1244        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1245                return -EPERM;
1246
1247        if (start & ~PAGE_MASK)
1248                return -EINVAL;
1249
1250        if (mode == MPOL_DEFAULT)
1251                flags &= ~MPOL_MF_STRICT;
1252
1253        len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1254        end = start + len;
1255
1256        if (end < start)
1257                return -EINVAL;
1258        if (end == start)
1259                return 0;
1260
1261        new = mpol_new(mode, mode_flags, nmask);
1262        if (IS_ERR(new))
1263                return PTR_ERR(new);
1264
1265        if (flags & MPOL_MF_LAZY)
1266                new->flags |= MPOL_F_MOF;
1267
1268        /*
1269         * If we are using the default policy then operation
1270         * on discontinuous address spaces is okay after all
1271         */
1272        if (!new)
1273                flags |= MPOL_MF_DISCONTIG_OK;
1274
1275        pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1276                 start, start + len, mode, mode_flags,
1277                 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1278
1279        if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1280
1281                err = migrate_prep();
1282                if (err)
1283                        goto mpol_out;
1284        }
1285        {
1286                NODEMASK_SCRATCH(scratch);
1287                if (scratch) {
1288                        down_write(&mm->mmap_sem);
1289                        task_lock(current);
1290                        err = mpol_set_nodemask(new, nmask, scratch);
1291                        task_unlock(current);
1292                        if (err)
1293                                up_write(&mm->mmap_sem);
1294                } else
1295                        err = -ENOMEM;
1296                NODEMASK_SCRATCH_FREE(scratch);
1297        }
1298        if (err)
1299                goto mpol_out;
1300
1301        vma = queue_pages_range(mm, start, end, nmask,
1302                          flags | MPOL_MF_INVERT, &pagelist);
1303
1304        err = PTR_ERR(vma);     /* maybe ... */
1305        if (!IS_ERR(vma))
1306                err = mbind_range(mm, start, end, new);
1307
1308        if (!err) {
1309                int nr_failed = 0;
1310
1311                if (!list_empty(&pagelist)) {
1312                        WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1313                        nr_failed = migrate_pages(&pagelist, new_vma_page,
1314                                        (unsigned long)vma,
1315                                        MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1316                        if (nr_failed)
1317                                putback_movable_pages(&pagelist);
1318                }
1319
1320                if (nr_failed && (flags & MPOL_MF_STRICT))
1321                        err = -EIO;
1322        } else
1323                putback_movable_pages(&pagelist);
1324
1325        up_write(&mm->mmap_sem);
1326 mpol_out:
1327        mpol_put(new);
1328        return err;
1329}
1330
1331/*
1332 * User space interface with variable sized bitmaps for nodelists.
1333 */
1334
1335/* Copy a node mask from user space. */
1336static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1337                     unsigned long maxnode)
1338{
1339        unsigned long k;
1340        unsigned long nlongs;
1341        unsigned long endmask;
1342
1343        --maxnode;
1344        nodes_clear(*nodes);
1345        if (maxnode == 0 || !nmask)
1346                return 0;
1347        if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1348                return -EINVAL;
1349
1350        nlongs = BITS_TO_LONGS(maxnode);
1351        if ((maxnode % BITS_PER_LONG) == 0)
1352                endmask = ~0UL;
1353        else
1354                endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1355
1356        /* When the user specified more nodes than supported just check
1357           if the non supported part is all zero. */
1358        if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1359                if (nlongs > PAGE_SIZE/sizeof(long))
1360                        return -EINVAL;
1361                for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1362                        unsigned long t;
1363                        if (get_user(t, nmask + k))
1364                                return -EFAULT;
1365                        if (k == nlongs - 1) {
1366                                if (t & endmask)
1367                                        return -EINVAL;
1368                        } else if (t)
1369                                return -EINVAL;
1370                }
1371                nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1372                endmask = ~0UL;
1373        }
1374
1375        if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1376                return -EFAULT;
1377        nodes_addr(*nodes)[nlongs-1] &= endmask;
1378        return 0;
1379}
1380
1381/* Copy a kernel node mask to user space */
1382static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1383                              nodemask_t *nodes)
1384{
1385        unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1386        const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1387
1388        if (copy > nbytes) {
1389                if (copy > PAGE_SIZE)
1390                        return -EINVAL;
1391                if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1392                        return -EFAULT;
1393                copy = nbytes;
1394        }
1395        return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1396}
1397
1398SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1399                unsigned long, mode, unsigned long __user *, nmask,
1400                unsigned long, maxnode, unsigned, flags)
1401{
1402        nodemask_t nodes;
1403        int err;
1404        unsigned short mode_flags;
1405
1406        mode_flags = mode & MPOL_MODE_FLAGS;
1407        mode &= ~MPOL_MODE_FLAGS;
1408        if (mode >= MPOL_MAX)
1409                return -EINVAL;
1410        if ((mode_flags & MPOL_F_STATIC_NODES) &&
1411            (mode_flags & MPOL_F_RELATIVE_NODES))
1412                return -EINVAL;
1413        err = get_nodes(&nodes, nmask, maxnode);
1414        if (err)
1415                return err;
1416        return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1417}
1418
1419/* Set the process memory policy */
1420SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1421                unsigned long, maxnode)
1422{
1423        int err;
1424        nodemask_t nodes;
1425        unsigned short flags;
1426
1427        flags = mode & MPOL_MODE_FLAGS;
1428        mode &= ~MPOL_MODE_FLAGS;
1429        if ((unsigned int)mode >= MPOL_MAX)
1430                return -EINVAL;
1431        if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1432                return -EINVAL;
1433        err = get_nodes(&nodes, nmask, maxnode);
1434        if (err)
1435                return err;
1436        return do_set_mempolicy(mode, flags, &nodes);
1437}
1438
1439SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1440                const unsigned long __user *, old_nodes,
1441                const unsigned long __user *, new_nodes)
1442{
1443        const struct cred *cred = current_cred(), *tcred;
1444        struct mm_struct *mm = NULL;
1445        struct task_struct *task;
1446        nodemask_t task_nodes;
1447        int err;
1448        nodemask_t *old;
1449        nodemask_t *new;
1450        NODEMASK_SCRATCH(scratch);
1451
1452        if (!scratch)
1453                return -ENOMEM;
1454
1455        old = &scratch->mask1;
1456        new = &scratch->mask2;
1457
1458        err = get_nodes(old, old_nodes, maxnode);
1459        if (err)
1460                goto out;
1461
1462        err = get_nodes(new, new_nodes, maxnode);
1463        if (err)
1464                goto out;
1465
1466        /* Find the mm_struct */
1467        rcu_read_lock();
1468        task = pid ? find_task_by_vpid(pid) : current;
1469        if (!task) {
1470                rcu_read_unlock();
1471                err = -ESRCH;
1472                goto out;
1473        }
1474        get_task_struct(task);
1475
1476        err = -EINVAL;
1477
1478        /*
1479         * Check if this process has the right to modify the specified
1480         * process. The right exists if the process has administrative
1481         * capabilities, superuser privileges or the same
1482         * userid as the target process.
