linux/mm/zswap.c
<<
>>
Prefs
   1/*
   2 * zswap.c - zswap driver file
   3 *
   4 * zswap is a backend for frontswap that takes pages that are in the process
   5 * of being swapped out and attempts to compress and store them in a
   6 * RAM-based memory pool.  This can result in a significant I/O reduction on
   7 * the swap device and, in the case where decompressing from RAM is faster
   8 * than reading from the swap device, can also improve workload performance.
   9 *
  10 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License
  14 * as published by the Free Software Foundation; either version 2
  15 * of the License, or (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21*/
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/module.h>
  26#include <linux/cpu.h>
  27#include <linux/highmem.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30#include <linux/types.h>
  31#include <linux/atomic.h>
  32#include <linux/frontswap.h>
  33#include <linux/rbtree.h>
  34#include <linux/swap.h>
  35#include <linux/crypto.h>
  36#include <linux/mempool.h>
  37#include <linux/zbud.h>
  38
  39#include <linux/mm_types.h>
  40#include <linux/page-flags.h>
  41#include <linux/swapops.h>
  42#include <linux/writeback.h>
  43#include <linux/pagemap.h>
  44
  45/*********************************
  46* statistics
  47**********************************/
  48/* Number of memory pages used by the compressed pool */
  49static u64 zswap_pool_pages;
  50/* The number of compressed pages currently stored in zswap */
  51static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  52
  53/*
  54 * The statistics below are not protected from concurrent access for
  55 * performance reasons so they may not be a 100% accurate.  However,
  56 * they do provide useful information on roughly how many times a
  57 * certain event is occurring.
  58*/
  59
  60/* Pool limit was hit (see zswap_max_pool_percent) */
  61static u64 zswap_pool_limit_hit;
  62/* Pages written back when pool limit was reached */
  63static u64 zswap_written_back_pages;
  64/* Store failed due to a reclaim failure after pool limit was reached */
  65static u64 zswap_reject_reclaim_fail;
  66/* Compressed page was too big for the allocator to (optimally) store */
  67static u64 zswap_reject_compress_poor;
  68/* Store failed because underlying allocator could not get memory */
  69static u64 zswap_reject_alloc_fail;
  70/* Store failed because the entry metadata could not be allocated (rare) */
  71static u64 zswap_reject_kmemcache_fail;
  72/* Duplicate store was encountered (rare) */
  73static u64 zswap_duplicate_entry;
  74
  75/*********************************
  76* tunables
  77**********************************/
  78/* Enable/disable zswap (disabled by default, fixed at boot for now) */
  79static bool zswap_enabled __read_mostly;
  80module_param_named(enabled, zswap_enabled, bool, 0);
  81
  82/* Compressor to be used by zswap (fixed at boot for now) */
  83#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
  84static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
  85module_param_named(compressor, zswap_compressor, charp, 0);
  86
  87/* The maximum percentage of memory that the compressed pool can occupy */
  88static unsigned int zswap_max_pool_percent = 20;
  89module_param_named(max_pool_percent,
  90                        zswap_max_pool_percent, uint, 0644);
  91
  92/*********************************
  93* compression functions
  94**********************************/
  95/* per-cpu compression transforms */
  96static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
  97
  98enum comp_op {
  99        ZSWAP_COMPOP_COMPRESS,
 100        ZSWAP_COMPOP_DECOMPRESS
 101};
 102
 103static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
 104                                u8 *dst, unsigned int *dlen)
 105{
 106        struct crypto_comp *tfm;
 107        int ret;
 108
 109        tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
 110        switch (op) {
 111        case ZSWAP_COMPOP_COMPRESS:
 112                ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
 113                break;
 114        case ZSWAP_COMPOP_DECOMPRESS:
 115                ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
 116                break;
 117        default:
 118                ret = -EINVAL;
 119        }
 120
 121        put_cpu();
 122        return ret;
 123}
 124
 125static int __init zswap_comp_init(void)
 126{
 127        if (!crypto_has_comp(zswap_compressor, 0, 0)) {
 128                pr_info("%s compressor not available\n", zswap_compressor);
 129                /* fall back to default compressor */
 130                zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
 131                if (!crypto_has_comp(zswap_compressor, 0, 0))
 132                        /* can't even load the default compressor */
 133                        return -ENODEV;
 134        }
 135        pr_info("using %s compressor\n", zswap_compressor);
 136
 137        /* alloc percpu transforms */
 138        zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
 139        if (!zswap_comp_pcpu_tfms)
 140                return -ENOMEM;
 141        return 0;
 142}
 143
 144static void zswap_comp_exit(void)
 145{
 146        /* free percpu transforms */
 147        if (zswap_comp_pcpu_tfms)
 148                free_percpu(zswap_comp_pcpu_tfms);
 149}
 150
 151/*********************************
 152* data structures
 153**********************************/
 154/*
 155 * struct zswap_entry
 156 *
 157 * This structure contains the metadata for tracking a single compressed
 158 * page within zswap.
