linux/mm/mmap.c
<<
>>
Prefs
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/backing-dev.h>
  12#include <linux/mm.h>
  13#include <linux/shm.h>
  14#include <linux/mman.h>
  15#include <linux/pagemap.h>
  16#include <linux/swap.h>
  17#include <linux/syscalls.h>
  18#include <linux/capability.h>
  19#include <linux/init.h>
  20#include <linux/file.h>
  21#include <linux/fs.h>
  22#include <linux/personality.h>
  23#include <linux/security.h>
  24#include <linux/hugetlb.h>
  25#include <linux/profile.h>
  26#include <linux/export.h>
  27#include <linux/mount.h>
  28#include <linux/mempolicy.h>
  29#include <linux/rmap.h>
  30#include <linux/mmu_notifier.h>
  31#include <linux/perf_event.h>
  32#include <linux/audit.h>
  33#include <linux/khugepaged.h>
  34#include <linux/uprobes.h>
  35#include <linux/rbtree_augmented.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/notifier.h>
  38#include <linux/memory.h>
  39
  40#include <asm/uaccess.h>
  41#include <asm/cacheflush.h>
  42#include <asm/tlb.h>
  43#include <asm/mmu_context.h>
  44
  45#include "internal.h"
  46
  47#ifndef arch_mmap_check
  48#define arch_mmap_check(addr, len, flags)       (0)
  49#endif
  50
  51#ifndef arch_rebalance_pgtables
  52#define arch_rebalance_pgtables(addr, len)              (addr)
  53#endif
  54
  55static void unmap_region(struct mm_struct *mm,
  56                struct vm_area_struct *vma, struct vm_area_struct *prev,
  57                unsigned long start, unsigned long end);
  58
  59/* description of effects of mapping type and prot in current implementation.
  60 * this is due to the limited x86 page protection hardware.  The expected
  61 * behavior is in parens:
  62 *
  63 * map_type     prot
  64 *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
  65 * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  66 *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
  67 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  68 *              
  69 * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
  70 *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
  71 *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
  72 *
  73 */
  74pgprot_t protection_map[16] = {
  75        __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  76        __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  77};
  78
  79pgprot_t vm_get_page_prot(unsigned long vm_flags)
  80{
  81        return __pgprot(pgprot_val(protection_map[vm_flags &
  82                                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  83                        pgprot_val(arch_vm_get_page_prot(vm_flags)));
  84}
  85EXPORT_SYMBOL(vm_get_page_prot);
  86
  87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  88int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
  89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  90unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  91unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  92/*
  93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  94 * other variables. It can be updated by several CPUs frequently.
  95 */
  96struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  97
  98/*
  99 * The global memory commitment made in the system can be a metric
 100 * that can be used to drive ballooning decisions when Linux is hosted
 101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 102 * balancing memory across competing virtual machines that are hosted.
 103 * Several metrics drive this policy engine including the guest reported
 104 * memory commitment.
 105 */
 106unsigned long vm_memory_committed(void)
 107{
 108        return percpu_counter_read_positive(&vm_committed_as);
 109}
 110EXPORT_SYMBOL_GPL(vm_memory_committed);
 111
 112/*
 113 * Check that a process has enough memory to allocate a new virtual
 114 * mapping. 0 means there is enough memory for the allocation to
 115 * succeed and -ENOMEM implies there is not.
 116 *
 117 * We currently support three overcommit policies, which are set via the
 118 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 119 *
 120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 121 * Additional code 2002 Jul 20 by Robert Love.
 122 *
 123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 124 *
 125 * Note this is a helper function intended to be used by LSMs which
 126 * wish to use this logic.
 127 */
 128int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 129{
 130        unsigned long free, allowed, reserve;
 131
 132        vm_acct_memory(pages);
 133
 134        /*
 135         * Sometimes we want to use more memory than we have
 136         */
 137        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 138                return 0;
 139
 140        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 141                free = global_page_state(NR_FREE_PAGES);
 142                free += global_page_state(NR_FILE_PAGES);
 143
 144                /*
 145                 * shmem pages shouldn't be counted as free in this
 146                 * case, they can't be purged, only swapped out, and
 147                 * that won't affect the overall amount of available
 148                 * memory in the system.
 149                 */
 150                free -= global_page_state(NR_SHMEM);
 151
 152                free += get_nr_swap_pages();
 153
 154                /*
 155                 * Any slabs which are created with the
 156                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 157                 * which are reclaimable, under pressure.  The dentry
 158                 * cache and most inode caches should fall into this
 159                 */
 160                free += global_page_state(NR_SLAB_RECLAIMABLE);
 161
 162                /*
 163                 * Leave reserved pages. The pages are not for anonymous pages.
 164                 */
 165                if (free <= totalreserve_pages)
 166                        goto error;
 167                else
 168                        free -= totalreserve_pages;
 169
 170                /*
 171                 * Reserve some for root
 172                 */
 173                if (!cap_sys_admin)
 174                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 175
 176                if (free > pages)
 177                        return 0;
 178
 179                goto error;
 180        }
 181
 182        allowed = vm_commit_limit();
 183        /*
 184         * Reserve some for root
 185         */
 186        if (!cap_sys_admin)
 187                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 188
 189        /*
 190         * Don't let a single process grow so big a user can't recover
 191         */
 192        if (mm) {
 193                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 194                allowed -= min(mm->total_vm / 32, reserve);
 195        }
 196
 197        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 198                return 0;
 199error:
 200        vm_unacct_memory(pages);
 201
 202        return -ENOMEM;
 203}
 204
 205/*
 206 * Requires inode->i_mapping->i_mmap_mutex
 207 */
 208static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 209                struct file *file, struct address_space *mapping)
 210{
 211        if (vma->vm_flags & VM_DENYWRITE)
 212                atomic_inc(&file_inode(file)->i_writecount);
 213        if (vma->vm_flags & VM_SHARED)
 214                mapping->i_mmap_writable--;
 215
 216        flush_dcache_mmap_lock(mapping);
 217        if (unlikely(vma->vm_flags & VM_NONLINEAR))
 218                list_del_init(&vma->shared.nonlinear);
 219        else
 220                vma_interval_tree_remove(vma, &mapping->i_mmap);
 221        flush_dcache_mmap_unlock(mapping);
 222}
 223
 224/*
 225 * Unlink a file-based vm structure from its interval tree, to hide
 226 * vma from rmap and vmtruncate before freeing its page tables.
 227 */
 228void unlink_file_vma(struct vm_area_struct *vma)
 229{
 230        struct file *file = vma->vm_file;
 231
 232        if (file) {
 233                struct address_space *mapping = file->f_mapping;
 234                mutex_lock(&mapping->i_mmap_mutex);
 235                __remove_shared_vm_struct(vma, file, mapping);
 236                mutex_unlock(&mapping->i_mmap_mutex);
 237        }
 238}
 239
 240/*
 241 * Close a vm structure and free it, returning the next.
 242 */
 243static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 244{
 245        struct vm_area_struct *next = vma->vm_next;
 246
 247        might_sleep();
 248        if (vma->vm_ops && vma->vm_ops->close)
 249                vma->vm_ops->close(vma);
 250        if (vma->vm_file)
 251                fput(vma->vm_file);
 252        mpol_put(vma_policy(vma));
 253        kmem_cache_free(vm_area_cachep, vma);
 254        return next;
 255}
 256
 257static unsigned long do_brk(unsigned long addr, unsigned long len);
 258
 259SYSCALL_DEFINE1(brk, unsigned long, brk)
 260{
 261        unsigned long rlim, retval;
 262        unsigned long newbrk, oldbrk;
 263        struct mm_struct *mm = current->mm;
 264        unsigned long min_brk;
 265        bool populate;
 266
 267        down_write(&mm->mmap_sem);
 268
 269#ifdef CONFIG_COMPAT_BRK
 270        /*
 271         * CONFIG_COMPAT_BRK can still be overridden by setting
 272         * randomize_va_space to 2, which will still cause mm->start_brk
 273         * to be arbitrarily shifted
 274         */
 275        if (current->brk_randomized)
 276                min_brk = mm->start_brk;
 277        else
 278                min_brk = mm->end_data;
 279#else
 280        min_brk = mm->start_brk;
 281#endif
 282        if (brk < min_brk)
 283                goto out;
 284
 285        /*
 286         * Check against rlimit here. If this check is done later after the test
 287         * of oldbrk with newbrk then it can escape the test and let the data
 288         * segment grow beyond its set limit the in case where the limit is
 289         * not page aligned -Ram Gupta
 290         */
 291        rlim = rlimit(RLIMIT_DATA);
 292        if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 293                        (mm->end_data - mm->start_data) > rlim)
 294                goto out;
 295
 296        newbrk = PAGE_ALIGN(brk);
 297        oldbrk = PAGE_ALIGN(mm->brk);
 298        if (oldbrk == newbrk)
 299                goto set_brk;
 300
 301        /* Always allow shrinking brk. */
 302        if (brk <= mm->brk) {
 303                if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 304                        goto set_brk;
 305                goto out;
 306        }
 307
 308        /* Check against existing mmap mappings. */
 309        if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 310                goto out;
 311
 312        /* Ok, looks good - let it rip. */
 313        if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 314                goto out;
 315
 316set_brk:
 317        mm->brk = brk;
 318        populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 319        up_write(&mm->mmap_sem);
 320        if (populate)
 321                mm_populate(oldbrk, newbrk - oldbrk);
 322        return brk;
 323
 324out:
 325        retval = mm->brk;
 326        up_write(&mm->mmap_sem);
 327        return retval;
 328}
 329
 330static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 331{
 332        unsigned long max, subtree_gap;
 333        max = vma->vm_start;
 334        if (vma->vm_prev)
 335                max -= vma->vm_prev->vm_end;
 336        if (vma->vm_rb.rb_left) {
 337                subtree_gap = rb_entry(vma->vm_rb.rb_left,
 338                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 339                if (subtree_gap > max)
 340                        max = subtree_gap;
 341        }
 342        if (vma->vm_rb.rb_right) {
 343                subtree_gap = rb_entry(vma->vm_rb.rb_right,
 344                                struct vm_area_struct, vm_rb)->rb_subtree_gap;
 345                if (subtree_gap > max)
 346                        max = subtree_gap;
 347        }
 348        return max;
 349}
 350
 351#ifdef CONFIG_DEBUG_VM_RB
 352static int browse_rb(struct rb_root *root)
 353{
 354        int i = 0, j, bug = 0;
 355        struct rb_node *nd, *pn = NULL;
 356        unsigned long prev = 0, pend = 0;
 357
 358        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 359                struct vm_area_struct *vma;
 360                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 361                if (vma->vm_start < prev) {
 362                        printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
 363                        bug = 1;
 364                }
 365                if (vma->vm_start < pend) {
 366                        printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 367                        bug = 1;
 368                }
 369                if (vma->vm_start > vma->vm_end) {
 370                        printk("vm_end %lx < vm_start %lx\n",
 371                                vma->vm_end, vma->vm_start);
 372                        bug = 1;
 373                }
 374                if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 375                        printk("free gap %lx, correct %lx\n",
 376                               vma->rb_subtree_gap,
 377                               vma_compute_subtree_gap(vma));
 378                        bug = 1;
 379                }
 380                i++;
 381                pn = nd;
 382                prev = vma->vm_start;
 383                pend = vma->vm_end;
 384        }
 385        j = 0;
 386        for (nd = pn; nd; nd = rb_prev(nd))
 387                j++;
 388        if (i != j) {
 389                printk("backwards %d, forwards %d\n", j, i);
 390                bug = 1;
 391        }
 392        return bug ? -1 : i;
 393}
 394
 395static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 396{
 397        struct rb_node *nd;
 398
 399        for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 400                struct vm_area_struct *vma;
 401                vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 402                BUG_ON(vma != ignore &&
 403                       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
 404        }
 405}
 406
 407void validate_mm(struct mm_struct *mm)
 408{
 409        int bug = 0;
 410        int i = 0;
 411        unsigned long highest_address = 0;
 412        struct vm_area_struct *vma = mm->mmap;
 413        while (vma) {
 414                struct anon_vma_chain *avc;
 415                vma_lock_anon_vma(vma);
 416                list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 417                        anon_vma_interval_tree_verify(avc);
 418                vma_unlock_anon_vma(vma);
 419                highest_address = vma->vm_end;
 420                vma = vma->vm_next;
 421                i++;
 422        }
 423        if (i != mm->map_count) {
 424                printk("map_count %d vm_next %d\n", mm->map_count, i);
 425                bug = 1;
 426        }
 427        if (highest_address != mm->highest_vm_end) {
 428                printk("mm->highest_vm_end %lx, found %lx\n",
 429                       mm->highest_vm_end, highest_address);
 430                bug = 1;
 431        }
 432        i = browse_rb(&mm->mm_rb);
 433        if (i != mm->map_count) {
 434                printk("map_count %d rb %d\n", mm->map_count, i);
 435                bug = 1;
 436        }
 437        BUG_ON(bug);
 438}
 439#else
 440#define validate_mm_rb(root, ignore) do { } while (0)
 441#define validate_mm(mm) do { } while (0)
 442#endif
 443
 444RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 445                     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 446
 447/*
 448 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 449 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 450 * in the rbtree.