1483         */
1484        tcred = __task_cred(task);
1485        if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1486            !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1487            !capable(CAP_SYS_NICE)) {
1488                rcu_read_unlock();
1489                err = -EPERM;
1490                goto out_put;
1491        }
1492        rcu_read_unlock();
1493
1494        task_nodes = cpuset_mems_allowed(task);
1495        /* Is the user allowed to access the target nodes? */
1496        if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1497                err = -EPERM;
1498                goto out_put;
1499        }
1500
1501        if (!nodes_subset(*new, node_states[N_MEMORY])) {
1502                err = -EINVAL;
1503                goto out_put;
1504        }
1505
1506        err = security_task_movememory(task);
1507        if (err)
1508                goto out_put;
1509
1510        mm = get_task_mm(task);
1511        put_task_struct(task);
1512
1513        if (!mm) {
1514                err = -EINVAL;
1515                goto out;
1516        }
1517
1518        err = do_migrate_pages(mm, old, new,
1519                capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1520
1521        mmput(mm);
1522out:
1523        NODEMASK_SCRATCH_FREE(scratch);
1524
1525        return err;
1526
1527out_put:
1528        put_task_struct(task);
1529        goto out;
1530
1531}
1532
1533
1534/* Retrieve NUMA policy */
1535SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1536                unsigned long __user *, nmask, unsigned long, maxnode,
1537                unsigned long, addr, unsigned long, flags)
1538{
1539        int err;
1540        int uninitialized_var(pval);
1541        nodemask_t nodes;
1542
1543        if (nmask != NULL && maxnode < MAX_NUMNODES)
1544                return -EINVAL;
1545
1546        err = do_get_mempolicy(&pval, &nodes, addr, flags);
1547
1548        if (err)
1549                return err;
1550
1551        if (policy && put_user(pval, policy))
1552                return -EFAULT;
1553
1554        if (nmask)
1555                err = copy_nodes_to_user(nmask, maxnode, &nodes);
1556
1557        return err;
1558}
1559
1560#ifdef CONFIG_COMPAT
1561
1562asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1563                                     compat_ulong_t __user *nmask,
1564                                     compat_ulong_t maxnode,
1565                                     compat_ulong_t addr, compat_ulong_t flags)
1566{
1567        long err;
1568        unsigned long __user *nm = NULL;
1569        unsigned long nr_bits, alloc_size;
1570        DECLARE_BITMAP(bm, MAX_NUMNODES);
1571
1572        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1573        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1574
1575        if (nmask)
1576                nm = compat_alloc_user_space(alloc_size);
1577
1578        err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1579
1580        if (!err && nmask) {
1581                unsigned long copy_size;
1582                copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1583                err = copy_from_user(bm, nm, copy_size);
1584                /* ensure entire bitmap is zeroed */
1585                err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1586                err |= compat_put_bitmap(nmask, bm, nr_bits);
1587        }
1588
1589        return err;
1590}
1591
1592asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1593                                     compat_ulong_t maxnode)
1594{
1595        long err = 0;
1596        unsigned long __user *nm = NULL;
1597        unsigned long nr_bits, alloc_size;
1598        DECLARE_BITMAP(bm, MAX_NUMNODES);
1599
1600        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1601        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1602
1603        if (nmask) {
1604                err = compat_get_bitmap(bm, nmask, nr_bits);
1605                nm = compat_alloc_user_space(alloc_size);
1606                err |= copy_to_user(nm, bm, alloc_size);
1607        }
1608
1609        if (err)
1610                return -EFAULT;
1611
1612        return sys_set_mempolicy(mode, nm, nr_bits+1);
1613}
1614
1615asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1616                             compat_ulong_t mode, compat_ulong_t __user *nmask,
1617                             compat_ulong_t maxnode, compat_ulong_t flags)
1618{
1619        long err = 0;
1620        unsigned long __user *nm = NULL;
1621        unsigned long nr_bits, alloc_size;
1622        nodemask_t bm;
1623
1624        nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1625        alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1626
1627        if (nmask) {
1628                err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1629                nm = compat_alloc_user_space(alloc_size);
1630                err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1631        }
1632
1633        if (err)
1634                return -EFAULT;
1635
1636        return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1637}
1638
1639#endif
1640
1641/*
1642 * get_vma_policy(@task, @vma, @addr)
1643 * @task - task for fallback if vma policy == default
1644 * @vma   - virtual memory area whose policy is sought
1645 * @addr  - address in @vma for shared policy lookup
1646 *
1647 * Returns effective policy for a VMA at specified address.
1648 * Falls back to @task or system default policy, as necessary.
1649 * Current or other task's task mempolicy and non-shared vma policies must be
1650 * protected by task_lock(task) by the caller.
1651 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1652 * count--added by the get_policy() vm_op, as appropriate--to protect against
1653 * freeing by another task.  It is the caller's responsibility to free the
1654 * extra reference for shared policies.
1655 */
1656struct mempolicy *get_vma_policy(struct task_struct *task,
1657                struct vm_area_struct *vma, unsigned long addr)
1658{
1659        struct mempolicy *pol = get_task_policy(task);
1660
1661        if (vma) {
1662                if (vma->vm_ops && vma->vm_ops->get_policy) {
1663                        struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1664                                                                        addr);
1665                        if (vpol)
1666                                pol = vpol;
1667                } else if (vma->vm_policy) {
1668                        pol = vma->vm_policy;
1669
1670                        /*
1671                         * shmem_alloc_page() passes MPOL_F_SHARED policy with
1672                         * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1673                         * count on these policies which will be dropped by
1674                         * mpol_cond_put() later
1675                         */
1676                        if (mpol_needs_cond_ref(pol))
1677                                mpol_get(pol);
1678                }
1679        }
1680        if (!pol)
1681                pol = &default_policy;
1682        return pol;
1683}
1684
1685bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1686{
1687        struct mempolicy *pol = get_task_policy(task);
1688        if (vma) {
1689                if (vma->vm_ops && vma->vm_ops->get_policy) {
1690                        bool ret = false;
1691
1692                        pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1693                        if (pol && (pol->flags & MPOL_F_MOF))
1694                                ret = true;
1695                        mpol_cond_put(pol);
1696
1697                        return ret;
1698                } else if (vma->vm_policy) {
1699                        pol = vma->vm_policy;
1700                }
1701        }
1702
1703        if (!pol)
1704                return default_policy.flags & MPOL_F_MOF;
1705
1706        return pol->flags & MPOL_F_MOF;
1707}
1708
1709static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1710{
1711        enum zone_type dynamic_policy_zone = policy_zone;
1712
1713        BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1714
1715        /*
1716         * if policy->v.nodes has movable memory only,
1717         * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1718         *
1719         * policy->v.nodes is intersect with node_states[N_MEMORY].
