linux/net/core/dev.c
<<
>>
Prefs
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 *      Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:        Ross Biro
  11 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *      Additional Authors:
  15 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *              David Hinds <dahinds@users.sourceforge.net>
  18 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *              Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *      Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *              Alan Cox        :       device private ioctl copies fields back.
  28 *              Alan Cox        :       Transmit queue code does relevant
  29 *                                      stunts to keep the queue safe.
  30 *              Alan Cox        :       Fixed double lock.
  31 *              Alan Cox        :       Fixed promisc NULL pointer trap
  32 *              ????????        :       Support the full private ioctl range
  33 *              Alan Cox        :       Moved ioctl permission check into
  34 *                                      drivers
  35 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  36 *              Alan Cox        :       100 backlog just doesn't cut it when
  37 *                                      you start doing multicast video 8)
  38 *              Alan Cox        :       Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *              Alan Cox        :       Took out transmit every packet pass
  41 *                                      Saved a few bytes in the ioctl handler
  42 *              Alan Cox        :       Network driver sets packet type before
  43 *                                      calling netif_rx. Saves a function
  44 *                                      call a packet.
  45 *              Alan Cox        :       Hashed net_bh()
  46 *              Richard Kooijman:       Timestamp fixes.
  47 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  48 *              Alan Cox        :       Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *                                      changes.
  51 *              Rudi Cilibrasi  :       Pass the right thing to
  52 *                                      set_mac_address()
  53 *              Dave Miller     :       32bit quantity for the device lock to
  54 *                                      make it work out on a Sparc.
  55 *              Bjorn Ekwall    :       Added KERNELD hack.
  56 *              Alan Cox        :       Cleaned up the backlog initialise.
  57 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  58 *                                      1 device.
  59 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  60 *                                      is no device open function.
  61 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  62 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  63 *              Cyrus Durgin    :       Cleaned for KMOD
  64 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  65 *                                      A network device unload needs to purge
  66 *                                      the backlog queue.
  67 *      Paul Rusty Russell      :       SIOCSIFNAME
  68 *              Pekka Riikonen  :       Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *                                      - netif_rx() feedback
  73 */
  74
  75#include <asm/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/mutex.h>
  85#include <linux/string.h>
  86#include <linux/mm.h>
  87#include <linux/socket.h>
  88#include <linux/sockios.h>
  89#include <linux/errno.h>
  90#include <linux/interrupt.h>
  91#include <linux/if_ether.h>
  92#include <linux/netdevice.h>
  93#include <linux/etherdevice.h>
  94#include <linux/ethtool.h>
  95#include <linux/notifier.h>
  96#include <linux/skbuff.h>
  97#include <net/net_namespace.h>
  98#include <net/sock.h>
  99#include <linux/rtnetlink.h>
 100#include <linux/stat.h>
 101#include <net/dst.h>
 102#include <net/pkt_sched.h>
 103#include <net/checksum.h>
 104#include <net/xfrm.h>
 105#include <linux/highmem.h>
 106#include <linux/init.h>
 107#include <linux/module.h>
 108#include <linux/netpoll.h>
 109#include <linux/rcupdate.h>
 110#include <linux/delay.h>
 111#include <net/iw_handler.h>
 112#include <asm/current.h>
 113#include <linux/audit.h>
 114#include <linux/dmaengine.h>
 115#include <linux/err.h>
 116#include <linux/ctype.h>
 117#include <linux/if_arp.h>
 118#include <linux/if_vlan.h>
 119#include <linux/ip.h>
 120#include <net/ip.h>
 121#include <linux/ipv6.h>
 122#include <linux/in.h>
 123#include <linux/jhash.h>
 124#include <linux/random.h>
 125#include <trace/events/napi.h>
 126#include <trace/events/net.h>
 127#include <trace/events/skb.h>
 128#include <linux/pci.h>
 129#include <linux/inetdevice.h>
 130#include <linux/cpu_rmap.h>
 131#include <linux/static_key.h>
 132#include <linux/hashtable.h>
 133#include <linux/vmalloc.h>
 134#include <linux/if_macvlan.h>
 135
 136#include "net-sysfs.h"
 137
 138/* Instead of increasing this, you should create a hash table. */
 139#define MAX_GRO_SKBS 8
 140
 141/* This should be increased if a protocol with a bigger head is added. */
 142#define GRO_MAX_HEAD (MAX_HEADER + 128)
 143
 144static DEFINE_SPINLOCK(ptype_lock);
 145static DEFINE_SPINLOCK(offload_lock);
 146struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 147struct list_head ptype_all __read_mostly;       /* Taps */
 148static struct list_head offload_base __read_mostly;
 149
 150/*
 151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 152 * semaphore.
 153 *
 154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 155 *
 156 * Writers must hold the rtnl semaphore while they loop through the
 157 * dev_base_head list, and hold dev_base_lock for writing when they do the
 158 * actual updates.  This allows pure readers to access the list even
 159 * while a writer is preparing to update it.
 160 *
 161 * To put it another way, dev_base_lock is held for writing only to
 162 * protect against pure readers; the rtnl semaphore provides the
 163 * protection against other writers.
 164 *
 165 * See, for example usages, register_netdevice() and
 166 * unregister_netdevice(), which must be called with the rtnl
 167 * semaphore held.
 168 */
 169DEFINE_RWLOCK(dev_base_lock);
 170EXPORT_SYMBOL(dev_base_lock);
 171
 172/* protects napi_hash addition/deletion and napi_gen_id */
 173static DEFINE_SPINLOCK(napi_hash_lock);
 174
 175static unsigned int napi_gen_id;
 176static DEFINE_HASHTABLE(napi_hash, 8);
 177
 178static seqcount_t devnet_rename_seq;
 179
 180static inline void dev_base_seq_inc(struct net *net)
 181{
 182        while (++net->dev_base_seq == 0);
 183}
 184
 185static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 186{
 187        unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
 188
 189        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 190}
 191
 192static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 193{
 194        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 195}
 196
 197static inline void rps_lock(struct softnet_data *sd)
 198{
 199#ifdef CONFIG_RPS
 200        spin_lock(&sd->input_pkt_queue.lock);
 201#endif
 202}
 203
 204static inline void rps_unlock(struct softnet_data *sd)
 205{
 206#ifdef CONFIG_RPS
 207        spin_unlock(&sd->input_pkt_queue.lock);
 208#endif
 209}
 210
 211/* Device list insertion */
 212static void list_netdevice(struct net_device *dev)
 213{
 214        struct net *net = dev_net(dev);
 215
 216        ASSERT_RTNL();
 217
 218        write_lock_bh(&dev_base_lock);
 219        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 220        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 221        hlist_add_head_rcu(&dev->index_hlist,
 222                           dev_index_hash(net, dev->ifindex));
 223        write_unlock_bh(&dev_base_lock);
 224
 225        dev_base_seq_inc(net);
 226}
 227
 228/* Device list removal
 229 * caller must respect a RCU grace period before freeing/reusing dev
 230 */
 231static void unlist_netdevice(struct net_device *dev)
 232{
 233        ASSERT_RTNL();
 234
 235        /* Unlink dev from the device chain */
 236        write_lock_bh(&dev_base_lock);
 237        list_del_rcu(&dev->dev_list);
 238        hlist_del_rcu(&dev->name_hlist);
 239        hlist_del_rcu(&dev->index_hlist);
 240        write_unlock_bh(&dev_base_lock);
 241
 242        dev_base_seq_inc(dev_net(dev));
 243}
 244
 245/*
 246 *      Our notifier list
 247 */
 248
 249static RAW_NOTIFIER_HEAD(netdev_chain);
 250
 251/*
 252 *      Device drivers call our routines to queue packets here. We empty the
 253 *      queue in the local softnet handler.
 254 */
 255
 256DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 257EXPORT_PER_CPU_SYMBOL(softnet_data);
 258
 259#ifdef CONFIG_LOCKDEP
 260/*
 261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 262 * according to dev->type
 263 */
 264static const unsigned short netdev_lock_type[] =
 265        {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 266         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 267         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 268         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 269         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 270         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 271         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 272         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 273         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 274         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 275         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 276         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 277         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 278         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 279         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 280
 281static const char *const netdev_lock_name[] =
 282        {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 283         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 284         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 285         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 286         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 287         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 288         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 289         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 290         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 291         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 292         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 293         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 294         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 295         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 296         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 297
 298static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 299static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 300
 301static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 302{
 303        int i;
 304
 305        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 306                if (netdev_lock_type[i] == dev_type)
 307                        return i;
 308        /* the last key is used by default */
 309        return ARRAY_SIZE(netdev_lock_type) - 1;
 310}
 311
 312static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 313                                                 unsigned short dev_type)
 314{
 315        int i;
 316
 317        i = netdev_lock_pos(dev_type);
 318        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 319                                   netdev_lock_name[i]);
 320}
 321
 322static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 323{
 324        int i;
 325
 326        i = netdev_lock_pos(dev->type);
 327        lockdep_set_class_and_name(&dev->addr_list_lock,
 328                                   &netdev_addr_lock_key[i],
 329                                   netdev_lock_name[i]);
 330}
 331#else
 332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 333                                                 unsigned short dev_type)
 334{
 335}
 336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 337{
 338}
 339#endif
 340
 341/*******************************************************************************
 342
 343                Protocol management and registration routines
 344
 345*******************************************************************************/
 346
 347/*
 348 *      Add a protocol ID to the list. Now that the input handler is
 349 *      smarter we can dispense with all the messy stuff that used to be
 350 *      here.
 351 *
 352 *      BEWARE!!! Protocol handlers, mangling input packets,
 353 *      MUST BE last in hash buckets and checking protocol handlers
 354 *      MUST start from promiscuous ptype_all chain in net_bh.
 355 *      It is true now, do not change it.
 356 *      Explanation follows: if protocol handler, mangling packet, will
 357 *      be the first on list, it is not able to sense, that packet
 358 *      is cloned and should be copied-on-write, so that it will
 359 *      change it and subsequent readers will get broken packet.
 360 *                                                      --ANK (980803)
 361 */
 362
 363static inline struct list_head *ptype_head(const struct packet_type *pt)
 364{
 365        if (pt->type == htons(ETH_P_ALL))
 366                return &ptype_all;
 367        else
 368                return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 369}
 370
 371/**
 372 *      dev_add_pack - add packet handler
 373 *      @pt: packet type declaration
 374 *
 375 *      Add a protocol handler to the networking stack. The passed &packet_type
 376 *      is linked into kernel lists and may not be freed until it has been
 377 *      removed from the kernel lists.
 378 *
 379 *      This call does not sleep therefore it can not
 380 *      guarantee all CPU's that are in middle of receiving packets
 381 *      will see the new packet type (until the next received packet).
 382 */
 383
 384void dev_add_pack(struct packet_type *pt)
 385{
 386        struct list_head *head = ptype_head(pt);
 387
 388        spin_lock(&ptype_lock);
 389        list_add_rcu(&pt->list, head);
 390        spin_unlock(&ptype_lock);
 391}
 392EXPORT_SYMBOL(dev_add_pack);
 393
 394/**
 395 *      __dev_remove_pack        - remove packet handler
 396 *      @pt: packet type declaration
 397 *
 398 *      Remove a protocol handler that was previously added to the kernel
 399 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 400 *      from the kernel lists and can be freed or reused once this function
 401 *      returns.
 402 *
 403 *      The packet type might still be in use by receivers
 404 *      and must not be freed until after all the CPU's have gone
 405 *      through a quiescent state.
 406 */
 407void __dev_remove_pack(struct packet_type *pt)
 408{
 409        struct list_head *head = ptype_head(pt);
 410        struct packet_type *pt1;
 411
 412        spin_lock(&ptype_lock);
 413
 414        list_for_each_entry(pt1, head, list) {
 415                if (pt == pt1) {
 416                        list_del_rcu(&pt->list);
 417                        goto out;
 418                }
 419        }
 420
 421        pr_warn("dev_remove_pack: %p not found\n", pt);
 422out:
 423        spin_unlock(&ptype_lock);
 424}
 425EXPORT_SYMBOL(__dev_remove_pack);
 426
 427/**
 428 *      dev_remove_pack  - remove packet handler
 429 *      @pt: packet type declaration
 430 *
 431 *      Remove a protocol handler that was previously added to the kernel
 432 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 433 *      from the kernel lists and can be freed or reused once this function
 434 *      returns.
 435 *
 436 *      This call sleeps to guarantee that no CPU is looking at the packet
 437 *      type after return.
 438 */
 439void dev_remove_pack(struct packet_type *pt)
 440{
 441        __dev_remove_pack(pt);
 442
 443        synchronize_net();
 444}
 445EXPORT_SYMBOL(dev_remove_pack);
 446
 447
 448/**
 449 *      dev_add_offload - register offload handlers
 450 *      @po: protocol offload declaration
 451 *
 452 *      Add protocol offload handlers to the networking stack. The passed
 453 *      &proto_offload is linked into kernel lists and may not be freed until
 454 *      it has been removed from the kernel lists.
 455 *
 456 *      This call does not sleep therefore it can not
 457 *      guarantee all CPU's that are in middle of receiving packets
 458 *      will see the new offload handlers (until the next received packet).
 459 */
 460void dev_add_offload(struct packet_offload *po)
 461{
 462        struct list_head *head = &offload_base;
 463
 464        spin_lock(&offload_lock);
 465        list_add_rcu(&po->list, head);
 466        spin_unlock(&offload_lock);
 467}
 468EXPORT_SYMBOL(dev_add_offload);
 469
 470/**
 471 *      __dev_remove_offload     - remove offload handler
 472 *      @po: packet offload declaration
 473 *
 474 *      Remove a protocol offload handler that was previously added to the
 475 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 476 *      is removed from the kernel lists and can be freed or reused once this
 477 *      function returns.
 478 *
 479 *      The packet type might still be in use by receivers
 480 *      and must not be freed until after all the CPU's have gone
 481 *      through a quiescent state.
 482 */
 483void __dev_remove_offload(struct packet_offload *po)
 484{
 485        struct list_head *head = &offload_base;
 486        struct packet_offload *po1;
 487
 488        spin_lock(&offload_lock);
 489
 490        list_for_each_entry(po1, head, list) {
 491                if (po == po1) {
 492                        list_del_rcu(&po->list);
 493                        goto out;
 494                }
 495        }
 496
 497        pr_warn("dev_remove_offload: %p not found\n", po);
 498out:
 499        spin_unlock(&offload_lock);
 500}
 501EXPORT_SYMBOL(__dev_remove_offload);
 502
 503/**
 504 *      dev_remove_offload       - remove packet offload handler
 505 *      @po: packet offload declaration
 506 *
 507 *      Remove a packet offload handler that was previously added to the kernel
 508 *      offload handlers by dev_add_offload(). The passed &offload_type is
 509 *      removed from the kernel lists and can be freed or reused once this
 510 *      function returns.
 511 *
 512 *      This call sleeps to guarantee that no CPU is looking at the packet
 513 *      type after return.
 514 */
 515void dev_remove_offload(struct packet_offload *po)
 516{
 517        __dev_remove_offload(po);
 518
 519        synchronize_net();
 520}
 521EXPORT_SYMBOL(dev_remove_offload);
 522
 523/******************************************************************************
 524
 525                      Device Boot-time Settings Routines
 526
 527*******************************************************************************/
 528
 529/* Boot time configuration table */
 530static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 531
 532/**
 533 *      netdev_boot_setup_add   - add new setup entry
 534 *      @name: name of the device
 535 *      @map: configured settings for the device
 536 *
 537 *      Adds new setup entry to the dev_boot_setup list.  The function
 538 *      returns 0 on error and 1 on success.  This is a generic routine to
 539 *      all netdevices.
 540 */
 541static int netdev_boot_setup_add(char *name, struct ifmap *map)
 542{
 543        struct netdev_boot_setup *s;
 544        int i;
 545
 546        s = dev_boot_setup;
 547        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 548                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 549                        memset(s[i].name, 0, sizeof(s[i].name));
 550                        strlcpy(s[i].name, name, IFNAMSIZ);
 551                        memcpy(&s[i].map, map, sizeof(s[i].map));
 552                        break;
 553                }
 554        }
 555
 556        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 557}
 558
 559/**
 560 *      netdev_boot_setup_check - check boot time settings
 561 *      @dev: the netdevice
 562 *
 563 *      Check boot time settings for the device.
 564 *      The found settings are set for the device to be used
 565 *      later in the device probing.
 566 *      Returns 0 if no settings found, 1 if they are.
 567 */
 568int netdev_boot_setup_check(struct net_device *dev)
 569{
 570        struct netdev_boot_setup *s = dev_boot_setup;
 571        int i;
 572
 573        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 574                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 575                    !strcmp(dev->name, s[i].name)) {
 576                        dev->irq        = s[i].map.irq;
 577                        dev->base_addr  = s[i].map.base_addr;
 578                        dev->mem_start  = s[i].map.mem_start;
 579                        dev->mem_end    = s[i].map.mem_end;
 580                        return 1;
 581                }
 582        }
 583        return 0;
 584}
 585EXPORT_SYMBOL(netdev_boot_setup_check);
 586
 587
 588/**
 589 *      netdev_boot_base        - get address from boot time settings
 590 *      @prefix: prefix for network device
 591 *      @unit: id for network device
 592 *
 593 *      Check boot time settings for the base address of device.
 594 *      The found settings are set for the device to be used
 595 *      later in the device probing.
 596 *      Returns 0 if no settings found.
 597 */
 598unsigned long netdev_boot_base(const char *prefix, int unit)
 599{
 600        const struct netdev_boot_setup *s = dev_boot_setup;
 601        char name[IFNAMSIZ];
 602        int i;
 603
 604        sprintf(name, "%s%d", prefix, unit);
 605
 606        /*
 607         * If device already registered then return base of 1
 608         * to indicate not to probe for this interface
 609         */
 610        if (__dev_get_by_name(&init_net, name))
 611                return 1;
 612
 613        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 614                if (!strcmp(name, s[i].name))
 615                        return s[i].map.base_addr;
 616        return 0;
 617}
 618
 619/*
 620 * Saves at boot time configured settings for any netdevice.
 621 */
 622int __init netdev_boot_setup(char *str)
 623{
 624        int ints[5];
 625        struct ifmap map;
 626
 627        str = get_options(str, ARRAY_SIZE(ints), ints);
 628        if (!str || !*str)
 629                return 0;
 630
 631        /* Save settings */
 632        memset(&map, 0, sizeof(map));
 633        if (ints[0] > 0)
 634                map.irq = ints[1];
 635        if (ints[0] > 1)
 636                map.base_addr = ints[2];
 637        if (ints[0] > 2)
 638                map.mem_start = ints[3];
 639        if (ints[0] > 3)
 640                map.mem_end = ints[4];
 641
 642        /* Add new entry to the list */
 643        return netdev_boot_setup_add(str, &map);
 644}
 645
 646__setup("netdev=", netdev_boot_setup);
 647
 648/*******************************************************************************
 649
 650                            Device Interface Subroutines
 651
 652*******************************************************************************/
 653
 654/**
 655 *      __dev_get_by_name       - find a device by its name
 656 *      @net: the applicable net namespace
 657 *      @name: name to find
 658 *
 659 *      Find an interface by name. Must be called under RTNL semaphore
 660 *      or @dev_base_lock. If the name is found a pointer to the device
 661 *      is returned. If the name is not found then %NULL is returned. The
 662 *      reference counters are not incremented so the caller must be
 663 *      careful with locks.
 664 */
 665
 666struct net_device *__dev_get_by_name(struct net *net, const char *name)
 667{
 668        struct net_device *dev;
 669        struct hlist_head *head = dev_name_hash(net, name);
 670
 671        hlist_for_each_entry(dev, head, name_hlist)
 672                if (!strncmp(dev->name, name, IFNAMSIZ))
 673                        return dev;
 674
 675        return NULL;
 676}
 677EXPORT_SYMBOL(__dev_get_by_name);
 678
 679/**
 680 *      dev_get_by_name_rcu     - find a device by its name
 681 *      @net: the applicable net namespace
 682 *      @name: name to find
 683 *
 684 *      Find an interface by name.
 685 *      If the name is found a pointer to the device is returned.
 686 *      If the name is not found then %NULL is returned.
 687 *      The reference counters are not incremented so the caller must be
 688 *      careful with locks. The caller must hold RCU lock.
 689 */
 690
 691struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 692{
 693        struct net_device *dev;
 694        struct hlist_head *head = dev_name_hash(net, name);
 695
 696        hlist_for_each_entry_rcu(dev, head, name_hlist)
 697                if (!strncmp(dev->name, name, IFNAMSIZ))
 698                        return dev;
 699
 700        return NULL;
 701}
 702EXPORT_SYMBOL(dev_get_by_name_rcu);
 703
 704/**
 705 *      dev_get_by_name         - find a device by its name
 706 *      @net: the applicable net namespace
 707 *      @name: name to find
 708 *
 709 *      Find an interface by name. This can be called from any
 710 *      context and does its own locking. The returned handle has
 711 *      the usage count incremented and the caller must use dev_put() to
 712 *      release it when it is no longer needed. %NULL is returned if no
 713 *      matching device is found.
 714 */
 715
 716struct net_device *dev_get_by_name(struct net *net, const char *name)
 717{
 718        struct net_device *dev;
 719
 720        rcu_read_lock();
 721        dev = dev_get_by_name_rcu(net, name);
 722        if (dev)
 723                dev_hold(dev);
 724        rcu_read_unlock();
 725        return dev;
 726}
 727EXPORT_SYMBOL(dev_get_by_name);
 728
 729/**
 730 *      __dev_get_by_index - find a device by its ifindex
 731 *      @net: the applicable net namespace
 732 *      @ifindex: index of device
 733 *
 734 *      Search for an interface by index. Returns %NULL if the device
 735 *      is not found or a pointer to the device. The device has not
 736 *      had its reference counter increased so the caller must be careful
 737 *      about locking. The caller must hold either the RTNL semaphore
 738 *      or @dev_base_lock.
 739 */
 740
 741struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 742{
 743        struct net_device *dev;
 744        struct hlist_head *head = dev_index_hash(net, ifindex);
 745
 746        hlist_for_each_entry(dev, head, index_hlist)
 747                if (dev->ifindex == ifindex)
 748                        return dev;
 749
 750        return NULL;
 751}
 752EXPORT_SYMBOL(__dev_get_by_index);
 753
 754/**
 755 *      dev_get_by_index_rcu - find a device by its ifindex
 756 *      @net: the applicable net namespace
 757 *      @ifindex: index of device
 758 *
 759 *      Search for an interface by index. Returns %NULL if the device
 760 *      is not found or a pointer to the device. The device has not
 761 *      had its reference counter increased so the caller must be careful
 762 *      about locking. The caller must hold RCU lock.
 763 */
 764
 765struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 766{
 767        struct net_device *dev;
 768        struct hlist_head *head = dev_index_hash(net, ifindex);
 769
 770        hlist_for_each_entry_rcu(dev, head, index_hlist)
 771                if (dev->ifindex == ifindex)
 772                        return dev;
 773
 774        return NULL;
 775}
 776EXPORT_SYMBOL(dev_get_by_index_rcu);
 777
 778
 779/**
 780 *      dev_get_by_index - find a device by its ifindex
 781 *      @net: the applicable net namespace
 782 *      @ifindex: index of device
 783 *
 784 *      Search for an interface by index. Returns NULL if the device
 785 *      is not found or a pointer to the device. The device returned has
 786 *      had a reference added and the pointer is safe until the user calls
 787 *      dev_put to indicate they have finished with it.
 788 */
 789
 790struct net_device *dev_get_by_index(struct net *net, int ifindex)
 791{
 792        struct net_device *dev;
 793
 794        rcu_read_lock();
 795        dev = dev_get_by_index_rcu(net, ifindex);
 796        if (dev)
 797                dev_hold(dev);
 798        rcu_read_unlock();
 799        return dev;
 800}
 801EXPORT_SYMBOL(dev_get_by_index);
 802
 803/**
 804 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 805 *      @net: network namespace
 806 *      @name: a pointer to the buffer where the name will be stored.
 807 *      @ifindex: the ifindex of the interface to get the name from.
 808 *
 809 *      The use of raw_seqcount_begin() and cond_resched() before
 810 *      retrying is required as we want to give the writers a chance
 811 *      to complete when CONFIG_PREEMPT is not set.
 812 */
 813int netdev_get_name(struct net *net, char *name, int ifindex)
 814{
 815        struct net_device *dev;
 816        unsigned int seq;
 817
 818retry:
 819        seq = raw_seqcount_begin(&devnet_rename_seq);
 820        rcu_read_lock();
 821        dev = dev_get_by_index_rcu(net, ifindex);
 822        if (!dev) {
 823                rcu_read_unlock();
 824                return -ENODEV;
 825        }
 826
 827        strcpy(name, dev->name);
 828        rcu_read_unlock();
 829        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 830                cond_resched();
 831                goto retry;
 832        }
 833
 834        return 0;
 835}
 836
 837/**
 838 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 839 *      @net: the applicable net namespace
 840 *      @type: media type of device
 841 *      @ha: hardware address
 842 *
 843 *      Search for an interface by MAC address. Returns NULL if the device
 844 *      is not found or a pointer to the device.
 845 *      The caller must hold RCU or RTNL.
 846 *      The returned device has not had its ref count increased
 847 *      and the caller must therefore be careful about locking
 848 *
 849 */
 850
 851struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 852                                       const char *ha)
 853{
 854        struct net_device *dev;
 855
 856        for_each_netdev_rcu(net, dev)
 857                if (dev->type == type &&
 858                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 859                        return dev;
 860
 861        return NULL;
 862}
 863EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 864
 865struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 866{
 867        struct net_device *dev;
 868
 869        ASSERT_RTNL();
 870        for_each_netdev(net, dev)
 871                if (dev->type == type)
 872                        return dev;
 873
 874        return NULL;
 875}
 876EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 877
 878struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 879{
 880        struct net_device *dev, *ret = NULL;
 881
 882        rcu_read_lock();
 883        for_each_netdev_rcu(net, dev)
 884                if (dev->type == type) {
 885                        dev_hold(dev);
 886                        ret = dev;
 887                        break;
 888                }
 889        rcu_read_unlock();
 890        return ret;
 891}
 892EXPORT_SYMBOL(dev_getfirstbyhwtype);
 893
 894/**
 895 *      dev_get_by_flags_rcu - find any device with given flags
 896 *      @net: the applicable net namespace
 897 *      @if_flags: IFF_* values
 898 *      @mask: bitmask of bits in if_flags to check
 899 *
 900 *      Search for any interface with the given flags. Returns NULL if a device
 901 *      is not found or a pointer to the device. Must be called inside
 902 *      rcu_read_lock(), and result refcount is unchanged.