 451 */
 452static void vma_gap_update(struct vm_area_struct *vma)
 453{
 454        /*
 455         * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 456         * function that does exacltly what we want.
 457         */
 458        vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 459}
 460
 461static inline void vma_rb_insert(struct vm_area_struct *vma,
 462                                 struct rb_root *root)
 463{
 464        /* All rb_subtree_gap values must be consistent prior to insertion */
 465        validate_mm_rb(root, NULL);
 466
 467        rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 468}
 469
 470static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 471{
 472        /*
 473         * All rb_subtree_gap values must be consistent prior to erase,
 474         * with the possible exception of the vma being erased.
 475         */
 476        validate_mm_rb(root, vma);
 477
 478        /*
 479         * Note rb_erase_augmented is a fairly large inline function,
 480         * so make sure we instantiate it only once with our desired
 481         * augmented rbtree callbacks.
 482         */
 483        rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 484}
 485
 486/*
 487 * vma has some anon_vma assigned, and is already inserted on that
 488 * anon_vma's interval trees.
 489 *
 490 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 491 * vma must be removed from the anon_vma's interval trees using
 492 * anon_vma_interval_tree_pre_update_vma().
 493 *
 494 * After the update, the vma will be reinserted using
 495 * anon_vma_interval_tree_post_update_vma().
 496 *
 497 * The entire update must be protected by exclusive mmap_sem and by
 498 * the root anon_vma's mutex.
 499 */
 500static inline void
 501anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 502{
 503        struct anon_vma_chain *avc;
 504
 505        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 506                anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 507}
 508
 509static inline void
 510anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 511{
 512        struct anon_vma_chain *avc;
 513
 514        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 515                anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 516}
 517
 518static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 519                unsigned long end, struct vm_area_struct **pprev,
 520                struct rb_node ***rb_link, struct rb_node **rb_parent)
 521{
 522        struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 523
 524        __rb_link = &mm->mm_rb.rb_node;
 525        rb_prev = __rb_parent = NULL;
 526
 527        while (*__rb_link) {
 528                struct vm_area_struct *vma_tmp;
 529
 530                __rb_parent = *__rb_link;
 531                vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 532
 533                if (vma_tmp->vm_end > addr) {
 534                        /* Fail if an existing vma overlaps the area */
 535                        if (vma_tmp->vm_start < end)
 536                                return -ENOMEM;
 537                        __rb_link = &__rb_parent->rb_left;
 538                } else {
 539                        rb_prev = __rb_parent;
 540                        __rb_link = &__rb_parent->rb_right;
 541                }
 542        }
 543
 544        *pprev = NULL;
 545        if (rb_prev)
 546                *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 547        *rb_link = __rb_link;
 548        *rb_parent = __rb_parent;
 549        return 0;
 550}
 551
 552static unsigned long count_vma_pages_range(struct mm_struct *mm,
 553                unsigned long addr, unsigned long end)
 554{
 555        unsigned long nr_pages = 0;
 556        struct vm_area_struct *vma;
 557
 558        /* Find first overlaping mapping */
 559        vma = find_vma_intersection(mm, addr, end);
 560        if (!vma)
 561                return 0;
 562
 563        nr_pages = (min(end, vma->vm_end) -
 564                max(addr, vma->vm_start)) >> PAGE_SHIFT;
 565
 566        /* Iterate over the rest of the overlaps */
 567        for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 568                unsigned long overlap_len;
 569
 570                if (vma->vm_start > end)
 571                        break;
 572
 573                overlap_len = min(end, vma->vm_end) - vma->vm_start;
 574                nr_pages += overlap_len >> PAGE_SHIFT;
 575        }
 576
 577        return nr_pages;
 578}
 579
 580void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 581                struct rb_node **rb_link, struct rb_node *rb_parent)
 582{
 583        /* Update tracking information for the gap following the new vma. */
 584        if (vma->vm_next)
 585                vma_gap_update(vma->vm_next);
 586        else
 587                mm->highest_vm_end = vma->vm_end;
 588
 589        /*
 590         * vma->vm_prev wasn't known when we followed the rbtree to find the
 591         * correct insertion point for that vma. As a result, we could not
 592         * update the vma vm_rb parents rb_subtree_gap values on the way down.
 593         * So, we first insert the vma with a zero rb_subtree_gap value
 594         * (to be consistent with what we did on the way down), and then
 595         * immediately update the gap to the correct value. Finally we
 596         * rebalance the rbtree after all augmented values have been set.
 597         */
 598        rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 599        vma->rb_subtree_gap = 0;
 600        vma_gap_update(vma);
 601        vma_rb_insert(vma, &mm->mm_rb);
 602}
 603
 604static void __vma_link_file(struct vm_area_struct *vma)
 605{
 606        struct file *file;
 607
 608        file = vma->vm_file;
 609        if (file) {
 610                struct address_space *mapping = file->f_mapping;
 611
 612                if (vma->vm_flags & VM_DENYWRITE)
 613                        atomic_dec(&file_inode(file)->i_writecount);
 614                if (vma->vm_flags & VM_SHARED)
 615                        mapping->i_mmap_writable++;
 616
 617                flush_dcache_mmap_lock(mapping);
 618                if (unlikely(vma->vm_flags & VM_NONLINEAR))
 619                        vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 620                else
 621                        vma_interval_tree_insert(vma, &mapping->i_mmap);
 622                flush_dcache_mmap_unlock(mapping);
 623        }
 624}
 625
 626static void
 627__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 628        struct vm_area_struct *prev, struct rb_node **rb_link,
 629        struct rb_node *rb_parent)
 630{
 631        __vma_link_list(mm, vma, prev, rb_parent);
 632        __vma_link_rb(mm, vma, rb_link, rb_parent);
 633}
 634
 635static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 636                        struct vm_area_struct *prev, struct rb_node **rb_link,
 637                        struct rb_node *rb_parent)
 638{
 639        struct address_space *mapping = NULL;
 640
 641        if (vma->vm_file)
 642                mapping = vma->vm_file->f_mapping;
 643
 644        if (mapping)
 645                mutex_lock(&mapping->i_mmap_mutex);
 646
 647        __vma_link(mm, vma, prev, rb_link, rb_parent);
 648        __vma_link_file(vma);
 649
 650        if (mapping)
 651                mutex_unlock(&mapping->i_mmap_mutex);
 652
 653        mm->map_count++;
 654        validate_mm(mm);
 655}
 656
 657/*
 658 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 659 * mm's list and rbtree.  It has already been inserted into the interval tree.
 660 */
 661static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 662{
 663        struct vm_area_struct *prev;
 664        struct rb_node **rb_link, *rb_parent;
 665
 666        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 667                           &prev, &rb_link, &rb_parent))
 668                BUG();
 669        __vma_link(mm, vma, prev, rb_link, rb_parent);
 670        mm->map_count++;
 671}
 672
 673static inline void
 674__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 675                struct vm_area_struct *prev)
 676{
 677        struct vm_area_struct *next;
 678
 679        vma_rb_erase(vma, &mm->mm_rb);
 680        prev->vm_next = next = vma->vm_next;
 681        if (next)
 682                next->vm_prev = prev;
 683        if (mm->mmap_cache == vma)
 684                mm->mmap_cache = prev;
 685}
 686
 687/*
 688 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 689 * is already present in an i_mmap tree without adjusting the tree.
 690 * The following helper function should be used when such adjustments
 691 * are necessary.  The "insert" vma (if any) is to be inserted
 692 * before we drop the necessary locks.
 693 */
 694int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 695        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 696{
 697        struct mm_struct *mm = vma->vm_mm;
 698        struct vm_area_struct *next = vma->vm_next;
 699        struct vm_area_struct *importer = NULL;
 700        struct address_space *mapping = NULL;
 701        struct rb_root *root = NULL;
 702        struct anon_vma *anon_vma = NULL;
 703        struct file *file = vma->vm_file;
 704        bool start_changed = false, end_changed = false;
 705        long adjust_next = 0;
 706        int remove_next = 0;
 707
 708        if (next && !insert) {
 709                struct vm_area_struct *exporter = NULL;
 710
 711                if (end >= next->vm_end) {
 712                        /*
 713                         * vma expands, overlapping all the next, and
 714                         * perhaps the one after too (mprotect case 6).
 715                         */
 716again:                  remove_next = 1 + (end > next->vm_end);
 717                        end = next->vm_end;
 718                        exporter = next;
 719                        importer = vma;
 720                } else if (end > next->vm_start) {
 721                        /*
 722                         * vma expands, overlapping part of the next:
 723                         * mprotect case 5 shifting the boundary up.
 724                         */
 725                        adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 726                        exporter = next;
 727                        importer = vma;
 728                } else if (end < vma->vm_end) {
 729                        /*
 730                         * vma shrinks, and !insert tells it's not
 731                         * split_vma inserting another: so it must be
 732                         * mprotect case 4 shifting the boundary down.
 733                         */
 734                        adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 735                        exporter = vma;
 736                        importer = next;
 737                }
 738
 739                /*
 740                 * Easily overlooked: when mprotect shifts the boundary,
 741                 * make sure the expanding vma has anon_vma set if the
 742                 * shrinking vma had, to cover any anon pages imported.
 743                 */
 744                if (exporter && exporter->anon_vma && !importer->anon_vma) {
 745                        if (anon_vma_clone(importer, exporter))
 746                                return -ENOMEM;
 747                        importer->anon_vma = exporter->anon_vma;
 748                }
 749        }
 750
 751        if (file) {
 752                mapping = file->f_mapping;
 753                if (!(vma->vm_flags & VM_NONLINEAR)) {
 754                        root = &mapping->i_mmap;
 755                        uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 756
 757                        if (adjust_next)
 758                                uprobe_munmap(next, next->vm_start,
 759                                                        next->vm_end);
 760                }
 761
 762                mutex_lock(&mapping->i_mmap_mutex);
 763                if (insert) {
 764                        /*
 765                         * Put into interval tree now, so instantiated pages
 766                         * are visible to arm/parisc __flush_dcache_page
 767                         * throughout; but we cannot insert into address
 768                         * space until vma start or end is updated.
 769                         */
 770                        __vma_link_file(insert);
 771                }
 772        }
 773
 774        vma_adjust_trans_huge(vma, start, end, adjust_next);
 775
 776        anon_vma = vma->anon_vma;
 777        if (!anon_vma && adjust_next)
 778                anon_vma = next->anon_vma;
 779        if (anon_vma) {
 780                VM_BUG_ON(adjust_next && next->anon_vma &&
 781                          anon_vma != next->anon_vma);
 782                anon_vma_lock_write(anon_vma);
 783                anon_vma_interval_tree_pre_update_vma(vma);
 784                if (adjust_next)
 785                        anon_vma_interval_tree_pre_update_vma(next);
 786        }
 787
 788        if (root) {
 789                flush_dcache_mmap_lock(mapping);
 790                vma_interval_tree_remove(vma, root);
 791                if (adjust_next)
 792                        vma_interval_tree_remove(next, root);
 793        }
 794
 795        if (start != vma->vm_start) {
 796                vma->vm_start = start;
 797                start_changed = true;
 798        }
 799        if (end != vma->vm_end) {
 800                vma->vm_end = end;
 801                end_changed = true;
 802        }
 803        vma->vm_pgoff = pgoff;
 804        if (adjust_next) {
 805                next->vm_start += adjust_next << PAGE_SHIFT;
 806                next->vm_pgoff += adjust_next;
 807        }
 808
 809        if (root) {
 810                if (adjust_next)
 811                        vma_interval_tree_insert(next, root);
 812                vma_interval_tree_insert(vma, root);
 813                flush_dcache_mmap_unlock(mapping);
 814        }
 815
 816        if (remove_next) {
 817                /*
 818                 * vma_merge has merged next into vma, and needs
 819                 * us to remove next before dropping the locks.
 820                 */
 821                __vma_unlink(mm, next, vma);
 822                if (file)
 823                        __remove_shared_vm_struct(next, file, mapping);
 824        } else if (insert) {
 825                /*
 826                 * split_vma has split insert from vma, and needs
 827                 * us to insert it before dropping the locks
 828                 * (it may either follow vma or precede it).