1720         * so if the following test faile, it implies
1721         * policy->v.nodes has movable memory only.
1722         */
1723        if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1724                dynamic_policy_zone = ZONE_MOVABLE;
1725
1726        return zone >= dynamic_policy_zone;
1727}
1728
1729/*
1730 * Return a nodemask representing a mempolicy for filtering nodes for
1731 * page allocation
1732 */
1733static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1734{
1735        /* Lower zones don't get a nodemask applied for MPOL_BIND */
1736        if (unlikely(policy->mode == MPOL_BIND) &&
1737                        apply_policy_zone(policy, gfp_zone(gfp)) &&
1738                        cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1739                return &policy->v.nodes;
1740
1741        return NULL;
1742}
1743
1744/* Return a zonelist indicated by gfp for node representing a mempolicy */
1745static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1746        int nd)
1747{
1748        switch (policy->mode) {
1749        case MPOL_PREFERRED:
1750                if (!(policy->flags & MPOL_F_LOCAL))
1751                        nd = policy->v.preferred_node;
1752                break;
1753        case MPOL_BIND:
1754                /*
1755                 * Normally, MPOL_BIND allocations are node-local within the
1756                 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1757                 * current node isn't part of the mask, we use the zonelist for
1758                 * the first node in the mask instead.
1759                 */
1760                if (unlikely(gfp & __GFP_THISNODE) &&
1761                                unlikely(!node_isset(nd, policy->v.nodes)))
1762                        nd = first_node(policy->v.nodes);
1763                break;
1764        default:
1765                BUG();
1766        }
1767        return node_zonelist(nd, gfp);
1768}
1769
1770/* Do dynamic interleaving for a process */
1771static unsigned interleave_nodes(struct mempolicy *policy)
1772{
1773        unsigned nid, next;
1774        struct task_struct *me = current;
1775
1776        nid = me->il_next;
1777        next = next_node(nid, policy->v.nodes);
1778        if (next >= MAX_NUMNODES)
1779                next = first_node(policy->v.nodes);
1780        if (next < MAX_NUMNODES)
1781                me->il_next = next;
1782        return nid;
1783}
1784
1785/*
1786 * Depending on the memory policy provide a node from which to allocate the
1787 * next slab entry.
1788 * @policy must be protected by freeing by the caller.  If @policy is
1789 * the current task's mempolicy, this protection is implicit, as only the
1790 * task can change it's policy.  The system default policy requires no
1791 * such protection.
1792 */
1793unsigned slab_node(void)
1794{
1795        struct mempolicy *policy;
1796
1797        if (in_interrupt())
1798                return numa_node_id();
1799
1800        policy = current->mempolicy;
1801        if (!policy || policy->flags & MPOL_F_LOCAL)
1802                return numa_node_id();
1803
1804        switch (policy->mode) {
1805        case MPOL_PREFERRED:
1806                /*
1807                 * handled MPOL_F_LOCAL above
1808                 */
1809                return policy->v.preferred_node;
1810
1811        case MPOL_INTERLEAVE:
1812                return interleave_nodes(policy);
1813
1814        case MPOL_BIND: {
1815                /*
1816                 * Follow bind policy behavior and start allocation at the
1817                 * first node.
1818                 */
1819                struct zonelist *zonelist;
1820                struct zone *zone;
1821                enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1822                zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1823                (void)first_zones_zonelist(zonelist, highest_zoneidx,
1824                                                        &policy->v.nodes,
1825                                                        &zone);
1826                return zone ? zone->node : numa_node_id();
1827        }
1828
1829        default:
1830                BUG();
1831        }
1832}
1833
1834/* Do static interleaving for a VMA with known offset. */
1835static unsigned offset_il_node(struct mempolicy *pol,
1836                struct vm_area_struct *vma, unsigned long off)
1837{
1838        unsigned nnodes = nodes_weight(pol->v.nodes);
1839        unsigned target;
1840        int c;
1841        int nid = NUMA_NO_NODE;
1842
1843        if (!nnodes)
1844                return numa_node_id();
1845        target = (unsigned int)off % nnodes;
1846        c = 0;
1847        do {
1848                nid = next_node(nid, pol->v.nodes);
1849                c++;
1850        } while (c <= target);
1851        return nid;
1852}
1853
1854/* Determine a node number for interleave */
1855static inline unsigned interleave_nid(struct mempolicy *pol,
1856                 struct vm_area_struct *vma, unsigned long addr, int shift)
1857{
1858        if (vma) {
1859                unsigned long off;
1860
1861                /*
1862                 * for small pages, there is no difference between
1863                 * shift and PAGE_SHIFT, so the bit-shift is safe.
1864                 * for huge pages, since vm_pgoff is in units of small
1865                 * pages, we need to shift off the always 0 bits to get
1866                 * a useful offset.
1867                 */
1868                BUG_ON(shift < PAGE_SHIFT);
1869                off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1870                off += (addr - vma->vm_start) >> shift;
1871                return offset_il_node(pol, vma, off);
1872        } else
1873                return interleave_nodes(pol);
1874}
1875
1876/*
1877 * Return the bit number of a random bit set in the nodemask.
1878 * (returns NUMA_NO_NODE if nodemask is empty)
1879 */
1880int node_random(const nodemask_t *maskp)
1881{
1882        int w, bit = NUMA_NO_NODE;
1883
1884        w = nodes_weight(*maskp);
1885        if (w)
1886                bit = bitmap_ord_to_pos(maskp->bits,
1887                        get_random_int() % w, MAX_NUMNODES);
1888        return bit;
1889}
1890
1891#ifdef CONFIG_HUGETLBFS
1892/*
1893 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1894 * @vma = virtual memory area whose policy is sought
1895 * @addr = address in @vma for shared policy lookup and interleave policy
1896 * @gfp_flags = for requested zone
1897 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1898 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1899 *
1900 * Returns a zonelist suitable for a huge page allocation and a pointer
1901 * to the struct mempolicy for conditional unref after allocation.
1902 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1903 * @nodemask for filtering the zonelist.