 159 *
 160 * rbnode - links the entry into red-black tree for the appropriate swap type
 161 * refcount - the number of outstanding reference to the entry. This is needed
 162 *            to protect against premature freeing of the entry by code
 163 *            concurent calls to load, invalidate, and writeback.  The lock
 164 *            for the zswap_tree structure that contains the entry must
 165 *            be held while changing the refcount.  Since the lock must
 166 *            be held, there is no reason to also make refcount atomic.
 167 * offset - the swap offset for the entry.  Index into the red-black tree.
 168 * handle - zsmalloc allocation handle that stores the compressed page data
 169 * length - the length in bytes of the compressed page data.  Needed during
 170 *           decompression
 171 */
 172struct zswap_entry {
 173        struct rb_node rbnode;
 174        pgoff_t offset;
 175        int refcount;
 176        unsigned int length;
 177        unsigned long handle;
 178};
 179
 180struct zswap_header {
 181        swp_entry_t swpentry;
 182};
 183
 184/*
 185 * The tree lock in the zswap_tree struct protects a few things:
 186 * - the rbtree
 187 * - the refcount field of each entry in the tree
 188 */
 189struct zswap_tree {
 190        struct rb_root rbroot;
 191        spinlock_t lock;
 192        struct zbud_pool *pool;
 193};
 194
 195static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 196
 197/*********************************
 198* zswap entry functions
 199**********************************/
 200static struct kmem_cache *zswap_entry_cache;
 201
 202static int zswap_entry_cache_create(void)
 203{
 204        zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
 205        return (zswap_entry_cache == NULL);
 206}
 207
 208static void zswap_entry_cache_destory(void)
 209{
 210        kmem_cache_destroy(zswap_entry_cache);
 211}
 212
 213static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
 214{
 215        struct zswap_entry *entry;
 216        entry = kmem_cache_alloc(zswap_entry_cache, gfp);
 217        if (!entry)
 218                return NULL;
 219        entry->refcount = 1;
 220        RB_CLEAR_NODE(&entry->rbnode);
 221        return entry;
 222}
 223
 224static void zswap_entry_cache_free(struct zswap_entry *entry)
 225{
 226        kmem_cache_free(zswap_entry_cache, entry);
 227}
 228
 229/*********************************
 230* rbtree functions
 231**********************************/
 232static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 233{
 234        struct rb_node *node = root->rb_node;
 235        struct zswap_entry *entry;
 236
 237        while (node) {
 238                entry = rb_entry(node, struct zswap_entry, rbnode);
 239                if (entry->offset > offset)
 240                        node = node->rb_left;
 241                else if (entry->offset < offset)
 242                        node = node->rb_right;
 243                else
 244                        return entry;
 245        }
 246        return NULL;
 247}
 248
 249/*
 250 * In the case that a entry with the same offset is found, a pointer to
 251 * the existing entry is stored in dupentry and the function returns -EEXIST
 252 */
 253static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 254                        struct zswap_entry **dupentry)
 255{
 256        struct rb_node **link = &root->rb_node, *parent = NULL;
 257        struct zswap_entry *myentry;
 258
 259        while (*link) {
 260                parent = *link;
 261                myentry = rb_entry(parent, struct zswap_entry, rbnode);
 262                if (myentry->offset > entry->offset)
 263                        link = &(*link)->rb_left;
 264                else if (myentry->offset < entry->offset)
 265                        link = &(*link)->rb_right;
 266                else {
 267                        *dupentry = myentry;
 268                        return -EEXIST;
 269                }
 270        }
 271        rb_link_node(&entry->rbnode, parent, link);
 272        rb_insert_color(&entry->rbnode, root);
 273        return 0;
 274}
 275
 276static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 277{
 278        if (!RB_EMPTY_NODE(&entry->rbnode)) {
 279                rb_erase(&entry->rbnode, root);
 280                RB_CLEAR_NODE(&entry->rbnode);
 281        }
 282}
 283
 284/*
 285 * Carries out the common pattern of freeing and entry's zsmalloc allocation,
 286 * freeing the entry itself, and decrementing the number of stored pages.