 829                 */
 830                __insert_vm_struct(mm, insert);
 831        } else {
 832                if (start_changed)
 833                        vma_gap_update(vma);
 834                if (end_changed) {
 835                        if (!next)
 836                                mm->highest_vm_end = end;
 837                        else if (!adjust_next)
 838                                vma_gap_update(next);
 839                }
 840        }
 841
 842        if (anon_vma) {
 843                anon_vma_interval_tree_post_update_vma(vma);
 844                if (adjust_next)
 845                        anon_vma_interval_tree_post_update_vma(next);
 846                anon_vma_unlock_write(anon_vma);
 847        }
 848        if (mapping)
 849                mutex_unlock(&mapping->i_mmap_mutex);
 850
 851        if (root) {
 852                uprobe_mmap(vma);
 853
 854                if (adjust_next)
 855                        uprobe_mmap(next);
 856        }
 857
 858        if (remove_next) {
 859                if (file) {
 860                        uprobe_munmap(next, next->vm_start, next->vm_end);
 861                        fput(file);
 862                }
 863                if (next->anon_vma)
 864                        anon_vma_merge(vma, next);
 865                mm->map_count--;
 866                mpol_put(vma_policy(next));
 867                kmem_cache_free(vm_area_cachep, next);
 868                /*
 869                 * In mprotect's case 6 (see comments on vma_merge),
 870                 * we must remove another next too. It would clutter
 871                 * up the code too much to do both in one go.
 872                 */
 873                next = vma->vm_next;
 874                if (remove_next == 2)
 875                        goto again;
 876                else if (next)
 877                        vma_gap_update(next);
 878                else
 879                        mm->highest_vm_end = end;
 880        }
 881        if (insert && file)
 882                uprobe_mmap(insert);
 883
 884        validate_mm(mm);
 885
 886        return 0;
 887}
 888
 889/*
 890 * If the vma has a ->close operation then the driver probably needs to release
 891 * per-vma resources, so we don't attempt to merge those.
 892 */
 893static inline int is_mergeable_vma(struct vm_area_struct *vma,
 894                        struct file *file, unsigned long vm_flags)
 895{
 896        if (vma->vm_flags ^ vm_flags)
 897                return 0;
 898        if (vma->vm_file != file)
 899                return 0;
 900        if (vma->vm_ops && vma->vm_ops->close)
 901                return 0;
 902        return 1;
 903}
 904
 905static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 906                                        struct anon_vma *anon_vma2,
 907                                        struct vm_area_struct *vma)
 908{
 909        /*
 910         * The list_is_singular() test is to avoid merging VMA cloned from
 911         * parents. This can improve scalability caused by anon_vma lock.
 912         */
 913        if ((!anon_vma1 || !anon_vma2) && (!vma ||
 914                list_is_singular(&vma->anon_vma_chain)))
 915                return 1;
 916        return anon_vma1 == anon_vma2;
 917}
 918
 919/*
 920 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 921 * in front of (at a lower virtual address and file offset than) the vma.
 922 *
 923 * We cannot merge two vmas if they have differently assigned (non-NULL)
 924 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 925 *
 926 * We don't check here for the merged mmap wrapping around the end of pagecache
 927 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 928 * wrap, nor mmaps which cover the final page at index -1UL.
 929 */
 930static int
 931can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 932        struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 933{
 934        if (is_mergeable_vma(vma, file, vm_flags) &&
 935            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 936                if (vma->vm_pgoff == vm_pgoff)
 937                        return 1;
 938        }
 939        return 0;
 940}
 941
 942/*
 943 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 944 * beyond (at a higher virtual address and file offset than) the vma.
 945 *
 946 * We cannot merge two vmas if they have differently assigned (non-NULL)
 947 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 948 */
 949static int
 950can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 951        struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 952{
 953        if (is_mergeable_vma(vma, file, vm_flags) &&
 954            is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 955                pgoff_t vm_pglen;
 956                vm_pglen = vma_pages(vma);
 957                if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 958                        return 1;
 959        }
 960        return 0;
 961}
 962
 963/*
 964 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 965 * whether that can be merged with its predecessor or its successor.
 966 * Or both (it neatly fills a hole).
 967 *
 968 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 969 * certain not to be mapped by the time vma_merge is called; but when
 970 * called for mprotect, it is certain to be already mapped (either at
 971 * an offset within prev, or at the start of next), and the flags of
 972 * this area are about to be changed to vm_flags - and the no-change
 973 * case has already been eliminated.
 974 *
 975 * The following mprotect cases have to be considered, where AAAA is
 976 * the area passed down from mprotect_fixup, never extending beyond one
 977 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 978 *
 979 *     AAAA             AAAA                AAAA          AAAA
 980 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 981 *    cannot merge    might become    might become    might become
 982 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 983 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 984 *    mremap move:                                    PPPPNNNNNNNN 8
 985 *        AAAA
 986 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 987 *    might become    case 1 below    case 2 below    case 3 below
 988 *
 989 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 990 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 991 */
 992struct vm_area_struct *vma_merge(struct mm_struct *mm,
 993                        struct vm_area_struct *prev, unsigned long addr,
 994                        unsigned long end, unsigned long vm_flags,
 995                        struct anon_vma *anon_vma, struct file *file,
 996                        pgoff_t pgoff, struct mempolicy *policy)
 997{
 998        pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 999        struct vm_area_struct *area, *next;
1000        int err;
1001
1002        /*
1003         * We later require that vma->vm_flags == vm_flags,
1004         * so this tests vma->vm_flags & VM_SPECIAL, too.
1005         */
1006        if (vm_flags & VM_SPECIAL)
1007                return NULL;
1008
1009        if (prev)
1010                next = prev->vm_next;
1011        else
1012                next = mm->mmap;
1013        area = next;
1014        if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1015                next = next->vm_next;
1016
1017        /*
1018         * Can it merge with the predecessor?
1019         */
1020        if (prev && prev->vm_end == addr &&
1021                        mpol_equal(vma_policy(prev), policy) &&
1022                        can_vma_merge_after(prev, vm_flags,
1023                                                anon_vma, file, pgoff)) {
1024                /*
1025                 * OK, it can.  Can we now merge in the successor as well?
1026                 */
1027                if (next && end == next->vm_start &&
1028                                mpol_equal(policy, vma_policy(next)) &&
1029                                can_vma_merge_before(next, vm_flags,
1030                                        anon_vma, file, pgoff+pglen) &&
1031                                is_mergeable_anon_vma(prev->anon_vma,
1032                                                      next->anon_vma, NULL)) {
1033                                                        /* cases 1, 6 */
1034                        err = vma_adjust(prev, prev->vm_start,
1035                                next->vm_end, prev->vm_pgoff, NULL);
1036                } else                                  /* cases 2, 5, 7 */
1037                        err = vma_adjust(prev, prev->vm_start,
1038                                end, prev->vm_pgoff, NULL);
1039                if (err)
1040                        return NULL;
1041                khugepaged_enter_vma_merge(prev);
1042                return prev;
1043        }
1044
1045        /*
1046         * Can this new request be merged in front of next?
1047         */
1048        if (next && end == next->vm_start &&
1049                        mpol_equal(policy, vma_policy(next)) &&
1050                        can_vma_merge_before(next, vm_flags,
1051                                        anon_vma, file, pgoff+pglen)) {
1052                if (prev && addr < prev->vm_end)        /* case 4 */
1053                        err = vma_adjust(prev, prev->vm_start,
1054                                addr, prev->vm_pgoff, NULL);
1055                else                                    /* cases 3, 8 */
1056                        err = vma_adjust(area, addr, next->vm_end,
1057                                next->vm_pgoff - pglen, NULL);
1058                if (err)
1059                        return NULL;
1060                khugepaged_enter_vma_merge(area);
1061                return area;
1062        }
1063
1064        return NULL;
1065}
1066
1067/*
1068 * Rough compatbility check to quickly see if it's even worth looking
1069 * at sharing an anon_vma.
1070 *
1071 * They need to have the same vm_file, and the flags can only differ
1072 * in things that mprotect may change.
1073 *
1074 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1075 * we can merge the two vma's. For example, we refuse to merge a vma if
1076 * there is a vm_ops->close() function, because that indicates that the
1077 * driver is doing some kind of reference counting. But that doesn't
1078 * really matter for the anon_vma sharing case.
1079 */
1080static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1081{
1082        return a->vm_end == b->vm_start &&
1083                mpol_equal(vma_policy(a), vma_policy(b)) &&
1084                a->vm_file == b->vm_file &&
1085                !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1086                b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1087}
1088
1089/*
1090 * Do some basic sanity checking to see if we can re-use the anon_vma
1091 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1092 * the same as 'old', the other will be the new one that is trying
1093 * to share the anon_vma.
1094 *
1095 * NOTE! This runs with mm_sem held for reading, so it is possible that
1096 * the anon_vma of 'old' is concurrently in the process of being set up
1097 * by another page fault trying to merge _that_. But that's ok: if it
1098 * is being set up, that automatically means that it will be a singleton
1099 * acceptable for merging, so we can do all of this optimistically. But
1100 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1101 *
1102 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1103 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1104 * is to return an anon_vma that is "complex" due to having gone through
1105 * a fork).
1106 *
1107 * We also make sure that the two vma's are compatible (adjacent,
1108 * and with the same memory policies). That's all stable, even with just
1109 * a read lock on the mm_sem.
1110 */
1111static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1112{
1113        if (anon_vma_compatible(a, b)) {
1114                struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1115
1116                if (anon_vma && list_is_singular(&old->anon_vma_chain))
1117                        return anon_vma;
1118        }
1119        return NULL;
1120}
1121
1122/*
1123 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1124 * neighbouring vmas for a suitable anon_vma, before it goes off
1125 * to allocate a new anon_vma.  It checks because a repetitive
1126 * sequence of mprotects and faults may otherwise lead to distinct
1127 * anon_vmas being allocated, preventing vma merge in subsequent
1128 * mprotect.
1129 */
1130struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1131{
1132        struct anon_vma *anon_vma;
1133        struct vm_area_struct *near;
1134
1135        near = vma->vm_next;
1136        if (!near)
1137                goto try_prev;
1138
1139        anon_vma = reusable_anon_vma(near, vma, near);
1140        if (anon_vma)
1141                return anon_vma;
1142try_prev:
1143        near = vma->vm_prev;
1144        if (!near)
1145                goto none;
1146
1147        anon_vma = reusable_anon_vma(near, near, vma);
1148        if (anon_vma)
1149                return anon_vma;
1150none:
1151        /*
1152         * There's no absolute need to look only at touching neighbours:
1153         * we could search further afield for "compatible" anon_vmas.
1154         * But it would probably just be a waste of time searching,
1155         * or lead to too many vmas hanging off the same anon_vma.
1156         * We're trying to allow mprotect remerging later on,
1157         * not trying to minimize memory used for anon_vmas.
1158         */
1159        return NULL;
1160}
1161
1162#ifdef CONFIG_PROC_FS
1163void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1164                                                struct file *file, long pages)
1165{
1166        const unsigned long stack_flags
1167                = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1168
1169        mm->total_vm += pages;
1170
1171        if (file) {
1172                mm->shared_vm += pages;
1173                if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1174                        mm->exec_vm += pages;
1175        } else if (flags & stack_flags)
1176                mm->stack_vm += pages;
1177}
1178#endif /* CONFIG_PROC_FS */
1179
1180/*
1181 * If a hint addr is less than mmap_min_addr change hint to be as
1182 * low as possible but still greater than mmap_min_addr
1183 */
1184static inline unsigned long round_hint_to_min(unsigned long hint)
1185{
1186        hint &= PAGE_MASK;
1187        if (((void *)hint != NULL) &&
1188            (hint < mmap_min_addr))
1189                return PAGE_ALIGN(mmap_min_addr);
1190        return hint;
1191}
1192
1193/*
1194 * The caller must hold down_write(&current->mm->mmap_sem).
1195 */
1196
1197unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1198                        unsigned long len, unsigned long prot,
1199                        unsigned long flags, unsigned long pgoff,
1200                        unsigned long *populate)
1201{
1202        struct mm_struct * mm = current->mm;
1203        vm_flags_t vm_flags;
1204
1205        *populate = 0;
1206
1207        /*
1208         * Does the application expect PROT_READ to imply PROT_EXEC?
1209         *
1210         * (the exception is when the underlying filesystem is noexec
1211         *  mounted, in which case we dont add PROT_EXEC.)
1212         */
1213        if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1214                if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1215                        prot |= PROT_EXEC;
1216
1217        if (!len)
1218                return -EINVAL;
1219
1220        if (!(flags & MAP_FIXED))
1221                addr = round_hint_to_min(addr);
1222
1223        /* Careful about overflows.. */
1224        len = PAGE_ALIGN(len);
1225        if (!len)
1226                return -ENOMEM;
1227
1228        /* offset overflow? */
1229        if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1230               return -EOVERFLOW;
1231
1232        /* Too many mappings? */
1233        if (mm->map_count > sysctl_max_map_count)
1234                return -ENOMEM;
1235
1236        /* Obtain the address to map to. we verify (or select) it and ensure
1237         * that it represents a valid section of the address space.