 903 */
 904
 905struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
 906                                    unsigned short mask)
 907{
 908        struct net_device *dev, *ret;
 909
 910        ret = NULL;
 911        for_each_netdev_rcu(net, dev) {
 912                if (((dev->flags ^ if_flags) & mask) == 0) {
 913                        ret = dev;
 914                        break;
 915                }
 916        }
 917        return ret;
 918}
 919EXPORT_SYMBOL(dev_get_by_flags_rcu);
 920
 921/**
 922 *      dev_valid_name - check if name is okay for network device
 923 *      @name: name string
 924 *
 925 *      Network device names need to be valid file names to
 926 *      to allow sysfs to work.  We also disallow any kind of
 927 *      whitespace.
 928 */
 929bool dev_valid_name(const char *name)
 930{
 931        if (*name == '\0')
 932                return false;
 933        if (strlen(name) >= IFNAMSIZ)
 934                return false;
 935        if (!strcmp(name, ".") || !strcmp(name, ".."))
 936                return false;
 937
 938        while (*name) {
 939                if (*name == '/' || isspace(*name))
 940                        return false;
 941                name++;
 942        }
 943        return true;
 944}
 945EXPORT_SYMBOL(dev_valid_name);
 946
 947/**
 948 *      __dev_alloc_name - allocate a name for a device
 949 *      @net: network namespace to allocate the device name in
 950 *      @name: name format string
 951 *      @buf:  scratch buffer and result name string
 952 *
 953 *      Passed a format string - eg "lt%d" it will try and find a suitable
 954 *      id. It scans list of devices to build up a free map, then chooses
 955 *      the first empty slot. The caller must hold the dev_base or rtnl lock
 956 *      while allocating the name and adding the device in order to avoid
 957 *      duplicates.
 958 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 959 *      Returns the number of the unit assigned or a negative errno code.
 960 */
 961
 962static int __dev_alloc_name(struct net *net, const char *name, char *buf)
 963{
 964        int i = 0;
 965        const char *p;
 966        const int max_netdevices = 8*PAGE_SIZE;
 967        unsigned long *inuse;
 968        struct net_device *d;
 969
 970        p = strnchr(name, IFNAMSIZ-1, '%');
 971        if (p) {
 972                /*
 973                 * Verify the string as this thing may have come from
 974                 * the user.  There must be either one "%d" and no other "%"
 975                 * characters.
 976                 */
 977                if (p[1] != 'd' || strchr(p + 2, '%'))
 978                        return -EINVAL;
 979
 980                /* Use one page as a bit array of possible slots */
 981                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 982                if (!inuse)
 983                        return -ENOMEM;
 984
 985                for_each_netdev(net, d) {
 986                        if (!sscanf(d->name, name, &i))
 987                                continue;
 988                        if (i < 0 || i >= max_netdevices)
 989                                continue;
 990
 991                        /*  avoid cases where sscanf is not exact inverse of printf */
 992                        snprintf(buf, IFNAMSIZ, name, i);
 993                        if (!strncmp(buf, d->name, IFNAMSIZ))
 994                                set_bit(i, inuse);
 995                }
 996
 997                i = find_first_zero_bit(inuse, max_netdevices);
 998                free_page((unsigned long) inuse);
 999        }
1000
1001        if (buf != name)
1002                snprintf(buf, IFNAMSIZ, name, i);
1003        if (!__dev_get_by_name(net, buf))
1004                return i;
1005
1006        /* It is possible to run out of possible slots
1007         * when the name is long and there isn't enough space left
1008         * for the digits, or if all bits are used.
1009         */
1010        return -ENFILE;
1011}
1012
1013/**
1014 *      dev_alloc_name - allocate a name for a device
1015 *      @dev: device
1016 *      @name: name format string
1017 *
1018 *      Passed a format string - eg "lt%d" it will try and find a suitable
1019 *      id. It scans list of devices to build up a free map, then chooses
1020 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1021 *      while allocating the name and adding the device in order to avoid
1022 *      duplicates.
1023 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1024 *      Returns the number of the unit assigned or a negative errno code.
1025 */
1026
1027int dev_alloc_name(struct net_device *dev, const char *name)
1028{
1029        char buf[IFNAMSIZ];
1030        struct net *net;
1031        int ret;
1032
1033        BUG_ON(!dev_net(dev));
1034        net = dev_net(dev);
1035        ret = __dev_alloc_name(net, name, buf);
1036        if (ret >= 0)
1037                strlcpy(dev->name, buf, IFNAMSIZ);
1038        return ret;
1039}
1040EXPORT_SYMBOL(dev_alloc_name);
1041
1042static int dev_alloc_name_ns(struct net *net,
1043                             struct net_device *dev,
1044                             const char *name)
1045{
1046        char buf[IFNAMSIZ];
1047        int ret;
1048
1049        ret = __dev_alloc_name(net, name, buf);
1050        if (ret >= 0)
1051                strlcpy(dev->name, buf, IFNAMSIZ);
1052        return ret;
1053}
1054
1055static int dev_get_valid_name(struct net *net,
1056                              struct net_device *dev,
1057                              const char *name)
1058{
1059        BUG_ON(!net);
1060
1061        if (!dev_valid_name(name))
1062                return -EINVAL;
1063
1064        if (strchr(name, '%'))
1065                return dev_alloc_name_ns(net, dev, name);
1066        else if (__dev_get_by_name(net, name))
1067                return -EEXIST;
1068        else if (dev->name != name)
1069                strlcpy(dev->name, name, IFNAMSIZ);
1070
1071        return 0;
1072}
1073
1074/**
1075 *      dev_change_name - change name of a device
1076 *      @dev: device
1077 *      @newname: name (or format string) must be at least IFNAMSIZ
1078 *
1079 *      Change name of a device, can pass format strings "eth%d".
1080 *      for wildcarding.
1081 */
1082int dev_change_name(struct net_device *dev, const char *newname)
1083{
1084        char oldname[IFNAMSIZ];
1085        int err = 0;
1086        int ret;
1087        struct net *net;
1088
1089        ASSERT_RTNL();
1090        BUG_ON(!dev_net(dev));
1091
1092        net = dev_net(dev);
1093        if (dev->flags & IFF_UP)
1094                return -EBUSY;
1095
1096        write_seqcount_begin(&devnet_rename_seq);
1097
1098        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1099                write_seqcount_end(&devnet_rename_seq);
1100                return 0;
1101        }
1102
1103        memcpy(oldname, dev->name, IFNAMSIZ);
1104
1105        err = dev_get_valid_name(net, dev, newname);
1106        if (err < 0) {
1107                write_seqcount_end(&devnet_rename_seq);
1108                return err;
1109        }
1110
1111rollback:
1112        ret = device_rename(&dev->dev, dev->name);
1113        if (ret) {
1114                memcpy(dev->name, oldname, IFNAMSIZ);
1115                write_seqcount_end(&devnet_rename_seq);
1116                return ret;
1117        }
1118
1119        write_seqcount_end(&devnet_rename_seq);
1120
1121        write_lock_bh(&dev_base_lock);
1122        hlist_del_rcu(&dev->name_hlist);
1123        write_unlock_bh(&dev_base_lock);
1124
1125        synchronize_rcu();
1126
1127        write_lock_bh(&dev_base_lock);
1128        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1129        write_unlock_bh(&dev_base_lock);
1130
1131        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1132        ret = notifier_to_errno(ret);
1133
1134        if (ret) {
1135                /* err >= 0 after dev_alloc_name() or stores the first errno */
1136                if (err >= 0) {
1137                        err = ret;
1138                        write_seqcount_begin(&devnet_rename_seq);
1139                        memcpy(dev->name, oldname, IFNAMSIZ);
1140                        goto rollback;
1141                } else {
1142                        pr_err("%s: name change rollback failed: %d\n",
1143                               dev->name, ret);
1144                }
1145        }
1146
1147        return err;
1148}
1149
1150/**
1151 *      dev_set_alias - change ifalias of a device
1152 *      @dev: device
1153 *      @alias: name up to IFALIASZ
1154 *      @len: limit of bytes to copy from info
1155 *
1156 *      Set ifalias for a device,
1157 */
1158int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1159{
1160        char *new_ifalias;
1161
1162        ASSERT_RTNL();
1163
1164        if (len >= IFALIASZ)
1165                return -EINVAL;
1166
1167        if (!len) {
1168                kfree(dev->ifalias);
1169                dev->ifalias = NULL;
1170                return 0;
1171        }
1172
1173        new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1174        if (!new_ifalias)
1175                return -ENOMEM;
1176        dev->ifalias = new_ifalias;
1177
1178        strlcpy(dev->ifalias, alias, len+1);
1179        return len;
1180}
1181
1182
1183/**
1184 *      netdev_features_change - device changes features
1185 *      @dev: device to cause notification
1186 *
1187 *      Called to indicate a device has changed features.
1188 */
1189void netdev_features_change(struct net_device *dev)
1190{
1191        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1192}
1193EXPORT_SYMBOL(netdev_features_change);
1194
1195/**
1196 *      netdev_state_change - device changes state
1197 *      @dev: device to cause notification
1198 *
1199 *      Called to indicate a device has changed state. This function calls
1200 *      the notifier chains for netdev_chain and sends a NEWLINK message
1201 *      to the routing socket.
1202 */
1203void netdev_state_change(struct net_device *dev)
1204{
1205        if (dev->flags & IFF_UP) {
1206                call_netdevice_notifiers(NETDEV_CHANGE, dev);
1207                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1208        }
1209}
1210EXPORT_SYMBOL(netdev_state_change);
1211
1212/**
1213 *      netdev_notify_peers - notify network peers about existence of @dev
1214 *      @dev: network device
1215 *
1216 * Generate traffic such that interested network peers are aware of
1217 * @dev, such as by generating a gratuitous ARP. This may be used when
1218 * a device wants to inform the rest of the network about some sort of
1219 * reconfiguration such as a failover event or virtual machine
1220 * migration.
1221 */
1222void netdev_notify_peers(struct net_device *dev)
1223{
1224        rtnl_lock();
1225        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1226        rtnl_unlock();
1227}
1228EXPORT_SYMBOL(netdev_notify_peers);
1229
1230static int __dev_open(struct net_device *dev)
1231{
1232        const struct net_device_ops *ops = dev->netdev_ops;
1233        int ret;
1234
1235        ASSERT_RTNL();
1236
1237        if (!netif_device_present(dev))
1238                return -ENODEV;
1239
1240        /* Block netpoll from trying to do any rx path servicing.
1241         * If we don't do this there is a chance ndo_poll_controller
1242         * or ndo_poll may be running while we open the device
1243         */
1244        netpoll_rx_disable(dev);
1245
1246        ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1247        ret = notifier_to_errno(ret);
1248        if (ret)
1249                return ret;
1250
1251        set_bit(__LINK_STATE_START, &dev->state);
1252
1253        if (ops->ndo_validate_addr)
1254                ret = ops->ndo_validate_addr(dev);
1255
1256        if (!ret && ops->ndo_open)
1257                ret = ops->ndo_open(dev);
1258
1259        netpoll_rx_enable(dev);
1260
1261        if (ret)
1262                clear_bit(__LINK_STATE_START, &dev->state);
1263        else {
1264                dev->flags |= IFF_UP;
1265                net_dmaengine_get();
1266                dev_set_rx_mode(dev);
1267                dev_activate(dev);
1268                add_device_randomness(dev->dev_addr, dev->addr_len);
1269        }
1270
1271        return ret;
1272}
1273
1274/**
1275 *      dev_open        - prepare an interface for use.
1276 *      @dev:   device to open
1277 *
1278 *      Takes a device from down to up state. The device's private open
1279 *      function is invoked and then the multicast lists are loaded. Finally
1280 *      the device is moved into the up state and a %NETDEV_UP message is
1281 *      sent to the netdev notifier chain.
1282 *
1283 *      Calling this function on an active interface is a nop. On a failure
1284 *      a negative errno code is returned.
1285 */
1286int dev_open(struct net_device *dev)
1287{
1288        int ret;
1289
1290        if (dev->flags & IFF_UP)
1291                return 0;
1292
1293        ret = __dev_open(dev);
1294        if (ret < 0)
1295                return ret;
1296
1297        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1298        call_netdevice_notifiers(NETDEV_UP, dev);
1299
1300        return ret;
1301}
1302EXPORT_SYMBOL(dev_open);
1303
1304static int __dev_close_many(struct list_head *head)
1305{
1306        struct net_device *dev;
1307
1308        ASSERT_RTNL();
1309        might_sleep();
1310
1311        list_for_each_entry(dev, head, close_list) {
1312                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1313
1314                clear_bit(__LINK_STATE_START, &dev->state);
1315
1316                /* Synchronize to scheduled poll. We cannot touch poll list, it
1317                 * can be even on different cpu. So just clear netif_running().
1318                 *
1319                 * dev->stop() will invoke napi_disable() on all of it's
1320                 * napi_struct instances on this device.
1321                 */
1322                smp_mb__after_clear_bit(); /* Commit netif_running(). */
1323        }
1324
1325        dev_deactivate_many(head);
1326
1327        list_for_each_entry(dev, head, close_list) {
1328                const struct net_device_ops *ops = dev->netdev_ops;
1329
1330                /*
1331                 *      Call the device specific close. This cannot fail.
1332                 *      Only if device is UP
1333                 *
1334                 *      We allow it to be called even after a DETACH hot-plug
1335                 *      event.
1336                 */
1337                if (ops->ndo_stop)
1338                        ops->ndo_stop(dev);
1339
1340                dev->flags &= ~IFF_UP;
1341                net_dmaengine_put();
1342        }
1343
1344        return 0;
1345}
1346
1347static int __dev_close(struct net_device *dev)
1348{
1349        int retval;
1350        LIST_HEAD(single);
1351
1352        /* Temporarily disable netpoll until the interface is down */
1353        netpoll_rx_disable(dev);
1354
1355        list_add(&dev->close_list, &single);
1356        retval = __dev_close_many(&single);
1357        list_del(&single);
1358
1359        netpoll_rx_enable(dev);
1360        return retval;
1361}
1362
1363static int dev_close_many(struct list_head *head)
1364{
1365        struct net_device *dev, *tmp;
1366
1367        /* Remove the devices that don't need to be closed */
1368        list_for_each_entry_safe(dev, tmp, head, close_list)
1369                if (!(dev->flags & IFF_UP))
1370                        list_del_init(&dev->close_list);
1371
1372        __dev_close_many(head);
1373
1374        list_for_each_entry_safe(dev, tmp, head, close_list) {
1375                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376                call_netdevice_notifiers(NETDEV_DOWN, dev);
1377                list_del_init(&dev->close_list);
1378        }
1379
1380        return 0;
1381}
1382
1383/**
1384 *      dev_close - shutdown an interface.
1385 *      @dev: device to shutdown
1386 *
1387 *      This function moves an active device into down state. A
1388 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390 *      chain.
1391 */
1392int dev_close(struct net_device *dev)
1393{
1394        if (dev->flags & IFF_UP) {
1395                LIST_HEAD(single);
1396
1397                /* Block netpoll rx while the interface is going down */
1398                netpoll_rx_disable(dev);
1399
1400                list_add(&dev->close_list, &single);
1401                dev_close_many(&single);
1402                list_del(&single);
1403
1404                netpoll_rx_enable(dev);
1405        }
1406        return 0;
1407}
1408EXPORT_SYMBOL(dev_close);
1409
1410
1411/**
1412 *      dev_disable_lro - disable Large Receive Offload on a device
1413 *      @dev: device
1414 *
1415 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1416 *      called under RTNL.  This is needed if received packets may be
1417 *      forwarded to another interface.
1418 */
1419void dev_disable_lro(struct net_device *dev)
1420{
1421        /*
1422         * If we're trying to disable lro on a vlan device
1423         * use the underlying physical device instead
1424         */
1425        if (is_vlan_dev(dev))
1426                dev = vlan_dev_real_dev(dev);
1427
1428        /* the same for macvlan devices */
1429        if (netif_is_macvlan(dev))
1430                dev = macvlan_dev_real_dev(dev);
1431
1432        dev->wanted_features &= ~NETIF_F_LRO;
1433        netdev_update_features(dev);
1434
1435        if (unlikely(dev->features & NETIF_F_LRO))
1436                netdev_WARN(dev, "failed to disable LRO!\n");
1437}
1438EXPORT_SYMBOL(dev_disable_lro);
1439
1440static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1441                                   struct net_device *dev)
1442{
1443        struct netdev_notifier_info info;
1444
1445        netdev_notifier_info_init(&info, dev);
1446        return nb->notifier_call(nb, val, &info);
1447}
1448
1449static int dev_boot_phase = 1;
1450
1451/**
1452 *      register_netdevice_notifier - register a network notifier block
1453 *      @nb: notifier
1454 *
1455 *      Register a notifier to be called when network device events occur.
1456 *      The notifier passed is linked into the kernel structures and must
1457 *      not be reused until it has been unregistered. A negative errno code
1458 *      is returned on a failure.
1459 *
1460 *      When registered all registration and up events are replayed
1461 *      to the new notifier to allow device to have a race free
1462 *      view of the network device list.
1463 */
1464
1465int register_netdevice_notifier(struct notifier_block *nb)
1466{
1467        struct net_device *dev;
1468        struct net_device *last;
1469        struct net *net;
1470        int err;
1471
1472        rtnl_lock();
1473        err = raw_notifier_chain_register(&netdev_chain, nb);
1474        if (err)
1475                goto unlock;
1476        if (dev_boot_phase)
1477                goto unlock;
1478        for_each_net(net) {
1479                for_each_netdev(net, dev) {
1480                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1481                        err = notifier_to_errno(err);
1482                        if (err)
1483                                goto rollback;
1484
1485                        if (!(dev->flags & IFF_UP))
1486                                continue;
1487
1488                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1489                }
1490        }
1491
1492unlock:
1493        rtnl_unlock();
1494        return err;
1495
1496rollback:
1497        last = dev;
1498        for_each_net(net) {
1499                for_each_netdev(net, dev) {
1500                        if (dev == last)
1501                                goto outroll;
1502
1503                        if (dev->flags & IFF_UP) {
1504                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1505                                                        dev);
1506                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1507                        }
1508                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1509                }
1510        }
1511
1512outroll:
1513        raw_notifier_chain_unregister(&netdev_chain, nb);
1514        goto unlock;
1515}
1516EXPORT_SYMBOL(register_netdevice_notifier);
1517
1518/**
1519 *      unregister_netdevice_notifier - unregister a network notifier block
1520 *      @nb: notifier
1521 *
1522 *      Unregister a notifier previously registered by
1523 *      register_netdevice_notifier(). The notifier is unlinked into the
1524 *      kernel structures and may then be reused. A negative errno code
1525 *      is returned on a failure.
1526 *
1527 *      After unregistering unregister and down device events are synthesized
1528 *      for all devices on the device list to the removed notifier to remove
1529 *      the need for special case cleanup code.
1530 */
1531
1532int unregister_netdevice_notifier(struct notifier_block *nb)
1533{
1534        struct net_device *dev;
1535        struct net *net;
1536        int err;
1537
1538        rtnl_lock();
1539        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1540        if (err)
1541                goto unlock;
1542
1543        for_each_net(net) {
1544                for_each_netdev(net, dev) {
1545                        if (dev->flags & IFF_UP) {
1546                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1547                                                        dev);
1548                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1549                        }
1550                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1551                }
1552        }
1553unlock:
1554        rtnl_unlock();
1555        return err;
1556}
1557EXPORT_SYMBOL(unregister_netdevice_notifier);
1558
1559/**
1560 *      call_netdevice_notifiers_info - call all network notifier blocks
1561 *      @val: value passed unmodified to notifier function
1562 *      @dev: net_device pointer passed unmodified to notifier function
1563 *      @info: notifier information data
1564 *
1565 *      Call all network notifier blocks.  Parameters and return value
1566 *      are as for raw_notifier_call_chain().
1567 */
1568
1569int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1570                                  struct netdev_notifier_info *info)
1571{
1572        ASSERT_RTNL();
1573        netdev_notifier_info_init(info, dev);
1574        return raw_notifier_call_chain(&netdev_chain, val, info);
1575}
1576EXPORT_SYMBOL(call_netdevice_notifiers_info);
1577
1578/**
1579 *      call_netdevice_notifiers - call all network notifier blocks
1580 *      @val: value passed unmodified to notifier function
1581 *      @dev: net_device pointer passed unmodified to notifier function
1582 *
1583 *      Call all network notifier blocks.  Parameters and return value
1584 *      are as for raw_notifier_call_chain().
1585 */
1586
1587int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1588{
1589        struct netdev_notifier_info info;
1590
1591        return call_netdevice_notifiers_info(val, dev, &info);
1592}
1593EXPORT_SYMBOL(call_netdevice_notifiers);
1594
1595static struct static_key netstamp_needed __read_mostly;
1596#ifdef HAVE_JUMP_LABEL
1597/* We are not allowed to call static_key_slow_dec() from irq context
1598 * If net_disable_timestamp() is called from irq context, defer the
1599 * static_key_slow_dec() calls.
1600 */
1601static atomic_t netstamp_needed_deferred;
1602#endif
1603
1604void net_enable_timestamp(void)
1605{
1606#ifdef HAVE_JUMP_LABEL
1607        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1608
1609        if (deferred) {
1610                while (--deferred)
1611                        static_key_slow_dec(&netstamp_needed);
1612                return;
1613        }
1614#endif
1615        static_key_slow_inc(&netstamp_needed);
1616}
1617EXPORT_SYMBOL(net_enable_timestamp);
1618
1619void net_disable_timestamp(void)
1620{
1621#ifdef HAVE_JUMP_LABEL
1622        if (in_interrupt()) {
1623                atomic_inc(&netstamp_needed_deferred);
1624                return;
1625        }
1626#endif
1627        static_key_slow_dec(&netstamp_needed);
1628}
1629EXPORT_SYMBOL(net_disable_timestamp);
1630
1631static inline void net_timestamp_set(struct sk_buff *skb)
1632{
1633        skb->tstamp.tv64 = 0;
1634        if (static_key_false(&netstamp_needed))
1635                __net_timestamp(skb);
1636}
1637
1638#define net_timestamp_check(COND, SKB)                  \
1639        if (static_key_false(&netstamp_needed)) {               \
1640                if ((COND) && !(SKB)->tstamp.tv64)      \
1641                        __net_timestamp(SKB);           \
1642        }                                               \
1643
1644static inline bool is_skb_forwardable(struct net_device *dev,
1645                                      struct sk_buff *skb)
1646{
1647        unsigned int len;
1648
1649        if (!(dev->flags & IFF_UP))
1650                return false;
1651
1652        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1653        if (skb->len <= len)
1654                return true;
1655
1656        /* if TSO is enabled, we don't care about the length as the packet
1657         * could be forwarded without being segmented before
1658         */
1659        if (skb_is_gso(skb))
1660                return true;
1661
1662        return false;
1663}
1664
1665/**
1666 * dev_forward_skb - loopback an skb to another netif
1667 *
1668 * @dev: destination network device
1669 * @skb: buffer to forward
1670 *
1671 * return values:
1672 *      NET_RX_SUCCESS  (no congestion)
1673 *      NET_RX_DROP     (packet was dropped, but freed)
1674 *
1675 * dev_forward_skb can be used for injecting an skb from the
1676 * start_xmit function of one device into the receive queue
1677 * of another device.
1678 *
1679 * The receiving device may be in another namespace, so
1680 * we have to clear all information in the skb that could
1681 * impact namespace isolation.
1682 */
1683int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1684{
1685        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1686                if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1687                        atomic_long_inc(&dev->rx_dropped);
1688                        kfree_skb(skb);
1689                        return NET_RX_DROP;
1690                }
1691        }
1692
1693        if (unlikely(!is_skb_forwardable(dev, skb))) {
1694                atomic_long_inc(&dev->rx_dropped);
1695                kfree_skb(skb);
1696                return NET_RX_DROP;
1697        }
1698
1699        skb_scrub_packet(skb, true);
1700        skb->protocol = eth_type_trans(skb, dev);
1701
1702        return netif_rx(skb);
1703}
1704EXPORT_SYMBOL_GPL(dev_forward_skb);
1705
1706static inline int deliver_skb(struct sk_buff *skb,
1707                              struct packet_type *pt_prev,
1708                              struct net_device *orig_dev)
1709{
1710        if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711                return -ENOMEM;
1712        atomic_inc(&skb->users);
1713        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714}
1715
1716static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717{
1718        if (!ptype->af_packet_priv || !skb->sk)
1719                return false;
1720
1721        if (ptype->id_match)
1722                return ptype->id_match(ptype, skb->sk);
1723        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724                return true;
1725
1726        return false;
1727}
1728
1729/*
1730 *      Support routine. Sends outgoing frames to any network
1731 *      taps currently in use.
1732 */
1733
1734static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735{
1736        struct packet_type *ptype;
1737        struct sk_buff *skb2 = NULL;
1738        struct packet_type *pt_prev = NULL;
1739
1740        rcu_read_lock();
1741        list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742                /* Never send packets back to the socket
1743                 * they originated from - MvS (miquels@drinkel.ow.org)
1744                 */
1745                if ((ptype->dev == dev || !ptype->dev) &&
1746                    (!skb_loop_sk(ptype, skb))) {
1747                        if (pt_prev) {
1748                                deliver_skb(skb2, pt_prev, skb->dev);
1749                                pt_prev = ptype;
1750                                continue;
1751                        }
1752
1753                        skb2 = skb_clone(skb, GFP_ATOMIC);
1754                        if (!skb2)
1755                                break;
1756
1757                        net_timestamp_set(skb2);
1758
1759                        /* skb->nh should be correctly
1760                           set by sender, so that the second statement is
1761                           just protection against buggy protocols.