 287 */
 288static void zswap_free_entry(struct zswap_tree *tree,
 289                        struct zswap_entry *entry)
 290{
 291        zbud_free(tree->pool, entry->handle);
 292        zswap_entry_cache_free(entry);
 293        atomic_dec(&zswap_stored_pages);
 294        zswap_pool_pages = zbud_get_pool_size(tree->pool);
 295}
 296
 297/* caller must hold the tree lock */
 298static void zswap_entry_get(struct zswap_entry *entry)
 299{
 300        entry->refcount++;
 301}
 302
 303/* caller must hold the tree lock
 304* remove from the tree and free it, if nobody reference the entry
 305*/
 306static void zswap_entry_put(struct zswap_tree *tree,
 307                        struct zswap_entry *entry)
 308{
 309        int refcount = --entry->refcount;
 310
 311        BUG_ON(refcount < 0);
 312        if (refcount == 0) {
 313                zswap_rb_erase(&tree->rbroot, entry);
 314                zswap_free_entry(tree, entry);
 315        }
 316}
 317
 318/* caller must hold the tree lock */
 319static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 320                                pgoff_t offset)
 321{
 322        struct zswap_entry *entry = NULL;
 323
 324        entry = zswap_rb_search(root, offset);
 325        if (entry)
 326                zswap_entry_get(entry);
 327
 328        return entry;
 329}
 330
 331/*********************************
 332* per-cpu code
 333**********************************/
 334static DEFINE_PER_CPU(u8 *, zswap_dstmem);
 335
 336static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
 337{
 338        struct crypto_comp *tfm;
 339        u8 *dst;
 340
 341        switch (action) {
 342        case CPU_UP_PREPARE:
 343                tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
 344                if (IS_ERR(tfm)) {
 345                        pr_err("can't allocate compressor transform\n");
 346                        return NOTIFY_BAD;
 347                }
 348                *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
 349                dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL);
 350                if (!dst) {
 351                        pr_err("can't allocate compressor buffer\n");
 352                        crypto_free_comp(tfm);
 353                        *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
 354                        return NOTIFY_BAD;
 355                }
 356                per_cpu(zswap_dstmem, cpu) = dst;
 357                break;
 358        case CPU_DEAD:
 359        case CPU_UP_CANCELED:
 360                tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
 361                if (tfm) {
 362                        crypto_free_comp(tfm);
 363                        *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
 364                }
 365                dst = per_cpu(zswap_dstmem, cpu);
 366                kfree(dst);
 367                per_cpu(zswap_dstmem, cpu) = NULL;
 368                break;
 369        default:
 370                break;
 371        }
 372        return NOTIFY_OK;
 373}
 374
 375static int zswap_cpu_notifier(struct notifier_block *nb,
 376                                unsigned long action, void *pcpu)
 377{
 378        unsigned long cpu = (unsigned long)pcpu;
 379        return __zswap_cpu_notifier(action, cpu);
 380}
 381
 382static struct notifier_block zswap_cpu_notifier_block = {
 383        .notifier_call = zswap_cpu_notifier
 384};
 385
 386static int zswap_cpu_init(void)
 387{
 388        unsigned long cpu;
 389
 390        get_online_cpus();
 391        for_each_online_cpu(cpu)
 392                if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
 393                        goto cleanup;
 394        register_cpu_notifier(&zswap_cpu_notifier_block);
 395        put_online_cpus();
 396        return 0;
 397
 398cleanup:
 399        for_each_online_cpu(cpu)
 400                __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
 401        put_online_cpus();
 402        return -ENOMEM;
 403}
 404
 405/*********************************
 406* helpers
 407**********************************/
 408static bool zswap_is_full(void)
 409{
 410        return (totalram_pages * zswap_max_pool_percent / 100 <
 411                zswap_pool_pages);
 412}
 413
 414/*********************************
 415* writeback code
 416**********************************/
 417/* return enum for zswap_get_swap_cache_page */
 418enum zswap_get_swap_ret {
 419        ZSWAP_SWAPCACHE_NEW,
 420        ZSWAP_SWAPCACHE_EXIST,
 421        ZSWAP_SWAPCACHE_FAIL,
 422};
 423
 424/*
 425 * zswap_get_swap_cache_page
 426 *
 427 * This is an adaption of read_swap_cache_async()
 428 *
 429 * This function tries to find a page with the given swap entry
 430 * in the swapper_space address space (the swap cache).  If the page
 431 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 432 * added to the swap cache, and returned in retpage.