1238         */
1239        addr = get_unmapped_area(file, addr, len, pgoff, flags);
1240        if (addr & ~PAGE_MASK)
1241                return addr;
1242
1243        /* Do simple checking here so the lower-level routines won't have
1244         * to. we assume access permissions have been handled by the open
1245         * of the memory object, so we don't do any here.
1246         */
1247        vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1248                        mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1249
1250        if (flags & MAP_LOCKED)
1251                if (!can_do_mlock())
1252                        return -EPERM;
1253
1254        /* mlock MCL_FUTURE? */
1255        if (vm_flags & VM_LOCKED) {
1256                unsigned long locked, lock_limit;
1257                locked = len >> PAGE_SHIFT;
1258                locked += mm->locked_vm;
1259                lock_limit = rlimit(RLIMIT_MEMLOCK);
1260                lock_limit >>= PAGE_SHIFT;
1261                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1262                        return -EAGAIN;
1263        }
1264
1265        if (file) {
1266                struct inode *inode = file_inode(file);
1267
1268                switch (flags & MAP_TYPE) {
1269                case MAP_SHARED:
1270                        if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1271                                return -EACCES;
1272
1273                        /*
1274                         * Make sure we don't allow writing to an append-only
1275                         * file..
1276                         */
1277                        if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1278                                return -EACCES;
1279
1280                        /*
1281                         * Make sure there are no mandatory locks on the file.
1282                         */
1283                        if (locks_verify_locked(inode))
1284                                return -EAGAIN;
1285
1286                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1287                        if (!(file->f_mode & FMODE_WRITE))
1288                                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1289
1290                        /* fall through */
1291                case MAP_PRIVATE:
1292                        if (!(file->f_mode & FMODE_READ))
1293                                return -EACCES;
1294                        if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1295                                if (vm_flags & VM_EXEC)
1296                                        return -EPERM;
1297                                vm_flags &= ~VM_MAYEXEC;
1298                        }
1299
1300                        if (!file->f_op->mmap)
1301                                return -ENODEV;
1302                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1303                                return -EINVAL;
1304                        break;
1305
1306                default:
1307                        return -EINVAL;
1308                }
1309        } else {
1310                switch (flags & MAP_TYPE) {
1311                case MAP_SHARED:
1312                        if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1313                                return -EINVAL;
1314                        /*
1315                         * Ignore pgoff.
1316                         */
1317                        pgoff = 0;
1318                        vm_flags |= VM_SHARED | VM_MAYSHARE;
1319                        break;
1320                case MAP_PRIVATE:
1321                        /*
1322                         * Set pgoff according to addr for anon_vma.
1323                         */
1324                        pgoff = addr >> PAGE_SHIFT;
1325                        break;
1326                default:
1327                        return -EINVAL;
1328                }
1329        }
1330
1331        /*
1332         * Set 'VM_NORESERVE' if we should not account for the
1333         * memory use of this mapping.
1334         */
1335        if (flags & MAP_NORESERVE) {
1336                /* We honor MAP_NORESERVE if allowed to overcommit */
1337                if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1338                        vm_flags |= VM_NORESERVE;
1339
1340                /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1341                if (file && is_file_hugepages(file))
1342                        vm_flags |= VM_NORESERVE;
1343        }
1344
1345        addr = mmap_region(file, addr, len, vm_flags, pgoff);
1346        if (!IS_ERR_VALUE(addr) &&
1347            ((vm_flags & VM_LOCKED) ||
1348             (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1349                *populate = len;
1350        return addr;
1351}
1352
1353SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1354                unsigned long, prot, unsigned long, flags,
1355                unsigned long, fd, unsigned long, pgoff)
1356{
1357        struct file *file = NULL;
1358        unsigned long retval = -EBADF;
1359
1360        if (!(flags & MAP_ANONYMOUS)) {
1361                audit_mmap_fd(fd, flags);
1362                file = fget(fd);
1363                if (!file)
1364                        goto out;
1365                if (is_file_hugepages(file))
1366                        len = ALIGN(len, huge_page_size(hstate_file(file)));
1367                retval = -EINVAL;
1368                if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1369                        goto out_fput;
1370        } else if (flags & MAP_HUGETLB) {
1371                struct user_struct *user = NULL;
1372                struct hstate *hs;
1373
1374                hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1375                if (!hs)
1376                        return -EINVAL;
1377
1378                len = ALIGN(len, huge_page_size(hs));
1379                /*
1380                 * VM_NORESERVE is used because the reservations will be
1381                 * taken when vm_ops->mmap() is called
1382                 * A dummy user value is used because we are not locking
1383                 * memory so no accounting is necessary
1384                 */
1385                file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1386                                VM_NORESERVE,
1387                                &user, HUGETLB_ANONHUGE_INODE,
1388                                (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1389                if (IS_ERR(file))
1390                        return PTR_ERR(file);
1391        }
1392
1393        flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1394
1395        retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1396out_fput:
1397        if (file)
1398                fput(file);
1399out:
1400        return retval;
1401}
1402
1403#ifdef __ARCH_WANT_SYS_OLD_MMAP
1404struct mmap_arg_struct {
1405        unsigned long addr;
1406        unsigned long len;
1407        unsigned long prot;
1408        unsigned long flags;
1409        unsigned long fd;
1410        unsigned long offset;
1411};
1412
1413SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1414{
1415        struct mmap_arg_struct a;
1416
1417        if (copy_from_user(&a, arg, sizeof(a)))
1418                return -EFAULT;
1419        if (a.offset & ~PAGE_MASK)
1420                return -EINVAL;
1421
1422        return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1423                              a.offset >> PAGE_SHIFT);
1424}
1425#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1426
1427/*
1428 * Some shared mappigns will want the pages marked read-only
1429 * to track write events. If so, we'll downgrade vm_page_prot
1430 * to the private version (using protection_map[] without the
1431 * VM_SHARED bit).
1432 */
1433int vma_wants_writenotify(struct vm_area_struct *vma)
1434{
1435        vm_flags_t vm_flags = vma->vm_flags;
1436
1437        /* If it was private or non-writable, the write bit is already clear */
1438        if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1439                return 0;
1440
1441        /* The backer wishes to know when pages are first written to? */
1442        if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1443                return 1;
1444
1445        /* The open routine did something to the protections already? */
1446        if (pgprot_val(vma->vm_page_prot) !=
1447            pgprot_val(vm_get_page_prot(vm_flags)))
1448                return 0;
1449
1450        /* Specialty mapping? */
1451        if (vm_flags & VM_PFNMAP)
1452                return 0;
1453
1454        /* Can the mapping track the dirty pages? */
1455        return vma->vm_file && vma->vm_file->f_mapping &&
1456                mapping_cap_account_dirty(vma->vm_file->f_mapping);
1457}
1458
1459/*
1460 * We account for memory if it's a private writeable mapping,
1461 * not hugepages and VM_NORESERVE wasn't set.
1462 */
1463static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1464{
1465        /*
1466         * hugetlb has its own accounting separate from the core VM
1467         * VM_HUGETLB may not be set yet so we cannot check for that flag.
1468         */
1469        if (file && is_file_hugepages(file))
1470                return 0;
1471
1472        return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1473}
1474
1475unsigned long mmap_region(struct file *file, unsigned long addr,
1476                unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1477{
1478        struct mm_struct *mm = current->mm;
1479        struct vm_area_struct *vma, *prev;
1480        int error;
1481        struct rb_node **rb_link, *rb_parent;
1482        unsigned long charged = 0;
1483
1484        /* Check against address space limit. */
1485        if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1486                unsigned long nr_pages;
1487
1488                /*
1489                 * MAP_FIXED may remove pages of mappings that intersects with
1490                 * requested mapping. Account for the pages it would unmap.
1491                 */
1492                if (!(vm_flags & MAP_FIXED))
1493                        return -ENOMEM;
1494
1495                nr_pages = count_vma_pages_range(mm, addr, addr + len);
1496
1497                if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1498                        return -ENOMEM;
1499        }
1500
1501        /* Clear old maps */
1502        error = -ENOMEM;
1503munmap_back:
1504        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1505                if (do_munmap(mm, addr, len))
1506                        return -ENOMEM;
1507                goto munmap_back;
1508        }
1509
1510        /*
1511         * Private writable mapping: check memory availability
1512         */
1513        if (accountable_mapping(file, vm_flags)) {
1514                charged = len >> PAGE_SHIFT;
1515                if (security_vm_enough_memory_mm(mm, charged))
1516                        return -ENOMEM;
1517                vm_flags |= VM_ACCOUNT;
1518        }
1519
1520        /*
1521         * Can we just expand an old mapping?
1522         */
1523        vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1524        if (vma)
1525                goto out;
1526
1527        /*
1528         * Determine the object being mapped and call the appropriate
1529         * specific mapper. the address has already been validated, but
1530         * not unmapped, but the maps are removed from the list.
1531         */
1532        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1533        if (!vma) {
1534                error = -ENOMEM;
1535                goto unacct_error;
1536        }
1537
1538        vma->vm_mm = mm;
1539        vma->vm_start = addr;
1540        vma->vm_end = addr + len;
1541        vma->vm_flags = vm_flags;
1542        vma->vm_page_prot = vm_get_page_prot(vm_flags);
1543        vma->vm_pgoff = pgoff;
1544        INIT_LIST_HEAD(&vma->anon_vma_chain);
1545
1546        if (file) {
1547                if (vm_flags & VM_DENYWRITE) {
1548                        error = deny_write_access(file);
1549                        if (error)
1550                                goto free_vma;
1551                }
1552                vma->vm_file = get_file(file);
1553                error = file->f_op->mmap(file, vma);
1554                if (error)
1555                        goto unmap_and_free_vma;
1556
1557                /* Can addr have changed??
1558                 *
1559                 * Answer: Yes, several device drivers can do it in their
1560                 *         f_op->mmap method. -DaveM
1561                 * Bug: If addr is changed, prev, rb_link, rb_parent should
1562                 *      be updated for vma_link()
1563                 */
1564                WARN_ON_ONCE(addr != vma->vm_start);
1565
1566                addr = vma->vm_start;
1567                vm_flags = vma->vm_flags;
1568        } else if (vm_flags & VM_SHARED) {
1569                error = shmem_zero_setup(vma);
1570                if (error)
1571                        goto free_vma;
1572        }
1573
1574        if (vma_wants_writenotify(vma)) {
1575                pgprot_t pprot = vma->vm_page_prot;
1576
1577                /* Can vma->vm_page_prot have changed??
1578                 *
1579                 * Answer: Yes, drivers may have changed it in their
1580                 *         f_op->mmap method.
1581                 *
1582                 * Ensures that vmas marked as uncached stay that way.
1583                 */
1584                vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1585                if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1586                        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1587        }
1588
1589        vma_link(mm, vma, prev, rb_link, rb_parent);
1590        /* Once vma denies write, undo our temporary denial count */
1591        if (vm_flags & VM_DENYWRITE)
1592                allow_write_access(file);
1593        file = vma->vm_file;
1594out:
1595        perf_event_mmap(vma);
1596
1597        vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1598        if (vm_flags & VM_LOCKED) {
1599                if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1600                                        vma == get_gate_vma(current->mm)))
1601                        mm->locked_vm += (len >> PAGE_SHIFT);
1602                else
1603                        vma->vm_flags &= ~VM_LOCKED;
1604        }
1605
1606        if (file)
1607                uprobe_mmap(vma);
1608
1609        /*
1610         * New (or expanded) vma always get soft dirty status.
1611         * Otherwise user-space soft-dirty page tracker won't
1612         * be able to distinguish situation when vma area unmapped,
1613         * then new mapped in-place (which must be aimed as
1614         * a completely new data area).