1904 *
1905 * Must be protected by get_mems_allowed()
1906 */
1907struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1908                                gfp_t gfp_flags, struct mempolicy **mpol,
1909                                nodemask_t **nodemask)
1910{
1911        struct zonelist *zl;
1912
1913        *mpol = get_vma_policy(current, vma, addr);
1914        *nodemask = NULL;       /* assume !MPOL_BIND */
1915
1916        if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1917                zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1918                                huge_page_shift(hstate_vma(vma))), gfp_flags);
1919        } else {
1920                zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1921                if ((*mpol)->mode == MPOL_BIND)
1922                        *nodemask = &(*mpol)->v.nodes;
1923        }
1924        return zl;
1925}
1926
1927/*
1928 * init_nodemask_of_mempolicy
1929 *
1930 * If the current task's mempolicy is "default" [NULL], return 'false'
1931 * to indicate default policy.  Otherwise, extract the policy nodemask
1932 * for 'bind' or 'interleave' policy into the argument nodemask, or
1933 * initialize the argument nodemask to contain the single node for
1934 * 'preferred' or 'local' policy and return 'true' to indicate presence
1935 * of non-default mempolicy.
1936 *
1937 * We don't bother with reference counting the mempolicy [mpol_get/put]
1938 * because the current task is examining it's own mempolicy and a task's
1939 * mempolicy is only ever changed by the task itself.
1940 *
1941 * N.B., it is the caller's responsibility to free a returned nodemask.
1942 */
1943bool init_nodemask_of_mempolicy(nodemask_t *mask)
1944{
1945        struct mempolicy *mempolicy;
1946        int nid;
1947
1948        if (!(mask && current->mempolicy))
1949                return false;
1950
1951        task_lock(current);
1952        mempolicy = current->mempolicy;
1953        switch (mempolicy->mode) {
1954        case MPOL_PREFERRED:
1955                if (mempolicy->flags & MPOL_F_LOCAL)
1956                        nid = numa_node_id();
1957                else
1958                        nid = mempolicy->v.preferred_node;
1959                init_nodemask_of_node(mask, nid);
1960                break;
1961
1962        case MPOL_BIND:
1963                /* Fall through */
1964        case MPOL_INTERLEAVE:
1965                *mask =  mempolicy->v.nodes;
1966                break;
1967
1968        default:
1969                BUG();
1970        }
1971        task_unlock(current);
1972
1973        return true;
1974}
1975#endif
1976
1977/*
1978 * mempolicy_nodemask_intersects
1979 *
1980 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1981 * policy.  Otherwise, check for intersection between mask and the policy
1982 * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1983 * policy, always return true since it may allocate elsewhere on fallback.
1984 *
1985 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1986 */
1987bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1988                                        const nodemask_t *mask)
1989{
1990        struct mempolicy *mempolicy;
1991        bool ret = true;
1992
1993        if (!mask)
1994                return ret;
1995        task_lock(tsk);
1996        mempolicy = tsk->mempolicy;
1997        if (!mempolicy)
1998                goto out;
1999
2000        switch (mempolicy->mode) {
2001        case MPOL_PREFERRED:
2002                /*
2003                 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2004                 * allocate from, they may fallback to other nodes when oom.
2005                 * Thus, it's possible for tsk to have allocated memory from
2006                 * nodes in mask.
2007                 */
2008                break;
2009        case MPOL_BIND:
2010        case MPOL_INTERLEAVE:
2011                ret = nodes_intersects(mempolicy->v.nodes, *mask);
2012                break;
2013        default:
2014                BUG();
2015        }
2016out:
2017        task_unlock(tsk);
2018        return ret;
2019}
2020
2021/* Allocate a page in interleaved policy.
2022   Own path because it needs to do special accounting. */
2023static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2024                                        unsigned nid)
2025{
2026        struct zonelist *zl;
2027        struct page *page;
2028
2029        zl = node_zonelist(nid, gfp);
2030        page = __alloc_pages(gfp, order, zl);
2031        if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
2032                inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2033        return page;
2034}
2035
2036/**
2037 *      alloc_pages_vma - Allocate a page for a VMA.
2038 *
2039 *      @gfp:
2040 *      %GFP_USER    user allocation.
2041 *      %GFP_KERNEL  kernel allocations,
2042 *      %GFP_HIGHMEM highmem/user allocations,
2043 *      %GFP_FS      allocation should not call back into a file system.
2044 *      %GFP_ATOMIC  don't sleep.
2045 *
2046 *      @order:Order of the GFP allocation.
2047 *      @vma:  Pointer to VMA or NULL if not available.
2048 *      @addr: Virtual Address of the allocation. Must be inside the VMA.
2049 *
2050 *      This function allocates a page from the kernel page pool and applies
2051 *      a NUMA policy associated with the VMA or the current process.
2052 *      When VMA is not NULL caller must hold down_read on the mmap_sem of the
2053 *      mm_struct of the VMA to prevent it from going away. Should be used for
2054 *      all allocations for pages that will be mapped into
2055 *      user space. Returns NULL when no page can be allocated.
2056 *
2057 *      Should be called with the mm_sem of the vma hold.
2058 */
2059struct page *
2060alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2061                unsigned long addr, int node)
2062{
2063        struct mempolicy *pol;
2064        struct page *page;
2065        unsigned int cpuset_mems_cookie;
2066
2067retry_cpuset:
2068        pol = get_vma_policy(current, vma, addr);
2069        cpuset_mems_cookie = get_mems_allowed();
2070
2071        if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2072                unsigned nid;
2073
2074                nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2075                mpol_cond_put(pol);
2076                page = alloc_page_interleave(gfp, order, nid);
2077                if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2078                        goto retry_cpuset;
2079
2080                return page;
2081        }
2082        page = __alloc_pages_nodemask(gfp, order,
2083                                      policy_zonelist(gfp, pol, node),
2084                                      policy_nodemask(gfp, pol));
2085        if (unlikely(mpol_needs_cond_ref(pol)))
2086                __mpol_put(pol);
2087        if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2088                goto retry_cpuset;
2089        return page;
2090}
2091
2092/**
2093 *      alloc_pages_current - Allocate pages.
2094 *
2095 *      @gfp:
2096 *              %GFP_USER   user allocation,
2097 *              %GFP_KERNEL kernel allocation,
2098 *              %GFP_HIGHMEM highmem allocation,
2099 *              %GFP_FS     don't call back into a file system.
2100 *              %GFP_ATOMIC don't sleep.
2101 *      @order: Power of two of allocation size in pages. 0 is a single page.
2102 *
2103 *      Allocate a page from the kernel page pool.  When not in
2104 *      interrupt context and apply the current process NUMA policy.
2105 *      Returns NULL when no page can be allocated.
2106 *
2107 *      Don't call cpuset_update_task_memory_state() unless
2108 *      1) it's ok to take cpuset_sem (can WAIT), and
2109 *      2) allocating for current task (not interrupt).