 433 *
 434 * If success, the swap cache page is returned in retpage
 435 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 436 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 437 *     the new page is added to swapcache and locked
 438 * Returns ZSWAP_SWAPCACHE_FAIL on error
 439 */
 440static int zswap_get_swap_cache_page(swp_entry_t entry,
 441                                struct page **retpage)
 442{
 443        struct page *found_page, *new_page = NULL;
 444        struct address_space *swapper_space = swap_address_space(entry);
 445        int err;
 446
 447        *retpage = NULL;
 448        do {
 449                /*
 450                 * First check the swap cache.  Since this is normally
 451                 * called after lookup_swap_cache() failed, re-calling
 452                 * that would confuse statistics.
 453                 */
 454                found_page = find_get_page(swapper_space, entry.val);
 455                if (found_page)
 456                        break;
 457
 458                /*
 459                 * Get a new page to read into from swap.
 460                 */
 461                if (!new_page) {
 462                        new_page = alloc_page(GFP_KERNEL);
 463                        if (!new_page)
 464                                break; /* Out of memory */
 465                }
 466
 467                /*
 468                 * call radix_tree_preload() while we can wait.
 469                 */
 470                err = radix_tree_preload(GFP_KERNEL);
 471                if (err)
 472                        break;
 473
 474                /*
 475                 * Swap entry may have been freed since our caller observed it.
 476                 */
 477                err = swapcache_prepare(entry);
 478                if (err == -EEXIST) { /* seems racy */
 479                        radix_tree_preload_end();
 480                        continue;
 481                }
 482                if (err) { /* swp entry is obsolete ? */
 483                        radix_tree_preload_end();
 484                        break;
 485                }
 486
 487                /* May fail (-ENOMEM) if radix-tree node allocation failed. */
 488                __set_page_locked(new_page);
 489                SetPageSwapBacked(new_page);
 490                err = __add_to_swap_cache(new_page, entry);
 491                if (likely(!err)) {
 492                        radix_tree_preload_end();
 493                        lru_cache_add_anon(new_page);
 494                        *retpage = new_page;
 495                        return ZSWAP_SWAPCACHE_NEW;
 496                }
 497                radix_tree_preload_end();
 498                ClearPageSwapBacked(new_page);
 499                __clear_page_locked(new_page);
 500                /*
 501                 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
 502                 * clear SWAP_HAS_CACHE flag.
 503                 */
 504                swapcache_free(entry, NULL);
 505        } while (err != -ENOMEM);
 506
 507        if (new_page)
 508                page_cache_release(new_page);
 509        if (!found_page)
 510                return ZSWAP_SWAPCACHE_FAIL;
 511        *retpage = found_page;
 512        return ZSWAP_SWAPCACHE_EXIST;
 513}
 514
 515/*
 516 * Attempts to free an entry by adding a page to the swap cache,
 517 * decompressing the entry data into the page, and issuing a
 518 * bio write to write the page back to the swap device.
 519 *
 520 * This can be thought of as a "resumed writeback" of the page
 521 * to the swap device.  We are basically resuming the same swap
 522 * writeback path that was intercepted with the frontswap_store()
 523 * in the first place.  After the page has been decompressed into
 524 * the swap cache, the compressed version stored by zswap can be
 525 * freed.