1615         */
1616        vma->vm_flags |= VM_SOFTDIRTY;
1617
1618        return addr;
1619
1620unmap_and_free_vma:
1621        if (vm_flags & VM_DENYWRITE)
1622                allow_write_access(file);
1623        vma->vm_file = NULL;
1624        fput(file);
1625
1626        /* Undo any partial mapping done by a device driver. */
1627        unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1628        charged = 0;
1629free_vma:
1630        kmem_cache_free(vm_area_cachep, vma);
1631unacct_error:
1632        if (charged)
1633                vm_unacct_memory(charged);
1634        return error;
1635}
1636
1637unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1638{
1639        /*
1640         * We implement the search by looking for an rbtree node that
1641         * immediately follows a suitable gap. That is,
1642         * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1643         * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1644         * - gap_end - gap_start >= length
1645         */
1646
1647        struct mm_struct *mm = current->mm;
1648        struct vm_area_struct *vma;
1649        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1650
1651        /* Adjust search length to account for worst case alignment overhead */
1652        length = info->length + info->align_mask;
1653        if (length < info->length)
1654                return -ENOMEM;
1655
1656        /* Adjust search limits by the desired length */
1657        if (info->high_limit < length)
1658                return -ENOMEM;
1659        high_limit = info->high_limit - length;
1660
1661        if (info->low_limit > high_limit)
1662                return -ENOMEM;
1663        low_limit = info->low_limit + length;
1664
1665        /* Check if rbtree root looks promising */
1666        if (RB_EMPTY_ROOT(&mm->mm_rb))
1667                goto check_highest;
1668        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1669        if (vma->rb_subtree_gap < length)
1670                goto check_highest;
1671
1672        while (true) {
1673                /* Visit left subtree if it looks promising */
1674                gap_end = vma->vm_start;
1675                if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1676                        struct vm_area_struct *left =
1677                                rb_entry(vma->vm_rb.rb_left,
1678                                         struct vm_area_struct, vm_rb);
1679                        if (left->rb_subtree_gap >= length) {
1680                                vma = left;
1681                                continue;
1682                        }
1683                }
1684
1685                gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1686check_current:
1687                /* Check if current node has a suitable gap */
1688                if (gap_start > high_limit)
1689                        return -ENOMEM;
1690                if (gap_end >= low_limit && gap_end - gap_start >= length)
1691                        goto found;
1692
1693                /* Visit right subtree if it looks promising */
1694                if (vma->vm_rb.rb_right) {
1695                        struct vm_area_struct *right =
1696                                rb_entry(vma->vm_rb.rb_right,
1697                                         struct vm_area_struct, vm_rb);
1698                        if (right->rb_subtree_gap >= length) {
1699                                vma = right;
1700                                continue;
1701                        }
1702                }
1703
1704                /* Go back up the rbtree to find next candidate node */
1705                while (true) {
1706                        struct rb_node *prev = &vma->vm_rb;
1707                        if (!rb_parent(prev))
1708                                goto check_highest;
1709                        vma = rb_entry(rb_parent(prev),
1710                                       struct vm_area_struct, vm_rb);
1711                        if (prev == vma->vm_rb.rb_left) {
1712                                gap_start = vma->vm_prev->vm_end;
1713                                gap_end = vma->vm_start;
1714                                goto check_current;
1715                        }
1716                }
1717        }
1718
1719check_highest:
1720        /* Check highest gap, which does not precede any rbtree node */
1721        gap_start = mm->highest_vm_end;
1722        gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1723        if (gap_start > high_limit)
1724                return -ENOMEM;
1725
1726found:
1727        /* We found a suitable gap. Clip it with the original low_limit. */
1728        if (gap_start < info->low_limit)
1729                gap_start = info->low_limit;
1730
1731        /* Adjust gap address to the desired alignment */
1732        gap_start += (info->align_offset - gap_start) & info->align_mask;
1733
1734        VM_BUG_ON(gap_start + info->length > info->high_limit);
1735        VM_BUG_ON(gap_start + info->length > gap_end);
1736        return gap_start;
1737}
1738
1739unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1740{
1741        struct mm_struct *mm = current->mm;
1742        struct vm_area_struct *vma;
1743        unsigned long length, low_limit, high_limit, gap_start, gap_end;
1744
1745        /* Adjust search length to account for worst case alignment overhead */
1746        length = info->length + info->align_mask;
1747        if (length < info->length)
1748                return -ENOMEM;
1749
1750        /*
1751         * Adjust search limits by the desired length.
1752         * See implementation comment at top of unmapped_area().
1753         */
1754        gap_end = info->high_limit;
1755        if (gap_end < length)
1756                return -ENOMEM;
1757        high_limit = gap_end - length;
1758
1759        if (info->low_limit > high_limit)
1760                return -ENOMEM;
1761        low_limit = info->low_limit + length;
1762
1763        /* Check highest gap, which does not precede any rbtree node */
1764        gap_start = mm->highest_vm_end;
1765        if (gap_start <= high_limit)
1766                goto found_highest;
1767
1768        /* Check if rbtree root looks promising */
1769        if (RB_EMPTY_ROOT(&mm->mm_rb))
1770                return -ENOMEM;
1771        vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1772        if (vma->rb_subtree_gap < length)
1773                return -ENOMEM;
1774
1775        while (true) {
1776                /* Visit right subtree if it looks promising */
1777                gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1778                if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1779                        struct vm_area_struct *right =
1780                                rb_entry(vma->vm_rb.rb_right,
1781                                         struct vm_area_struct, vm_rb);
1782                        if (right->rb_subtree_gap >= length) {
1783                                vma = right;
1784                                continue;
1785                        }
1786                }
1787
1788check_current:
1789                /* Check if current node has a suitable gap */
1790                gap_end = vma->vm_start;
1791                if (gap_end < low_limit)
1792                        return -ENOMEM;
1793                if (gap_start <= high_limit && gap_end - gap_start >= length)
1794                        goto found;
1795
1796                /* Visit left subtree if it looks promising */
1797                if (vma->vm_rb.rb_left) {
1798                        struct vm_area_struct *left =
1799                                rb_entry(vma->vm_rb.rb_left,
1800                                         struct vm_area_struct, vm_rb);
1801                        if (left->rb_subtree_gap >= length) {
1802                                vma = left;
1803                                continue;
1804                        }
1805                }
1806
1807                /* Go back up the rbtree to find next candidate node */
1808                while (true) {
1809                        struct rb_node *prev = &vma->vm_rb;
1810                        if (!rb_parent(prev))
1811                                return -ENOMEM;
1812                        vma = rb_entry(rb_parent(prev),
1813                                       struct vm_area_struct, vm_rb);
1814                        if (prev == vma->vm_rb.rb_right) {
1815                                gap_start = vma->vm_prev ?
1816                                        vma->vm_prev->vm_end : 0;
1817                                goto check_current;
1818                        }
1819                }
1820        }
1821
1822found:
1823        /* We found a suitable gap. Clip it with the original high_limit. */
1824        if (gap_end > info->high_limit)
1825                gap_end = info->high_limit;
1826
1827found_highest:
1828        /* Compute highest gap address at the desired alignment */
1829        gap_end -= info->length;
1830        gap_end -= (gap_end - info->align_offset) & info->align_mask;
1831
1832        VM_BUG_ON(gap_end < info->low_limit);
1833        VM_BUG_ON(gap_end < gap_start);
1834        return gap_end;
1835}
1836
1837/* Get an address range which is currently unmapped.
1838 * For shmat() with addr=0.
1839 *
1840 * Ugly calling convention alert:
1841 * Return value with the low bits set means error value,
1842 * ie
1843 *      if (ret & ~PAGE_MASK)
1844 *              error = ret;
1845 *
1846 * This function "knows" that -ENOMEM has the bits set.
1847 */
1848#ifndef HAVE_ARCH_UNMAPPED_AREA
1849unsigned long
1850arch_get_unmapped_area(struct file *filp, unsigned long addr,
1851                unsigned long len, unsigned long pgoff, unsigned long flags)
1852{
1853        struct mm_struct *mm = current->mm;
1854        struct vm_area_struct *vma;
1855        struct vm_unmapped_area_info info;
1856
1857        if (len > TASK_SIZE - mmap_min_addr)
1858                return -ENOMEM;
1859
1860        if (flags & MAP_FIXED)
1861                return addr;
1862
1863        if (addr) {
1864                addr = PAGE_ALIGN(addr);
1865                vma = find_vma(mm, addr);
1866                if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1867                    (!vma || addr + len <= vma->vm_start))
1868                        return addr;
1869        }
1870
1871        info.flags = 0;
1872        info.length = len;
1873        info.low_limit = mm->mmap_base;
1874        info.high_limit = TASK_SIZE;
1875        info.align_mask = 0;
1876        return vm_unmapped_area(&info);
1877}
1878#endif  
1879
1880/*
1881 * This mmap-allocator allocates new areas top-down from below the
1882 * stack's low limit (the base):
1883 */
1884#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1885unsigned long
1886arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1887                          const unsigned long len, const unsigned long pgoff,
1888                          const unsigned long flags)
1889{
1890        struct vm_area_struct *vma;
1891        struct mm_struct *mm = current->mm;
1892        unsigned long addr = addr0;
1893        struct vm_unmapped_area_info info;
1894
1895        /* requested length too big for entire address space */
1896        if (len > TASK_SIZE - mmap_min_addr)
1897                return -ENOMEM;
1898
1899        if (flags & MAP_FIXED)
1900                return addr;
1901
1902        /* requesting a specific address */
1903        if (addr) {
1904                addr = PAGE_ALIGN(addr);
1905                vma = find_vma(mm, addr);
1906                if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1907                                (!vma || addr + len <= vma->vm_start))
1908                        return addr;
1909        }
1910
1911        info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1912        info.length = len;
1913        info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1914        info.high_limit = mm->mmap_base;
1915        info.align_mask = 0;
1916        addr = vm_unmapped_area(&info);
1917
1918        /*
1919         * A failed mmap() very likely causes application failure,
1920         * so fall back to the bottom-up function here. This scenario
1921         * can happen with large stack limits and large mmap()
1922         * allocations.
1923         */
1924        if (addr & ~PAGE_MASK) {
1925                VM_BUG_ON(addr != -ENOMEM);
1926                info.flags = 0;
1927                info.low_limit = TASK_UNMAPPED_BASE;
1928                info.high_limit = TASK_SIZE;
1929                addr = vm_unmapped_area(&info);
1930        }
1931
1932        return addr;
1933}
1934#endif
1935
1936unsigned long
1937get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1938                unsigned long pgoff, unsigned long flags)
1939{
1940        unsigned long (*get_area)(struct file *, unsigned long,
1941                                  unsigned long, unsigned long, unsigned long);
1942
1943        unsigned long error = arch_mmap_check(addr, len, flags);
1944        if (error)
1945                return error;
1946
1947        /* Careful about overflows.. */
1948        if (len > TASK_SIZE)
1949                return -ENOMEM;
1950
1951        get_area = current->mm->get_unmapped_area;
1952        if (file && file->f_op->get_unmapped_area)
1953                get_area = file->f_op->get_unmapped_area;
1954        addr = get_area(file, addr, len, pgoff, flags);
1955        if (IS_ERR_VALUE(addr))
1956                return addr;
1957
1958        if (addr > TASK_SIZE - len)
1959                return -ENOMEM;
1960        if (addr & ~PAGE_MASK)
1961                return -EINVAL;
1962
1963        addr = arch_rebalance_pgtables(addr, len);
1964        error = security_mmap_addr(addr);
1965        return error ? error : addr;
1966}
1967
1968EXPORT_SYMBOL(get_unmapped_area);
1969
1970/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1971struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1972{
1973        struct vm_area_struct *vma = NULL;
1974
1975        /* Check the cache first. */
1976        /* (Cache hit rate is typically around 35%.) */
1977        vma = ACCESS_ONCE(mm->mmap_cache);
1978        if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1979                struct rb_node *rb_node;
1980
1981                rb_node = mm->mm_rb.rb_node;
1982                vma = NULL;
1983
1984                while (rb_node) {
1985                        struct vm_area_struct *vma_tmp;
1986
1987                        vma_tmp = rb_entry(rb_node,
1988                                           struct vm_area_struct, vm_rb);
1989
1990                        if (vma_tmp->vm_end > addr) {
1991                                vma = vma_tmp;
1992                                if (vma_tmp->vm_start <= addr)
1993                                        break;
1994                                rb_node = rb_node->rb_left;
1995                        } else
1996                                rb_node = rb_node->rb_right;
1997                }
1998                if (vma)
1999                        mm->mmap_cache = vma;
2000        }
2001        return vma;
2002}
2003
2004EXPORT_SYMBOL(find_vma);
2005
2006/*
2007 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2008 */
2009struct vm_area_struct *
2010find_vma_prev(struct mm_struct *mm, unsigned long addr,
2011                        struct vm_area_struct **pprev)
2012{
2013        struct vm_area_struct *vma;
2014
2015        vma = find_vma(mm, addr);
2016        if (vma) {
2017                *pprev = vma->vm_prev;
2018        } else {
2019                struct rb_node *rb_node = mm->mm_rb.rb_node;
2020                *pprev = NULL;
2021                while (rb_node) {
2022                        *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2023                        rb_node = rb_node->rb_right;
2024                }
2025        }
2026        return vma;
2027}
2028
2029/*
2030 * Verify that the stack growth is acceptable and
2031 * update accounting. This is shared with both the
2032 * grow-up and grow-down cases.