1762                         */
1763                        skb_reset_mac_header(skb2);
1764
1765                        if (skb_network_header(skb2) < skb2->data ||
1766                            skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767                                net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768                                                     ntohs(skb2->protocol),
1769                                                     dev->name);
1770                                skb_reset_network_header(skb2);
1771                        }
1772
1773                        skb2->transport_header = skb2->network_header;
1774                        skb2->pkt_type = PACKET_OUTGOING;
1775                        pt_prev = ptype;
1776                }
1777        }
1778        if (pt_prev)
1779                pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780        rcu_read_unlock();
1781}
1782
1783/**
1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785 * @dev: Network device
1786 * @txq: number of queues available
1787 *
1788 * If real_num_tx_queues is changed the tc mappings may no longer be
1789 * valid. To resolve this verify the tc mapping remains valid and if
1790 * not NULL the mapping. With no priorities mapping to this
1791 * offset/count pair it will no longer be used. In the worst case TC0
1792 * is invalid nothing can be done so disable priority mappings. If is
1793 * expected that drivers will fix this mapping if they can before
1794 * calling netif_set_real_num_tx_queues.
1795 */
1796static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797{
1798        int i;
1799        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800
1801        /* If TC0 is invalidated disable TC mapping */
1802        if (tc->offset + tc->count > txq) {
1803                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804                dev->num_tc = 0;
1805                return;
1806        }
1807
1808        /* Invalidated prio to tc mappings set to TC0 */
1809        for (i = 1; i < TC_BITMASK + 1; i++) {
1810                int q = netdev_get_prio_tc_map(dev, i);
1811
1812                tc = &dev->tc_to_txq[q];
1813                if (tc->offset + tc->count > txq) {
1814                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815                                i, q);
1816                        netdev_set_prio_tc_map(dev, i, 0);
1817                }
1818        }
1819}
1820
1821#ifdef CONFIG_XPS
1822static DEFINE_MUTEX(xps_map_mutex);
1823#define xmap_dereference(P)             \
1824        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825
1826static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827                                        int cpu, u16 index)
1828{
1829        struct xps_map *map = NULL;
1830        int pos;
1831
1832        if (dev_maps)
1833                map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834
1835        for (pos = 0; map && pos < map->len; pos++) {
1836                if (map->queues[pos] == index) {
1837                        if (map->len > 1) {
1838                                map->queues[pos] = map->queues[--map->len];
1839                        } else {
1840                                RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841                                kfree_rcu(map, rcu);
1842                                map = NULL;
1843                        }
1844                        break;
1845                }
1846        }
1847
1848        return map;
1849}
1850
1851static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852{
1853        struct xps_dev_maps *dev_maps;
1854        int cpu, i;
1855        bool active = false;
1856
1857        mutex_lock(&xps_map_mutex);
1858        dev_maps = xmap_dereference(dev->xps_maps);
1859
1860        if (!dev_maps)
1861                goto out_no_maps;
1862
1863        for_each_possible_cpu(cpu) {
1864                for (i = index; i < dev->num_tx_queues; i++) {
1865                        if (!remove_xps_queue(dev_maps, cpu, i))
1866                                break;
1867                }
1868                if (i == dev->num_tx_queues)
1869                        active = true;
1870        }
1871
1872        if (!active) {
1873                RCU_INIT_POINTER(dev->xps_maps, NULL);
1874                kfree_rcu(dev_maps, rcu);
1875        }
1876
1877        for (i = index; i < dev->num_tx_queues; i++)
1878                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879                                             NUMA_NO_NODE);
1880
1881out_no_maps:
1882        mutex_unlock(&xps_map_mutex);
1883}
1884
1885static struct xps_map *expand_xps_map(struct xps_map *map,
1886                                      int cpu, u16 index)
1887{
1888        struct xps_map *new_map;
1889        int alloc_len = XPS_MIN_MAP_ALLOC;
1890        int i, pos;
1891
1892        for (pos = 0; map && pos < map->len; pos++) {
1893                if (map->queues[pos] != index)
1894                        continue;
1895                return map;
1896        }
1897
1898        /* Need to add queue to this CPU's existing map */
1899        if (map) {
1900                if (pos < map->alloc_len)
1901                        return map;
1902
1903                alloc_len = map->alloc_len * 2;
1904        }
1905
1906        /* Need to allocate new map to store queue on this CPU's map */
1907        new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908                               cpu_to_node(cpu));
1909        if (!new_map)
1910                return NULL;
1911
1912        for (i = 0; i < pos; i++)
1913                new_map->queues[i] = map->queues[i];
1914        new_map->alloc_len = alloc_len;
1915        new_map->len = pos;
1916
1917        return new_map;
1918}
1919
1920int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1921                        u16 index)
1922{
1923        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1924        struct xps_map *map, *new_map;
1925        int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1926        int cpu, numa_node_id = -2;
1927        bool active = false;
1928
1929        mutex_lock(&xps_map_mutex);
1930
1931        dev_maps = xmap_dereference(dev->xps_maps);
1932
1933        /* allocate memory for queue storage */
1934        for_each_online_cpu(cpu) {
1935                if (!cpumask_test_cpu(cpu, mask))
1936                        continue;
1937
1938                if (!new_dev_maps)
1939                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1940                if (!new_dev_maps) {
1941                        mutex_unlock(&xps_map_mutex);
1942                        return -ENOMEM;
1943                }
1944
1945                map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1946                                 NULL;
1947
1948                map = expand_xps_map(map, cpu, index);
1949                if (!map)
1950                        goto error;
1951
1952                RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1953        }
1954
1955        if (!new_dev_maps)
1956                goto out_no_new_maps;
1957
1958        for_each_possible_cpu(cpu) {
1959                if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1960                        /* add queue to CPU maps */
1961                        int pos = 0;
1962
1963                        map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1964                        while ((pos < map->len) && (map->queues[pos] != index))
1965                                pos++;
1966
1967                        if (pos == map->len)
1968                                map->queues[map->len++] = index;
1969#ifdef CONFIG_NUMA
1970                        if (numa_node_id == -2)
1971                                numa_node_id = cpu_to_node(cpu);
1972                        else if (numa_node_id != cpu_to_node(cpu))
1973                                numa_node_id = -1;
1974#endif
1975                } else if (dev_maps) {
1976                        /* fill in the new device map from the old device map */
1977                        map = xmap_dereference(dev_maps->cpu_map[cpu]);
1978                        RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1979                }
1980
1981        }
1982
1983        rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1984
1985        /* Cleanup old maps */
1986        if (dev_maps) {
1987                for_each_possible_cpu(cpu) {
1988                        new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989                        map = xmap_dereference(dev_maps->cpu_map[cpu]);
1990                        if (map && map != new_map)
1991                                kfree_rcu(map, rcu);
1992                }
1993
1994                kfree_rcu(dev_maps, rcu);
1995        }
1996
1997        dev_maps = new_dev_maps;
1998        active = true;
1999
2000out_no_new_maps:
2001        /* update Tx queue numa node */
2002        netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2003                                     (numa_node_id >= 0) ? numa_node_id :
2004                                     NUMA_NO_NODE);
2005
2006        if (!dev_maps)
2007                goto out_no_maps;
2008
2009        /* removes queue from unused CPUs */
2010        for_each_possible_cpu(cpu) {
2011                if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2012                        continue;
2013
2014                if (remove_xps_queue(dev_maps, cpu, index))
2015                        active = true;
2016        }
2017
2018        /* free map if not active */
2019        if (!active) {
2020                RCU_INIT_POINTER(dev->xps_maps, NULL);
2021                kfree_rcu(dev_maps, rcu);
2022        }
2023
2024out_no_maps:
2025        mutex_unlock(&xps_map_mutex);
2026
2027        return 0;
2028error:
2029        /* remove any maps that we added */
2030        for_each_possible_cpu(cpu) {
2031                new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2032                map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2033                                 NULL;
2034                if (new_map && new_map != map)
2035                        kfree(new_map);
2036        }
2037
2038        mutex_unlock(&xps_map_mutex);
2039
2040        kfree(new_dev_maps);
2041        return -ENOMEM;
2042}
2043EXPORT_SYMBOL(netif_set_xps_queue);
2044
2045#endif
2046/*
2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2049 */
2050int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2051{
2052        int rc;
2053
2054        if (txq < 1 || txq > dev->num_tx_queues)
2055                return -EINVAL;
2056
2057        if (dev->reg_state == NETREG_REGISTERED ||
2058            dev->reg_state == NETREG_UNREGISTERING) {
2059                ASSERT_RTNL();
2060
2061                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2062                                                  txq);
2063                if (rc)
2064                        return rc;
2065
2066                if (dev->num_tc)
2067                        netif_setup_tc(dev, txq);
2068
2069                if (txq < dev->real_num_tx_queues) {
2070                        qdisc_reset_all_tx_gt(dev, txq);
2071#ifdef CONFIG_XPS
2072                        netif_reset_xps_queues_gt(dev, txq);
2073#endif
2074                }
2075        }
2076
2077        dev->real_num_tx_queues = txq;
2078        return 0;
2079}
2080EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2081
2082#ifdef CONFIG_RPS
2083/**
2084 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2085 *      @dev: Network device
2086 *      @rxq: Actual number of RX queues
2087 *
2088 *      This must be called either with the rtnl_lock held or before
2089 *      registration of the net device.  Returns 0 on success, or a
2090 *      negative error code.  If called before registration, it always
2091 *      succeeds.
2092 */
2093int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2094{
2095        int rc;
2096
2097        if (rxq < 1 || rxq > dev->num_rx_queues)
2098                return -EINVAL;
2099
2100        if (dev->reg_state == NETREG_REGISTERED) {
2101                ASSERT_RTNL();
2102
2103                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2104                                                  rxq);
2105                if (rc)
2106                        return rc;
2107        }
2108
2109        dev->real_num_rx_queues = rxq;
2110        return 0;
2111}
2112EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2113#endif
2114
2115/**
2116 * netif_get_num_default_rss_queues - default number of RSS queues
2117 *
2118 * This routine should set an upper limit on the number of RSS queues
2119 * used by default by multiqueue devices.
2120 */
2121int netif_get_num_default_rss_queues(void)
2122{
2123        return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2124}
2125EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2126
2127static inline void __netif_reschedule(struct Qdisc *q)
2128{
2129        struct softnet_data *sd;
2130        unsigned long flags;
2131
2132        local_irq_save(flags);
2133        sd = &__get_cpu_var(softnet_data);
2134        q->next_sched = NULL;
2135        *sd->output_queue_tailp = q;
2136        sd->output_queue_tailp = &q->next_sched;
2137        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2138        local_irq_restore(flags);
2139}
2140
2141void __netif_schedule(struct Qdisc *q)
2142{
2143        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2144                __netif_reschedule(q);
2145}
2146EXPORT_SYMBOL(__netif_schedule);
2147
2148void dev_kfree_skb_irq(struct sk_buff *skb)
2149{
2150        if (atomic_dec_and_test(&skb->users)) {
2151                struct softnet_data *sd;
2152                unsigned long flags;
2153
2154                local_irq_save(flags);
2155                sd = &__get_cpu_var(softnet_data);
2156                skb->next = sd->completion_queue;
2157                sd->completion_queue = skb;
2158                raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159                local_irq_restore(flags);
2160        }
2161}
2162EXPORT_SYMBOL(dev_kfree_skb_irq);
2163
2164void dev_kfree_skb_any(struct sk_buff *skb)
2165{
2166        if (in_irq() || irqs_disabled())
2167                dev_kfree_skb_irq(skb);
2168        else
2169                dev_kfree_skb(skb);
2170}
2171EXPORT_SYMBOL(dev_kfree_skb_any);
2172
2173
2174/**
2175 * netif_device_detach - mark device as removed
2176 * @dev: network device
2177 *
2178 * Mark device as removed from system and therefore no longer available.
2179 */
2180void netif_device_detach(struct net_device *dev)
2181{
2182        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2183            netif_running(dev)) {
2184                netif_tx_stop_all_queues(dev);
2185        }
2186}
2187EXPORT_SYMBOL(netif_device_detach);
2188
2189/**
2190 * netif_device_attach - mark device as attached
2191 * @dev: network device
2192 *
2193 * Mark device as attached from system and restart if needed.
2194 */
2195void netif_device_attach(struct net_device *dev)
2196{
2197        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2198            netif_running(dev)) {
2199                netif_tx_wake_all_queues(dev);
2200                __netdev_watchdog_up(dev);
2201        }
2202}
2203EXPORT_SYMBOL(netif_device_attach);
2204
2205static void skb_warn_bad_offload(const struct sk_buff *skb)
2206{
2207        static const netdev_features_t null_features = 0;
2208        struct net_device *dev = skb->dev;
2209        const char *driver = "";
2210
2211        if (!net_ratelimit())
2212                return;
2213
2214        if (dev && dev->dev.parent)
2215                driver = dev_driver_string(dev->dev.parent);
2216
2217        WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2218             "gso_type=%d ip_summed=%d\n",
2219             driver, dev ? &dev->features : &null_features,
2220             skb->sk ? &skb->sk->sk_route_caps : &null_features,
2221             skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2222             skb_shinfo(skb)->gso_type, skb->ip_summed);
2223}
2224
2225/*
2226 * Invalidate hardware checksum when packet is to be mangled, and
2227 * complete checksum manually on outgoing path.
2228 */
2229int skb_checksum_help(struct sk_buff *skb)
2230{
2231        __wsum csum;
2232        int ret = 0, offset;
2233
2234        if (skb->ip_summed == CHECKSUM_COMPLETE)
2235                goto out_set_summed;
2236
2237        if (unlikely(skb_shinfo(skb)->gso_size)) {
2238                skb_warn_bad_offload(skb);
2239                return -EINVAL;
2240        }
2241
2242        /* Before computing a checksum, we should make sure no frag could
2243         * be modified by an external entity : checksum could be wrong.
2244         */
2245        if (skb_has_shared_frag(skb)) {
2246                ret = __skb_linearize(skb);
2247                if (ret)
2248                        goto out;
2249        }
2250
2251        offset = skb_checksum_start_offset(skb);
2252        BUG_ON(offset >= skb_headlen(skb));
2253        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2254
2255        offset += skb->csum_offset;
2256        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2257
2258        if (skb_cloned(skb) &&
2259            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2260                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2261                if (ret)
2262                        goto out;
2263        }
2264
2265        *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2266out_set_summed:
2267        skb->ip_summed = CHECKSUM_NONE;
2268out:
2269        return ret;
2270}
2271EXPORT_SYMBOL(skb_checksum_help);
2272
2273__be16 skb_network_protocol(struct sk_buff *skb)
2274{
2275        __be16 type = skb->protocol;
2276        int vlan_depth = ETH_HLEN;
2277
2278        /* Tunnel gso handlers can set protocol to ethernet. */
2279        if (type == htons(ETH_P_TEB)) {
2280                struct ethhdr *eth;
2281
2282                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2283                        return 0;
2284
2285                eth = (struct ethhdr *)skb_mac_header(skb);
2286                type = eth->h_proto;
2287        }
2288
2289        while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2290                struct vlan_hdr *vh;
2291
2292                if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2293                        return 0;
2294
2295                vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2296                type = vh->h_vlan_encapsulated_proto;
2297                vlan_depth += VLAN_HLEN;
2298        }
2299
2300        return type;
2301}
2302
2303/**
2304 *      skb_mac_gso_segment - mac layer segmentation handler.
2305 *      @skb: buffer to segment
2306 *      @features: features for the output path (see dev->features)
2307 */
2308struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2309                                    netdev_features_t features)
2310{
2311        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2312        struct packet_offload *ptype;
2313        __be16 type = skb_network_protocol(skb);
2314
2315        if (unlikely(!type))
2316                return ERR_PTR(-EINVAL);
2317
2318        __skb_pull(skb, skb->mac_len);
2319
2320        rcu_read_lock();
2321        list_for_each_entry_rcu(ptype, &offload_base, list) {
2322                if (ptype->type == type && ptype->callbacks.gso_segment) {
2323                        if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2324                                int err;
2325
2326                                err = ptype->callbacks.gso_send_check(skb);
2327                                segs = ERR_PTR(err);
2328                                if (err || skb_gso_ok(skb, features))
2329                                        break;
2330                                __skb_push(skb, (skb->data -
2331                                                 skb_network_header(skb)));
2332                        }
2333                        segs = ptype->callbacks.gso_segment(skb, features);
2334                        break;
2335                }
2336        }
2337        rcu_read_unlock();
2338
2339        __skb_push(skb, skb->data - skb_mac_header(skb));
2340
2341        return segs;
2342}
2343EXPORT_SYMBOL(skb_mac_gso_segment);
2344
2345
2346/* openvswitch calls this on rx path, so we need a different check.
2347 */
2348static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2349{
2350        if (tx_path)
2351                return skb->ip_summed != CHECKSUM_PARTIAL;
2352        else
2353                return skb->ip_summed == CHECKSUM_NONE;
2354}
2355
2356/**
2357 *      __skb_gso_segment - Perform segmentation on skb.
2358 *      @skb: buffer to segment
2359 *      @features: features for the output path (see dev->features)
2360 *      @tx_path: whether it is called in TX path
2361 *
2362 *      This function segments the given skb and returns a list of segments.
2363 *
2364 *      It may return NULL if the skb requires no segmentation.  This is
2365 *      only possible when GSO is used for verifying header integrity.
2366 */
2367struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2368                                  netdev_features_t features, bool tx_path)
2369{
2370        if (unlikely(skb_needs_check(skb, tx_path))) {
2371                int err;
2372
2373                skb_warn_bad_offload(skb);
2374
2375                if (skb_header_cloned(skb) &&
2376                    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2377                        return ERR_PTR(err);
2378        }
2379
2380        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2381        SKB_GSO_CB(skb)->encap_level = 0;
2382
2383        skb_reset_mac_header(skb);
2384        skb_reset_mac_len(skb);
2385
2386        return skb_mac_gso_segment(skb, features);
2387}
2388EXPORT_SYMBOL(__skb_gso_segment);
2389
2390/* Take action when hardware reception checksum errors are detected. */
2391#ifdef CONFIG_BUG
2392void netdev_rx_csum_fault(struct net_device *dev)
2393{
2394        if (net_ratelimit()) {
2395                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2396                dump_stack();
2397        }
2398}
2399EXPORT_SYMBOL(netdev_rx_csum_fault);
2400#endif
2401
2402/* Actually, we should eliminate this check as soon as we know, that:
2403 * 1. IOMMU is present and allows to map all the memory.
2404 * 2. No high memory really exists on this machine.
2405 */
2406
2407static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2408{
2409#ifdef CONFIG_HIGHMEM
2410        int i;
2411        if (!(dev->features & NETIF_F_HIGHDMA)) {
2412                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2413                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2414                        if (PageHighMem(skb_frag_page(frag)))
2415                                return 1;
2416                }
2417        }
2418
2419        if (PCI_DMA_BUS_IS_PHYS) {
2420                struct device *pdev = dev->dev.parent;
2421
2422                if (!pdev)
2423                        return 0;
2424                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2425                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2426                        dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2427                        if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2428                                return 1;
2429                }
2430        }
2431#endif
2432        return 0;
2433}
2434
2435struct dev_gso_cb {
2436        void (*destructor)(struct sk_buff *skb);
2437};
2438
2439#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2440
2441static void dev_gso_skb_destructor(struct sk_buff *skb)
2442{
2443        struct dev_gso_cb *cb;
2444
2445        do {
2446                struct sk_buff *nskb = skb->next;
2447
2448                skb->next = nskb->next;
2449                nskb->next = NULL;
2450                kfree_skb(nskb);
2451        } while (skb->next);
2452
2453        cb = DEV_GSO_CB(skb);
2454        if (cb->destructor)
2455                cb->destructor(skb);
2456}
2457
2458/**
2459 *      dev_gso_segment - Perform emulated hardware segmentation on skb.
2460 *      @skb: buffer to segment
2461 *      @features: device features as applicable to this skb
2462 *
2463 *      This function segments the given skb and stores the list of segments
2464 *      in skb->next.
2465 */
2466static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2467{
2468        struct sk_buff *segs;
2469
2470        segs = skb_gso_segment(skb, features);
2471
2472        /* Verifying header integrity only. */
2473        if (!segs)
2474                return 0;
2475
2476        if (IS_ERR(segs))
2477                return PTR_ERR(segs);
2478
2479        skb->next = segs;
2480        DEV_GSO_CB(skb)->destructor = skb->destructor;
2481        skb->destructor = dev_gso_skb_destructor;
2482
2483        return 0;
2484}
2485
2486static netdev_features_t harmonize_features(struct sk_buff *skb,
2487        netdev_features_t features)
2488{
2489        if (skb->ip_summed != CHECKSUM_NONE &&
2490            !can_checksum_protocol(features, skb_network_protocol(skb))) {
2491                features &= ~NETIF_F_ALL_CSUM;
2492        } else if (illegal_highdma(skb->dev, skb)) {
2493                features &= ~NETIF_F_SG;
2494        }
2495
2496        return features;
2497}
2498
2499netdev_features_t netif_skb_features(struct sk_buff *skb)
2500{
2501        __be16 protocol = skb->protocol;
2502        netdev_features_t features = skb->dev->features;
2503
2504        if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2505                features &= ~NETIF_F_GSO_MASK;
2506
2507        if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2508                struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2509                protocol = veh->h_vlan_encapsulated_proto;
2510        } else if (!vlan_tx_tag_present(skb)) {
2511                return harmonize_features(skb, features);
2512        }
2513
2514        features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2515                                               NETIF_F_HW_VLAN_STAG_TX);
2516
2517        if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2518                features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2519                                NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2520                                NETIF_F_HW_VLAN_STAG_TX;
2521
2522        return harmonize_features(skb, features);
2523}
2524EXPORT_SYMBOL(netif_skb_features);
2525
2526/*
2527 * Returns true if either:
2528 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
2529 *      2. skb is fragmented and the device does not support SG.
2530 */
2531static inline int skb_needs_linearize(struct sk_buff *skb,
2532                                      netdev_features_t features)
2533{
2534        return skb_is_nonlinear(skb) &&
2535                        ((skb_has_frag_list(skb) &&
2536                                !(features & NETIF_F_FRAGLIST)) ||
2537                        (skb_shinfo(skb)->nr_frags &&
2538                                !(features & NETIF_F_SG)));
2539}
2540
2541int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2542                        struct netdev_queue *txq)
2543{
2544        const struct net_device_ops *ops = dev->netdev_ops;
2545        int rc = NETDEV_TX_OK;
2546        unsigned int skb_len;
2547
2548        if (likely(!skb->next)) {
2549                netdev_features_t features;
2550
2551                /*
2552                 * If device doesn't need skb->dst, release it right now while
2553                 * its hot in this cpu cache
2554                 */
2555                if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2556                        skb_dst_drop(skb);
2557
2558                features = netif_skb_features(skb);
2559
2560                if (vlan_tx_tag_present(skb) &&
2561                    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2562                        skb = __vlan_put_tag(skb, skb->vlan_proto,
2563                                             vlan_tx_tag_get(skb));
2564                        if (unlikely(!skb))
2565                                goto out;
2566
2567                        skb->vlan_tci = 0;
2568                }
2569
2570                /* If encapsulation offload request, verify we are testing
2571                 * hardware encapsulation features instead of standard
2572                 * features for the netdev
2573                 */
2574                if (skb->encapsulation)
2575                        features &= dev->hw_enc_features;
2576
2577                if (netif_needs_gso(skb, features)) {
2578                        if (unlikely(dev_gso_segment(skb, features)))
2579                                goto out_kfree_skb;
2580                        if (skb->next)
2581                                goto gso;
2582                } else {
2583                        if (skb_needs_linearize(skb, features) &&
2584                            __skb_linearize(skb))
2585                                goto out_kfree_skb;
2586
2587                        /* If packet is not checksummed and device does not
2588                         * support checksumming for this protocol, complete
2589                         * checksumming here.
2590                         */
2591                        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2592                                if (skb->encapsulation)
2593                                        skb_set_inner_transport_header(skb,
2594                                                skb_checksum_start_offset(skb));
2595                                else
2596                                        skb_set_transport_header(skb,
2597                                                skb_checksum_start_offset(skb));
2598                                if (!(features & NETIF_F_ALL_CSUM) &&
2599                                     skb_checksum_help(skb))
2600                                        goto out_kfree_skb;
2601                        }
2602                }
2603
2604                if (!list_empty(&ptype_all))
2605                        dev_queue_xmit_nit(skb, dev);
2606
2607                skb_len = skb->len;
2608                        rc = ops->ndo_start_xmit(skb, dev);
2609
2610                trace_net_dev_xmit(skb, rc, dev, skb_len);
2611                if (rc == NETDEV_TX_OK)
2612                        txq_trans_update(txq);
2613                return rc;
2614        }
2615
2616gso:
2617        do {
2618                struct sk_buff *nskb = skb->next;
2619
2620                skb->next = nskb->next;
2621                nskb->next = NULL;
2622
2623                if (!list_empty(&ptype_all))
2624                        dev_queue_xmit_nit(nskb, dev);
2625
2626                skb_len = nskb->len;
2627                rc = ops->ndo_start_xmit(nskb, dev);
2628                trace_net_dev_xmit(nskb, rc, dev, skb_len);
2629                if (unlikely(rc != NETDEV_TX_OK)) {
2630                        if (rc & ~NETDEV_TX_MASK)
2631                                goto out_kfree_gso_skb;
2632                        nskb->next = skb->next;
2633                        skb->next = nskb;
2634                        return rc;
2635                }
2636                txq_trans_update(txq);
2637                if (unlikely(netif_xmit_stopped(txq) && skb->next))
2638                        return NETDEV_TX_BUSY;
2639        } while (skb->next);
2640
2641out_kfree_gso_skb:
2642        if (likely(skb->next == NULL)) {
2643                skb->destructor = DEV_GSO_CB(skb)->destructor;
2644                consume_skb(skb);
2645                return rc;
2646        }
2647out_kfree_skb:
2648        kfree_skb(skb);
2649out:
2650        return rc;
2651}
2652EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2653
2654static void qdisc_pkt_len_init(struct sk_buff *skb)
2655{
2656        const struct skb_shared_info *shinfo = skb_shinfo(skb);
2657
2658        qdisc_skb_cb(skb)->pkt_len = skb->len;
2659
2660        /* To get more precise estimation of bytes sent on wire,
2661         * we add to pkt_len the headers size of all segments
2662         */
2663        if (shinfo->gso_size)  {
2664                unsigned int hdr_len;
2665                u16 gso_segs = shinfo->gso_segs;
2666
2667                /* mac layer + network layer */
2668                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2669
2670                /* + transport layer */
2671                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2672                        hdr_len += tcp_hdrlen(skb);
2673                else
2674                        hdr_len += sizeof(struct udphdr);
2675
2676                if (shinfo->gso_type & SKB_GSO_DODGY)
2677                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2678                                                shinfo->gso_size);
2679
2680                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2681        }
2682}
2683
2684static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2685                                 struct net_device *dev,
2686                                 struct netdev_queue *txq)
2687{
2688        spinlock_t *root_lock = qdisc_lock(q);
2689        bool contended;
2690        int rc;
2691
2692        qdisc_pkt_len_init(skb);
2693        qdisc_calculate_pkt_len(skb, q);
2694        /*
2695         * Heuristic to force contended enqueues to serialize on a
2696         * separate lock before trying to get qdisc main lock.