 526 */
 527static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
 528{
 529        struct zswap_header *zhdr;
 530        swp_entry_t swpentry;
 531        struct zswap_tree *tree;
 532        pgoff_t offset;
 533        struct zswap_entry *entry;
 534        struct page *page;
 535        u8 *src, *dst;
 536        unsigned int dlen;
 537        int ret;
 538        struct writeback_control wbc = {
 539                .sync_mode = WB_SYNC_NONE,
 540        };
 541
 542        /* extract swpentry from data */
 543        zhdr = zbud_map(pool, handle);
 544        swpentry = zhdr->swpentry; /* here */
 545        zbud_unmap(pool, handle);
 546        tree = zswap_trees[swp_type(swpentry)];
 547        offset = swp_offset(swpentry);
 548        BUG_ON(pool != tree->pool);
 549
 550        /* find and ref zswap entry */
 551        spin_lock(&tree->lock);
 552        entry = zswap_entry_find_get(&tree->rbroot, offset);
 553        if (!entry) {
 554                /* entry was invalidated */
 555                spin_unlock(&tree->lock);
 556                return 0;
 557        }
 558        spin_unlock(&tree->lock);
 559        BUG_ON(offset != entry->offset);
 560
 561        /* try to allocate swap cache page */
 562        switch (zswap_get_swap_cache_page(swpentry, &page)) {
 563        case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
 564                ret = -ENOMEM;
 565                goto fail;
 566
 567        case ZSWAP_SWAPCACHE_EXIST:
 568                /* page is already in the swap cache, ignore for now */
 569                page_cache_release(page);
 570                ret = -EEXIST;
 571                goto fail;
 572
 573        case ZSWAP_SWAPCACHE_NEW: /* page is locked */
 574                /* decompress */
 575                dlen = PAGE_SIZE;
 576                src = (u8 *)zbud_map(tree->pool, entry->handle) +
 577                        sizeof(struct zswap_header);
 578                dst = kmap_atomic(page);
 579                ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
 580                                entry->length, dst, &dlen);
 581                kunmap_atomic(dst);
 582                zbud_unmap(tree->pool, entry->handle);
 583                BUG_ON(ret);
 584                BUG_ON(dlen != PAGE_SIZE);
 585
 586                /* page is up to date */
 587                SetPageUptodate(page);
 588        }
 589
 590        /* move it to the tail of the inactive list after end_writeback */
 591        SetPageReclaim(page);
 592
 593        /* start writeback */
 594        __swap_writepage(page, &wbc, end_swap_bio_write);
 595        page_cache_release(page);
 596        zswap_written_back_pages++;
 597
 598        spin_lock(&tree->lock);
 599        /* drop local reference */
 600        zswap_entry_put(tree, entry);
 601
 602        /*
 603        * There are two possible situations for entry here:
 604        * (1) refcount is 1(normal case),  entry is valid and on the tree
 605        * (2) refcount is 0, entry is freed and not on the tree
 606        *     because invalidate happened during writeback
 607        *  search the tree and free the entry if find entry
 608        */
 609        if (entry == zswap_rb_search(&tree->rbroot, offset))
 610                zswap_entry_put(tree, entry);
 611        spin_unlock(&tree->lock);
 612
 613        goto end;
 614
 615        /*
 616        * if we get here due to ZSWAP_SWAPCACHE_EXIST
 617        * a load may happening concurrently
 618        * it is safe and okay to not free the entry
 619        * if we free the entry in the following put
 620        * it it either okay to return !0
 621        */
 622fail:
 623        spin_lock(&tree->lock);
 624        zswap_entry_put(tree, entry);
 625        spin_unlock(&tree->lock);
 626
 627end:
 628        return ret;
 629}
 630
 631/*********************************
 632* frontswap hooks
 633**********************************/
 634/* attempts to compress and store an single page */
 635static int zswap_frontswap_store(unsigned type, pgoff_t offset,
 636                                struct page *page)
 637{
 638        struct zswap_tree *tree = zswap_trees[type];
 639        struct zswap_entry *entry, *dupentry;
 640        int ret;
 641        unsigned int dlen = PAGE_SIZE, len;
 642        unsigned long handle;
 643        char *buf;
 644        u8 *src, *dst;
 645        struct zswap_header *zhdr;
 646
 647        if (!tree) {
 648                ret = -ENODEV;
 649                goto reject;
 650        }
 651
 652        /* reclaim space if needed */
 653        if (zswap_is_full()) {
 654                zswap_pool_limit_hit++;
 655                if (zbud_reclaim_page(tree->pool, 8)) {
 656                        zswap_reject_reclaim_fail++;