2033 */
2034static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2035{
2036        struct mm_struct *mm = vma->vm_mm;
2037        struct rlimit *rlim = current->signal->rlim;
2038        unsigned long new_start;
2039
2040        /* address space limit tests */
2041        if (!may_expand_vm(mm, grow))
2042                return -ENOMEM;
2043
2044        /* Stack limit test */
2045        if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2046                return -ENOMEM;
2047
2048        /* mlock limit tests */
2049        if (vma->vm_flags & VM_LOCKED) {
2050                unsigned long locked;
2051                unsigned long limit;
2052                locked = mm->locked_vm + grow;
2053                limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2054                limit >>= PAGE_SHIFT;
2055                if (locked > limit && !capable(CAP_IPC_LOCK))
2056                        return -ENOMEM;
2057        }
2058
2059        /* Check to ensure the stack will not grow into a hugetlb-only region */
2060        new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2061                        vma->vm_end - size;
2062        if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2063                return -EFAULT;
2064
2065        /*
2066         * Overcommit..  This must be the final test, as it will
2067         * update security statistics.
2068         */
2069        if (security_vm_enough_memory_mm(mm, grow))
2070                return -ENOMEM;
2071
2072        /* Ok, everything looks good - let it rip */
2073        if (vma->vm_flags & VM_LOCKED)
2074                mm->locked_vm += grow;
2075        vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2076        return 0;
2077}
2078
2079#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2080/*
2081 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2082 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2083 */
2084int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2085{
2086        int error;
2087
2088        if (!(vma->vm_flags & VM_GROWSUP))
2089                return -EFAULT;
2090
2091        /*
2092         * We must make sure the anon_vma is allocated
2093         * so that the anon_vma locking is not a noop.
2094         */
2095        if (unlikely(anon_vma_prepare(vma)))
2096                return -ENOMEM;
2097        vma_lock_anon_vma(vma);
2098
2099        /*
2100         * vma->vm_start/vm_end cannot change under us because the caller
2101         * is required to hold the mmap_sem in read mode.  We need the
2102         * anon_vma lock to serialize against concurrent expand_stacks.
2103         * Also guard against wrapping around to address 0.
2104         */
2105        if (address < PAGE_ALIGN(address+4))
2106                address = PAGE_ALIGN(address+4);
2107        else {
2108                vma_unlock_anon_vma(vma);
2109                return -ENOMEM;
2110        }
2111        error = 0;
2112
2113        /* Somebody else might have raced and expanded it already */
2114        if (address > vma->vm_end) {
2115                unsigned long size, grow;
2116
2117                size = address - vma->vm_start;
2118                grow = (address - vma->vm_end) >> PAGE_SHIFT;
2119
2120                error = -ENOMEM;
2121                if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2122                        error = acct_stack_growth(vma, size, grow);
2123                        if (!error) {
2124                                /*
2125                                 * vma_gap_update() doesn't support concurrent
2126                                 * updates, but we only hold a shared mmap_sem
2127                                 * lock here, so we need to protect against
2128                                 * concurrent vma expansions.
2129                                 * vma_lock_anon_vma() doesn't help here, as
2130                                 * we don't guarantee that all growable vmas
2131                                 * in a mm share the same root anon vma.
2132                                 * So, we reuse mm->page_table_lock to guard
2133                                 * against concurrent vma expansions.
2134                                 */
2135                                spin_lock(&vma->vm_mm->page_table_lock);
2136                                anon_vma_interval_tree_pre_update_vma(vma);
2137                                vma->vm_end = address;
2138                                anon_vma_interval_tree_post_update_vma(vma);
2139                                if (vma->vm_next)
2140                                        vma_gap_update(vma->vm_next);
2141                                else
2142                                        vma->vm_mm->highest_vm_end = address;
2143                                spin_unlock(&vma->vm_mm->page_table_lock);
2144
2145                                perf_event_mmap(vma);
2146                        }
2147                }
2148        }
2149        vma_unlock_anon_vma(vma);
2150        khugepaged_enter_vma_merge(vma);
2151        validate_mm(vma->vm_mm);
2152        return error;
2153}
2154#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2155
2156/*
2157 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2158 */
2159int expand_downwards(struct vm_area_struct *vma,
2160                                   unsigned long address)
2161{
2162        int error;
2163
2164        /*
2165         * We must make sure the anon_vma is allocated
2166         * so that the anon_vma locking is not a noop.
2167         */
2168        if (unlikely(anon_vma_prepare(vma)))
2169                return -ENOMEM;
2170
2171        address &= PAGE_MASK;
2172        error = security_mmap_addr(address);
2173        if (error)
2174                return error;
2175
2176        vma_lock_anon_vma(vma);
2177
2178        /*
2179         * vma->vm_start/vm_end cannot change under us because the caller
2180         * is required to hold the mmap_sem in read mode.  We need the
2181         * anon_vma lock to serialize against concurrent expand_stacks.
2182         */
2183
2184        /* Somebody else might have raced and expanded it already */
2185        if (address < vma->vm_start) {
2186                unsigned long size, grow;
2187
2188                size = vma->vm_end - address;
2189                grow = (vma->vm_start - address) >> PAGE_SHIFT;
2190
2191                error = -ENOMEM;
2192                if (grow <= vma->vm_pgoff) {
2193                        error = acct_stack_growth(vma, size, grow);
2194                        if (!error) {
2195                                /*
2196                                 * vma_gap_update() doesn't support concurrent
2197                                 * updates, but we only hold a shared mmap_sem
2198                                 * lock here, so we need to protect against
2199                                 * concurrent vma expansions.
2200                                 * vma_lock_anon_vma() doesn't help here, as
2201                                 * we don't guarantee that all growable vmas
2202                                 * in a mm share the same root anon vma.
2203                                 * So, we reuse mm->page_table_lock to guard
2204                                 * against concurrent vma expansions.
2205                                 */
2206                                spin_lock(&vma->vm_mm->page_table_lock);
2207                                anon_vma_interval_tree_pre_update_vma(vma);
2208                                vma->vm_start = address;
2209                                vma->vm_pgoff -= grow;
2210                                anon_vma_interval_tree_post_update_vma(vma);
2211                                vma_gap_update(vma);
2212                                spin_unlock(&vma->vm_mm->page_table_lock);
2213
2214                                perf_event_mmap(vma);
2215                        }
2216                }
2217        }
2218        vma_unlock_anon_vma(vma);
2219        khugepaged_enter_vma_merge(vma);
2220        validate_mm(vma->vm_mm);
2221        return error;
2222}
2223
2224/*
2225 * Note how expand_stack() refuses to expand the stack all the way to
2226 * abut the next virtual mapping, *unless* that mapping itself is also
2227 * a stack mapping. We want to leave room for a guard page, after all
2228 * (the guard page itself is not added here, that is done by the
2229 * actual page faulting logic)
2230 *
2231 * This matches the behavior of the guard page logic (see mm/memory.c:
2232 * check_stack_guard_page()), which only allows the guard page to be
2233 * removed under these circumstances.
2234 */
2235#ifdef CONFIG_STACK_GROWSUP
2236int expand_stack(struct vm_area_struct *vma, unsigned long address)
2237{
2238        struct vm_area_struct *next;
2239
2240        address &= PAGE_MASK;
2241        next = vma->vm_next;
2242        if (next && next->vm_start == address + PAGE_SIZE) {
2243                if (!(next->vm_flags & VM_GROWSUP))
2244                        return -ENOMEM;
2245        }
2246        return expand_upwards(vma, address);
2247}
2248
2249struct vm_area_struct *
2250find_extend_vma(struct mm_struct *mm, unsigned long addr)
2251{
2252        struct vm_area_struct *vma, *prev;
2253
2254        addr &= PAGE_MASK;
2255        vma = find_vma_prev(mm, addr, &prev);
2256        if (vma && (vma->vm_start <= addr))
2257                return vma;
2258        if (!prev || expand_stack(prev, addr))
2259                return NULL;
2260        if (prev->vm_flags & VM_LOCKED)
2261                __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2262        return prev;
2263}
2264#else
2265int expand_stack(struct vm_area_struct *vma, unsigned long address)
2266{
2267        struct vm_area_struct *prev;
2268
2269        address &= PAGE_MASK;
2270        prev = vma->vm_prev;
2271        if (prev && prev->vm_end == address) {
2272                if (!(prev->vm_flags & VM_GROWSDOWN))
2273                        return -ENOMEM;
2274        }
2275        return expand_downwards(vma, address);
2276}
2277
2278struct vm_area_struct *
2279find_extend_vma(struct mm_struct * mm, unsigned long addr)
2280{
2281        struct vm_area_struct * vma;
2282        unsigned long start;
2283
2284        addr &= PAGE_MASK;
2285        vma = find_vma(mm,addr);
2286        if (!vma)
2287                return NULL;
2288        if (vma->vm_start <= addr)
2289                return vma;
2290        if (!(vma->vm_flags & VM_GROWSDOWN))
2291                return NULL;
2292        start = vma->vm_start;
2293        if (expand_stack(vma, addr))
2294                return NULL;
2295        if (vma->vm_flags & VM_LOCKED)
2296                __mlock_vma_pages_range(vma, addr, start, NULL);
2297        return vma;
2298}
2299#endif
2300
2301/*
2302 * Ok - we have the memory areas we should free on the vma list,
2303 * so release them, and do the vma updates.
2304 *
2305 * Called with the mm semaphore held.
2306 */
2307static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2308{
2309        unsigned long nr_accounted = 0;
2310
2311        /* Update high watermark before we lower total_vm */
2312        update_hiwater_vm(mm);
2313        do {
2314                long nrpages = vma_pages(vma);
2315
2316                if (vma->vm_flags & VM_ACCOUNT)
2317                        nr_accounted += nrpages;
2318                vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2319                vma = remove_vma(vma);
2320        } while (vma);
2321        vm_unacct_memory(nr_accounted);
2322        validate_mm(mm);
2323}
2324
2325/*
2326 * Get rid of page table information in the indicated region.
2327 *
2328 * Called with the mm semaphore held.
2329 */
2330static void unmap_region(struct mm_struct *mm,
2331                struct vm_area_struct *vma, struct vm_area_struct *prev,
2332                unsigned long start, unsigned long end)
2333{
2334        struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2335        struct mmu_gather tlb;
2336
2337        lru_add_drain();
2338        tlb_gather_mmu(&tlb, mm, start, end);
2339        update_hiwater_rss(mm);
2340        unmap_vmas(&tlb, vma, start, end);
2341        free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2342                                 next ? next->vm_start : USER_PGTABLES_CEILING);
2343        tlb_finish_mmu(&tlb, start, end);
2344}
2345
2346/*
2347 * Create a list of vma's touched by the unmap, removing them from the mm's
2348 * vma list as we go..
2349 */
2350static void
2351detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2352        struct vm_area_struct *prev, unsigned long end)
2353{
2354        struct vm_area_struct **insertion_point;
2355        struct vm_area_struct *tail_vma = NULL;
2356
2357        insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2358        vma->vm_prev = NULL;
2359        do {
2360                vma_rb_erase(vma, &mm->mm_rb);
2361                mm->map_count--;
2362                tail_vma = vma;
2363                vma = vma->vm_next;
2364        } while (vma && vma->vm_start < end);
2365        *insertion_point = vma;
2366        if (vma) {
2367                vma->vm_prev = prev;
2368                vma_gap_update(vma);
2369        } else
2370                mm->highest_vm_end = prev ? prev->vm_end : 0;
2371        tail_vma->vm_next = NULL;
2372        mm->mmap_cache = NULL;          /* Kill the cache. */
2373}
2374
2375/*
2376 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2377 * munmap path where it doesn't make sense to fail.
2378 */
2379static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2380              unsigned long addr, int new_below)
2381{
2382        struct vm_area_struct *new;
2383        int err = -ENOMEM;
2384
2385        if (is_vm_hugetlb_page(vma) && (addr &
2386                                        ~(huge_page_mask(hstate_vma(vma)))))
2387                return -EINVAL;
2388
2389        new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2390        if (!new)
2391                goto out_err;
2392
2393        /* most fields are the same, copy all, and then fixup */
2394        *new = *vma;
2395
2396        INIT_LIST_HEAD(&new->anon_vma_chain);
2397
2398        if (new_below)
2399                new->vm_end = addr;
2400        else {
2401                new->vm_start = addr;
2402                new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2403        }
2404
2405        err = vma_dup_policy(vma, new);
2406        if (err)
2407                goto out_free_vma;
2408
2409        if (anon_vma_clone(new, vma))
2410                goto out_free_mpol;
2411
2412        if (new->vm_file)
2413                get_file(new->vm_file);
2414
2415        if (new->vm_ops && new->vm_ops->open)
2416                new->vm_ops->open(new);
2417
2418        if (new_below)
2419                err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2420                        ((addr - new->vm_start) >> PAGE_SHIFT), new);
2421        else
2422                err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2423
2424        /* Success. */
2425        if (!err)
2426                return 0;
2427
2428        /* Clean everything up if vma_adjust failed. */
2429        if (new->vm_ops && new->vm_ops->close)
2430                new->vm_ops->close(new);
2431        if (new->vm_file)
2432                fput(new->vm_file);
2433        unlink_anon_vmas(new);
2434 out_free_mpol:
2435        mpol_put(vma_policy(new));
2436 out_free_vma:
2437        kmem_cache_free(vm_area_cachep, new);
2438 out_err:
2439        return err;
2440}
2441
2442/*
2443 * Split a vma into two pieces at address 'addr', a new vma is allocated
2444 * either for the first part or the tail.