2697         * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2698         * and dequeue packets faster.
2699         */
2700        contended = qdisc_is_running(q);
2701        if (unlikely(contended))
2702                spin_lock(&q->busylock);
2703
2704        spin_lock(root_lock);
2705        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2706                kfree_skb(skb);
2707                rc = NET_XMIT_DROP;
2708        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2709                   qdisc_run_begin(q)) {
2710                /*
2711                 * This is a work-conserving queue; there are no old skbs
2712                 * waiting to be sent out; and the qdisc is not running -
2713                 * xmit the skb directly.
2714                 */
2715                if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2716                        skb_dst_force(skb);
2717
2718                qdisc_bstats_update(q, skb);
2719
2720                if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2721                        if (unlikely(contended)) {
2722                                spin_unlock(&q->busylock);
2723                                contended = false;
2724                        }
2725                        __qdisc_run(q);
2726                } else
2727                        qdisc_run_end(q);
2728
2729                rc = NET_XMIT_SUCCESS;
2730        } else {
2731                skb_dst_force(skb);
2732                rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2733                if (qdisc_run_begin(q)) {
2734                        if (unlikely(contended)) {
2735                                spin_unlock(&q->busylock);
2736                                contended = false;
2737                        }
2738                        __qdisc_run(q);
2739                }
2740        }
2741        spin_unlock(root_lock);
2742        if (unlikely(contended))
2743                spin_unlock(&q->busylock);
2744        return rc;
2745}
2746
2747#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2748static void skb_update_prio(struct sk_buff *skb)
2749{
2750        struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2751
2752        if (!skb->priority && skb->sk && map) {
2753                unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2754
2755                if (prioidx < map->priomap_len)
2756                        skb->priority = map->priomap[prioidx];
2757        }
2758}
2759#else
2760#define skb_update_prio(skb)
2761#endif
2762
2763static DEFINE_PER_CPU(int, xmit_recursion);
2764#define RECURSION_LIMIT 10
2765
2766/**
2767 *      dev_loopback_xmit - loop back @skb
2768 *      @skb: buffer to transmit
2769 */
2770int dev_loopback_xmit(struct sk_buff *skb)
2771{
2772        skb_reset_mac_header(skb);
2773        __skb_pull(skb, skb_network_offset(skb));
2774        skb->pkt_type = PACKET_LOOPBACK;
2775        skb->ip_summed = CHECKSUM_UNNECESSARY;
2776        WARN_ON(!skb_dst(skb));
2777        skb_dst_force(skb);
2778        netif_rx_ni(skb);
2779        return 0;
2780}
2781EXPORT_SYMBOL(dev_loopback_xmit);
2782
2783/**
2784 *      dev_queue_xmit - transmit a buffer
2785 *      @skb: buffer to transmit
2786 *
2787 *      Queue a buffer for transmission to a network device. The caller must
2788 *      have set the device and priority and built the buffer before calling
2789 *      this function. The function can be called from an interrupt.
2790 *
2791 *      A negative errno code is returned on a failure. A success does not
2792 *      guarantee the frame will be transmitted as it may be dropped due
2793 *      to congestion or traffic shaping.
2794 *
2795 * -----------------------------------------------------------------------------------
2796 *      I notice this method can also return errors from the queue disciplines,
2797 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2798 *      be positive.
2799 *
2800 *      Regardless of the return value, the skb is consumed, so it is currently
2801 *      difficult to retry a send to this method.  (You can bump the ref count
2802 *      before sending to hold a reference for retry if you are careful.)
2803 *
2804 *      When calling this method, interrupts MUST be enabled.  This is because
2805 *      the BH enable code must have IRQs enabled so that it will not deadlock.
2806 *          --BLG
2807 */
2808int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2809{
2810        struct net_device *dev = skb->dev;
2811        struct netdev_queue *txq;
2812        struct Qdisc *q;
2813        int rc = -ENOMEM;
2814
2815        skb_reset_mac_header(skb);
2816
2817        /* Disable soft irqs for various locks below. Also
2818         * stops preemption for RCU.
2819         */
2820        rcu_read_lock_bh();
2821
2822        skb_update_prio(skb);
2823
2824        txq = netdev_pick_tx(dev, skb, accel_priv);
2825        q = rcu_dereference_bh(txq->qdisc);
2826
2827#ifdef CONFIG_NET_CLS_ACT
2828        skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2829#endif
2830        trace_net_dev_queue(skb);
2831        if (q->enqueue) {
2832                rc = __dev_xmit_skb(skb, q, dev, txq);
2833                goto out;
2834        }
2835
2836        /* The device has no queue. Common case for software devices:
2837           loopback, all the sorts of tunnels...
2838
2839           Really, it is unlikely that netif_tx_lock protection is necessary
2840           here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2841           counters.)
2842           However, it is possible, that they rely on protection
2843           made by us here.
2844
2845           Check this and shot the lock. It is not prone from deadlocks.
2846           Either shot noqueue qdisc, it is even simpler 8)
2847         */
2848        if (dev->flags & IFF_UP) {
2849                int cpu = smp_processor_id(); /* ok because BHs are off */
2850
2851                if (txq->xmit_lock_owner != cpu) {
2852
2853                        if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2854                                goto recursion_alert;
2855
2856                        HARD_TX_LOCK(dev, txq, cpu);
2857
2858                        if (!netif_xmit_stopped(txq)) {
2859                                __this_cpu_inc(xmit_recursion);
2860                                rc = dev_hard_start_xmit(skb, dev, txq);
2861                                __this_cpu_dec(xmit_recursion);
2862                                if (dev_xmit_complete(rc)) {
2863                                        HARD_TX_UNLOCK(dev, txq);
2864                                        goto out;
2865                                }
2866                        }
2867                        HARD_TX_UNLOCK(dev, txq);
2868                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2869                                             dev->name);
2870                } else {
2871                        /* Recursion is detected! It is possible,
2872                         * unfortunately
2873                         */
2874recursion_alert:
2875                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2876                                             dev->name);
2877                }
2878        }
2879
2880        rc = -ENETDOWN;
2881        rcu_read_unlock_bh();
2882
2883        kfree_skb(skb);
2884        return rc;
2885out:
2886        rcu_read_unlock_bh();
2887        return rc;
2888}
2889
2890int dev_queue_xmit(struct sk_buff *skb)
2891{
2892        return __dev_queue_xmit(skb, NULL);
2893}
2894EXPORT_SYMBOL(dev_queue_xmit);
2895
2896int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2897{
2898        return __dev_queue_xmit(skb, accel_priv);
2899}
2900EXPORT_SYMBOL(dev_queue_xmit_accel);
2901
2902
2903/*=======================================================================
2904                        Receiver routines
2905  =======================================================================*/
2906
2907int netdev_max_backlog __read_mostly = 1000;
2908EXPORT_SYMBOL(netdev_max_backlog);
2909
2910int netdev_tstamp_prequeue __read_mostly = 1;
2911int netdev_budget __read_mostly = 300;
2912int weight_p __read_mostly = 64;            /* old backlog weight */
2913
2914/* Called with irq disabled */
2915static inline void ____napi_schedule(struct softnet_data *sd,
2916                                     struct napi_struct *napi)
2917{
2918        list_add_tail(&napi->poll_list, &sd->poll_list);
2919        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2920}
2921
2922#ifdef CONFIG_RPS
2923
2924/* One global table that all flow-based protocols share. */
2925struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2926EXPORT_SYMBOL(rps_sock_flow_table);
2927
2928struct static_key rps_needed __read_mostly;
2929
2930static struct rps_dev_flow *
2931set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2932            struct rps_dev_flow *rflow, u16 next_cpu)
2933{
2934        if (next_cpu != RPS_NO_CPU) {
2935#ifdef CONFIG_RFS_ACCEL
2936                struct netdev_rx_queue *rxqueue;
2937                struct rps_dev_flow_table *flow_table;
2938                struct rps_dev_flow *old_rflow;
2939                u32 flow_id;
2940                u16 rxq_index;
2941                int rc;
2942
2943                /* Should we steer this flow to a different hardware queue? */
2944                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2945                    !(dev->features & NETIF_F_NTUPLE))
2946                        goto out;
2947                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2948                if (rxq_index == skb_get_rx_queue(skb))
2949                        goto out;
2950
2951                rxqueue = dev->_rx + rxq_index;
2952                flow_table = rcu_dereference(rxqueue->rps_flow_table);
2953                if (!flow_table)
2954                        goto out;
2955                flow_id = skb->rxhash & flow_table->mask;
2956                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2957                                                        rxq_index, flow_id);
2958                if (rc < 0)
2959                        goto out;
2960                old_rflow = rflow;
2961                rflow = &flow_table->flows[flow_id];
2962                rflow->filter = rc;
2963                if (old_rflow->filter == rflow->filter)
2964                        old_rflow->filter = RPS_NO_FILTER;
2965        out:
2966#endif
2967                rflow->last_qtail =
2968                        per_cpu(softnet_data, next_cpu).input_queue_head;
2969        }
2970
2971        rflow->cpu = next_cpu;
2972        return rflow;
2973}
2974
2975/*
2976 * get_rps_cpu is called from netif_receive_skb and returns the target
2977 * CPU from the RPS map of the receiving queue for a given skb.
2978 * rcu_read_lock must be held on entry.
2979 */
2980static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2981                       struct rps_dev_flow **rflowp)
2982{
2983        struct netdev_rx_queue *rxqueue;
2984        struct rps_map *map;
2985        struct rps_dev_flow_table *flow_table;
2986        struct rps_sock_flow_table *sock_flow_table;
2987        int cpu = -1;
2988        u16 tcpu;
2989
2990        if (skb_rx_queue_recorded(skb)) {
2991                u16 index = skb_get_rx_queue(skb);
2992                if (unlikely(index >= dev->real_num_rx_queues)) {
2993                        WARN_ONCE(dev->real_num_rx_queues > 1,
2994                                  "%s received packet on queue %u, but number "
2995                                  "of RX queues is %u\n",
2996                                  dev->name, index, dev->real_num_rx_queues);
2997                        goto done;
2998                }
2999                rxqueue = dev->_rx + index;
3000        } else
3001                rxqueue = dev->_rx;
3002
3003        map = rcu_dereference(rxqueue->rps_map);
3004        if (map) {
3005                if (map->len == 1 &&
3006                    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3007                        tcpu = map->cpus[0];
3008                        if (cpu_online(tcpu))
3009                                cpu = tcpu;
3010                        goto done;
3011                }
3012        } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3013                goto done;
3014        }
3015
3016        skb_reset_network_header(skb);
3017        if (!skb_get_rxhash(skb))
3018                goto done;
3019
3020        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3021        sock_flow_table = rcu_dereference(rps_sock_flow_table);
3022        if (flow_table && sock_flow_table) {
3023                u16 next_cpu;
3024                struct rps_dev_flow *rflow;
3025
3026                rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3027                tcpu = rflow->cpu;
3028
3029                next_cpu = sock_flow_table->ents[skb->rxhash &
3030                    sock_flow_table->mask];
3031
3032                /*
3033                 * If the desired CPU (where last recvmsg was done) is
3034                 * different from current CPU (one in the rx-queue flow
3035                 * table entry), switch if one of the following holds:
3036                 *   - Current CPU is unset (equal to RPS_NO_CPU).
3037                 *   - Current CPU is offline.
3038                 *   - The current CPU's queue tail has advanced beyond the
3039                 *     last packet that was enqueued using this table entry.
3040                 *     This guarantees that all previous packets for the flow
3041                 *     have been dequeued, thus preserving in order delivery.
3042                 */
3043                if (unlikely(tcpu != next_cpu) &&
3044                    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3045                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3046                      rflow->last_qtail)) >= 0)) {
3047                        tcpu = next_cpu;
3048                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3049                }
3050
3051                if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3052                        *rflowp = rflow;
3053                        cpu = tcpu;
3054                        goto done;
3055                }
3056        }
3057
3058        if (map) {
3059                tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3060
3061                if (cpu_online(tcpu)) {
3062                        cpu = tcpu;
3063                        goto done;
3064                }
3065        }
3066
3067done:
3068        return cpu;
3069}
3070
3071#ifdef CONFIG_RFS_ACCEL
3072
3073/**
3074 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3075 * @dev: Device on which the filter was set
3076 * @rxq_index: RX queue index
3077 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3078 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3079 *
3080 * Drivers that implement ndo_rx_flow_steer() should periodically call
3081 * this function for each installed filter and remove the filters for
3082 * which it returns %true.
3083 */
3084bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3085                         u32 flow_id, u16 filter_id)
3086{
3087        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3088        struct rps_dev_flow_table *flow_table;
3089        struct rps_dev_flow *rflow;
3090        bool expire = true;
3091        int cpu;
3092
3093        rcu_read_lock();
3094        flow_table = rcu_dereference(rxqueue->rps_flow_table);
3095        if (flow_table && flow_id <= flow_table->mask) {
3096                rflow = &flow_table->flows[flow_id];
3097                cpu = ACCESS_ONCE(rflow->cpu);
3098                if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3099                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3100                           rflow->last_qtail) <
3101                     (int)(10 * flow_table->mask)))
3102                        expire = false;
3103        }
3104        rcu_read_unlock();
3105        return expire;
3106}
3107EXPORT_SYMBOL(rps_may_expire_flow);
3108
3109#endif /* CONFIG_RFS_ACCEL */
3110
3111/* Called from hardirq (IPI) context */
3112static void rps_trigger_softirq(void *data)
3113{
3114        struct softnet_data *sd = data;
3115
3116        ____napi_schedule(sd, &sd->backlog);
3117        sd->received_rps++;
3118}
3119
3120#endif /* CONFIG_RPS */
3121
3122/*
3123 * Check if this softnet_data structure is another cpu one
3124 * If yes, queue it to our IPI list and return 1
3125 * If no, return 0
3126 */
3127static int rps_ipi_queued(struct softnet_data *sd)
3128{
3129#ifdef CONFIG_RPS
3130        struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3131
3132        if (sd != mysd) {
3133                sd->rps_ipi_next = mysd->rps_ipi_list;
3134                mysd->rps_ipi_list = sd;
3135
3136                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3137                return 1;
3138        }
3139#endif /* CONFIG_RPS */
3140        return 0;
3141}
3142
3143#ifdef CONFIG_NET_FLOW_LIMIT
3144int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3145#endif
3146
3147static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3148{
3149#ifdef CONFIG_NET_FLOW_LIMIT
3150        struct sd_flow_limit *fl;
3151        struct softnet_data *sd;
3152        unsigned int old_flow, new_flow;
3153
3154        if (qlen < (netdev_max_backlog >> 1))
3155                return false;
3156
3157        sd = &__get_cpu_var(softnet_data);
3158
3159        rcu_read_lock();
3160        fl = rcu_dereference(sd->flow_limit);
3161        if (fl) {
3162                new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3163                old_flow = fl->history[fl->history_head];
3164                fl->history[fl->history_head] = new_flow;
3165
3166                fl->history_head++;
3167                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3168
3169                if (likely(fl->buckets[old_flow]))
3170                        fl->buckets[old_flow]--;
3171
3172                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3173                        fl->count++;
3174                        rcu_read_unlock();
3175                        return true;
3176                }
3177        }
3178        rcu_read_unlock();
3179#endif
3180        return false;
3181}
3182
3183/*
3184 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3185 * queue (may be a remote CPU queue).
3186 */
3187static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3188                              unsigned int *qtail)
3189{
3190        struct softnet_data *sd;
3191        unsigned long flags;
3192        unsigned int qlen;
3193
3194        sd = &per_cpu(softnet_data, cpu);
3195
3196        local_irq_save(flags);
3197
3198        rps_lock(sd);
3199        qlen = skb_queue_len(&sd->input_pkt_queue);
3200        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3201                if (skb_queue_len(&sd->input_pkt_queue)) {
3202enqueue:
3203                        __skb_queue_tail(&sd->input_pkt_queue, skb);
3204                        input_queue_tail_incr_save(sd, qtail);
3205                        rps_unlock(sd);
3206                        local_irq_restore(flags);
3207                        return NET_RX_SUCCESS;
3208                }
3209
3210                /* Schedule NAPI for backlog device
3211                 * We can use non atomic operation since we own the queue lock
3212                 */
3213                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3214                        if (!rps_ipi_queued(sd))
3215                                ____napi_schedule(sd, &sd->backlog);
3216                }
3217                goto enqueue;
3218        }
3219
3220        sd->dropped++;
3221        rps_unlock(sd);
3222
3223        local_irq_restore(flags);
3224
3225        atomic_long_inc(&skb->dev->rx_dropped);
3226        kfree_skb(skb);
3227        return NET_RX_DROP;
3228}
3229
3230/**
3231 *      netif_rx        -       post buffer to the network code
3232 *      @skb: buffer to post
3233 *
3234 *      This function receives a packet from a device driver and queues it for
3235 *      the upper (protocol) levels to process.  It always succeeds. The buffer
3236 *      may be dropped during processing for congestion control or by the
3237 *      protocol layers.
3238 *
3239 *      return values:
3240 *      NET_RX_SUCCESS  (no congestion)
3241 *      NET_RX_DROP     (packet was dropped)
3242 *
3243 */
3244
3245int netif_rx(struct sk_buff *skb)
3246{
3247        int ret;
3248
3249        /* if netpoll wants it, pretend we never saw it */
3250        if (netpoll_rx(skb))
3251                return NET_RX_DROP;
3252
3253        net_timestamp_check(netdev_tstamp_prequeue, skb);
3254
3255        trace_netif_rx(skb);
3256#ifdef CONFIG_RPS
3257        if (static_key_false(&rps_needed)) {
3258                struct rps_dev_flow voidflow, *rflow = &voidflow;
3259                int cpu;
3260
3261                preempt_disable();
3262                rcu_read_lock();
3263
3264                cpu = get_rps_cpu(skb->dev, skb, &rflow);
3265                if (cpu < 0)
3266                        cpu = smp_processor_id();
3267
3268                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3269
3270                rcu_read_unlock();
3271                preempt_enable();
3272        } else
3273#endif
3274        {
3275                unsigned int qtail;
3276                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3277                put_cpu();
3278        }
3279        return ret;
3280}
3281EXPORT_SYMBOL(netif_rx);
3282
3283int netif_rx_ni(struct sk_buff *skb)
3284{
3285        int err;
3286
3287        preempt_disable();
3288        err = netif_rx(skb);
3289        if (local_softirq_pending())
3290                do_softirq();
3291        preempt_enable();
3292
3293        return err;
3294}
3295EXPORT_SYMBOL(netif_rx_ni);
3296
3297static void net_tx_action(struct softirq_action *h)
3298{
3299        struct softnet_data *sd = &__get_cpu_var(softnet_data);
3300
3301        if (sd->completion_queue) {
3302                struct sk_buff *clist;
3303
3304                local_irq_disable();
3305                clist = sd->completion_queue;
3306                sd->completion_queue = NULL;
3307                local_irq_enable();
3308
3309                while (clist) {
3310                        struct sk_buff *skb = clist;
3311                        clist = clist->next;
3312
3313                        WARN_ON(atomic_read(&skb->users));
3314                        trace_kfree_skb(skb, net_tx_action);
3315                        __kfree_skb(skb);
3316                }
3317        }
3318
3319        if (sd->output_queue) {
3320                struct Qdisc *head;
3321
3322                local_irq_disable();
3323                head = sd->output_queue;
3324                sd->output_queue = NULL;
3325                sd->output_queue_tailp = &sd->output_queue;
3326                local_irq_enable();
3327
3328                while (head) {
3329                        struct Qdisc *q = head;
3330                        spinlock_t *root_lock;
3331
3332                        head = head->next_sched;
3333
3334                        root_lock = qdisc_lock(q);
3335                        if (spin_trylock(root_lock)) {
3336                                smp_mb__before_clear_bit();
3337                                clear_bit(__QDISC_STATE_SCHED,
3338                                          &q->state);
3339                                qdisc_run(q);
3340                                spin_unlock(root_lock);
3341                        } else {
3342                                if (!test_bit(__QDISC_STATE_DEACTIVATED,
3343                                              &q->state)) {
3344                                        __netif_reschedule(q);
3345                                } else {
3346                                        smp_mb__before_clear_bit();
3347                                        clear_bit(__QDISC_STATE_SCHED,
3348                                                  &q->state);
3349                                }
3350                        }
3351                }
3352        }
3353}
3354
3355#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3356    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3357/* This hook is defined here for ATM LANE */
3358int (*br_fdb_test_addr_hook)(struct net_device *dev,
3359                             unsigned char *addr) __read_mostly;
3360EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3361#endif
3362
3363#ifdef CONFIG_NET_CLS_ACT
3364/* TODO: Maybe we should just force sch_ingress to be compiled in
3365 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3366 * a compare and 2 stores extra right now if we dont have it on
3367 * but have CONFIG_NET_CLS_ACT
3368 * NOTE: This doesn't stop any functionality; if you dont have
3369 * the ingress scheduler, you just can't add policies on ingress.
3370 *
3371 */
3372static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3373{
3374        struct net_device *dev = skb->dev;
3375        u32 ttl = G_TC_RTTL(skb->tc_verd);
3376        int result = TC_ACT_OK;
3377        struct Qdisc *q;
3378
3379        if (unlikely(MAX_RED_LOOP < ttl++)) {
3380                net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3381                                     skb->skb_iif, dev->ifindex);
3382                return TC_ACT_SHOT;
3383        }
3384
3385        skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3386        skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3387
3388        q = rxq->qdisc;
3389        if (q != &noop_qdisc) {
3390                spin_lock(qdisc_lock(q));
3391                if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3392                        result = qdisc_enqueue_root(skb, q);
3393                spin_unlock(qdisc_lock(q));
3394        }
3395
3396        return result;
3397}
3398
3399static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3400                                         struct packet_type **pt_prev,
3401                                         int *ret, struct net_device *orig_dev)
3402{
3403        struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3404
3405        if (!rxq || rxq->qdisc == &noop_qdisc)
3406                goto out;
3407
3408        if (*pt_prev) {
3409                *ret = deliver_skb(skb, *pt_prev, orig_dev);
3410                *pt_prev = NULL;
3411        }
3412
3413        switch (ing_filter(skb, rxq)) {
3414        case TC_ACT_SHOT:
3415        case TC_ACT_STOLEN:
3416                kfree_skb(skb);
3417                return NULL;
3418        }
3419
3420out:
3421        skb->tc_verd = 0;
3422        return skb;
3423}
3424#endif
3425
3426/**
3427 *      netdev_rx_handler_register - register receive handler
3428 *      @dev: device to register a handler for
3429 *      @rx_handler: receive handler to register
3430 *      @rx_handler_data: data pointer that is used by rx handler
3431 *
3432 *      Register a receive hander for a device. This handler will then be
3433 *      called from __netif_receive_skb. A negative errno code is returned
3434 *      on a failure.
3435 *
3436 *      The caller must hold the rtnl_mutex.
3437 *
3438 *      For a general description of rx_handler, see enum rx_handler_result.
3439 */
3440int netdev_rx_handler_register(struct net_device *dev,
3441                               rx_handler_func_t *rx_handler,
3442                               void *rx_handler_data)
3443{
3444        ASSERT_RTNL();
3445
3446        if (dev->rx_handler)
3447                return -EBUSY;
3448
3449        /* Note: rx_handler_data must be set before rx_handler */
3450        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3451        rcu_assign_pointer(dev->rx_handler, rx_handler);
3452
3453        return 0;
3454}
3455EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3456
3457/**
3458 *      netdev_rx_handler_unregister - unregister receive handler
3459 *      @dev: device to unregister a handler from
3460 *
3461 *      Unregister a receive handler from a device.
3462 *
3463 *      The caller must hold the rtnl_mutex.
3464 */
3465void netdev_rx_handler_unregister(struct net_device *dev)
3466{
3467
3468        ASSERT_RTNL();
3469        RCU_INIT_POINTER(dev->rx_handler, NULL);
3470        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3471         * section has a guarantee to see a non NULL rx_handler_data
3472         * as well.
3473         */
3474        synchronize_net();
3475        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3476}
3477EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3478
3479/*
3480 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3481 * the special handling of PFMEMALLOC skbs.