 657                        ret = -ENOMEM;
 658                        goto reject;
 659                }
 660        }
 661
 662        /* allocate entry */
 663        entry = zswap_entry_cache_alloc(GFP_KERNEL);
 664        if (!entry) {
 665                zswap_reject_kmemcache_fail++;
 666                ret = -ENOMEM;
 667                goto reject;
 668        }
 669
 670        /* compress */
 671        dst = get_cpu_var(zswap_dstmem);
 672        src = kmap_atomic(page);
 673        ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
 674        kunmap_atomic(src);
 675        if (ret) {
 676                ret = -EINVAL;
 677                goto freepage;
 678        }
 679
 680        /* store */
 681        len = dlen + sizeof(struct zswap_header);
 682        ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN,
 683                &handle);
 684        if (ret == -ENOSPC) {
 685                zswap_reject_compress_poor++;
 686                goto freepage;
 687        }
 688        if (ret) {
 689                zswap_reject_alloc_fail++;
 690                goto freepage;
 691        }
 692        zhdr = zbud_map(tree->pool, handle);
 693        zhdr->swpentry = swp_entry(type, offset);
 694        buf = (u8 *)(zhdr + 1);
 695        memcpy(buf, dst, dlen);
 696        zbud_unmap(tree->pool, handle);
 697        put_cpu_var(zswap_dstmem);
 698
 699        /* populate entry */
 700        entry->offset = offset;
 701        entry->handle = handle;
 702        entry->length = dlen;
 703
 704        /* map */
 705        spin_lock(&tree->lock);
 706        do {
 707                ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
 708                if (ret == -EEXIST) {
 709                        zswap_duplicate_entry++;
 710                        /* remove from rbtree */
 711                        zswap_rb_erase(&tree->rbroot, dupentry);
 712                        zswap_entry_put(tree, dupentry);
 713                }
 714        } while (ret == -EEXIST);
 715        spin_unlock(&tree->lock);
 716
 717        /* update stats */
 718        atomic_inc(&zswap_stored_pages);
 719        zswap_pool_pages = zbud_get_pool_size(tree->pool);
 720
 721        return 0;
 722
 723freepage:
 724        put_cpu_var(zswap_dstmem);
 725        zswap_entry_cache_free(entry);
 726reject:
 727        return ret;
 728}
 729
 730/*
 731 * returns 0 if the page was successfully decompressed
 732 * return -1 on entry not found or error
 733*/
 734static int zswap_frontswap_load(unsigned type, pgoff_t offset,
 735                                struct page *page)
 736{
 737        struct zswap_tree *tree = zswap_trees[type];
 738        struct zswap_entry *entry;
 739        u8 *src, *dst;
 740        unsigned int dlen;
 741        int ret;
 742
 743        /* find */
 744        spin_lock(&tree->lock);
 745        entry = zswap_entry_find_get(&tree->rbroot, offset);
 746        if (!entry) {
 747                /* entry was written back */
 748                spin_unlock(&tree->lock);
 749                return -1;
 750        }
 751        spin_unlock(&tree->lock);
 752
 753        /* decompress */
 754        dlen = PAGE_SIZE;
 755        src = (u8 *)zbud_map(tree->pool, entry->handle) +
 756                        sizeof(struct zswap_header);
 757        dst = kmap_atomic(page);
 758        ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
 759                dst, &dlen);
 760        kunmap_atomic(dst);
 761        zbud_unmap(tree->pool, entry->handle);
 762        BUG_ON(ret);
 763
 764        spin_lock(&tree->lock);
 765        zswap_entry_put(tree, entry);
 766        spin_unlock(&tree->lock);
 767
 768        return 0;
 769}
 770
 771/* frees an entry in zswap */
 772static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
 773{
 774        struct zswap_tree *tree = zswap_trees[type];
 775        struct zswap_entry *entry;
 776
 777        /* find */
 778        spin_lock(&tree->lock);
 779        entry = zswap_rb_search(&tree->rbroot, offset);
 780        if (!entry) {
 781                /* entry was written back */
 782                spin_unlock(&tree->lock);
 783                return;
 784        }
 785
 786        /* remove from rbtree */
 787        zswap_rb_erase(&tree->rbroot, entry);
 788
 789        /* drop the initial reference from entry creation */
 790        zswap_entry_put(tree, entry);
 791
 792        spin_unlock(&tree->lock);
 793}
 794
 795/* frees all zswap entries for the given swap type */
 796static void zswap_frontswap_invalidate_area(unsigned type)
 797{
 798        struct zswap_tree *tree = zswap_trees[type];
 799        struct zswap_entry *entry, *n;
 800
 801        if (!tree)
 802                return;
 803