2445 */
2446int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2447              unsigned long addr, int new_below)
2448{
2449        if (mm->map_count >= sysctl_max_map_count)
2450                return -ENOMEM;
2451
2452        return __split_vma(mm, vma, addr, new_below);
2453}
2454
2455/* Munmap is split into 2 main parts -- this part which finds
2456 * what needs doing, and the areas themselves, which do the
2457 * work.  This now handles partial unmappings.
2458 * Jeremy Fitzhardinge <jeremy@goop.org>
2459 */
2460int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2461{
2462        unsigned long end;
2463        struct vm_area_struct *vma, *prev, *last;
2464
2465        if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2466                return -EINVAL;
2467
2468        if ((len = PAGE_ALIGN(len)) == 0)
2469                return -EINVAL;
2470
2471        /* Find the first overlapping VMA */
2472        vma = find_vma(mm, start);
2473        if (!vma)
2474                return 0;
2475        prev = vma->vm_prev;
2476        /* we have  start < vma->vm_end  */
2477
2478        /* if it doesn't overlap, we have nothing.. */
2479        end = start + len;
2480        if (vma->vm_start >= end)
2481                return 0;
2482
2483        /*
2484         * If we need to split any vma, do it now to save pain later.
2485         *
2486         * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2487         * unmapped vm_area_struct will remain in use: so lower split_vma
2488         * places tmp vma above, and higher split_vma places tmp vma below.
2489         */
2490        if (start > vma->vm_start) {
2491                int error;
2492
2493                /*
2494                 * Make sure that map_count on return from munmap() will
2495                 * not exceed its limit; but let map_count go just above
2496                 * its limit temporarily, to help free resources as expected.
2497                 */
2498                if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2499                        return -ENOMEM;
2500
2501                error = __split_vma(mm, vma, start, 0);
2502                if (error)
2503                        return error;
2504                prev = vma;
2505        }
2506
2507        /* Does it split the last one? */
2508        last = find_vma(mm, end);
2509        if (last && end > last->vm_start) {
2510                int error = __split_vma(mm, last, end, 1);
2511                if (error)
2512                        return error;
2513        }
2514        vma = prev? prev->vm_next: mm->mmap;
2515
2516        /*
2517         * unlock any mlock()ed ranges before detaching vmas
2518         */
2519        if (mm->locked_vm) {
2520                struct vm_area_struct *tmp = vma;
2521                while (tmp && tmp->vm_start < end) {
2522                        if (tmp->vm_flags & VM_LOCKED) {
2523                                mm->locked_vm -= vma_pages(tmp);
2524                                munlock_vma_pages_all(tmp);
2525                        }
2526                        tmp = tmp->vm_next;
2527                }
2528        }
2529
2530        /*
2531         * Remove the vma's, and unmap the actual pages
2532         */
2533        detach_vmas_to_be_unmapped(mm, vma, prev, end);
2534        unmap_region(mm, vma, prev, start, end);
2535
2536        /* Fix up all other VM information */
2537        remove_vma_list(mm, vma);
2538
2539        return 0;
2540}
2541
2542int vm_munmap(unsigned long start, size_t len)
2543{
2544        int ret;
2545        struct mm_struct *mm = current->mm;
2546
2547        down_write(&mm->mmap_sem);
2548        ret = do_munmap(mm, start, len);
2549        up_write(&mm->mmap_sem);
2550        return ret;
2551}
2552EXPORT_SYMBOL(vm_munmap);
2553
2554SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2555{
2556        profile_munmap(addr);
2557        return vm_munmap(addr, len);
2558}
2559
2560static inline void verify_mm_writelocked(struct mm_struct *mm)
2561{
2562#ifdef CONFIG_DEBUG_VM
2563        if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2564                WARN_ON(1);
2565                up_read(&mm->mmap_sem);
2566        }
2567#endif
2568}
2569
2570/*
2571 *  this is really a simplified "do_mmap".  it only handles
2572 *  anonymous maps.  eventually we may be able to do some
2573 *  brk-specific accounting here.
2574 */
2575static unsigned long do_brk(unsigned long addr, unsigned long len)
2576{
2577        struct mm_struct * mm = current->mm;
2578        struct vm_area_struct * vma, * prev;
2579        unsigned long flags;
2580        struct rb_node ** rb_link, * rb_parent;
2581        pgoff_t pgoff = addr >> PAGE_SHIFT;
2582        int error;
2583
2584        len = PAGE_ALIGN(len);
2585        if (!len)
2586                return addr;
2587
2588        flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2589
2590        error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2591        if (error & ~PAGE_MASK)
2592                return error;
2593
2594        /*
2595         * mlock MCL_FUTURE?
2596         */
2597        if (mm->def_flags & VM_LOCKED) {
2598                unsigned long locked, lock_limit;
2599                locked = len >> PAGE_SHIFT;
2600                locked += mm->locked_vm;
2601                lock_limit = rlimit(RLIMIT_MEMLOCK);
2602                lock_limit >>= PAGE_SHIFT;
2603                if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2604                        return -EAGAIN;
2605        }
2606
2607        /*
2608         * mm->mmap_sem is required to protect against another thread
2609         * changing the mappings in case we sleep.
2610         */
2611        verify_mm_writelocked(mm);
2612
2613        /*
2614         * Clear old maps.  this also does some error checking for us
2615         */
2616 munmap_back:
2617        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2618                if (do_munmap(mm, addr, len))
2619                        return -ENOMEM;
2620                goto munmap_back;
2621        }
2622
2623        /* Check against address space limits *after* clearing old maps... */
2624        if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2625                return -ENOMEM;
2626
2627        if (mm->map_count > sysctl_max_map_count)
2628                return -ENOMEM;
2629
2630        if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2631                return -ENOMEM;
2632
2633        /* Can we just expand an old private anonymous mapping? */
2634        vma = vma_merge(mm, prev, addr, addr + len, flags,
2635                                        NULL, NULL, pgoff, NULL);
2636        if (vma)
2637                goto out;
2638
2639        /*
2640         * create a vma struct for an anonymous mapping
2641         */
2642        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2643        if (!vma) {
2644                vm_unacct_memory(len >> PAGE_SHIFT);
2645                return -ENOMEM;
2646        }
2647
2648        INIT_LIST_HEAD(&vma->anon_vma_chain);
2649        vma->vm_mm = mm;
2650        vma->vm_start = addr;
2651        vma->vm_end = addr + len;
2652        vma->vm_pgoff = pgoff;
2653        vma->vm_flags = flags;
2654        vma->vm_page_prot = vm_get_page_prot(flags);
2655        vma_link(mm, vma, prev, rb_link, rb_parent);
2656out:
2657        perf_event_mmap(vma);
2658        mm->total_vm += len >> PAGE_SHIFT;
2659        if (flags & VM_LOCKED)
2660                mm->locked_vm += (len >> PAGE_SHIFT);
2661        vma->vm_flags |= VM_SOFTDIRTY;
2662        return addr;
2663}
2664
2665unsigned long vm_brk(unsigned long addr, unsigned long len)
2666{
2667        struct mm_struct *mm = current->mm;
2668        unsigned long ret;
2669        bool populate;
2670
2671        down_write(&mm->mmap_sem);
2672        ret = do_brk(addr, len);
2673        populate = ((mm->def_flags & VM_LOCKED) != 0);
2674        up_write(&mm->mmap_sem);
2675        if (populate)
2676                mm_populate(addr, len);
2677        return ret;
2678}
2679EXPORT_SYMBOL(vm_brk);
2680
2681/* Release all mmaps. */
2682void exit_mmap(struct mm_struct *mm)
2683{
2684        struct mmu_gather tlb;
2685        struct vm_area_struct *vma;
2686        unsigned long nr_accounted = 0;
2687
2688        /* mm's last user has gone, and its about to be pulled down */
2689        mmu_notifier_release(mm);
2690
2691        if (mm->locked_vm) {
2692                vma = mm->mmap;
2693                while (vma) {
2694                        if (vma->vm_flags & VM_LOCKED)
2695                                munlock_vma_pages_all(vma);
2696                        vma = vma->vm_next;
2697                }
2698        }
2699
2700        arch_exit_mmap(mm);
2701
2702        vma = mm->mmap;
2703        if (!vma)       /* Can happen if dup_mmap() received an OOM */
2704                return;
2705
2706        lru_add_drain();
2707        flush_cache_mm(mm);
2708        tlb_gather_mmu(&tlb, mm, 0, -1);
2709        /* update_hiwater_rss(mm) here? but nobody should be looking */
2710        /* Use -1 here to ensure all VMAs in the mm are unmapped */
2711        unmap_vmas(&tlb, vma, 0, -1);
2712
2713        free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2714        tlb_finish_mmu(&tlb, 0, -1);
2715
2716        /*
2717         * Walk the list again, actually closing and freeing it,
2718         * with preemption enabled, without holding any MM locks.
2719         */
2720        while (vma) {
2721                if (vma->vm_flags & VM_ACCOUNT)
2722                        nr_accounted += vma_pages(vma);
2723                vma = remove_vma(vma);
2724        }
2725        vm_unacct_memory(nr_accounted);
2726
2727        WARN_ON(atomic_long_read(&mm->nr_ptes) >
2728                        (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2729}
2730
2731/* Insert vm structure into process list sorted by address
2732 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2733 * then i_mmap_mutex is taken here.
2734 */
2735int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2736{
2737        struct vm_area_struct *prev;
2738        struct rb_node **rb_link, *rb_parent;
2739
2740        /*
2741         * The vm_pgoff of a purely anonymous vma should be irrelevant
2742         * until its first write fault, when page's anon_vma and index
2743         * are set.  But now set the vm_pgoff it will almost certainly
2744         * end up with (unless mremap moves it elsewhere before that
2745         * first wfault), so /proc/pid/maps tells a consistent story.
2746         *
2747         * By setting it to reflect the virtual start address of the
2748         * vma, merges and splits can happen in a seamless way, just
2749         * using the existing file pgoff checks and manipulations.
2750         * Similarly in do_mmap_pgoff and in do_brk.
2751         */
2752        if (!vma->vm_file) {
2753                BUG_ON(vma->anon_vma);
2754                vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2755        }
2756        if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2757                           &prev, &rb_link, &rb_parent))
2758                return -ENOMEM;
2759        if ((vma->vm_flags & VM_ACCOUNT) &&
2760             security_vm_enough_memory_mm(mm, vma_pages(vma)))
2761                return -ENOMEM;
2762
2763        vma_link(mm, vma, prev, rb_link, rb_parent);
2764        return 0;
2765}
2766
2767/*
2768 * Copy the vma structure to a new location in the same mm,
2769 * prior to moving page table entries, to effect an mremap move.
2770 */
2771struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2772        unsigned long addr, unsigned long len, pgoff_t pgoff,
2773        bool *need_rmap_locks)
2774{
2775        struct vm_area_struct *vma = *vmap;
2776        unsigned long vma_start = vma->vm_start;
2777        struct mm_struct *mm = vma->vm_mm;
2778        struct vm_area_struct *new_vma, *prev;
2779        struct rb_node **rb_link, *rb_parent;
2780        bool faulted_in_anon_vma = true;
2781
2782        /*
2783         * If anonymous vma has not yet been faulted, update new pgoff
2784         * to match new location, to increase its chance of merging.
2785         */
2786        if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2787                pgoff = addr >> PAGE_SHIFT;
2788                faulted_in_anon_vma = false;
2789        }
2790
2791        if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2792                return NULL;    /* should never get here */
2793        new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2794                        vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2795        if (new_vma) {
2796                /*
2797                 * Source vma may have been merged into new_vma
2798                 */
2799                if (unlikely(vma_start >= new_vma->vm_start &&
2800                             vma_start < new_vma->vm_end)) {
2801                        /*
2802                         * The only way we can get a vma_merge with
2803                         * self during an mremap is if the vma hasn't
2804                         * been faulted in yet and we were allowed to
2805                         * reset the dst vma->vm_pgoff to the
2806                         * destination address of the mremap to allow
2807                         * the merge to happen. mremap must change the
2808                         * vm_pgoff linearity between src and dst vmas
2809                         * (in turn preventing a vma_merge) to be
2810                         * safe. It is only safe to keep the vm_pgoff
2811                         * linear if there are no pages mapped yet.