3482 */
3483static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3484{
3485        switch (skb->protocol) {
3486        case __constant_htons(ETH_P_ARP):
3487        case __constant_htons(ETH_P_IP):
3488        case __constant_htons(ETH_P_IPV6):
3489        case __constant_htons(ETH_P_8021Q):
3490        case __constant_htons(ETH_P_8021AD):
3491                return true;
3492        default:
3493                return false;
3494        }
3495}
3496
3497static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3498{
3499        struct packet_type *ptype, *pt_prev;
3500        rx_handler_func_t *rx_handler;
3501        struct net_device *orig_dev;
3502        struct net_device *null_or_dev;
3503        bool deliver_exact = false;
3504        int ret = NET_RX_DROP;
3505        __be16 type;
3506
3507        net_timestamp_check(!netdev_tstamp_prequeue, skb);
3508
3509        trace_netif_receive_skb(skb);
3510
3511        /* if we've gotten here through NAPI, check netpoll */
3512        if (netpoll_receive_skb(skb))
3513                goto out;
3514
3515        orig_dev = skb->dev;
3516
3517        skb_reset_network_header(skb);
3518        if (!skb_transport_header_was_set(skb))
3519                skb_reset_transport_header(skb);
3520        skb_reset_mac_len(skb);
3521
3522        pt_prev = NULL;
3523
3524        rcu_read_lock();
3525
3526another_round:
3527        skb->skb_iif = skb->dev->ifindex;
3528
3529        __this_cpu_inc(softnet_data.processed);
3530
3531        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3532            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3533                skb = vlan_untag(skb);
3534                if (unlikely(!skb))
3535                        goto unlock;
3536        }
3537
3538#ifdef CONFIG_NET_CLS_ACT
3539        if (skb->tc_verd & TC_NCLS) {
3540                skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3541                goto ncls;
3542        }
3543#endif
3544
3545        if (pfmemalloc)
3546                goto skip_taps;
3547
3548        list_for_each_entry_rcu(ptype, &ptype_all, list) {
3549                if (!ptype->dev || ptype->dev == skb->dev) {
3550                        if (pt_prev)
3551                                ret = deliver_skb(skb, pt_prev, orig_dev);
3552                        pt_prev = ptype;
3553                }
3554        }
3555
3556skip_taps:
3557#ifdef CONFIG_NET_CLS_ACT
3558        skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3559        if (!skb)
3560                goto unlock;
3561ncls:
3562#endif
3563
3564        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3565                goto drop;
3566
3567        if (vlan_tx_tag_present(skb)) {
3568                if (pt_prev) {
3569                        ret = deliver_skb(skb, pt_prev, orig_dev);
3570                        pt_prev = NULL;
3571                }
3572                if (vlan_do_receive(&skb))
3573                        goto another_round;
3574                else if (unlikely(!skb))
3575                        goto unlock;
3576        }
3577
3578        rx_handler = rcu_dereference(skb->dev->rx_handler);
3579        if (rx_handler) {
3580                if (pt_prev) {
3581                        ret = deliver_skb(skb, pt_prev, orig_dev);
3582                        pt_prev = NULL;
3583                }
3584                switch (rx_handler(&skb)) {
3585                case RX_HANDLER_CONSUMED:
3586                        ret = NET_RX_SUCCESS;
3587                        goto unlock;
3588                case RX_HANDLER_ANOTHER:
3589                        goto another_round;
3590                case RX_HANDLER_EXACT:
3591                        deliver_exact = true;
3592                case RX_HANDLER_PASS:
3593                        break;
3594                default:
3595                        BUG();
3596                }
3597        }
3598
3599        if (unlikely(vlan_tx_tag_present(skb))) {
3600                if (vlan_tx_tag_get_id(skb))
3601                        skb->pkt_type = PACKET_OTHERHOST;
3602                /* Note: we might in the future use prio bits
3603                 * and set skb->priority like in vlan_do_receive()
3604                 * For the time being, just ignore Priority Code Point
3605                 */
3606                skb->vlan_tci = 0;
3607        }
3608
3609        /* deliver only exact match when indicated */
3610        null_or_dev = deliver_exact ? skb->dev : NULL;
3611
3612        type = skb->protocol;
3613        list_for_each_entry_rcu(ptype,
3614                        &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3615                if (ptype->type == type &&
3616                    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3617                     ptype->dev == orig_dev)) {
3618                        if (pt_prev)
3619                                ret = deliver_skb(skb, pt_prev, orig_dev);
3620                        pt_prev = ptype;
3621                }
3622        }
3623
3624        if (pt_prev) {
3625                if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3626                        goto drop;
3627                else
3628                        ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3629        } else {
3630drop:
3631                atomic_long_inc(&skb->dev->rx_dropped);
3632                kfree_skb(skb);
3633                /* Jamal, now you will not able to escape explaining
3634                 * me how you were going to use this. :-)
3635                 */
3636                ret = NET_RX_DROP;
3637        }
3638
3639unlock:
3640        rcu_read_unlock();
3641out:
3642        return ret;
3643}
3644
3645static int __netif_receive_skb(struct sk_buff *skb)
3646{
3647        int ret;
3648
3649        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3650                unsigned long pflags = current->flags;
3651
3652                /*
3653                 * PFMEMALLOC skbs are special, they should
3654                 * - be delivered to SOCK_MEMALLOC sockets only
3655                 * - stay away from userspace
3656                 * - have bounded memory usage
3657                 *
3658                 * Use PF_MEMALLOC as this saves us from propagating the allocation
3659                 * context down to all allocation sites.
3660                 */
3661                current->flags |= PF_MEMALLOC;
3662                ret = __netif_receive_skb_core(skb, true);
3663                tsk_restore_flags(current, pflags, PF_MEMALLOC);
3664        } else
3665                ret = __netif_receive_skb_core(skb, false);
3666
3667        return ret;
3668}
3669
3670/**
3671 *      netif_receive_skb - process receive buffer from network
3672 *      @skb: buffer to process
3673 *
3674 *      netif_receive_skb() is the main receive data processing function.
3675 *      It always succeeds. The buffer may be dropped during processing
3676 *      for congestion control or by the protocol layers.
3677 *
3678 *      This function may only be called from softirq context and interrupts
3679 *      should be enabled.
3680 *
3681 *      Return values (usually ignored):
3682 *      NET_RX_SUCCESS: no congestion
3683 *      NET_RX_DROP: packet was dropped
3684 */
3685int netif_receive_skb(struct sk_buff *skb)
3686{
3687        net_timestamp_check(netdev_tstamp_prequeue, skb);
3688
3689        if (skb_defer_rx_timestamp(skb))
3690                return NET_RX_SUCCESS;
3691
3692#ifdef CONFIG_RPS
3693        if (static_key_false(&rps_needed)) {
3694                struct rps_dev_flow voidflow, *rflow = &voidflow;
3695                int cpu, ret;
3696
3697                rcu_read_lock();
3698
3699                cpu = get_rps_cpu(skb->dev, skb, &rflow);
3700
3701                if (cpu >= 0) {
3702                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3703                        rcu_read_unlock();
3704                        return ret;
3705                }
3706                rcu_read_unlock();
3707        }
3708#endif
3709        return __netif_receive_skb(skb);
3710}
3711EXPORT_SYMBOL(netif_receive_skb);
3712
3713/* Network device is going away, flush any packets still pending
3714 * Called with irqs disabled.
3715 */
3716static void flush_backlog(void *arg)
3717{
3718        struct net_device *dev = arg;
3719        struct softnet_data *sd = &__get_cpu_var(softnet_data);
3720        struct sk_buff *skb, *tmp;
3721
3722        rps_lock(sd);
3723        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3724                if (skb->dev == dev) {
3725                        __skb_unlink(skb, &sd->input_pkt_queue);
3726                        kfree_skb(skb);
3727                        input_queue_head_incr(sd);
3728                }
3729        }
3730        rps_unlock(sd);
3731
3732        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3733                if (skb->dev == dev) {
3734                        __skb_unlink(skb, &sd->process_queue);
3735                        kfree_skb(skb);
3736                        input_queue_head_incr(sd);
3737                }
3738        }
3739}
3740
3741static int napi_gro_complete(struct sk_buff *skb)
3742{
3743        struct packet_offload *ptype;
3744        __be16 type = skb->protocol;
3745        struct list_head *head = &offload_base;
3746        int err = -ENOENT;
3747
3748        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3749
3750        if (NAPI_GRO_CB(skb)->count == 1) {
3751                skb_shinfo(skb)->gso_size = 0;
3752                goto out;
3753        }
3754
3755        rcu_read_lock();
3756        list_for_each_entry_rcu(ptype, head, list) {
3757                if (ptype->type != type || !ptype->callbacks.gro_complete)
3758                        continue;
3759
3760                err = ptype->callbacks.gro_complete(skb);
3761                break;
3762        }
3763        rcu_read_unlock();
3764
3765        if (err) {
3766                WARN_ON(&ptype->list == head);
3767                kfree_skb(skb);
3768                return NET_RX_SUCCESS;
3769        }
3770
3771out:
3772        return netif_receive_skb(skb);
3773}
3774
3775/* napi->gro_list contains packets ordered by age.
3776 * youngest packets at the head of it.
3777 * Complete skbs in reverse order to reduce latencies.
3778 */
3779void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3780{
3781        struct sk_buff *skb, *prev = NULL;
3782
3783        /* scan list and build reverse chain */
3784        for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3785                skb->prev = prev;
3786                prev = skb;
3787        }
3788
3789        for (skb = prev; skb; skb = prev) {
3790                skb->next = NULL;
3791
3792                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3793                        return;
3794
3795                prev = skb->prev;
3796                napi_gro_complete(skb);
3797                napi->gro_count--;
3798        }
3799
3800        napi->gro_list = NULL;
3801}
3802EXPORT_SYMBOL(napi_gro_flush);
3803
3804static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3805{
3806        struct sk_buff *p;
3807        unsigned int maclen = skb->dev->hard_header_len;
3808
3809        for (p = napi->gro_list; p; p = p->next) {
3810                unsigned long diffs;
3811
3812                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3813                diffs |= p->vlan_tci ^ skb->vlan_tci;
3814                if (maclen == ETH_HLEN)
3815                        diffs |= compare_ether_header(skb_mac_header(p),
3816                                                      skb_gro_mac_header(skb));
3817                else if (!diffs)
3818                        diffs = memcmp(skb_mac_header(p),
3819                                       skb_gro_mac_header(skb),
3820                                       maclen);
3821                NAPI_GRO_CB(p)->same_flow = !diffs;
3822                NAPI_GRO_CB(p)->flush = 0;
3823        }
3824}
3825
3826static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3827{
3828        struct sk_buff **pp = NULL;
3829        struct packet_offload *ptype;
3830        __be16 type = skb->protocol;
3831        struct list_head *head = &offload_base;
3832        int same_flow;
3833        enum gro_result ret;
3834
3835        if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3836                goto normal;
3837
3838        if (skb_is_gso(skb) || skb_has_frag_list(skb))
3839                goto normal;
3840
3841        gro_list_prepare(napi, skb);
3842
3843        rcu_read_lock();
3844        list_for_each_entry_rcu(ptype, head, list) {
3845                if (ptype->type != type || !ptype->callbacks.gro_receive)
3846                        continue;
3847
3848                skb_set_network_header(skb, skb_gro_offset(skb));
3849                skb_reset_mac_len(skb);
3850                NAPI_GRO_CB(skb)->same_flow = 0;
3851                NAPI_GRO_CB(skb)->flush = 0;
3852                NAPI_GRO_CB(skb)->free = 0;
3853
3854                pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3855                break;
3856        }
3857        rcu_read_unlock();
3858
3859        if (&ptype->list == head)
3860                goto normal;
3861
3862        same_flow = NAPI_GRO_CB(skb)->same_flow;
3863        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3864
3865        if (pp) {
3866                struct sk_buff *nskb = *pp;
3867
3868                *pp = nskb->next;
3869                nskb->next = NULL;
3870                napi_gro_complete(nskb);
3871                napi->gro_count--;
3872        }
3873
3874        if (same_flow)
3875                goto ok;
3876
3877        if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3878                goto normal;
3879
3880        napi->gro_count++;
3881        NAPI_GRO_CB(skb)->count = 1;
3882        NAPI_GRO_CB(skb)->age = jiffies;
3883        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3884        skb->next = napi->gro_list;
3885        napi->gro_list = skb;
3886        ret = GRO_HELD;
3887
3888pull:
3889        if (skb_headlen(skb) < skb_gro_offset(skb)) {
3890                int grow = skb_gro_offset(skb) - skb_headlen(skb);
3891
3892                BUG_ON(skb->end - skb->tail < grow);
3893
3894                memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3895
3896                skb->tail += grow;
3897                skb->data_len -= grow;
3898
3899                skb_shinfo(skb)->frags[0].page_offset += grow;
3900                skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3901
3902                if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3903                        skb_frag_unref(skb, 0);
3904                        memmove(skb_shinfo(skb)->frags,
3905                                skb_shinfo(skb)->frags + 1,
3906                                --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3907                }
3908        }
3909
3910ok:
3911        return ret;
3912
3913normal:
3914        ret = GRO_NORMAL;
3915        goto pull;
3916}
3917
3918
3919static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3920{
3921        switch (ret) {
3922        case GRO_NORMAL:
3923                if (netif_receive_skb(skb))
3924                        ret = GRO_DROP;
3925                break;
3926
3927        case GRO_DROP:
3928                kfree_skb(skb);
3929                break;
3930
3931        case GRO_MERGED_FREE:
3932                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3933                        kmem_cache_free(skbuff_head_cache, skb);
3934                else
3935                        __kfree_skb(skb);
3936                break;
3937
3938        case GRO_HELD:
3939        case GRO_MERGED:
3940                break;
3941        }
3942
3943        return ret;
3944}
3945
3946static void skb_gro_reset_offset(struct sk_buff *skb)
3947{
3948        const struct skb_shared_info *pinfo = skb_shinfo(skb);
3949        const skb_frag_t *frag0 = &pinfo->frags[0];
3950
3951        NAPI_GRO_CB(skb)->data_offset = 0;
3952        NAPI_GRO_CB(skb)->frag0 = NULL;
3953        NAPI_GRO_CB(skb)->frag0_len = 0;
3954
3955        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3956            pinfo->nr_frags &&
3957            !PageHighMem(skb_frag_page(frag0))) {
3958                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3959                NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3960        }
3961}
3962
3963gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3964{
3965        skb_gro_reset_offset(skb);
3966
3967        return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3968}
3969EXPORT_SYMBOL(napi_gro_receive);
3970
3971static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3972{
3973        __skb_pull(skb, skb_headlen(skb));
3974        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3975        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3976        skb->vlan_tci = 0;
3977        skb->dev = napi->dev;
3978        skb->skb_iif = 0;
3979
3980        napi->skb = skb;
3981}
3982
3983struct sk_buff *napi_get_frags(struct napi_struct *napi)
3984{
3985        struct sk_buff *skb = napi->skb;
3986
3987        if (!skb) {
3988                skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3989                if (skb)
3990                        napi->skb = skb;
3991        }
3992        return skb;
3993}
3994EXPORT_SYMBOL(napi_get_frags);
3995
3996static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3997                               gro_result_t ret)
3998{
3999        switch (ret) {
4000        case GRO_NORMAL:
4001        case GRO_HELD:
4002                skb->protocol = eth_type_trans(skb, skb->dev);
4003
4004                if (ret == GRO_HELD)
4005                        skb_gro_pull(skb, -ETH_HLEN);
4006                else if (netif_receive_skb(skb))
4007                        ret = GRO_DROP;
4008                break;
4009
4010        case GRO_DROP:
4011        case GRO_MERGED_FREE:
4012                napi_reuse_skb(napi, skb);
4013                break;
4014
4015        case GRO_MERGED:
4016                break;
4017        }
4018
4019        return ret;
4020}
4021
4022static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4023{
4024        struct sk_buff *skb = napi->skb;
4025        struct ethhdr *eth;
4026        unsigned int hlen;
4027        unsigned int off;
4028
4029        napi->skb = NULL;
4030
4031        skb_reset_mac_header(skb);
4032        skb_gro_reset_offset(skb);
4033
4034        off = skb_gro_offset(skb);
4035        hlen = off + sizeof(*eth);
4036        eth = skb_gro_header_fast(skb, off);
4037        if (skb_gro_header_hard(skb, hlen)) {
4038                eth = skb_gro_header_slow(skb, hlen, off);
4039                if (unlikely(!eth)) {
4040                        napi_reuse_skb(napi, skb);
4041                        skb = NULL;
4042                        goto out;
4043                }
4044        }
4045
4046        skb_gro_pull(skb, sizeof(*eth));
4047
4048        /*
4049         * This works because the only protocols we care about don't require
4050         * special handling.  We'll fix it up properly at the end.
4051         */
4052        skb->protocol = eth->h_proto;
4053
4054out:
4055        return skb;
4056}
4057
4058gro_result_t napi_gro_frags(struct napi_struct *napi)
4059{
4060        struct sk_buff *skb = napi_frags_skb(napi);
4061
4062        if (!skb)
4063                return GRO_DROP;
4064
4065        return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4066}
4067EXPORT_SYMBOL(napi_gro_frags);
4068
4069/*
4070 * net_rps_action sends any pending IPI's for rps.
4071 * Note: called with local irq disabled, but exits with local irq enabled.
4072 */
4073static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4074{
4075#ifdef CONFIG_RPS
4076        struct softnet_data *remsd = sd->rps_ipi_list;
4077
4078        if (remsd) {
4079                sd->rps_ipi_list = NULL;
4080
4081                local_irq_enable();
4082
4083                /* Send pending IPI's to kick RPS processing on remote cpus. */
4084                while (remsd) {
4085                        struct softnet_data *next = remsd->rps_ipi_next;
4086
4087                        if (cpu_online(remsd->cpu))
4088                                __smp_call_function_single(remsd->cpu,
4089                                                           &remsd->csd, 0);
4090                        remsd = next;
4091                }
4092        } else
4093#endif
4094                local_irq_enable();
4095}
4096
4097static int process_backlog(struct napi_struct *napi, int quota)
4098{
4099        int work = 0;
4100        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4101
4102#ifdef CONFIG_RPS
4103        /* Check if we have pending ipi, its better to send them now,
4104         * not waiting net_rx_action() end.
4105         */
4106        if (sd->rps_ipi_list) {
4107                local_irq_disable();
4108                net_rps_action_and_irq_enable(sd);
4109        }
4110#endif
4111        napi->weight = weight_p;
4112        local_irq_disable();
4113        while (work < quota) {
4114                struct sk_buff *skb;
4115                unsigned int qlen;
4116
4117                while ((skb = __skb_dequeue(&sd->process_queue))) {
4118                        local_irq_enable();
4119                        __netif_receive_skb(skb);
4120                        local_irq_disable();
4121                        input_queue_head_incr(sd);
4122                        if (++work >= quota) {
4123                                local_irq_enable();
4124                                return work;
4125                        }
4126                }
4127
4128                rps_lock(sd);
4129                qlen = skb_queue_len(&sd->input_pkt_queue);
4130                if (qlen)
4131                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
4132                                                   &sd->process_queue);
4133
4134                if (qlen < quota - work) {
4135                        /*
4136                         * Inline a custom version of __napi_complete().
4137                         * only current cpu owns and manipulates this napi,
4138                         * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4139                         * we can use a plain write instead of clear_bit(),
4140                         * and we dont need an smp_mb() memory barrier.
4141                         */
4142                        list_del(&napi->poll_list);
4143                        napi->state = 0;
4144
4145                        quota = work + qlen;
4146                }
4147                rps_unlock(sd);
4148        }
4149        local_irq_enable();
4150
4151        return work;
4152}
4153
4154/**
4155 * __napi_schedule - schedule for receive
4156 * @n: entry to schedule
4157 *
4158 * The entry's receive function will be scheduled to run
4159 */
4160void __napi_schedule(struct napi_struct *n)
4161{
4162        unsigned long flags;
4163
4164        local_irq_save(flags);
4165        ____napi_schedule(&__get_cpu_var(softnet_data), n);
4166        local_irq_restore(flags);
4167}
4168EXPORT_SYMBOL(__napi_schedule);
4169
4170void __napi_complete(struct napi_struct *n)
4171{
4172        BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4173        BUG_ON(n->gro_list);
4174
4175        list_del(&n->poll_list);
4176        smp_mb__before_clear_bit();
4177        clear_bit(NAPI_STATE_SCHED, &n->state);
4178}
4179EXPORT_SYMBOL(__napi_complete);
4180
4181void napi_complete(struct napi_struct *n)
4182{
4183        unsigned long flags;
4184
4185        /*
4186         * don't let napi dequeue from the cpu poll list
4187         * just in case its running on a different cpu
4188         */
4189        if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4190                return;
4191
4192        napi_gro_flush(n, false);
4193        local_irq_save(flags);
4194        __napi_complete(n);
4195        local_irq_restore(flags);
4196}
4197EXPORT_SYMBOL(napi_complete);
4198
4199/* must be called under rcu_read_lock(), as we dont take a reference */
4200struct napi_struct *napi_by_id(unsigned int napi_id)
4201{
4202        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4203        struct napi_struct *napi;
4204
4205        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4206                if (napi->napi_id == napi_id)
4207                        return napi;
4208
4209        return NULL;
4210}
4211EXPORT_SYMBOL_GPL(napi_by_id);
4212
4213void napi_hash_add(struct napi_struct *napi)
4214{
4215        if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4216
4217                spin_lock(&napi_hash_lock);
4218
4219                /* 0 is not a valid id, we also skip an id that is taken
4220                 * we expect both events to be extremely rare
4221                 */
4222                napi->napi_id = 0;
4223                while (!napi->napi_id) {
4224                        napi->napi_id = ++napi_gen_id;
4225                        if (napi_by_id(napi->napi_id))
4226                                napi->napi_id = 0;
4227                }
4228
4229                hlist_add_head_rcu(&napi->napi_hash_node,
4230                        &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4231
4232                spin_unlock(&napi_hash_lock);
4233        }
4234}
4235EXPORT_SYMBOL_GPL(napi_hash_add);
4236
4237/* Warning : caller is responsible to make sure rcu grace period
4238 * is respected before freeing memory containing @napi
4239 */
4240void napi_hash_del(struct napi_struct *napi)
4241{
4242        spin_lock(&napi_hash_lock);
4243
4244        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4245                hlist_del_rcu(&napi->napi_hash_node);
4246
4247        spin_unlock(&napi_hash_lock);
4248}
4249EXPORT_SYMBOL_GPL(napi_hash_del);
4250
4251void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4252                    int (*poll)(struct napi_struct *, int), int weight)
4253{
4254        INIT_LIST_HEAD(&napi->poll_list);
4255        napi->gro_count = 0;
4256        napi->gro_list = NULL;
4257        napi->skb = NULL;
4258        napi->poll = poll;
4259        if (weight > NAPI_POLL_WEIGHT)
4260                pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4261                            weight, dev->name);
4262        napi->weight = weight;
4263        list_add(&napi->dev_list, &dev->napi_list);
4264        napi->dev = dev;
4265#ifdef CONFIG_NETPOLL
4266        spin_lock_init(&napi->poll_lock);
4267        napi->poll_owner = -1;
4268#endif
4269        set_bit(NAPI_STATE_SCHED, &napi->state);
4270}
4271EXPORT_SYMBOL(netif_napi_add);
4272
4273void netif_napi_del(struct napi_struct *napi)
4274{
4275        struct sk_buff *skb, *next;
4276
4277        list_del_init(&napi->dev_list);
4278        napi_free_frags(napi);
4279
4280        for (skb = napi->gro_list; skb; skb = next) {
4281                next = skb->next;
4282                skb->next = NULL;
4283                kfree_skb(skb);
4284        }
4285
4286        napi->gro_list = NULL;
4287        napi->gro_count = 0;
4288}
4289EXPORT_SYMBOL(netif_napi_del);
4290
4291static void net_rx_action(struct softirq_action *h)
4292{
4293        struct softnet_data *sd = &__get_cpu_var(softnet_data);
4294        unsigned long time_limit = jiffies + 2;
4295        int budget = netdev_budget;
4296        void *have;
4297
4298        local_irq_disable();
4299
4300        while (!list_empty(&sd->poll_list)) {
4301                struct napi_struct *n;
4302                int work, weight;
4303
4304                /* If softirq window is exhuasted then punt.
4305                 * Allow this to run for 2 jiffies since which will allow
4306                 * an average latency of 1.5/HZ.
4307                 */
4308                if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4309                        goto softnet_break;
4310
4311                local_irq_enable();
4312
4313                /* Even though interrupts have been re-enabled, this
4314                 * access is safe because interrupts can only add new
4315                 * entries to the tail of this list, and only ->poll()
4316                 * calls can remove this head entry from the list.
4317                 */
4318                n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4319
4320                have = netpoll_poll_lock(n);
4321
4322                weight = n->weight;
4323
4324                /* This NAPI_STATE_SCHED test is for avoiding a race
4325                 * with netpoll's poll_napi().  Only the entity which
4326                 * obtains the lock and sees NAPI_STATE_SCHED set will
4327                 * actually make the ->poll() call.  Therefore we avoid
4328                 * accidentally calling ->poll() when NAPI is not scheduled.
4329                 */
4330                work = 0;
4331                if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4332                        work = n->poll(n, weight);
4333                        trace_napi_poll(n);
4334                }
4335
4336                WARN_ON_ONCE(work > weight);
4337
4338                budget -= work;
4339
4340                local_irq_disable();
4341
4342                /* Drivers must not modify the NAPI state if they
4343                 * consume the entire weight.  In such cases this code
4344                 * still "owns" the NAPI instance and therefore can
4345                 * move the instance around on the list at-will.
4346                 */
4347                if (unlikely(work == weight)) {
4348                        if (unlikely(napi_disable_pending(n))) {
4349                                local_irq_enable();
4350                                napi_complete(n);
4351                                local_irq_disable();
4352                        } else {
4353                                if (n->gro_list) {
4354                                        /* flush too old packets
4355                                         * If HZ < 1000, flush all packets.
4356                                         */
4357                                        local_irq_enable();
4358                                        napi_gro_flush(n, HZ >= 1000);
4359                                        local_irq_disable();
4360                                }
4361                                list_move_tail(&n->poll_list, &sd->poll_list);
4362                        }
4363                }
4364
4365                netpoll_poll_unlock(have);
4366        }
4367out:
4368        net_rps_action_and_irq_enable(sd);
4369
4370#ifdef CONFIG_NET_DMA
4371        /*
4372         * There may not be any more sk_buffs coming right now, so push
4373         * any pending DMA copies to hardware
4374         */
4375        dma_issue_pending_all();
4376#endif
4377
4378        return;
4379
4380softnet_break:
4381        sd->time_squeeze++;
4382        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4383        goto out;
4384}
4385
4386struct netdev_adjacent {
4387        struct net_device *dev;
4388
4389        /* upper master flag, there can only be one master device per list */
4390        bool master;
4391
4392        /* counter for the number of times this device was added to us */
4393        u16 ref_nr;
4394
4395        /* private field for the users */
4396        void *private;
4397
4398        struct list_head list;
4399        struct rcu_head rcu;
4400};
4401
4402static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4403                                                     struct net_device *adj_dev,
4404                                                     struct list_head *adj_list)
4405{
4406        struct netdev_adjacent *adj;
4407
4408        list_for_each_entry_rcu(adj, adj_list, list) {
4409                if (adj->dev == adj_dev)
4410                        return adj;
4411        }
4412        return NULL;
4413}
4414
4415static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4416                                                 struct net_device *adj_dev,
4417                                                 struct list_head *adj_list)
4418{
4419        struct netdev_adjacent *adj;
4420
4421        list_for_each_entry(adj, adj_list, list) {
4422                if (adj->dev == adj_dev)
4423                        return adj;
4424        }
4425        return NULL;
4426}
4427
4428/**
4429 * netdev_has_upper_dev - Check if device is linked to an upper device
4430 * @dev: device
4431 * @upper_dev: upper device to check
4432 *
4433 * Find out if a device is linked to specified upper device and return true
4434 * in case it is. Note that this checks only immediate upper device,
4435 * not through a complete stack of devices. The caller must hold the RTNL lock.