2110 */
2111struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2112{
2113        struct mempolicy *pol = get_task_policy(current);
2114        struct page *page;
2115        unsigned int cpuset_mems_cookie;
2116
2117        if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2118                pol = &default_policy;
2119
2120retry_cpuset:
2121        cpuset_mems_cookie = get_mems_allowed();
2122
2123        /*
2124         * No reference counting needed for current->mempolicy
2125         * nor system default_policy
2126         */
2127        if (pol->mode == MPOL_INTERLEAVE)
2128                page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2129        else
2130                page = __alloc_pages_nodemask(gfp, order,
2131                                policy_zonelist(gfp, pol, numa_node_id()),
2132                                policy_nodemask(gfp, pol));
2133
2134        if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2135                goto retry_cpuset;
2136
2137        return page;
2138}
2139EXPORT_SYMBOL(alloc_pages_current);
2140
2141int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2142{
2143        struct mempolicy *pol = mpol_dup(vma_policy(src));
2144
2145        if (IS_ERR(pol))
2146                return PTR_ERR(pol);
2147        dst->vm_policy = pol;
2148        return 0;
2149}
2150
2151/*
2152 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2153 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2154 * with the mems_allowed returned by cpuset_mems_allowed().  This
2155 * keeps mempolicies cpuset relative after its cpuset moves.  See
2156 * further kernel/cpuset.c update_nodemask().
2157 *
2158 * current's mempolicy may be rebinded by the other task(the task that changes
2159 * cpuset's mems), so we needn't do rebind work for current task.
2160 */
2161
2162/* Slow path of a mempolicy duplicate */
2163struct mempolicy *__mpol_dup(struct mempolicy *old)
2164{
2165        struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2166
2167        if (!new)
2168                return ERR_PTR(-ENOMEM);
2169
2170        /* task's mempolicy is protected by alloc_lock */
2171        if (old == current->mempolicy) {
2172                task_lock(current);
2173                *new = *old;
2174                task_unlock(current);
2175        } else
2176                *new = *old;
2177
2178        rcu_read_lock();
2179        if (current_cpuset_is_being_rebound()) {
2180                nodemask_t mems = cpuset_mems_allowed(current);
2181                if (new->flags & MPOL_F_REBINDING)
2182                        mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2183                else
2184                        mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2185        }
2186        rcu_read_unlock();
2187        atomic_set(&new->refcnt, 1);
2188        return new;
2189}
2190
2191/* Slow path of a mempolicy comparison */
2192bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2193{
2194        if (!a || !b)
2195                return false;
2196        if (a->mode != b->mode)
2197                return false;
2198        if (a->flags != b->flags)
2199                return false;
2200        if (mpol_store_user_nodemask(a))
2201                if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2202                        return false;
2203
2204        switch (a->mode) {
2205        case MPOL_BIND:
2206                /* Fall through */
2207        case MPOL_INTERLEAVE:
2208                return !!nodes_equal(a->v.nodes, b->v.nodes);
2209        case MPOL_PREFERRED:
2210                return a->v.preferred_node == b->v.preferred_node;
2211        default:
2212                BUG();
2213                return false;
2214        }
2215}
2216
2217/*
2218 * Shared memory backing store policy support.
2219 *
2220 * Remember policies even when nobody has shared memory mapped.
2221 * The policies are kept in Red-Black tree linked from the inode.
2222 * They are protected by the sp->lock spinlock, which should be held
2223 * for any accesses to the tree.
2224 */
2225
2226/* lookup first element intersecting start-end */
2227/* Caller holds sp->lock */
2228static struct sp_node *
2229sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2230{
2231        struct rb_node *n = sp->root.rb_node;
2232
2233        while (n) {
2234                struct sp_node *p = rb_entry(n, struct sp_node, nd);
2235
2236                if (start >= p->end)
2237                        n = n->rb_right;
2238                else if (end <= p->start)
2239                        n = n->rb_left;
2240                else
2241                        break;
2242        }
2243        if (!n)
2244                return NULL;
2245        for (;;) {
2246                struct sp_node *w = NULL;
2247                struct rb_node *prev = rb_prev(n);
2248                if (!prev)
2249                        break;
2250                w = rb_entry(prev, struct sp_node, nd);
2251                if (w->end <= start)
2252                        break;
2253                n = prev;
2254        }
2255        return rb_entry(n, struct sp_node, nd);
2256}
2257
2258/* Insert a new shared policy into the list. */
2259/* Caller holds sp->lock */
2260static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2261{
2262        struct rb_node **p = &sp->root.rb_node;
2263        struct rb_node *parent = NULL;
2264        struct sp_node *nd;
2265
2266        while (*p) {
2267                parent = *p;
2268                nd = rb_entry(parent, struct sp_node, nd);
2269                if (new->start < nd->start)
2270                        p = &(*p)->rb_left;
2271                else if (new->end > nd->end)
2272                        p = &(*p)->rb_right;
2273                else
2274                        BUG();
2275        }
2276        rb_link_node(&new->nd, parent, p);
2277        rb_insert_color(&new->nd, &sp->root);
2278        pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2279                 new->policy ? new->policy->mode : 0);
2280}
2281
2282/* Find shared policy intersecting idx */
2283struct mempolicy *
2284mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2285{
2286        struct mempolicy *pol = NULL;
2287        struct sp_node *sn;
2288
2289        if (!sp->root.rb_node)
2290                return NULL;
2291        spin_lock(&sp->lock);
2292        sn = sp_lookup(sp, idx, idx+1);
2293        if (sn) {
2294                mpol_get(sn->policy);
2295                pol = sn->policy;
2296        }
2297        spin_unlock(&sp->lock);
2298        return pol;
2299}
2300
2301static void sp_free(struct sp_node *n)
2302{
2303        mpol_put(n->policy);
2304        kmem_cache_free(sn_cache, n);
2305}
2306
2307#ifdef CONFIG_NUMA_BALANCING
2308static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2309{
2310        /* Never defer a private fault */
2311        if (cpupid_match_pid(p, last_cpupid))
2312                return false;
2313
2314        if (p->numa_migrate_deferred) {
2315                p->numa_migrate_deferred--;
2316                return true;
2317        }
2318        return false;
2319}
2320
2321static inline void defer_numa_migrate(struct task_struct *p)
2322{
2323        p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
2324}
2325#else
2326static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2327{
2328        return false;
2329}
2330
2331static inline void defer_numa_migrate(struct task_struct *p)
2332{
2333}
2334#endif /* CONFIG_NUMA_BALANCING */
2335
2336/**
2337 * mpol_misplaced - check whether current page node is valid in policy
2338 *
2339 * @page   - page to be checked
2340 * @vma    - vm area where page mapped
2341 * @addr   - virtual address where page mapped
2342 *
2343 * Lookup current policy node id for vma,addr and "compare to" page's
2344 * node id.