2812                         */
2813                        VM_BUG_ON(faulted_in_anon_vma);
2814                        *vmap = vma = new_vma;
2815                }
2816                *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2817        } else {
2818                new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2819                if (new_vma) {
2820                        *new_vma = *vma;
2821                        new_vma->vm_start = addr;
2822                        new_vma->vm_end = addr + len;
2823                        new_vma->vm_pgoff = pgoff;
2824                        if (vma_dup_policy(vma, new_vma))
2825                                goto out_free_vma;
2826                        INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2827                        if (anon_vma_clone(new_vma, vma))
2828                                goto out_free_mempol;
2829                        if (new_vma->vm_file)
2830                                get_file(new_vma->vm_file);
2831                        if (new_vma->vm_ops && new_vma->vm_ops->open)
2832                                new_vma->vm_ops->open(new_vma);
2833                        vma_link(mm, new_vma, prev, rb_link, rb_parent);
2834                        *need_rmap_locks = false;
2835                }
2836        }
2837        return new_vma;
2838
2839 out_free_mempol:
2840        mpol_put(vma_policy(new_vma));
2841 out_free_vma:
2842        kmem_cache_free(vm_area_cachep, new_vma);
2843        return NULL;
2844}
2845
2846/*
2847 * Return true if the calling process may expand its vm space by the passed
2848 * number of pages
2849 */
2850int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2851{
2852        unsigned long cur = mm->total_vm;       /* pages */
2853        unsigned long lim;
2854
2855        lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2856
2857        if (cur + npages > lim)
2858                return 0;
2859        return 1;
2860}
2861
2862
2863static int special_mapping_fault(struct vm_area_struct *vma,
2864                                struct vm_fault *vmf)
2865{
2866        pgoff_t pgoff;
2867        struct page **pages;
2868
2869        /*
2870         * special mappings have no vm_file, and in that case, the mm
2871         * uses vm_pgoff internally. So we have to subtract it from here.
2872         * We are allowed to do this because we are the mm; do not copy
2873         * this code into drivers!
2874         */
2875        pgoff = vmf->pgoff - vma->vm_pgoff;
2876
2877        for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2878                pgoff--;
2879
2880        if (*pages) {
2881                struct page *page = *pages;
2882                get_page(page);
2883                vmf->page = page;
2884                return 0;
2885        }
2886
2887        return VM_FAULT_SIGBUS;
2888}
2889
2890/*
2891 * Having a close hook prevents vma merging regardless of flags.
2892 */
2893static void special_mapping_close(struct vm_area_struct *vma)
2894{
2895}
2896
2897static const struct vm_operations_struct special_mapping_vmops = {
2898        .close = special_mapping_close,
2899        .fault = special_mapping_fault,
2900};
2901
2902/*
2903 * Called with mm->mmap_sem held for writing.
2904 * Insert a new vma covering the given region, with the given flags.
2905 * Its pages are supplied by the given array of struct page *.
2906 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2907 * The region past the last page supplied will always produce SIGBUS.
2908 * The array pointer and the pages it points to are assumed to stay alive
2909 * for as long as this mapping might exist.
2910 */
2911int install_special_mapping(struct mm_struct *mm,
2912                            unsigned long addr, unsigned long len,
2913                            unsigned long vm_flags, struct page **pages)
2914{
2915        int ret;
2916        struct vm_area_struct *vma;
2917
2918        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2919        if (unlikely(vma == NULL))
2920                return -ENOMEM;
2921
2922        INIT_LIST_HEAD(&vma->anon_vma_chain);
2923        vma->vm_mm = mm;
2924        vma->vm_start = addr;
2925        vma->vm_end = addr + len;
2926
2927        vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2928        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2929
2930        vma->vm_ops = &special_mapping_vmops;
2931        vma->vm_private_data = pages;
2932
2933        ret = insert_vm_struct(mm, vma);
2934        if (ret)
2935                goto out;
2936
2937        mm->total_vm += len >> PAGE_SHIFT;
2938
2939        perf_event_mmap(vma);
2940
2941        return 0;
2942
2943out:
2944        kmem_cache_free(vm_area_cachep, vma);
2945        return ret;
2946}
2947
2948static DEFINE_MUTEX(mm_all_locks_mutex);
2949
2950static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2951{
2952        if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2953                /*
2954                 * The LSB of head.next can't change from under us
2955                 * because we hold the mm_all_locks_mutex.
2956                 */
2957                down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2958                /*
2959                 * We can safely modify head.next after taking the
2960                 * anon_vma->root->rwsem. If some other vma in this mm shares
2961                 * the same anon_vma we won't take it again.
2962                 *
2963                 * No need of atomic instructions here, head.next
2964                 * can't change from under us thanks to the
2965                 * anon_vma->root->rwsem.
2966                 */
2967                if (__test_and_set_bit(0, (unsigned long *)
2968                                       &anon_vma->root->rb_root.rb_node))
2969                        BUG();
2970        }
2971}
2972
2973static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2974{
2975        if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2976                /*
2977                 * AS_MM_ALL_LOCKS can't change from under us because
2978                 * we hold the mm_all_locks_mutex.
2979                 *
2980                 * Operations on ->flags have to be atomic because
2981                 * even if AS_MM_ALL_LOCKS is stable thanks to the
2982                 * mm_all_locks_mutex, there may be other cpus
2983                 * changing other bitflags in parallel to us.
2984                 */
2985                if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2986                        BUG();
2987                mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2988        }
2989}
2990
2991/*
2992 * This operation locks against the VM for all pte/vma/mm related
2993 * operations that could ever happen on a certain mm. This includes
2994 * vmtruncate, try_to_unmap, and all page faults.
2995 *
2996 * The caller must take the mmap_sem in write mode before calling
2997 * mm_take_all_locks(). The caller isn't allowed to release the
2998 * mmap_sem until mm_drop_all_locks() returns.
2999 *
3000 * mmap_sem in write mode is required in order to block all operations
3001 * that could modify pagetables and free pages without need of
3002 * altering the vma layout (for example populate_range() with
3003 * nonlinear vmas). It's also needed in write mode to avoid new
3004 * anon_vmas to be associated with existing vmas.
3005 *
3006 * A single task can't take more than one mm_take_all_locks() in a row
3007 * or it would deadlock.
3008 *
3009 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3010 * mapping->flags avoid to take the same lock twice, if more than one
3011 * vma in this mm is backed by the same anon_vma or address_space.
3012 *
3013 * We can take all the locks in random order because the VM code
3014 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3015 * takes more than one of them in a row. Secondly we're protected
3016 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3017 *
3018 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3019 * that may have to take thousand of locks.
3020 *
3021 * mm_take_all_locks() can fail if it's interrupted by signals.
3022 */
3023int mm_take_all_locks(struct mm_struct *mm)
3024{
3025        struct vm_area_struct *vma;
3026        struct anon_vma_chain *avc;
3027
3028        BUG_ON(down_read_trylock(&mm->mmap_sem));
3029
3030        mutex_lock(&mm_all_locks_mutex);
3031
3032        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3033                if (signal_pending(current))
3034                        goto out_unlock;
3035                if (vma->vm_file && vma->vm_file->f_mapping)
3036                        vm_lock_mapping(mm, vma->vm_file->f_mapping);
3037        }
3038
3039        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3040                if (signal_pending(current))
3041                        goto out_unlock;
3042                if (vma->anon_vma)
3043                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3044                                vm_lock_anon_vma(mm, avc->anon_vma);
3045        }
3046
3047        return 0;
3048
3049out_unlock:
3050        mm_drop_all_locks(mm);
3051        return -EINTR;
3052}
3053
3054static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3055{
3056        if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3057                /*
3058                 * The LSB of head.next can't change to 0 from under
3059                 * us because we hold the mm_all_locks_mutex.
3060                 *
3061                 * We must however clear the bitflag before unlocking
3062                 * the vma so the users using the anon_vma->rb_root will
3063                 * never see our bitflag.
3064                 *
3065                 * No need of atomic instructions here, head.next
3066                 * can't change from under us until we release the
3067                 * anon_vma->root->rwsem.
3068                 */
3069                if (!__test_and_clear_bit(0, (unsigned long *)
3070                                          &anon_vma->root->rb_root.rb_node))
3071                        BUG();
3072                anon_vma_unlock_write(anon_vma);
3073        }
3074}
3075
3076static void vm_unlock_mapping(struct address_space *mapping)
3077{
3078        if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3079                /*
3080                 * AS_MM_ALL_LOCKS can't change to 0 from under us
3081                 * because we hold the mm_all_locks_mutex.
3082                 */
3083                mutex_unlock(&mapping->i_mmap_mutex);
3084                if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3085                                        &mapping->flags))
3086                        BUG();
3087        }
3088}
3089
3090/*
3091 * The mmap_sem cannot be released by the caller until
3092 * mm_drop_all_locks() returns.
3093 */
3094void mm_drop_all_locks(struct mm_struct *mm)
3095{
3096        struct vm_area_struct *vma;
3097        struct anon_vma_chain *avc;
3098
3099        BUG_ON(down_read_trylock(&mm->mmap_sem));
3100        BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3101
3102        for (vma = mm->mmap; vma; vma = vma->vm_next) {
3103                if (vma->anon_vma)
3104                        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3105                                vm_unlock_anon_vma(avc->anon_vma);
3106                if (vma->vm_file && vma->vm_file->f_mapping)
3107                        vm_unlock_mapping(vma->vm_file->f_mapping);
3108        }
3109
3110        mutex_unlock(&mm_all_locks_mutex);
3111}
3112
3113/*
3114 * initialise the VMA slab
3115 */
3116void __init mmap_init(void)
3117{
3118        int ret;
3119
3120        ret = percpu_counter_init(&vm_committed_as, 0);
3121        VM_BUG_ON(ret);
3122}
3123
3124/*
3125 * Initialise sysctl_user_reserve_kbytes.
3126 *
3127 * This is intended to prevent a user from starting a single memory hogging
3128 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3129 * mode.
3130 *
3131 * The default value is min(3% of free memory, 128MB)
3132 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3133 */
3134static int init_user_reserve(void)
3135{
3136        unsigned long free_kbytes;
3137
3138        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3139
3140        sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3141        return 0;
3142}
3143module_init(init_user_reserve)
3144
3145/*
3146 * Initialise sysctl_admin_reserve_kbytes.
3147 *
3148 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3149 * to log in and kill a memory hogging process.
3150 *
3151 * Systems with more than 256MB will reserve 8MB, enough to recover
3152 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3153 * only reserve 3% of free pages by default.
3154 */
3155static int init_admin_reserve(void)
3156{
3157        unsigned long free_kbytes;
3158
3159        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3160
3161        sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3162        return 0;
3163}
3164module_init(init_admin_reserve)
3165
3166/*
3167 * Reinititalise user and admin reserves if memory is added or removed.
3168 *
3169 * The default user reserve max is 128MB, and the default max for the
3170 * admin reserve is 8MB. These are usually, but not always, enough to
3171 * enable recovery from a memory hogging process using login/sshd, a shell,
3172 * and tools like top. It may make sense to increase or even disable the
3173 * reserve depending on the existence of swap or variations in the recovery
3174 * tools. So, the admin may have changed them.
3175 *
3176 * If memory is added and the reserves have been eliminated or increased above
3177 * the default max, then we'll trust the admin.
3178 *
3179 * If memory is removed and there isn't enough free memory, then we
3180 * need to reset the reserves.
3181 *
3182 * Otherwise keep the reserve set by the admin.
3183 */
3184static int reserve_mem_notifier(struct notifier_block *nb,
3185                             unsigned long action, void *data)
3186{
3187        unsigned long tmp, free_kbytes;
3188
3189        switch (action) {
3190        case MEM_ONLINE:
3191                /* Default max is 128MB. Leave alone if modified by operator. */
3192                tmp = sysctl_user_reserve_kbytes;
3193                if (0 < tmp && tmp < (1UL << 17))
3194                        init_user_reserve();
3195
3196                /* Default max is 8MB.  Leave alone if modified by operator. */
3197                tmp = sysctl_admin_reserve_kbytes;
3198                if (0 < tmp && tmp < (1UL << 13))
3199                        init_admin_reserve();
3200
3201                break;
3202        case MEM_OFFLINE:
3203                free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3204
3205                if (sysctl_user_reserve_kbytes > free_kbytes) {
3206                        init_user_reserve();
3207                        pr_info("vm.user_reserve_kbytes reset to %lu\n",
3208                                sysctl_user_reserve_kbytes);
3209                }
3210
3211                if (sysctl_admin_reserve_kbytes > free_kbytes) {
3212                        init_admin_reserve();
3213                        pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3214                                sysctl_admin_reserve_kbytes);
3215                }
3216                break;
3217        default:
3218                break;
3219        }
3220        return NOTIFY_OK;
3221}
3222
3223static struct notifier_block reserve_mem_nb = {
3224        .notifier_call = reserve_mem_notifier,
3225};
3226
3227static int __meminit init_reserve_notifier(void)
3228{
3229        if (register_hotmemory_notifier(&reserve_mem_nb))
3230                printk("Failed registering memory add/remove notifier for admin reserve");
3231
3232        return 0;
3233}
3234module_init(init_reserve_notifier)
3235