4436 */
4437bool netdev_has_upper_dev(struct net_device *dev,
4438                          struct net_device *upper_dev)
4439{
4440        ASSERT_RTNL();
4441
4442        return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4443}
4444EXPORT_SYMBOL(netdev_has_upper_dev);
4445
4446/**
4447 * netdev_has_any_upper_dev - Check if device is linked to some device
4448 * @dev: device
4449 *
4450 * Find out if a device is linked to an upper device and return true in case
4451 * it is. The caller must hold the RTNL lock.
4452 */
4453bool netdev_has_any_upper_dev(struct net_device *dev)
4454{
4455        ASSERT_RTNL();
4456
4457        return !list_empty(&dev->all_adj_list.upper);
4458}
4459EXPORT_SYMBOL(netdev_has_any_upper_dev);
4460
4461/**
4462 * netdev_master_upper_dev_get - Get master upper device
4463 * @dev: device
4464 *
4465 * Find a master upper device and return pointer to it or NULL in case
4466 * it's not there. The caller must hold the RTNL lock.
4467 */
4468struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4469{
4470        struct netdev_adjacent *upper;
4471
4472        ASSERT_RTNL();
4473
4474        if (list_empty(&dev->adj_list.upper))
4475                return NULL;
4476
4477        upper = list_first_entry(&dev->adj_list.upper,
4478                                 struct netdev_adjacent, list);
4479        if (likely(upper->master))
4480                return upper->dev;
4481        return NULL;
4482}
4483EXPORT_SYMBOL(netdev_master_upper_dev_get);
4484
4485void *netdev_adjacent_get_private(struct list_head *adj_list)
4486{
4487        struct netdev_adjacent *adj;
4488
4489        adj = list_entry(adj_list, struct netdev_adjacent, list);
4490
4491        return adj->private;
4492}
4493EXPORT_SYMBOL(netdev_adjacent_get_private);
4494
4495/**
4496 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4497 * @dev: device
4498 * @iter: list_head ** of the current position
4499 *
4500 * Gets the next device from the dev's upper list, starting from iter
4501 * position. The caller must hold RCU read lock.
4502 */
4503struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4504                                                     struct list_head **iter)
4505{
4506        struct netdev_adjacent *upper;
4507
4508        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4509
4510        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4511
4512        if (&upper->list == &dev->all_adj_list.upper)
4513                return NULL;
4514
4515        *iter = &upper->list;
4516
4517        return upper->dev;
4518}
4519EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4520
4521/**
4522 * netdev_lower_get_next_private - Get the next ->private from the
4523 *                                 lower neighbour list
4524 * @dev: device
4525 * @iter: list_head ** of the current position
4526 *
4527 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4528 * list, starting from iter position. The caller must hold either hold the
4529 * RTNL lock or its own locking that guarantees that the neighbour lower
4530 * list will remain unchainged.
4531 */
4532void *netdev_lower_get_next_private(struct net_device *dev,
4533                                    struct list_head **iter)
4534{
4535        struct netdev_adjacent *lower;
4536
4537        lower = list_entry(*iter, struct netdev_adjacent, list);
4538
4539        if (&lower->list == &dev->adj_list.lower)
4540                return NULL;
4541
4542        if (iter)
4543                *iter = lower->list.next;
4544
4545        return lower->private;
4546}
4547EXPORT_SYMBOL(netdev_lower_get_next_private);
4548
4549/**
4550 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4551 *                                     lower neighbour list, RCU
4552 *                                     variant
4553 * @dev: device
4554 * @iter: list_head ** of the current position
4555 *
4556 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4557 * list, starting from iter position. The caller must hold RCU read lock.
4558 */
4559void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4560                                        struct list_head **iter)
4561{
4562        struct netdev_adjacent *lower;
4563
4564        WARN_ON_ONCE(!rcu_read_lock_held());
4565
4566        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4567
4568        if (&lower->list == &dev->adj_list.lower)
4569                return NULL;
4570
4571        if (iter)
4572                *iter = &lower->list;
4573
4574        return lower->private;
4575}
4576EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4577
4578/**
4579 * netdev_master_upper_dev_get_rcu - Get master upper device
4580 * @dev: device
4581 *
4582 * Find a master upper device and return pointer to it or NULL in case
4583 * it's not there. The caller must hold the RCU read lock.
4584 */
4585struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4586{
4587        struct netdev_adjacent *upper;
4588
4589        upper = list_first_or_null_rcu(&dev->adj_list.upper,
4590                                       struct netdev_adjacent, list);
4591        if (upper && likely(upper->master))
4592                return upper->dev;
4593        return NULL;
4594}
4595EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4596
4597static int __netdev_adjacent_dev_insert(struct net_device *dev,
4598                                        struct net_device *adj_dev,
4599                                        struct list_head *dev_list,
4600                                        void *private, bool master)
4601{
4602        struct netdev_adjacent *adj;
4603        char linkname[IFNAMSIZ+7];
4604        int ret;
4605
4606        adj = __netdev_find_adj(dev, adj_dev, dev_list);
4607
4608        if (adj) {
4609                adj->ref_nr++;
4610                return 0;
4611        }
4612
4613        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4614        if (!adj)
4615                return -ENOMEM;
4616
4617        adj->dev = adj_dev;
4618        adj->master = master;
4619        adj->ref_nr = 1;
4620        adj->private = private;
4621        dev_hold(adj_dev);
4622
4623        pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4624                 adj_dev->name, dev->name, adj_dev->name);
4625
4626        if (dev_list == &dev->adj_list.lower) {
4627                sprintf(linkname, "lower_%s", adj_dev->name);
4628                ret = sysfs_create_link(&(dev->dev.kobj),
4629                                        &(adj_dev->dev.kobj), linkname);
4630                if (ret)
4631                        goto free_adj;
4632        } else if (dev_list == &dev->adj_list.upper) {
4633                sprintf(linkname, "upper_%s", adj_dev->name);
4634                ret = sysfs_create_link(&(dev->dev.kobj),
4635                                        &(adj_dev->dev.kobj), linkname);
4636                if (ret)
4637                        goto free_adj;
4638        }
4639
4640        /* Ensure that master link is always the first item in list. */
4641        if (master) {
4642                ret = sysfs_create_link(&(dev->dev.kobj),
4643                                        &(adj_dev->dev.kobj), "master");
4644                if (ret)
4645                        goto remove_symlinks;
4646
4647                list_add_rcu(&adj->list, dev_list);
4648        } else {
4649                list_add_tail_rcu(&adj->list, dev_list);
4650        }
4651
4652        return 0;
4653
4654remove_symlinks:
4655        if (dev_list == &dev->adj_list.lower) {
4656                sprintf(linkname, "lower_%s", adj_dev->name);
4657                sysfs_remove_link(&(dev->dev.kobj), linkname);
4658        } else if (dev_list == &dev->adj_list.upper) {
4659                sprintf(linkname, "upper_%s", adj_dev->name);
4660                sysfs_remove_link(&(dev->dev.kobj), linkname);
4661        }
4662
4663free_adj:
4664        kfree(adj);
4665        dev_put(adj_dev);
4666
4667        return ret;
4668}
4669
4670void __netdev_adjacent_dev_remove(struct net_device *dev,
4671                                  struct net_device *adj_dev,
4672                                  struct list_head *dev_list)
4673{
4674        struct netdev_adjacent *adj;
4675        char linkname[IFNAMSIZ+7];
4676
4677        adj = __netdev_find_adj(dev, adj_dev, dev_list);
4678
4679        if (!adj) {
4680                pr_err("tried to remove device %s from %s\n",
4681                       dev->name, adj_dev->name);
4682                BUG();
4683        }
4684
4685        if (adj->ref_nr > 1) {
4686                pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4687                         adj->ref_nr-1);
4688                adj->ref_nr--;
4689                return;
4690        }
4691
4692        if (adj->master)
4693                sysfs_remove_link(&(dev->dev.kobj), "master");
4694
4695        if (dev_list == &dev->adj_list.lower) {
4696                sprintf(linkname, "lower_%s", adj_dev->name);
4697                sysfs_remove_link(&(dev->dev.kobj), linkname);
4698        } else if (dev_list == &dev->adj_list.upper) {
4699                sprintf(linkname, "upper_%s", adj_dev->name);
4700                sysfs_remove_link(&(dev->dev.kobj), linkname);
4701        }
4702
4703        list_del_rcu(&adj->list);
4704        pr_debug("dev_put for %s, because link removed from %s to %s\n",
4705                 adj_dev->name, dev->name, adj_dev->name);
4706        dev_put(adj_dev);
4707        kfree_rcu(adj, rcu);
4708}
4709
4710int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4711                                     struct net_device *upper_dev,
4712                                     struct list_head *up_list,
4713                                     struct list_head *down_list,
4714                                     void *private, bool master)
4715{
4716        int ret;
4717
4718        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4719                                           master);
4720        if (ret)
4721                return ret;
4722
4723        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4724                                           false);
4725        if (ret) {
4726                __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4727                return ret;
4728        }
4729
4730        return 0;
4731}
4732
4733int __netdev_adjacent_dev_link(struct net_device *dev,
4734                               struct net_device *upper_dev)
4735{
4736        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4737                                                &dev->all_adj_list.upper,
4738                                                &upper_dev->all_adj_list.lower,
4739                                                NULL, false);
4740}
4741
4742void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4743                                        struct net_device *upper_dev,
4744                                        struct list_head *up_list,
4745                                        struct list_head *down_list)
4746{
4747        __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4748        __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4749}
4750
4751void __netdev_adjacent_dev_unlink(struct net_device *dev,
4752                                  struct net_device *upper_dev)
4753{
4754        __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4755                                           &dev->all_adj_list.upper,
4756                                           &upper_dev->all_adj_list.lower);
4757}
4758
4759int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4760                                         struct net_device *upper_dev,
4761                                         void *private, bool master)
4762{
4763        int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4764
4765        if (ret)
4766                return ret;
4767
4768        ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4769                                               &dev->adj_list.upper,
4770                                               &upper_dev->adj_list.lower,
4771                                               private, master);
4772        if (ret) {
4773                __netdev_adjacent_dev_unlink(dev, upper_dev);
4774                return ret;
4775        }
4776
4777        return 0;
4778}
4779
4780void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4781                                            struct net_device *upper_dev)
4782{
4783        __netdev_adjacent_dev_unlink(dev, upper_dev);
4784        __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4785                                           &dev->adj_list.upper,
4786                                           &upper_dev->adj_list.lower);
4787}
4788
4789static int __netdev_upper_dev_link(struct net_device *dev,
4790                                   struct net_device *upper_dev, bool master,
4791                                   void *private)
4792{
4793        struct netdev_adjacent *i, *j, *to_i, *to_j;
4794        int ret = 0;
4795
4796        ASSERT_RTNL();
4797
4798        if (dev == upper_dev)
4799                return -EBUSY;
4800
4801        /* To prevent loops, check if dev is not upper device to upper_dev. */
4802        if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4803                return -EBUSY;
4804
4805        if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4806                return -EEXIST;
4807
4808        if (master && netdev_master_upper_dev_get(dev))
4809                return -EBUSY;
4810
4811        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4812                                                   master);
4813        if (ret)
4814                return ret;
4815
4816        /* Now that we linked these devs, make all the upper_dev's
4817         * all_adj_list.upper visible to every dev's all_adj_list.lower an
4818         * versa, and don't forget the devices itself. All of these
4819         * links are non-neighbours.
4820         */
4821        list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4822                list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4823                        pr_debug("Interlinking %s with %s, non-neighbour\n",
4824                                 i->dev->name, j->dev->name);
4825                        ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4826                        if (ret)
4827                                goto rollback_mesh;
4828                }
4829        }
4830
4831        /* add dev to every upper_dev's upper device */
4832        list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4833                pr_debug("linking %s's upper device %s with %s\n",
4834                         upper_dev->name, i->dev->name, dev->name);
4835                ret = __netdev_adjacent_dev_link(dev, i->dev);
4836                if (ret)
4837                        goto rollback_upper_mesh;
4838        }
4839
4840        /* add upper_dev to every dev's lower device */
4841        list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4842                pr_debug("linking %s's lower device %s with %s\n", dev->name,
4843                         i->dev->name, upper_dev->name);
4844                ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4845                if (ret)
4846                        goto rollback_lower_mesh;
4847        }
4848
4849        call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4850        return 0;
4851
4852rollback_lower_mesh:
4853        to_i = i;
4854        list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4855                if (i == to_i)
4856                        break;
4857                __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4858        }
4859
4860        i = NULL;
4861
4862rollback_upper_mesh:
4863        to_i = i;
4864        list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4865                if (i == to_i)
4866                        break;
4867                __netdev_adjacent_dev_unlink(dev, i->dev);
4868        }
4869
4870        i = j = NULL;
4871
4872rollback_mesh:
4873        to_i = i;
4874        to_j = j;
4875        list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4876                list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4877                        if (i == to_i && j == to_j)
4878                                break;
4879                        __netdev_adjacent_dev_unlink(i->dev, j->dev);
4880                }
4881                if (i == to_i)
4882                        break;
4883        }
4884
4885        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4886
4887        return ret;
4888}
4889
4890/**
4891 * netdev_upper_dev_link - Add a link to the upper device
4892 * @dev: device
4893 * @upper_dev: new upper device
4894 *
4895 * Adds a link to device which is upper to this one. The caller must hold
4896 * the RTNL lock. On a failure a negative errno code is returned.
4897 * On success the reference counts are adjusted and the function
4898 * returns zero.
4899 */
4900int netdev_upper_dev_link(struct net_device *dev,
4901                          struct net_device *upper_dev)
4902{
4903        return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4904}
4905EXPORT_SYMBOL(netdev_upper_dev_link);
4906
4907/**
4908 * netdev_master_upper_dev_link - Add a master link to the upper device
4909 * @dev: device
4910 * @upper_dev: new upper device
4911 *
4912 * Adds a link to device which is upper to this one. In this case, only
4913 * one master upper device can be linked, although other non-master devices
4914 * might be linked as well. The caller must hold the RTNL lock.
4915 * On a failure a negative errno code is returned. On success the reference
4916 * counts are adjusted and the function returns zero.
4917 */
4918int netdev_master_upper_dev_link(struct net_device *dev,
4919                                 struct net_device *upper_dev)
4920{
4921        return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4922}
4923EXPORT_SYMBOL(netdev_master_upper_dev_link);
4924
4925int netdev_master_upper_dev_link_private(struct net_device *dev,
4926                                         struct net_device *upper_dev,
4927                                         void *private)
4928{
4929        return __netdev_upper_dev_link(dev, upper_dev, true, private);
4930}
4931EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4932
4933/**
4934 * netdev_upper_dev_unlink - Removes a link to upper device
4935 * @dev: device
4936 * @upper_dev: new upper device
4937 *
4938 * Removes a link to device which is upper to this one. The caller must hold
4939 * the RTNL lock.
4940 */
4941void netdev_upper_dev_unlink(struct net_device *dev,
4942                             struct net_device *upper_dev)
4943{
4944        struct netdev_adjacent *i, *j;
4945        ASSERT_RTNL();
4946
4947        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4948
4949        /* Here is the tricky part. We must remove all dev's lower
4950         * devices from all upper_dev's upper devices and vice
4951         * versa, to maintain the graph relationship.
4952         */
4953        list_for_each_entry(i, &dev->all_adj_list.lower, list)
4954                list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4955                        __netdev_adjacent_dev_unlink(i->dev, j->dev);
4956
4957        /* remove also the devices itself from lower/upper device
4958         * list
4959         */
4960        list_for_each_entry(i, &dev->all_adj_list.lower, list)
4961                __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4962
4963        list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4964                __netdev_adjacent_dev_unlink(dev, i->dev);
4965
4966        call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4967}
4968EXPORT_SYMBOL(netdev_upper_dev_unlink);
4969
4970void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4971                                       struct net_device *lower_dev)
4972{
4973        struct netdev_adjacent *lower;
4974
4975        if (!lower_dev)
4976                return NULL;
4977        lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4978        if (!lower)
4979                return NULL;
4980
4981        return lower->private;
4982}
4983EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4984
4985void *netdev_lower_dev_get_private(struct net_device *dev,
4986                                   struct net_device *lower_dev)
4987{
4988        struct netdev_adjacent *lower;
4989
4990        if (!lower_dev)
4991                return NULL;
4992        lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4993        if (!lower)
4994                return NULL;
4995
4996        return lower->private;
4997}
4998EXPORT_SYMBOL(netdev_lower_dev_get_private);
4999
5000static void dev_change_rx_flags(struct net_device *dev, int flags)
5001{
5002        const struct net_device_ops *ops = dev->netdev_ops;
5003
5004        if (ops->ndo_change_rx_flags)
5005                ops->ndo_change_rx_flags(dev, flags);
5006}
5007
5008static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5009{
5010        unsigned int old_flags = dev->flags;
5011        kuid_t uid;
5012        kgid_t gid;
5013
5014        ASSERT_RTNL();
5015
5016        dev->flags |= IFF_PROMISC;
5017        dev->promiscuity += inc;
5018        if (dev->promiscuity == 0) {
5019                /*
5020                 * Avoid overflow.
5021                 * If inc causes overflow, untouch promisc and return error.
5022                 */
5023                if (inc < 0)
5024                        dev->flags &= ~IFF_PROMISC;
5025                else {
5026                        dev->promiscuity -= inc;
5027                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5028                                dev->name);
5029                        return -EOVERFLOW;
5030                }
5031        }
5032        if (dev->flags != old_flags) {
5033                pr_info("device %s %s promiscuous mode\n",
5034                        dev->name,
5035                        dev->flags & IFF_PROMISC ? "entered" : "left");
5036                if (audit_enabled) {
5037                        current_uid_gid(&uid, &gid);
5038                        audit_log(current->audit_context, GFP_ATOMIC,
5039                                AUDIT_ANOM_PROMISCUOUS,
5040                                "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5041                                dev->name, (dev->flags & IFF_PROMISC),
5042                                (old_flags & IFF_PROMISC),
5043                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
5044                                from_kuid(&init_user_ns, uid),
5045                                from_kgid(&init_user_ns, gid),
5046                                audit_get_sessionid(current));
5047                }
5048
5049                dev_change_rx_flags(dev, IFF_PROMISC);
5050        }
5051        if (notify)
5052                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5053        return 0;
5054}
5055
5056/**
5057 *      dev_set_promiscuity     - update promiscuity count on a device
5058 *      @dev: device
5059 *      @inc: modifier
5060 *
5061 *      Add or remove promiscuity from a device. While the count in the device
5062 *      remains above zero the interface remains promiscuous. Once it hits zero
5063 *      the device reverts back to normal filtering operation. A negative inc
5064 *      value is used to drop promiscuity on the device.
5065 *      Return 0 if successful or a negative errno code on error.
5066 */
5067int dev_set_promiscuity(struct net_device *dev, int inc)
5068{
5069        unsigned int old_flags = dev->flags;
5070        int err;
5071
5072        err = __dev_set_promiscuity(dev, inc, true);
5073        if (err < 0)
5074                return err;
5075        if (dev->flags != old_flags)
5076                dev_set_rx_mode(dev);
5077        return err;
5078}
5079EXPORT_SYMBOL(dev_set_promiscuity);
5080
5081static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5082{
5083        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5084
5085        ASSERT_RTNL();
5086
5087        dev->flags |= IFF_ALLMULTI;
5088        dev->allmulti += inc;
5089        if (dev->allmulti == 0) {
5090                /*
5091                 * Avoid overflow.
5092                 * If inc causes overflow, untouch allmulti and return error.
5093                 */
5094                if (inc < 0)
5095                        dev->flags &= ~IFF_ALLMULTI;
5096                else {
5097                        dev->allmulti -= inc;
5098                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5099                                dev->name);
5100                        return -EOVERFLOW;
5101                }
5102        }
5103        if (dev->flags ^ old_flags) {
5104                dev_change_rx_flags(dev, IFF_ALLMULTI);
5105                dev_set_rx_mode(dev);
5106                if (notify)
5107                        __dev_notify_flags(dev, old_flags,
5108                                           dev->gflags ^ old_gflags);
5109        }
5110        return 0;
5111}
5112
5113/**
5114 *      dev_set_allmulti        - update allmulti count on a device
5115 *      @dev: device
5116 *      @inc: modifier
5117 *
5118 *      Add or remove reception of all multicast frames to a device. While the
5119 *      count in the device remains above zero the interface remains listening
5120 *      to all interfaces. Once it hits zero the device reverts back to normal
5121 *      filtering operation. A negative @inc value is used to drop the counter
5122 *      when releasing a resource needing all multicasts.
5123 *      Return 0 if successful or a negative errno code on error.
5124 */
5125
5126int dev_set_allmulti(struct net_device *dev, int inc)
5127{
5128        return __dev_set_allmulti(dev, inc, true);
5129}
5130EXPORT_SYMBOL(dev_set_allmulti);
5131
5132/*
5133 *      Upload unicast and multicast address lists to device and
5134 *      configure RX filtering. When the device doesn't support unicast
5135 *      filtering it is put in promiscuous mode while unicast addresses
5136 *      are present.
5137 */
5138void __dev_set_rx_mode(struct net_device *dev)
5139{
5140        const struct net_device_ops *ops = dev->netdev_ops;
5141
5142        /* dev_open will call this function so the list will stay sane. */
5143        if (!(dev->flags&IFF_UP))
5144                return;
5145
5146        if (!netif_device_present(dev))
5147                return;
5148
5149        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5150                /* Unicast addresses changes may only happen under the rtnl,
5151                 * therefore calling __dev_set_promiscuity here is safe.
5152                 */
5153                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5154                        __dev_set_promiscuity(dev, 1, false);
5155                        dev->uc_promisc = true;
5156                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5157                        __dev_set_promiscuity(dev, -1, false);
5158                        dev->uc_promisc = false;
5159                }
5160        }
5161
5162        if (ops->ndo_set_rx_mode)
5163                ops->ndo_set_rx_mode(dev);
5164}
5165
5166void dev_set_rx_mode(struct net_device *dev)
5167{
5168        netif_addr_lock_bh(dev);
5169        __dev_set_rx_mode(dev);
5170        netif_addr_unlock_bh(dev);
5171}
5172
5173/**
5174 *      dev_get_flags - get flags reported to userspace
5175 *      @dev: device
5176 *
5177 *      Get the combination of flag bits exported through APIs to userspace.
5178 */
5179unsigned int dev_get_flags(const struct net_device *dev)
5180{
5181        unsigned int flags;
5182
5183        flags = (dev->flags & ~(IFF_PROMISC |
5184                                IFF_ALLMULTI |
5185                                IFF_RUNNING |
5186                                IFF_LOWER_UP |
5187                                IFF_DORMANT)) |
5188                (dev->gflags & (IFF_PROMISC |
5189                                IFF_ALLMULTI));
5190
5191        if (netif_running(dev)) {
5192                if (netif_oper_up(dev))
5193                        flags |= IFF_RUNNING;
5194                if (netif_carrier_ok(dev))
5195                        flags |= IFF_LOWER_UP;
5196                if (netif_dormant(dev))
5197                        flags |= IFF_DORMANT;
5198        }
5199
5200        return flags;
5201}
5202EXPORT_SYMBOL(dev_get_flags);
5203
5204int __dev_change_flags(struct net_device *dev, unsigned int flags)
5205{
5206        unsigned int old_flags = dev->flags;
5207        int ret;
5208
5209        ASSERT_RTNL();
5210
5211        /*
5212         *      Set the flags on our device.
5213         */
5214
5215        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5216                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5217                               IFF_AUTOMEDIA)) |
5218                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5219                                    IFF_ALLMULTI));
5220
5221        /*
5222         *      Load in the correct multicast list now the flags have changed.
5223         */
5224
5225        if ((old_flags ^ flags) & IFF_MULTICAST)
5226                dev_change_rx_flags(dev, IFF_MULTICAST);
5227
5228        dev_set_rx_mode(dev);
5229
5230        /*
5231         *      Have we downed the interface. We handle IFF_UP ourselves
5232         *      according to user attempts to set it, rather than blindly
5233         *      setting it.
5234         */
5235
5236        ret = 0;
5237        if ((old_flags ^ flags) & IFF_UP) {     /* Bit is different  ? */
5238                ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5239
5240                if (!ret)
5241                        dev_set_rx_mode(dev);
5242        }
5243
5244        if ((flags ^ dev->gflags) & IFF_PROMISC) {
5245                int inc = (flags & IFF_PROMISC) ? 1 : -1;
5246                unsigned int old_flags = dev->flags;
5247
5248                dev->gflags ^= IFF_PROMISC;
5249
5250                if (__dev_set_promiscuity(dev, inc, false) >= 0)
5251                        if (dev->flags != old_flags)
5252                                dev_set_rx_mode(dev);
5253        }
5254
5255        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5256           is important. Some (broken) drivers set IFF_PROMISC, when
5257           IFF_ALLMULTI is requested not asking us and not reporting.
5258         */
5259        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5260                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5261
5262                dev->gflags ^= IFF_ALLMULTI;
5263                __dev_set_allmulti(dev, inc, false);
5264        }
5265
5266        return ret;
5267}
5268
5269void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5270                        unsigned int gchanges)
5271{
5272        unsigned int changes = dev->flags ^ old_flags;
5273
5274        if (gchanges)
5275                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5276
5277        if (changes & IFF_UP) {
5278                if (dev->flags & IFF_UP)
5279                        call_netdevice_notifiers(NETDEV_UP, dev);
5280                else
5281                        call_netdevice_notifiers(NETDEV_DOWN, dev);
5282        }
5283
5284        if (dev->flags & IFF_UP &&
5285            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5286                struct netdev_notifier_change_info change_info;
5287
5288                change_info.flags_changed = changes;
5289                call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5290                                              &change_info.info);
5291        }
5292}
5293
5294/**
5295 *      dev_change_flags - change device settings
5296 *      @dev: device
5297 *      @flags: device state flags
5298 *
5299 *      Change settings on device based state flags. The flags are
5300 *      in the userspace exported format.