2345 *
2346 * Returns:
2347 *      -1      - not misplaced, page is in the right node
2348 *      node    - node id where the page should be
2349 *
2350 * Policy determination "mimics" alloc_page_vma().
2351 * Called from fault path where we know the vma and faulting address.
2352 */
2353int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2354{
2355        struct mempolicy *pol;
2356        struct zone *zone;
2357        int curnid = page_to_nid(page);
2358        unsigned long pgoff;
2359        int thiscpu = raw_smp_processor_id();
2360        int thisnid = cpu_to_node(thiscpu);
2361        int polnid = -1;
2362        int ret = -1;
2363
2364        BUG_ON(!vma);
2365
2366        pol = get_vma_policy(current, vma, addr);
2367        if (!(pol->flags & MPOL_F_MOF))
2368                goto out;
2369
2370        switch (pol->mode) {
2371        case MPOL_INTERLEAVE:
2372                BUG_ON(addr >= vma->vm_end);
2373                BUG_ON(addr < vma->vm_start);
2374
2375                pgoff = vma->vm_pgoff;
2376                pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2377                polnid = offset_il_node(pol, vma, pgoff);
2378                break;
2379
2380        case MPOL_PREFERRED:
2381                if (pol->flags & MPOL_F_LOCAL)
2382                        polnid = numa_node_id();
2383                else
2384                        polnid = pol->v.preferred_node;
2385                break;
2386
2387        case MPOL_BIND:
2388                /*
2389                 * allows binding to multiple nodes.
2390                 * use current page if in policy nodemask,
2391                 * else select nearest allowed node, if any.
2392                 * If no allowed nodes, use current [!misplaced].
2393                 */
2394                if (node_isset(curnid, pol->v.nodes))
2395                        goto out;
2396                (void)first_zones_zonelist(
2397                                node_zonelist(numa_node_id(), GFP_HIGHUSER),
2398                                gfp_zone(GFP_HIGHUSER),
2399                                &pol->v.nodes, &zone);
2400                polnid = zone->node;
2401                break;
2402
2403        default:
2404                BUG();
2405        }
2406
2407        /* Migrate the page towards the node whose CPU is referencing it */
2408        if (pol->flags & MPOL_F_MORON) {
2409                int last_cpupid;
2410                int this_cpupid;
2411
2412                polnid = thisnid;
2413                this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
2414
2415                /*
2416                 * Multi-stage node selection is used in conjunction
2417                 * with a periodic migration fault to build a temporal
2418                 * task<->page relation. By using a two-stage filter we
2419                 * remove short/unlikely relations.
2420                 *
2421                 * Using P(p) ~ n_p / n_t as per frequentist
2422                 * probability, we can equate a task's usage of a
2423                 * particular page (n_p) per total usage of this
2424                 * page (n_t) (in a given time-span) to a probability.
2425                 *
2426                 * Our periodic faults will sample this probability and
2427                 * getting the same result twice in a row, given these
2428                 * samples are fully independent, is then given by
2429                 * P(n)^2, provided our sample period is sufficiently
2430                 * short compared to the usage pattern.
2431                 *
2432                 * This quadric squishes small probabilities, making
2433                 * it less likely we act on an unlikely task<->page
2434                 * relation.
2435                 */
2436                last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
2437                if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
2438
2439                        /* See sysctl_numa_balancing_migrate_deferred comment */
2440                        if (!cpupid_match_pid(current, last_cpupid))
2441                                defer_numa_migrate(current);
2442
2443                        goto out;
2444                }
2445
2446                /*
2447                 * The quadratic filter above reduces extraneous migration
2448                 * of shared pages somewhat. This code reduces it even more,
2449                 * reducing the overhead of page migrations of shared pages.
2450                 * This makes workloads with shared pages rely more on
2451                 * "move task near its memory", and less on "move memory
2452                 * towards its task", which is exactly what we want.
2453                 */
2454                if (numa_migrate_deferred(current, last_cpupid))
2455                        goto out;
2456        }
2457
2458        if (curnid != polnid)
2459                ret = polnid;
2460out:
2461        mpol_cond_put(pol);
2462
2463        return ret;
2464}
2465
2466static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2467{
2468        pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2469        rb_erase(&n->nd, &sp->root);
2470        sp_free(n);
2471}
2472
2473static void sp_node_init(struct sp_node *node, unsigned long start,
2474                        unsigned long end, struct mempolicy *pol)
2475{
2476        node->start = start;
2477        node->end = end;
2478        node->policy = pol;
2479}
2480
2481static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2482                                struct mempolicy *pol)
2483{
2484        struct sp_node *n;
2485        struct mempolicy *newpol;
2486
2487        n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2488        if (!n)
2489                return NULL;
2490
2491        newpol = mpol_dup(pol);
2492        if (IS_ERR(newpol)) {
2493                kmem_cache_free(sn_cache, n);
2494                return NULL;
2495        }
2496        newpol->flags |= MPOL_F_SHARED;
2497        sp_node_init(n, start, end, newpol);
2498
2499        return n;
2500}
2501
2502/* Replace a policy range. */
2503static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2504                                 unsigned long end, struct sp_node *new)
2505{
2506        struct sp_node *n;
2507        struct sp_node *n_new = NULL;
2508        struct mempolicy *mpol_new = NULL;
2509        int ret = 0;
2510
2511restart:
2512        spin_lock(&sp->lock);
2513        n = sp_lookup(sp, start, end);
2514        /* Take care of old policies in the same range. */
2515        while (n && n->start < end) {
2516                struct rb_node *next = rb_next(&n->nd);
2517                if (n->start >= start) {
2518                        if (n->end <= end)
2519                                sp_delete(sp, n);
2520                        else
2521                                n->start = end;
2522                } else {
2523                        /* Old policy spanning whole new range. */
2524                        if (n->end > end) {
2525                                if (!n_new)
2526                                        goto alloc_new;
2527
2528                                *mpol_new = *n->policy;
2529                                atomic_set(&mpol_new->refcnt, 1);
2530                                sp_node_init(n_new, end, n->end, mpol_new);
2531                                n->end = start;
2532                                sp_insert(sp, n_new);
2533                                n_new = NULL;
2534                                mpol_new = NULL;
2535                                break;
2536                        } else
2537                                n->end = start;
2538                }
2539                if (!next)
2540                        break;
2541                n = rb_entry(next, struct sp_node, nd);
2542        }
2543        if (new)
2544                sp_insert(sp, new);
2545        spin_unlock(&sp->lock);
2546        ret = 0;
2547
2548err_out:
2549        if (mpol_new)
2550                mpol_put(mpol_new);
2551        if (n_new)
2552                kmem_cache_free(sn_cache, n_new);
2553
2554        return ret;
2555
2556alloc_new:
2557        spin_unlock(&sp->lock);
2558        ret = -ENOMEM;
2559        n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2560        if (!n_new)
2561                goto err_out;
2562        mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2563        if (!mpol_new)
2564                goto err_out;
2565        goto restart;
2566}
2567
2568/**
2569 * mpol_shared_policy_init - initialize shared policy for inode
2570 * @sp: pointer to inode shared policy
2571 * @mpol:  struct mempolicy to install
2572 *
2573 * Install non-NULL @mpol in inode's shared policy rb-tree.