 804        /* walk the tree and free everything */
 805        spin_lock(&tree->lock);
 806        rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
 807                zswap_free_entry(tree, entry);
 808        tree->rbroot = RB_ROOT;
 809        spin_unlock(&tree->lock);
 810
 811        zbud_destroy_pool(tree->pool);
 812        kfree(tree);
 813        zswap_trees[type] = NULL;
 814}
 815
 816static struct zbud_ops zswap_zbud_ops = {
 817        .evict = zswap_writeback_entry
 818};
 819
 820static void zswap_frontswap_init(unsigned type)
 821{
 822        struct zswap_tree *tree;
 823
 824        tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
 825        if (!tree)
 826                goto err;
 827        tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
 828        if (!tree->pool)
 829                goto freetree;
 830        tree->rbroot = RB_ROOT;
 831        spin_lock_init(&tree->lock);
 832        zswap_trees[type] = tree;
 833        return;
 834
 835freetree:
 836        kfree(tree);
 837err:
 838        pr_err("alloc failed, zswap disabled for swap type %d\n", type);
 839}
 840
 841static struct frontswap_ops zswap_frontswap_ops = {
 842        .store = zswap_frontswap_store,
 843        .load = zswap_frontswap_load,
 844        .invalidate_page = zswap_frontswap_invalidate_page,
 845        .invalidate_area = zswap_frontswap_invalidate_area,
 846        .init = zswap_frontswap_init
 847};
 848
 849/*********************************
 850* debugfs functions
 851**********************************/
 852#ifdef CONFIG_DEBUG_FS
 853#include <linux/debugfs.h>
 854
 855static struct dentry *zswap_debugfs_root;
 856
 857static int __init zswap_debugfs_init(void)
 858{
 859        if (!debugfs_initialized())
 860                return -ENODEV;
 861
 862        zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
 863        if (!zswap_debugfs_root)
 864                return -ENOMEM;
 865
 866        debugfs_create_u64("pool_limit_hit", S_IRUGO,
 867                        zswap_debugfs_root, &zswap_pool_limit_hit);
 868        debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
 869                        zswap_debugfs_root, &zswap_reject_reclaim_fail);
 870        debugfs_create_u64("reject_alloc_fail", S_IRUGO,
 871                        zswap_debugfs_root, &zswap_reject_alloc_fail);
 872        debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
 873                        zswap_debugfs_root, &zswap_reject_kmemcache_fail);
 874        debugfs_create_u64("reject_compress_poor", S_IRUGO,
 875                        zswap_debugfs_root, &zswap_reject_compress_poor);
 876        debugfs_create_u64("written_back_pages", S_IRUGO,
 877                        zswap_debugfs_root, &zswap_written_back_pages);
 878        debugfs_create_u64("duplicate_entry", S_IRUGO,
 879                        zswap_debugfs_root, &zswap_duplicate_entry);
 880        debugfs_create_u64("pool_pages", S_IRUGO,
 881                        zswap_debugfs_root, &zswap_pool_pages);
 882        debugfs_create_atomic_t("stored_pages", S_IRUGO,
 883                        zswap_debugfs_root, &zswap_stored_pages);
 884
 885        return 0;
 886}
 887
 888static void __exit zswap_debugfs_exit(void)
 889{
 890        debugfs_remove_recursive(zswap_debugfs_root);
 891}
 892#else
 893static int __init zswap_debugfs_init(void)
 894{
 895        return 0;
 896}
 897
 898static void __exit zswap_debugfs_exit(void) { }
 899#endif
 900
 901/*********************************
 902* module init and exit
 903**********************************/
 904static int __init init_zswap(void)
 905{
 906        if (!zswap_enabled)
 907                return 0;
 908
 909        pr_info("loading zswap\n");
 910        if (zswap_entry_cache_create()) {
 911                pr_err("entry cache creation failed\n");
 912                goto error;
 913        }
 914        if (zswap_comp_init()) {
 915                pr_err("compressor initialization failed\n");
 916                goto compfail;
 917        }
 918        if (zswap_cpu_init()) {
 919                pr_err("per-cpu initialization failed\n");
 920                goto pcpufail;
 921        }
 922        frontswap_register_ops(&zswap_frontswap_ops);
 923        if (zswap_debugfs_init())
 924                pr_warn("debugfs initialization failed\n");
 925        return 0;
 926pcpufail:
 927        zswap_comp_exit();
 928compfail:
 929        zswap_entry_cache_destory();
 930error:
 931        return -ENOMEM;
 932}
 933/* must be late so crypto has time to come up */
 934late_initcall(init_zswap);
 935
 936MODULE_LICENSE("GPL");
 937MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
 938MODULE_DESCRIPTION("Compressed cache for swap pages");
 939