5301 */
5302int dev_change_flags(struct net_device *dev, unsigned int flags)
5303{
5304        int ret;
5305        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5306
5307        ret = __dev_change_flags(dev, flags);
5308        if (ret < 0)
5309                return ret;
5310
5311        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5312        __dev_notify_flags(dev, old_flags, changes);
5313        return ret;
5314}
5315EXPORT_SYMBOL(dev_change_flags);
5316
5317/**
5318 *      dev_set_mtu - Change maximum transfer unit
5319 *      @dev: device
5320 *      @new_mtu: new transfer unit
5321 *
5322 *      Change the maximum transfer size of the network device.
5323 */
5324int dev_set_mtu(struct net_device *dev, int new_mtu)
5325{
5326        const struct net_device_ops *ops = dev->netdev_ops;
5327        int err;
5328
5329        if (new_mtu == dev->mtu)
5330                return 0;
5331
5332        /*      MTU must be positive.    */
5333        if (new_mtu < 0)
5334                return -EINVAL;
5335
5336        if (!netif_device_present(dev))
5337                return -ENODEV;
5338
5339        err = 0;
5340        if (ops->ndo_change_mtu)
5341                err = ops->ndo_change_mtu(dev, new_mtu);
5342        else
5343                dev->mtu = new_mtu;
5344
5345        if (!err)
5346                call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5347        return err;
5348}
5349EXPORT_SYMBOL(dev_set_mtu);
5350
5351/**
5352 *      dev_set_group - Change group this device belongs to
5353 *      @dev: device
5354 *      @new_group: group this device should belong to
5355 */
5356void dev_set_group(struct net_device *dev, int new_group)
5357{
5358        dev->group = new_group;
5359}
5360EXPORT_SYMBOL(dev_set_group);
5361
5362/**
5363 *      dev_set_mac_address - Change Media Access Control Address
5364 *      @dev: device
5365 *      @sa: new address
5366 *
5367 *      Change the hardware (MAC) address of the device
5368 */
5369int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5370{
5371        const struct net_device_ops *ops = dev->netdev_ops;
5372        int err;
5373
5374        if (!ops->ndo_set_mac_address)
5375                return -EOPNOTSUPP;
5376        if (sa->sa_family != dev->type)
5377                return -EINVAL;
5378        if (!netif_device_present(dev))
5379                return -ENODEV;
5380        err = ops->ndo_set_mac_address(dev, sa);
5381        if (err)
5382                return err;
5383        dev->addr_assign_type = NET_ADDR_SET;
5384        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5385        add_device_randomness(dev->dev_addr, dev->addr_len);
5386        return 0;
5387}
5388EXPORT_SYMBOL(dev_set_mac_address);
5389
5390/**
5391 *      dev_change_carrier - Change device carrier
5392 *      @dev: device
5393 *      @new_carrier: new value
5394 *
5395 *      Change device carrier
5396 */
5397int dev_change_carrier(struct net_device *dev, bool new_carrier)
5398{
5399        const struct net_device_ops *ops = dev->netdev_ops;
5400
5401        if (!ops->ndo_change_carrier)
5402                return -EOPNOTSUPP;
5403        if (!netif_device_present(dev))
5404                return -ENODEV;
5405        return ops->ndo_change_carrier(dev, new_carrier);
5406}
5407EXPORT_SYMBOL(dev_change_carrier);
5408
5409/**
5410 *      dev_get_phys_port_id - Get device physical port ID
5411 *      @dev: device
5412 *      @ppid: port ID
5413 *
5414 *      Get device physical port ID
5415 */
5416int dev_get_phys_port_id(struct net_device *dev,
5417                         struct netdev_phys_port_id *ppid)
5418{
5419        const struct net_device_ops *ops = dev->netdev_ops;
5420
5421        if (!ops->ndo_get_phys_port_id)
5422                return -EOPNOTSUPP;
5423        return ops->ndo_get_phys_port_id(dev, ppid);
5424}
5425EXPORT_SYMBOL(dev_get_phys_port_id);
5426
5427/**
5428 *      dev_new_index   -       allocate an ifindex
5429 *      @net: the applicable net namespace
5430 *
5431 *      Returns a suitable unique value for a new device interface
5432 *      number.  The caller must hold the rtnl semaphore or the
5433 *      dev_base_lock to be sure it remains unique.
5434 */
5435static int dev_new_index(struct net *net)
5436{
5437        int ifindex = net->ifindex;
5438        for (;;) {
5439                if (++ifindex <= 0)
5440                        ifindex = 1;
5441                if (!__dev_get_by_index(net, ifindex))
5442                        return net->ifindex = ifindex;
5443        }
5444}
5445
5446/* Delayed registration/unregisteration */
5447static LIST_HEAD(net_todo_list);
5448static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5449
5450static void net_set_todo(struct net_device *dev)
5451{
5452        list_add_tail(&dev->todo_list, &net_todo_list);
5453        dev_net(dev)->dev_unreg_count++;
5454}
5455
5456static void rollback_registered_many(struct list_head *head)
5457{
5458        struct net_device *dev, *tmp;
5459        LIST_HEAD(close_head);
5460
5461        BUG_ON(dev_boot_phase);
5462        ASSERT_RTNL();
5463
5464        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5465                /* Some devices call without registering
5466                 * for initialization unwind. Remove those
5467                 * devices and proceed with the remaining.
5468                 */
5469                if (dev->reg_state == NETREG_UNINITIALIZED) {
5470                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5471                                 dev->name, dev);
5472
5473                        WARN_ON(1);
5474                        list_del(&dev->unreg_list);
5475                        continue;
5476                }
5477                dev->dismantle = true;
5478                BUG_ON(dev->reg_state != NETREG_REGISTERED);
5479        }
5480
5481        /* If device is running, close it first. */
5482        list_for_each_entry(dev, head, unreg_list)
5483                list_add_tail(&dev->close_list, &close_head);
5484        dev_close_many(&close_head);
5485
5486        list_for_each_entry(dev, head, unreg_list) {
5487                /* And unlink it from device chain. */
5488                unlist_netdevice(dev);
5489
5490                dev->reg_state = NETREG_UNREGISTERING;
5491        }
5492
5493        synchronize_net();
5494
5495        list_for_each_entry(dev, head, unreg_list) {
5496                /* Shutdown queueing discipline. */
5497                dev_shutdown(dev);
5498
5499
5500                /* Notify protocols, that we are about to destroy
5501                   this device. They should clean all the things.
5502                */
5503                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5504
5505                if (!dev->rtnl_link_ops ||
5506                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5507                        rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5508
5509                /*
5510                 *      Flush the unicast and multicast chains
5511                 */
5512                dev_uc_flush(dev);
5513                dev_mc_flush(dev);
5514
5515                if (dev->netdev_ops->ndo_uninit)
5516                        dev->netdev_ops->ndo_uninit(dev);
5517
5518                /* Notifier chain MUST detach us all upper devices. */
5519                WARN_ON(netdev_has_any_upper_dev(dev));
5520
5521                /* Remove entries from kobject tree */
5522                netdev_unregister_kobject(dev);
5523#ifdef CONFIG_XPS
5524                /* Remove XPS queueing entries */
5525                netif_reset_xps_queues_gt(dev, 0);
5526#endif
5527        }
5528
5529        synchronize_net();
5530
5531        list_for_each_entry(dev, head, unreg_list)
5532                dev_put(dev);
5533}
5534
5535static void rollback_registered(struct net_device *dev)
5536{
5537        LIST_HEAD(single);
5538
5539        list_add(&dev->unreg_list, &single);
5540        rollback_registered_many(&single);
5541        list_del(&single);
5542}
5543
5544static netdev_features_t netdev_fix_features(struct net_device *dev,
5545        netdev_features_t features)
5546{
5547        /* Fix illegal checksum combinations */
5548        if ((features & NETIF_F_HW_CSUM) &&
5549            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5550                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5551                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5552        }
5553
5554        /* TSO requires that SG is present as well. */
5555        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5556                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5557                features &= ~NETIF_F_ALL_TSO;
5558        }
5559
5560        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5561                                        !(features & NETIF_F_IP_CSUM)) {
5562                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5563                features &= ~NETIF_F_TSO;
5564                features &= ~NETIF_F_TSO_ECN;
5565        }
5566
5567        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5568                                         !(features & NETIF_F_IPV6_CSUM)) {
5569                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5570                features &= ~NETIF_F_TSO6;
5571        }
5572
5573        /* TSO ECN requires that TSO is present as well. */
5574        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5575                features &= ~NETIF_F_TSO_ECN;
5576
5577        /* Software GSO depends on SG. */
5578        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5579                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5580                features &= ~NETIF_F_GSO;
5581        }
5582
5583        /* UFO needs SG and checksumming */
5584        if (features & NETIF_F_UFO) {
5585                /* maybe split UFO into V4 and V6? */
5586                if (!((features & NETIF_F_GEN_CSUM) ||
5587                    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5588                            == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5589                        netdev_dbg(dev,
5590                                "Dropping NETIF_F_UFO since no checksum offload features.\n");
5591                        features &= ~NETIF_F_UFO;
5592                }
5593
5594                if (!(features & NETIF_F_SG)) {
5595                        netdev_dbg(dev,
5596                                "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5597                        features &= ~NETIF_F_UFO;
5598                }
5599        }
5600
5601        return features;
5602}
5603
5604int __netdev_update_features(struct net_device *dev)
5605{
5606        netdev_features_t features;
5607        int err = 0;
5608
5609        ASSERT_RTNL();
5610
5611        features = netdev_get_wanted_features(dev);
5612
5613        if (dev->netdev_ops->ndo_fix_features)
5614                features = dev->netdev_ops->ndo_fix_features(dev, features);
5615
5616        /* driver might be less strict about feature dependencies */
5617        features = netdev_fix_features(dev, features);
5618
5619        if (dev->features == features)
5620                return 0;
5621
5622        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5623                &dev->features, &features);
5624
5625        if (dev->netdev_ops->ndo_set_features)
5626                err = dev->netdev_ops->ndo_set_features(dev, features);
5627
5628        if (unlikely(err < 0)) {
5629                netdev_err(dev,
5630                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
5631                        err, &features, &dev->features);
5632                return -1;
5633        }
5634
5635        if (!err)
5636                dev->features = features;
5637
5638        return 1;
5639}
5640
5641/**
5642 *      netdev_update_features - recalculate device features
5643 *      @dev: the device to check
5644 *
5645 *      Recalculate dev->features set and send notifications if it
5646 *      has changed. Should be called after driver or hardware dependent
5647 *      conditions might have changed that influence the features.
5648 */
5649void netdev_update_features(struct net_device *dev)
5650{
5651        if (__netdev_update_features(dev))
5652                netdev_features_change(dev);
5653}
5654EXPORT_SYMBOL(netdev_update_features);
5655
5656/**
5657 *      netdev_change_features - recalculate device features
5658 *      @dev: the device to check
5659 *
5660 *      Recalculate dev->features set and send notifications even
5661 *      if they have not changed. Should be called instead of
5662 *      netdev_update_features() if also dev->vlan_features might
5663 *      have changed to allow the changes to be propagated to stacked
5664 *      VLAN devices.
5665 */
5666void netdev_change_features(struct net_device *dev)
5667{
5668        __netdev_update_features(dev);
5669        netdev_features_change(dev);
5670}
5671EXPORT_SYMBOL(netdev_change_features);
5672
5673/**
5674 *      netif_stacked_transfer_operstate -      transfer operstate
5675 *      @rootdev: the root or lower level device to transfer state from
5676 *      @dev: the device to transfer operstate to
5677 *
5678 *      Transfer operational state from root to device. This is normally
5679 *      called when a stacking relationship exists between the root
5680 *      device and the device(a leaf device).
5681 */
5682void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5683                                        struct net_device *dev)
5684{
5685        if (rootdev->operstate == IF_OPER_DORMANT)
5686                netif_dormant_on(dev);
5687        else
5688                netif_dormant_off(dev);
5689
5690        if (netif_carrier_ok(rootdev)) {
5691                if (!netif_carrier_ok(dev))
5692                        netif_carrier_on(dev);
5693        } else {
5694                if (netif_carrier_ok(dev))
5695                        netif_carrier_off(dev);
5696        }
5697}
5698EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5699
5700#ifdef CONFIG_RPS
5701static int netif_alloc_rx_queues(struct net_device *dev)
5702{
5703        unsigned int i, count = dev->num_rx_queues;
5704        struct netdev_rx_queue *rx;
5705
5706        BUG_ON(count < 1);
5707
5708        rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5709        if (!rx)
5710                return -ENOMEM;
5711
5712        dev->_rx = rx;
5713
5714        for (i = 0; i < count; i++)
5715                rx[i].dev = dev;
5716        return 0;
5717}
5718#endif
5719
5720static void netdev_init_one_queue(struct net_device *dev,
5721                                  struct netdev_queue *queue, void *_unused)
5722{
5723        /* Initialize queue lock */
5724        spin_lock_init(&queue->_xmit_lock);
5725        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5726        queue->xmit_lock_owner = -1;
5727        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5728        queue->dev = dev;
5729#ifdef CONFIG_BQL
5730        dql_init(&queue->dql, HZ);
5731#endif
5732}
5733
5734static void netif_free_tx_queues(struct net_device *dev)
5735{
5736        if (is_vmalloc_addr(dev->_tx))
5737                vfree(dev->_tx);
5738        else
5739                kfree(dev->_tx);
5740}
5741
5742static int netif_alloc_netdev_queues(struct net_device *dev)
5743{
5744        unsigned int count = dev->num_tx_queues;
5745        struct netdev_queue *tx;
5746        size_t sz = count * sizeof(*tx);
5747
5748        BUG_ON(count < 1 || count > 0xffff);
5749
5750        tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5751        if (!tx) {
5752                tx = vzalloc(sz);
5753                if (!tx)
5754                        return -ENOMEM;
5755        }
5756        dev->_tx = tx;
5757
5758        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5759        spin_lock_init(&dev->tx_global_lock);
5760
5761        return 0;
5762}
5763
5764/**
5765 *      register_netdevice      - register a network device
5766 *      @dev: device to register
5767 *
5768 *      Take a completed network device structure and add it to the kernel
5769 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5770 *      chain. 0 is returned on success. A negative errno code is returned
5771 *      on a failure to set up the device, or if the name is a duplicate.
5772 *
5773 *      Callers must hold the rtnl semaphore. You may want
5774 *      register_netdev() instead of this.
5775 *
5776 *      BUGS:
5777 *      The locking appears insufficient to guarantee two parallel registers
5778 *      will not get the same name.
5779 */
5780
5781int register_netdevice(struct net_device *dev)
5782{
5783        int ret;
5784        struct net *net = dev_net(dev);
5785
5786        BUG_ON(dev_boot_phase);
5787        ASSERT_RTNL();
5788
5789        might_sleep();
5790
5791        /* When net_device's are persistent, this will be fatal. */
5792        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5793        BUG_ON(!net);
5794
5795        spin_lock_init(&dev->addr_list_lock);
5796        netdev_set_addr_lockdep_class(dev);
5797
5798        dev->iflink = -1;
5799
5800        ret = dev_get_valid_name(net, dev, dev->name);
5801        if (ret < 0)
5802                goto out;
5803
5804        /* Init, if this function is available */
5805        if (dev->netdev_ops->ndo_init) {
5806                ret = dev->netdev_ops->ndo_init(dev);
5807                if (ret) {
5808                        if (ret > 0)
5809                                ret = -EIO;
5810                        goto out;
5811                }
5812        }
5813
5814        if (((dev->hw_features | dev->features) &
5815             NETIF_F_HW_VLAN_CTAG_FILTER) &&
5816            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5817             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5818                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5819                ret = -EINVAL;
5820                goto err_uninit;
5821        }
5822
5823        ret = -EBUSY;
5824        if (!dev->ifindex)
5825                dev->ifindex = dev_new_index(net);
5826        else if (__dev_get_by_index(net, dev->ifindex))
5827                goto err_uninit;
5828
5829        if (dev->iflink == -1)
5830                dev->iflink = dev->ifindex;
5831
5832        /* Transfer changeable features to wanted_features and enable
5833         * software offloads (GSO and GRO).
5834         */
5835        dev->hw_features |= NETIF_F_SOFT_FEATURES;
5836        dev->features |= NETIF_F_SOFT_FEATURES;
5837        dev->wanted_features = dev->features & dev->hw_features;
5838
5839        /* Turn on no cache copy if HW is doing checksum */
5840        if (!(dev->flags & IFF_LOOPBACK)) {
5841                dev->hw_features |= NETIF_F_NOCACHE_COPY;
5842                if (dev->features & NETIF_F_ALL_CSUM) {
5843                        dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5844                        dev->features |= NETIF_F_NOCACHE_COPY;
5845                }
5846        }
5847
5848        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5849         */
5850        dev->vlan_features |= NETIF_F_HIGHDMA;
5851
5852        /* Make NETIF_F_SG inheritable to tunnel devices.
5853         */
5854        dev->hw_enc_features |= NETIF_F_SG;
5855
5856        /* Make NETIF_F_SG inheritable to MPLS.
5857         */
5858        dev->mpls_features |= NETIF_F_SG;
5859
5860        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5861        ret = notifier_to_errno(ret);
5862        if (ret)
5863                goto err_uninit;
5864
5865        ret = netdev_register_kobject(dev);
5866        if (ret)
5867                goto err_uninit;
5868        dev->reg_state = NETREG_REGISTERED;
5869
5870        __netdev_update_features(dev);
5871
5872        /*
5873         *      Default initial state at registry is that the
5874         *      device is present.
5875         */
5876
5877        set_bit(__LINK_STATE_PRESENT, &dev->state);
5878
5879        linkwatch_init_dev(dev);
5880
5881        dev_init_scheduler(dev);
5882        dev_hold(dev);
5883        list_netdevice(dev);
5884        add_device_randomness(dev->dev_addr, dev->addr_len);
5885
5886        /* If the device has permanent device address, driver should
5887         * set dev_addr and also addr_assign_type should be set to
5888         * NET_ADDR_PERM (default value).
5889         */
5890        if (dev->addr_assign_type == NET_ADDR_PERM)
5891                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5892
5893        /* Notify protocols, that a new device appeared. */
5894        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5895        ret = notifier_to_errno(ret);
5896        if (ret) {
5897                rollback_registered(dev);
5898                dev->reg_state = NETREG_UNREGISTERED;
5899        }
5900        /*
5901         *      Prevent userspace races by waiting until the network
5902         *      device is fully setup before sending notifications.
5903         */
5904        if (!dev->rtnl_link_ops ||
5905            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5906                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5907
5908out:
5909        return ret;
5910
5911err_uninit:
5912        if (dev->netdev_ops->ndo_uninit)
5913                dev->netdev_ops->ndo_uninit(dev);
5914        goto out;
5915}
5916EXPORT_SYMBOL(register_netdevice);
5917
5918/**
5919 *      init_dummy_netdev       - init a dummy network device for NAPI
5920 *      @dev: device to init
5921 *
5922 *      This takes a network device structure and initialize the minimum
5923 *      amount of fields so it can be used to schedule NAPI polls without
5924 *      registering a full blown interface. This is to be used by drivers
5925 *      that need to tie several hardware interfaces to a single NAPI
5926 *      poll scheduler due to HW limitations.
5927 */
5928int init_dummy_netdev(struct net_device *dev)
5929{
5930        /* Clear everything. Note we don't initialize spinlocks
5931         * are they aren't supposed to be taken by any of the
5932         * NAPI code and this dummy netdev is supposed to be
5933         * only ever used for NAPI polls
5934         */
5935        memset(dev, 0, sizeof(struct net_device));
5936
5937        /* make sure we BUG if trying to hit standard
5938         * register/unregister code path
5939         */
5940        dev->reg_state = NETREG_DUMMY;
5941
5942        /* NAPI wants this */
5943        INIT_LIST_HEAD(&dev->napi_list);
5944
5945        /* a dummy interface is started by default */
5946        set_bit(__LINK_STATE_PRESENT, &dev->state);
5947        set_bit(__LINK_STATE_START, &dev->state);
5948
5949        /* Note : We dont allocate pcpu_refcnt for dummy devices,
5950         * because users of this 'device' dont need to change
5951         * its refcount.
5952         */
5953
5954        return 0;
5955}
5956EXPORT_SYMBOL_GPL(init_dummy_netdev);
5957
5958
5959/**
5960 *      register_netdev - register a network device
5961 *      @dev: device to register
5962 *
5963 *      Take a completed network device structure and add it to the kernel
5964 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5965 *      chain. 0 is returned on success. A negative errno code is returned
5966 *      on a failure to set up the device, or if the name is a duplicate.
5967 *
5968 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
5969 *      and expands the device name if you passed a format string to
5970 *      alloc_netdev.
5971 */
5972int register_netdev(struct net_device *dev)
5973{
5974        int err;
5975
5976        rtnl_lock();
5977        err = register_netdevice(dev);
5978        rtnl_unlock();
5979        return err;
5980}
5981EXPORT_SYMBOL(register_netdev);
5982
5983int netdev_refcnt_read(const struct net_device *dev)
5984{
5985        int i, refcnt = 0;
5986
5987        for_each_possible_cpu(i)
5988                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5989        return refcnt;
5990}
5991EXPORT_SYMBOL(netdev_refcnt_read);
5992
5993/**
5994 * netdev_wait_allrefs - wait until all references are gone.
5995 * @dev: target net_device
5996 *
5997 * This is called when unregistering network devices.
5998 *
5999 * Any protocol or device that holds a reference should register
6000 * for netdevice notification, and cleanup and put back the
6001 * reference if they receive an UNREGISTER event.
6002 * We can get stuck here if buggy protocols don't correctly
6003 * call dev_put.
6004 */
6005static void netdev_wait_allrefs(struct net_device *dev)
6006{
6007        unsigned long rebroadcast_time, warning_time;
6008        int refcnt;
6009
6010        linkwatch_forget_dev(dev);
6011
6012        rebroadcast_time = warning_time = jiffies;
6013        refcnt = netdev_refcnt_read(dev);
6014
6015        while (refcnt != 0) {
6016                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6017                        rtnl_lock();
6018
6019                        /* Rebroadcast unregister notification */
6020                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6021
6022                        __rtnl_unlock();
6023                        rcu_barrier();
6024                        rtnl_lock();
6025
6026                        call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6027                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6028                                     &dev->state)) {
6029                                /* We must not have linkwatch events
6030                                 * pending on unregister. If this
6031                                 * happens, we simply run the queue
6032                                 * unscheduled, resulting in a noop
6033                                 * for this device.
6034                                 */
6035                                linkwatch_run_queue();
6036                        }
6037
6038                        __rtnl_unlock();
6039
6040                        rebroadcast_time = jiffies;
6041                }
6042
6043                msleep(250);
6044
6045                refcnt = netdev_refcnt_read(dev);
6046
6047                if (time_after(jiffies, warning_time + 10 * HZ)) {
6048                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6049                                 dev->name, refcnt);
6050                        warning_time = jiffies;
6051                }
6052        }
6053}
6054
6055/* The sequence is:
6056 *
6057 *      rtnl_lock();
6058 *      ...
6059 *      register_netdevice(x1);
6060 *      register_netdevice(x2);
6061 *      ...
6062 *      unregister_netdevice(y1);
6063 *      unregister_netdevice(y2);
6064 *      ...
6065 *      rtnl_unlock();
6066 *      free_netdev(y1);
6067 *      free_netdev(y2);
6068 *
6069 * We are invoked by rtnl_unlock().
6070 * This allows us to deal with problems:
6071 * 1) We can delete sysfs objects which invoke hotplug
6072 *    without deadlocking with linkwatch via keventd.
6073 * 2) Since we run with the RTNL semaphore not held, we can sleep
6074 *    safely in order to wait for the netdev refcnt to drop to zero.
6075 *
6076 * We must not return until all unregister events added during
6077 * the interval the lock was held have been completed.
6078 */
6079void netdev_run_todo(void)
6080{
6081        struct list_head list;
6082
6083        /* Snapshot list, allow later requests */
6084        list_replace_init(&net_todo_list, &list);
6085
6086        __rtnl_unlock();
6087
6088
6089        /* Wait for rcu callbacks to finish before next phase */
6090        if (!list_empty(&list))
6091                rcu_barrier();
6092
6093        while (!list_empty(&list)) {
6094                struct net_device *dev
6095                        = list_first_entry(&list, struct net_device, todo_list);
6096                list_del(&dev->todo_list);
6097
6098                rtnl_lock();
6099                call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6100                __rtnl_unlock();
6101
6102                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6103                        pr_err("network todo '%s' but state %d\n",
6104                               dev->name, dev->reg_state);
6105                        dump_stack();
6106                        continue;
6107                }
6108
6109                dev->reg_state = NETREG_UNREGISTERED;
6110
6111                on_each_cpu(flush_backlog, dev, 1);
6112
6113                netdev_wait_allrefs(dev);
6114
6115                /* paranoia */
6116                BUG_ON(netdev_refcnt_read(dev));
6117                WARN_ON(rcu_access_pointer(dev->ip_ptr));
6118                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6119                WARN_ON(dev->dn_ptr);
6120
6121                if (dev->destructor)
6122                        dev->destructor(dev);
6123
6124                /* Report a network device has been unregistered */
6125                rtnl_lock();
6126                dev_net(dev)->dev_unreg_count--;
6127                __rtnl_unlock();
6128                wake_up(&netdev_unregistering_wq);
6129
6130                /* Free network device */
6131                kobject_put(&dev->dev.kobj);
6132        }
6133}
6134
6135/* Convert net_device_stats to rtnl_link_stats64.  They have the same
6136 * fields in the same order, with only the type differing.