2574 * On entry, the current task has a reference on a non-NULL @mpol.
2575 * This must be released on exit.
2576 * This is called at get_inode() calls and we can use GFP_KERNEL.
2577 */
2578void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2579{
2580        int ret;
2581
2582        sp->root = RB_ROOT;             /* empty tree == default mempolicy */
2583        spin_lock_init(&sp->lock);
2584
2585        if (mpol) {
2586                struct vm_area_struct pvma;
2587                struct mempolicy *new;
2588                NODEMASK_SCRATCH(scratch);
2589
2590                if (!scratch)
2591                        goto put_mpol;
2592                /* contextualize the tmpfs mount point mempolicy */
2593                new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2594                if (IS_ERR(new))
2595                        goto free_scratch; /* no valid nodemask intersection */
2596
2597                task_lock(current);
2598                ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2599                task_unlock(current);
2600                if (ret)
2601                        goto put_new;
2602
2603                /* Create pseudo-vma that contains just the policy */
2604                memset(&pvma, 0, sizeof(struct vm_area_struct));
2605                pvma.vm_end = TASK_SIZE;        /* policy covers entire file */
2606                mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2607
2608put_new:
2609                mpol_put(new);                  /* drop initial ref */
2610free_scratch:
2611                NODEMASK_SCRATCH_FREE(scratch);
2612put_mpol:
2613                mpol_put(mpol); /* drop our incoming ref on sb mpol */
2614        }
2615}
2616
2617int mpol_set_shared_policy(struct shared_policy *info,
2618                        struct vm_area_struct *vma, struct mempolicy *npol)
2619{
2620        int err;
2621        struct sp_node *new = NULL;
2622        unsigned long sz = vma_pages(vma);
2623
2624        pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2625                 vma->vm_pgoff,
2626                 sz, npol ? npol->mode : -1,
2627                 npol ? npol->flags : -1,
2628                 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2629
2630        if (npol) {
2631                new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2632                if (!new)
2633                        return -ENOMEM;
2634        }
2635        err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2636        if (err && new)
2637                sp_free(new);
2638        return err;
2639}
2640
2641/* Free a backing policy store on inode delete. */
2642void mpol_free_shared_policy(struct shared_policy *p)
2643{
2644        struct sp_node *n;
2645        struct rb_node *next;
2646
2647        if (!p->root.rb_node)
2648                return;
2649        spin_lock(&p->lock);
2650        next = rb_first(&p->root);
2651        while (next) {
2652                n = rb_entry(next, struct sp_node, nd);
2653                next = rb_next(&n->nd);
2654                sp_delete(p, n);
2655        }
2656        spin_unlock(&p->lock);
2657}
2658
2659#ifdef CONFIG_NUMA_BALANCING
2660static bool __initdata numabalancing_override;
2661
2662static void __init check_numabalancing_enable(void)
2663{
2664        bool numabalancing_default = false;
2665
2666        if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2667                numabalancing_default = true;
2668
2669        if (nr_node_ids > 1 && !numabalancing_override) {
2670                printk(KERN_INFO "Enabling automatic NUMA balancing. "
2671                        "Configure with numa_balancing= or sysctl");
2672                set_numabalancing_state(numabalancing_default);
2673        }
2674}
2675
2676static int __init setup_numabalancing(char *str)
2677{
2678        int ret = 0;
2679        if (!str)
2680                goto out;
2681        numabalancing_override = true;
2682
2683        if (!strcmp(str, "enable")) {
2684                set_numabalancing_state(true);
2685                ret = 1;
2686        } else if (!strcmp(str, "disable")) {
2687                set_numabalancing_state(false);
2688                ret = 1;
2689        }
2690out:
2691        if (!ret)
2692                printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2693
2694        return ret;
2695}
2696__setup("numa_balancing=", setup_numabalancing);
2697#else
2698static inline void __init check_numabalancing_enable(void)
2699{
2700}
2701#endif /* CONFIG_NUMA_BALANCING */
2702
2703/* assumes fs == KERNEL_DS */
2704void __init numa_policy_init(void)
2705{
2706        nodemask_t interleave_nodes;
2707        unsigned long largest = 0;
2708        int nid, prefer = 0;
2709
2710        policy_cache = kmem_cache_create("numa_policy",
2711                                         sizeof(struct mempolicy),
2712                                         0, SLAB_PANIC, NULL);
2713
2714        sn_cache = kmem_cache_create("shared_policy_node",
2715                                     sizeof(struct sp_node),
2716                                     0, SLAB_PANIC, NULL);
2717
2718        for_each_node(nid) {
2719                preferred_node_policy[nid] = (struct mempolicy) {
2720                        .refcnt = ATOMIC_INIT(1),
2721                        .mode = MPOL_PREFERRED,
2722                        .flags = MPOL_F_MOF | MPOL_F_MORON,
2723                        .v = { .preferred_node = nid, },
2724                };
2725        }
2726
2727        /*
2728         * Set interleaving policy for system init. Interleaving is only
2729         * enabled across suitably sized nodes (default is >= 16MB), or
2730         * fall back to the largest node if they're all smaller.
2731         */
2732        nodes_clear(interleave_nodes);
2733        for_each_node_state(nid, N_MEMORY) {
2734                unsigned long total_pages = node_present_pages(nid);
2735
2736                /* Preserve the largest node */
2737                if (largest < total_pages) {
2738                        largest = total_pages;
2739                        prefer = nid;
2740                }
2741
2742                /* Interleave this node? */
2743                if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2744                        node_set(nid, interleave_nodes);
2745        }
2746
2747        /* All too small, use the largest */
2748        if (unlikely(nodes_empty(interleave_nodes)))
2749                node_set(prefer, interleave_nodes);
2750
2751        if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2752                printk("numa_policy_init: interleaving failed\n");
2753
2754        check_numabalancing_enable();
2755}
2756
2757/* Reset policy of current process to default */
2758void numa_default_policy(void)
2759{
2760        do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2761}
2762
2763/*
2764 * Parse and format mempolicy from/to strings
2765 */
2766
2767/*
2768 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2769 */
2770static const char * const policy_modes[] =
2771{
2772        [MPOL_DEFAULT]    = "default",
2773        [MPOL_PREFERRED]  = "prefer",
2774        [MPOL_BIND]       = "bind",
2775        [MPOL_INTERLEAVE] = "interleave",
2776        [MPOL_LOCAL]      = "local",
2777};
2778
2779
2780#ifdef CONFIG_TMPFS
2781/**
2782 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2783 * @str:  string containing mempolicy to parse
2784 * @mpol:  pointer to struct mempolicy pointer, returned on success.
2785 *
2786 * Format of input:
2787 *      <mode>[=<flags>][:<nodelist>]
2788 *
2789 * On success, returns 0, else 1
2790 */
2791int mpol_parse_str(char *str, struct mempolicy **mpol)
2792{
2793        struct mempolicy *new = NULL;
2794        unsigned short mode;
2795        unsigned short mode_flags;
2796        nodemask_t nodes;
2797        char *nodelist = strchr(str, ':');
2798        char *flags = strchr(str, '=');
2799        int err = 1;
2800
2801        if (nodelist) {
2802                /* NUL-terminate mode or flags string */
2803                *nodelist++ = '\0';
2804                if (nodelist_parse(nodelist, nodes))
2805                        goto out;
2806                if (!nodes_subset(nodes, node_states[N_MEMORY]))
2807                        goto out;
2808        } else
2809                nodes_clear(nodes);
2810
2811        if (flags)
2812                *flags++ = '\0';        /* terminate mode string */
2813
2814        for (mode = 0; mode < MPOL_MAX; mode++) {
2815                if (!strcmp(str, policy_modes[mode])) {
2816                        break;
2817                }
2818        }
2819        if (mode >= MPOL_MAX)
2820                goto out;
2821
2822        switch (mode) {
2823        case MPOL_PREFERRED:
2824                /*
2825                 * Insist on a nodelist of one node only
2826                 */
2827                if (nodelist) {
2828                        char *rest = nodelist;
2829                        while (isdigit(*rest))
2830                                rest++;
2831                        if (*rest)
2832                                goto out;
2833                }
2834                break;
2835        case MPOL_INTERLEAVE:
2836                /*
2837                 * Default to online nodes with memory if no nodelist
2838                 */
2839                if (!nodelist)
2840                        nodes = node_states[N_MEMORY];
2841                break;
2842        case MPOL_LOCAL:
2843                /*
2844                 * Don't allow a nodelist;  mpol_new() checks flags
2845                 */
2846                if (nodelist)
2847                        goto out;
2848                mode = MPOL_PREFERRED;
2849                break;
2850        case MPOL_DEFAULT:
2851                /*
2852                 * Insist on a empty nodelist
2853                 */
2854                if (!nodelist)
2855                        err = 0;
2856                goto out;
2857        case MPOL_BIND:
2858                /*
2859                 * Insist on a nodelist
2860                 */
2861                if (!nodelist)
2862                        goto out;
2863        }
2864
2865        mode_flags = 0;
2866        if (flags) {
2867                /*
2868                 * Currently, we only support two mutually exclusive
2869                 * mode flags.
2870                 */
2871                if (!strcmp(flags, "static"))
2872                        mode_flags |= MPOL_F_STATIC_NODES;
2873                else if (!strcmp(flags, "relative"))
2874                        mode_flags |= MPOL_F_RELATIVE_NODES;
2875                else
2876                        goto out;
2877        }
2878
2879        new = mpol_new(mode, mode_flags, &nodes);
2880        if (IS_ERR(new))
2881                goto out;
2882
2883        /*
2884         * Save nodes for mpol_to_str() to show the tmpfs mount options
2885         * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886         */
2887        if (mode != MPOL_PREFERRED)
2888                new->v.nodes = nodes;
2889        else if (nodelist)
2890                new->v.preferred_node = first_node(nodes);
2891        else
2892                new->flags |= MPOL_F_LOCAL;
2893
2894        /*
2895         * Save nodes for contextualization: this will be used to "clone"
2896         * the mempolicy in a specific context [cpuset] at a later time.
2897         */
2898        new->w.user_nodemask = nodes;
2899
2900        err = 0;
2901
2902out:
2903        /* Restore string for error message */
2904        if (nodelist)
2905                *--nodelist = ':';
2906        if (flags)
2907                *--flags = '=';
2908        if (!err)
2909                *mpol = new;
2910        return err;
2911}
2912#endif /* CONFIG_TMPFS */
2913
2914/**
2915 * mpol_to_str - format a mempolicy structure for printing
2916 * @buffer:  to contain formatted mempolicy string
2917 * @maxlen:  length of @buffer
2918 * @pol:  pointer to mempolicy to be formatted
2919 *
2920 * Convert @pol into a string.  If @buffer is too short, truncate the string.
2921 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2922 * longest flag, "relative", and to display at least a few node ids.
2923 */
2924void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2925{
2926        char *p = buffer;
2927        nodemask_t nodes = NODE_MASK_NONE;
2928        unsigned short mode = MPOL_DEFAULT;
2929        unsigned short flags = 0;
2930
2931        if (pol && pol != &default_policy) {
2932                mode = pol->mode;
2933                flags = pol->flags;
2934        }
2935
2936        switch (mode) {
2937        case MPOL_DEFAULT:
2938                break;
2939        case MPOL_PREFERRED:
2940                if (flags & MPOL_F_LOCAL)
2941                        mode = MPOL_LOCAL;
2942                else
2943                        node_set(pol->v.preferred_node, nodes);
2944                break;
2945        case MPOL_BIND:
2946        case MPOL_INTERLEAVE:
2947                nodes = pol->v.nodes;
2948                break;
2949        default:
2950                WARN_ON_ONCE(1);
2951                snprintf(p, maxlen, "unknown");
2952                return;
2953        }
2954
2955        p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2956
2957        if (flags & MPOL_MODE_FLAGS) {
2958                p += snprintf(p, buffer + maxlen - p, "=");
2959
2960                /*
2961                 * Currently, the only defined flags are mutually exclusive
2962                 */
2963                if (flags & MPOL_F_STATIC_NODES)
2964                        p += snprintf(p, buffer + maxlen - p, "static");
2965                else if (flags & MPOL_F_RELATIVE_NODES)
2966                        p += snprintf(p, buffer + maxlen - p, "relative");
2967        }
2968
2969        if (!nodes_empty(nodes)) {
2970                p += snprintf(p, buffer + maxlen - p, ":");
2971                p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2972        }
2973}
2974