6137 */
6138void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6139                             const struct net_device_stats *netdev_stats)
6140{
6141#if BITS_PER_LONG == 64
6142        BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6143        memcpy(stats64, netdev_stats, sizeof(*stats64));
6144#else
6145        size_t i, n = sizeof(*stats64) / sizeof(u64);
6146        const unsigned long *src = (const unsigned long *)netdev_stats;
6147        u64 *dst = (u64 *)stats64;
6148
6149        BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6150                     sizeof(*stats64) / sizeof(u64));
6151        for (i = 0; i < n; i++)
6152                dst[i] = src[i];
6153#endif
6154}
6155EXPORT_SYMBOL(netdev_stats_to_stats64);
6156
6157/**
6158 *      dev_get_stats   - get network device statistics
6159 *      @dev: device to get statistics from
6160 *      @storage: place to store stats
6161 *
6162 *      Get network statistics from device. Return @storage.
6163 *      The device driver may provide its own method by setting
6164 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6165 *      otherwise the internal statistics structure is used.
6166 */
6167struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6168                                        struct rtnl_link_stats64 *storage)
6169{
6170        const struct net_device_ops *ops = dev->netdev_ops;
6171
6172        if (ops->ndo_get_stats64) {
6173                memset(storage, 0, sizeof(*storage));
6174                ops->ndo_get_stats64(dev, storage);
6175        } else if (ops->ndo_get_stats) {
6176                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6177        } else {
6178                netdev_stats_to_stats64(storage, &dev->stats);
6179        }
6180        storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6181        return storage;
6182}
6183EXPORT_SYMBOL(dev_get_stats);
6184
6185struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6186{
6187        struct netdev_queue *queue = dev_ingress_queue(dev);
6188
6189#ifdef CONFIG_NET_CLS_ACT
6190        if (queue)
6191                return queue;
6192        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6193        if (!queue)
6194                return NULL;
6195        netdev_init_one_queue(dev, queue, NULL);
6196        queue->qdisc = &noop_qdisc;
6197        queue->qdisc_sleeping = &noop_qdisc;
6198        rcu_assign_pointer(dev->ingress_queue, queue);
6199#endif
6200        return queue;
6201}
6202
6203static const struct ethtool_ops default_ethtool_ops;
6204
6205void netdev_set_default_ethtool_ops(struct net_device *dev,
6206                                    const struct ethtool_ops *ops)
6207{
6208        if (dev->ethtool_ops == &default_ethtool_ops)
6209                dev->ethtool_ops = ops;
6210}
6211EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6212
6213void netdev_freemem(struct net_device *dev)
6214{
6215        char *addr = (char *)dev - dev->padded;
6216
6217        if (is_vmalloc_addr(addr))
6218                vfree(addr);
6219        else
6220                kfree(addr);
6221}
6222
6223/**
6224 *      alloc_netdev_mqs - allocate network device
6225 *      @sizeof_priv:   size of private data to allocate space for
6226 *      @name:          device name format string
6227 *      @setup:         callback to initialize device
6228 *      @txqs:          the number of TX subqueues to allocate
6229 *      @rxqs:          the number of RX subqueues to allocate
6230 *
6231 *      Allocates a struct net_device with private data area for driver use
6232 *      and performs basic initialization.  Also allocates subquue structs
6233 *      for each queue on the device.
6234 */
6235struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6236                void (*setup)(struct net_device *),
6237                unsigned int txqs, unsigned int rxqs)
6238{
6239        struct net_device *dev;
6240        size_t alloc_size;
6241        struct net_device *p;
6242
6243        BUG_ON(strlen(name) >= sizeof(dev->name));
6244
6245        if (txqs < 1) {
6246                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6247                return NULL;
6248        }
6249
6250#ifdef CONFIG_RPS
6251        if (rxqs < 1) {
6252                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6253                return NULL;
6254        }
6255#endif
6256
6257        alloc_size = sizeof(struct net_device);
6258        if (sizeof_priv) {
6259                /* ensure 32-byte alignment of private area */
6260                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6261                alloc_size += sizeof_priv;
6262        }
6263        /* ensure 32-byte alignment of whole construct */
6264        alloc_size += NETDEV_ALIGN - 1;
6265
6266        p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6267        if (!p)
6268                p = vzalloc(alloc_size);
6269        if (!p)
6270                return NULL;
6271
6272        dev = PTR_ALIGN(p, NETDEV_ALIGN);
6273        dev->padded = (char *)dev - (char *)p;
6274
6275        dev->pcpu_refcnt = alloc_percpu(int);
6276        if (!dev->pcpu_refcnt)
6277                goto free_dev;
6278
6279        if (dev_addr_init(dev))
6280                goto free_pcpu;
6281
6282        dev_mc_init(dev);
6283        dev_uc_init(dev);
6284
6285        dev_net_set(dev, &init_net);
6286
6287        dev->gso_max_size = GSO_MAX_SIZE;
6288        dev->gso_max_segs = GSO_MAX_SEGS;
6289
6290        INIT_LIST_HEAD(&dev->napi_list);
6291        INIT_LIST_HEAD(&dev->unreg_list);
6292        INIT_LIST_HEAD(&dev->close_list);
6293        INIT_LIST_HEAD(&dev->link_watch_list);
6294        INIT_LIST_HEAD(&dev->adj_list.upper);
6295        INIT_LIST_HEAD(&dev->adj_list.lower);
6296        INIT_LIST_HEAD(&dev->all_adj_list.upper);
6297        INIT_LIST_HEAD(&dev->all_adj_list.lower);
6298        dev->priv_flags = IFF_XMIT_DST_RELEASE;
6299        setup(dev);
6300
6301        dev->num_tx_queues = txqs;
6302        dev->real_num_tx_queues = txqs;
6303        if (netif_alloc_netdev_queues(dev))
6304                goto free_all;
6305
6306#ifdef CONFIG_RPS
6307        dev->num_rx_queues = rxqs;
6308        dev->real_num_rx_queues = rxqs;
6309        if (netif_alloc_rx_queues(dev))
6310                goto free_all;
6311#endif
6312
6313        strcpy(dev->name, name);
6314        dev->group = INIT_NETDEV_GROUP;
6315        if (!dev->ethtool_ops)
6316                dev->ethtool_ops = &default_ethtool_ops;
6317        return dev;
6318
6319free_all:
6320        free_netdev(dev);
6321        return NULL;
6322
6323free_pcpu:
6324        free_percpu(dev->pcpu_refcnt);
6325        netif_free_tx_queues(dev);
6326#ifdef CONFIG_RPS
6327        kfree(dev->_rx);
6328#endif
6329
6330free_dev:
6331        netdev_freemem(dev);
6332        return NULL;
6333}
6334EXPORT_SYMBOL(alloc_netdev_mqs);
6335
6336/**
6337 *      free_netdev - free network device
6338 *      @dev: device
6339 *
6340 *      This function does the last stage of destroying an allocated device
6341 *      interface. The reference to the device object is released.
6342 *      If this is the last reference then it will be freed.
6343 */
6344void free_netdev(struct net_device *dev)
6345{
6346        struct napi_struct *p, *n;
6347
6348        release_net(dev_net(dev));
6349
6350        netif_free_tx_queues(dev);
6351#ifdef CONFIG_RPS
6352        kfree(dev->_rx);
6353#endif
6354
6355        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6356
6357        /* Flush device addresses */
6358        dev_addr_flush(dev);
6359
6360        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6361                netif_napi_del(p);
6362
6363        free_percpu(dev->pcpu_refcnt);
6364        dev->pcpu_refcnt = NULL;
6365
6366        /*  Compatibility with error handling in drivers */
6367        if (dev->reg_state == NETREG_UNINITIALIZED) {
6368                netdev_freemem(dev);
6369                return;
6370        }
6371
6372        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6373        dev->reg_state = NETREG_RELEASED;
6374
6375        /* will free via device release */
6376        put_device(&dev->dev);
6377}
6378EXPORT_SYMBOL(free_netdev);
6379
6380/**
6381 *      synchronize_net -  Synchronize with packet receive processing
6382 *
6383 *      Wait for packets currently being received to be done.
6384 *      Does not block later packets from starting.
6385 */
6386void synchronize_net(void)
6387{
6388        might_sleep();
6389        if (rtnl_is_locked())
6390                synchronize_rcu_expedited();
6391        else
6392                synchronize_rcu();
6393}
6394EXPORT_SYMBOL(synchronize_net);
6395
6396/**
6397 *      unregister_netdevice_queue - remove device from the kernel
6398 *      @dev: device
6399 *      @head: list
6400 *
6401 *      This function shuts down a device interface and removes it
6402 *      from the kernel tables.
6403 *      If head not NULL, device is queued to be unregistered later.
6404 *
6405 *      Callers must hold the rtnl semaphore.  You may want
6406 *      unregister_netdev() instead of this.
6407 */
6408
6409void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6410{
6411        ASSERT_RTNL();
6412
6413        if (head) {
6414                list_move_tail(&dev->unreg_list, head);
6415        } else {
6416                rollback_registered(dev);
6417                /* Finish processing unregister after unlock */
6418                net_set_todo(dev);
6419        }
6420}
6421EXPORT_SYMBOL(unregister_netdevice_queue);
6422
6423/**
6424 *      unregister_netdevice_many - unregister many devices
6425 *      @head: list of devices
6426 */
6427void unregister_netdevice_many(struct list_head *head)
6428{
6429        struct net_device *dev;
6430
6431        if (!list_empty(head)) {
6432                rollback_registered_many(head);
6433                list_for_each_entry(dev, head, unreg_list)
6434                        net_set_todo(dev);
6435        }
6436}
6437EXPORT_SYMBOL(unregister_netdevice_many);
6438
6439/**
6440 *      unregister_netdev - remove device from the kernel
6441 *      @dev: device
6442 *
6443 *      This function shuts down a device interface and removes it
6444 *      from the kernel tables.
6445 *
6446 *      This is just a wrapper for unregister_netdevice that takes
6447 *      the rtnl semaphore.  In general you want to use this and not
6448 *      unregister_netdevice.
6449 */
6450void unregister_netdev(struct net_device *dev)
6451{
6452        rtnl_lock();
6453        unregister_netdevice(dev);
6454        rtnl_unlock();
6455}
6456EXPORT_SYMBOL(unregister_netdev);
6457
6458/**
6459 *      dev_change_net_namespace - move device to different nethost namespace
6460 *      @dev: device
6461 *      @net: network namespace
6462 *      @pat: If not NULL name pattern to try if the current device name
6463 *            is already taken in the destination network namespace.
6464 *
6465 *      This function shuts down a device interface and moves it
6466 *      to a new network namespace. On success 0 is returned, on
6467 *      a failure a netagive errno code is returned.
6468 *
6469 *      Callers must hold the rtnl semaphore.
6470 */
6471
6472int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6473{
6474        int err;
6475
6476        ASSERT_RTNL();
6477
6478        /* Don't allow namespace local devices to be moved. */
6479        err = -EINVAL;
6480        if (dev->features & NETIF_F_NETNS_LOCAL)
6481                goto out;
6482
6483        /* Ensure the device has been registrered */
6484        if (dev->reg_state != NETREG_REGISTERED)
6485                goto out;
6486
6487        /* Get out if there is nothing todo */
6488        err = 0;
6489        if (net_eq(dev_net(dev), net))
6490                goto out;
6491
6492        /* Pick the destination device name, and ensure
6493         * we can use it in the destination network namespace.
6494         */
6495        err = -EEXIST;
6496        if (__dev_get_by_name(net, dev->name)) {
6497                /* We get here if we can't use the current device name */
6498                if (!pat)
6499                        goto out;
6500                if (dev_get_valid_name(net, dev, pat) < 0)
6501                        goto out;
6502        }
6503
6504        /*
6505         * And now a mini version of register_netdevice unregister_netdevice.
6506         */
6507
6508        /* If device is running close it first. */
6509        dev_close(dev);
6510
6511        /* And unlink it from device chain */
6512        err = -ENODEV;
6513        unlist_netdevice(dev);
6514
6515        synchronize_net();
6516
6517        /* Shutdown queueing discipline. */
6518        dev_shutdown(dev);
6519
6520        /* Notify protocols, that we are about to destroy
6521           this device. They should clean all the things.
6522
6523           Note that dev->reg_state stays at NETREG_REGISTERED.
6524           This is wanted because this way 8021q and macvlan know
6525           the device is just moving and can keep their slaves up.
6526        */
6527        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6528        rcu_barrier();
6529        call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6530        rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6531
6532        /*
6533         *      Flush the unicast and multicast chains
6534         */
6535        dev_uc_flush(dev);
6536        dev_mc_flush(dev);
6537
6538        /* Send a netdev-removed uevent to the old namespace */
6539        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6540
6541        /* Actually switch the network namespace */
6542        dev_net_set(dev, net);
6543
6544        /* If there is an ifindex conflict assign a new one */
6545        if (__dev_get_by_index(net, dev->ifindex)) {
6546                int iflink = (dev->iflink == dev->ifindex);
6547                dev->ifindex = dev_new_index(net);
6548                if (iflink)
6549                        dev->iflink = dev->ifindex;
6550        }
6551
6552        /* Send a netdev-add uevent to the new namespace */
6553        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6554
6555        /* Fixup kobjects */
6556        err = device_rename(&dev->dev, dev->name);
6557        WARN_ON(err);
6558
6559        /* Add the device back in the hashes */
6560        list_netdevice(dev);
6561
6562        /* Notify protocols, that a new device appeared. */
6563        call_netdevice_notifiers(NETDEV_REGISTER, dev);
6564
6565        /*
6566         *      Prevent userspace races by waiting until the network
6567         *      device is fully setup before sending notifications.
6568         */
6569        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6570
6571        synchronize_net();
6572        err = 0;
6573out:
6574        return err;
6575}
6576EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6577
6578static int dev_cpu_callback(struct notifier_block *nfb,
6579                            unsigned long action,
6580                            void *ocpu)
6581{
6582        struct sk_buff **list_skb;
6583        struct sk_buff *skb;
6584        unsigned int cpu, oldcpu = (unsigned long)ocpu;
6585        struct softnet_data *sd, *oldsd;
6586
6587        if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6588                return NOTIFY_OK;
6589
6590        local_irq_disable();
6591        cpu = smp_processor_id();
6592        sd = &per_cpu(softnet_data, cpu);
6593        oldsd = &per_cpu(softnet_data, oldcpu);
6594
6595        /* Find end of our completion_queue. */
6596        list_skb = &sd->completion_queue;
6597        while (*list_skb)
6598                list_skb = &(*list_skb)->next;
6599        /* Append completion queue from offline CPU. */
6600        *list_skb = oldsd->completion_queue;
6601        oldsd->completion_queue = NULL;
6602
6603        /* Append output queue from offline CPU. */
6604        if (oldsd->output_queue) {
6605                *sd->output_queue_tailp = oldsd->output_queue;
6606                sd->output_queue_tailp = oldsd->output_queue_tailp;
6607                oldsd->output_queue = NULL;
6608                oldsd->output_queue_tailp = &oldsd->output_queue;
6609        }
6610        /* Append NAPI poll list from offline CPU. */
6611        if (!list_empty(&oldsd->poll_list)) {
6612                list_splice_init(&oldsd->poll_list, &sd->poll_list);
6613                raise_softirq_irqoff(NET_RX_SOFTIRQ);
6614        }
6615
6616        raise_softirq_irqoff(NET_TX_SOFTIRQ);
6617        local_irq_enable();
6618
6619        /* Process offline CPU's input_pkt_queue */
6620        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6621                netif_rx(skb);
6622                input_queue_head_incr(oldsd);
6623        }
6624        while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6625                netif_rx(skb);
6626                input_queue_head_incr(oldsd);
6627        }
6628
6629        return NOTIFY_OK;
6630}
6631
6632
6633/**
6634 *      netdev_increment_features - increment feature set by one
6635 *      @all: current feature set
6636 *      @one: new feature set
6637 *      @mask: mask feature set
6638 *
6639 *      Computes a new feature set after adding a device with feature set
6640 *      @one to the master device with current feature set @all.  Will not
6641 *      enable anything that is off in @mask. Returns the new feature set.
6642 */
6643netdev_features_t netdev_increment_features(netdev_features_t all,
6644        netdev_features_t one, netdev_features_t mask)
6645{
6646        if (mask & NETIF_F_GEN_CSUM)
6647                mask |= NETIF_F_ALL_CSUM;
6648        mask |= NETIF_F_VLAN_CHALLENGED;
6649
6650        all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6651        all &= one | ~NETIF_F_ALL_FOR_ALL;
6652
6653        /* If one device supports hw checksumming, set for all. */
6654        if (all & NETIF_F_GEN_CSUM)
6655                all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6656
6657        return all;
6658}
6659EXPORT_SYMBOL(netdev_increment_features);
6660
6661static struct hlist_head * __net_init netdev_create_hash(void)
6662{
6663        int i;
6664        struct hlist_head *hash;
6665
6666        hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6667        if (hash != NULL)
6668                for (i = 0; i < NETDEV_HASHENTRIES; i++)
6669                        INIT_HLIST_HEAD(&hash[i]);
6670
6671        return hash;
6672}
6673
6674/* Initialize per network namespace state */
6675static int __net_init netdev_init(struct net *net)
6676{
6677        if (net != &init_net)
6678                INIT_LIST_HEAD(&net->dev_base_head);
6679
6680        net->dev_name_head = netdev_create_hash();
6681        if (net->dev_name_head == NULL)
6682                goto err_name;
6683
6684        net->dev_index_head = netdev_create_hash();
6685        if (net->dev_index_head == NULL)
6686                goto err_idx;
6687
6688        return 0;
6689
6690err_idx:
6691        kfree(net->dev_name_head);
6692err_name:
6693        return -ENOMEM;
6694}
6695
6696/**
6697 *      netdev_drivername - network driver for the device
6698 *      @dev: network device
6699 *
6700 *      Determine network driver for device.
6701 */
6702const char *netdev_drivername(const struct net_device *dev)
6703{
6704        const struct device_driver *driver;
6705        const struct device *parent;
6706        const char *empty = "";
6707
6708        parent = dev->dev.parent;
6709        if (!parent)
6710                return empty;
6711
6712        driver = parent->driver;
6713        if (driver && driver->name)
6714                return driver->name;
6715        return empty;
6716}
6717
6718static int __netdev_printk(const char *level, const struct net_device *dev,
6719                           struct va_format *vaf)
6720{
6721        int r;
6722
6723        if (dev && dev->dev.parent) {
6724                r = dev_printk_emit(level[1] - '0',
6725                                    dev->dev.parent,
6726                                    "%s %s %s: %pV",
6727                                    dev_driver_string(dev->dev.parent),
6728                                    dev_name(dev->dev.parent),
6729                                    netdev_name(dev), vaf);
6730        } else if (dev) {
6731                r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6732        } else {
6733                r = printk("%s(NULL net_device): %pV", level, vaf);
6734        }
6735
6736        return r;
6737}
6738
6739int netdev_printk(const char *level, const struct net_device *dev,
6740                  const char *format, ...)
6741{
6742        struct va_format vaf;
6743        va_list args;
6744        int r;
6745
6746        va_start(args, format);
6747
6748        vaf.fmt = format;
6749        vaf.va = &args;
6750
6751        r = __netdev_printk(level, dev, &vaf);
6752
6753        va_end(args);
6754
6755        return r;
6756}
6757EXPORT_SYMBOL(netdev_printk);
6758
6759#define define_netdev_printk_level(func, level)                 \
6760int func(const struct net_device *dev, const char *fmt, ...)    \
6761{                                                               \
6762        int r;                                                  \
6763        struct va_format vaf;                                   \
6764        va_list args;                                           \
6765                                                                \
6766        va_start(args, fmt);                                    \
6767                                                                \
6768        vaf.fmt = fmt;                                          \
6769        vaf.va = &args;                                         \
6770                                                                \
6771        r = __netdev_printk(level, dev, &vaf);                  \
6772                                                                \
6773        va_end(args);                                           \
6774                                                                \
6775        return r;                                               \
6776}                                                               \
6777EXPORT_SYMBOL(func);
6778
6779define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6780define_netdev_printk_level(netdev_alert, KERN_ALERT);
6781define_netdev_printk_level(netdev_crit, KERN_CRIT);
6782define_netdev_printk_level(netdev_err, KERN_ERR);
6783define_netdev_printk_level(netdev_warn, KERN_WARNING);
6784define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6785define_netdev_printk_level(netdev_info, KERN_INFO);
6786
6787static void __net_exit netdev_exit(struct net *net)
6788{
6789        kfree(net->dev_name_head);
6790        kfree(net->dev_index_head);
6791}
6792
6793static struct pernet_operations __net_initdata netdev_net_ops = {
6794        .init = netdev_init,
6795        .exit = netdev_exit,
6796};
6797
6798static void __net_exit default_device_exit(struct net *net)
6799{
6800        struct net_device *dev, *aux;
6801        /*
6802         * Push all migratable network devices back to the
6803         * initial network namespace
6804         */
6805        rtnl_lock();
6806        for_each_netdev_safe(net, dev, aux) {
6807                int err;
6808                char fb_name[IFNAMSIZ];
6809
6810                /* Ignore unmoveable devices (i.e. loopback) */
6811                if (dev->features & NETIF_F_NETNS_LOCAL)
6812                        continue;
6813
6814                /* Leave virtual devices for the generic cleanup */
6815                if (dev->rtnl_link_ops)
6816                        continue;
6817
6818                /* Push remaining network devices to init_net */
6819                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6820                err = dev_change_net_namespace(dev, &init_net, fb_name);
6821                if (err) {
6822                        pr_emerg("%s: failed to move %s to init_net: %d\n",
6823                                 __func__, dev->name, err);
6824                        BUG();
6825                }
6826        }
6827        rtnl_unlock();
6828}
6829
6830static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6831{
6832        /* Return with the rtnl_lock held when there are no network
6833         * devices unregistering in any network namespace in net_list.
6834         */
6835        struct net *net;
6836        bool unregistering;
6837        DEFINE_WAIT(wait);
6838
6839        for (;;) {
6840                prepare_to_wait(&netdev_unregistering_wq, &wait,
6841                                TASK_UNINTERRUPTIBLE);
6842                unregistering = false;
6843                rtnl_lock();
6844                list_for_each_entry(net, net_list, exit_list) {
6845                        if (net->dev_unreg_count > 0) {
6846                                unregistering = true;
6847                                break;
6848                        }
6849                }
6850                if (!unregistering)
6851                        break;
6852                __rtnl_unlock();
6853                schedule();
6854        }
6855        finish_wait(&netdev_unregistering_wq, &wait);
6856}
6857
6858static void __net_exit default_device_exit_batch(struct list_head *net_list)
6859{
6860        /* At exit all network devices most be removed from a network
6861         * namespace.  Do this in the reverse order of registration.
6862         * Do this across as many network namespaces as possible to
6863         * improve batching efficiency.
6864         */
6865        struct net_device *dev;
6866        struct net *net;
6867        LIST_HEAD(dev_kill_list);
6868
6869        /* To prevent network device cleanup code from dereferencing
6870         * loopback devices or network devices that have been freed
6871         * wait here for all pending unregistrations to complete,
6872         * before unregistring the loopback device and allowing the
6873         * network namespace be freed.
6874         *
6875         * The netdev todo list containing all network devices
6876         * unregistrations that happen in default_device_exit_batch
6877         * will run in the rtnl_unlock() at the end of
6878         * default_device_exit_batch.
6879         */
6880        rtnl_lock_unregistering(net_list);
6881        list_for_each_entry(net, net_list, exit_list) {
6882                for_each_netdev_reverse(net, dev) {
6883                        if (dev->rtnl_link_ops)
6884                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6885                        else
6886                                unregister_netdevice_queue(dev, &dev_kill_list);
6887                }
6888        }
6889        unregister_netdevice_many(&dev_kill_list);
6890        list_del(&dev_kill_list);
6891        rtnl_unlock();
6892}
6893
6894static struct pernet_operations __net_initdata default_device_ops = {
6895        .exit = default_device_exit,
6896        .exit_batch = default_device_exit_batch,
6897};
6898
6899/*
6900 *      Initialize the DEV module. At boot time this walks the device list and
6901 *      unhooks any devices that fail to initialise (normally hardware not
6902 *      present) and leaves us with a valid list of present and active devices.
6903 *
6904 */
6905
6906/*
6907 *       This is called single threaded during boot, so no need
6908 *       to take the rtnl semaphore.
6909 */
6910static int __init net_dev_init(void)
6911{
6912        int i, rc = -ENOMEM;
6913
6914        BUG_ON(!dev_boot_phase);
6915
6916        if (dev_proc_init())
6917                goto out;
6918
6919        if (netdev_kobject_init())
6920                goto out;
6921
6922        INIT_LIST_HEAD(&ptype_all);
6923        for (i = 0; i < PTYPE_HASH_SIZE; i++)
6924                INIT_LIST_HEAD(&ptype_base[i]);
6925
6926        INIT_LIST_HEAD(&offload_base);
6927
6928        if (register_pernet_subsys(&netdev_net_ops))
6929                goto out;
6930
6931        /*
6932         *      Initialise the packet receive queues.
6933         */
6934
6935        for_each_possible_cpu(i) {
6936                struct softnet_data *sd = &per_cpu(softnet_data, i);
6937
6938                memset(sd, 0, sizeof(*sd));
6939                skb_queue_head_init(&sd->input_pkt_queue);
6940                skb_queue_head_init(&sd->process_queue);
6941                sd->completion_queue = NULL;
6942                INIT_LIST_HEAD(&sd->poll_list);
6943                sd->output_queue = NULL;
6944                sd->output_queue_tailp = &sd->output_queue;
6945#ifdef CONFIG_RPS
6946                sd->csd.func = rps_trigger_softirq;
6947                sd->csd.info = sd;
6948                sd->csd.flags = 0;
6949                sd->cpu = i;
6950#endif
6951
6952                sd->backlog.poll = process_backlog;
6953                sd->backlog.weight = weight_p;
6954                sd->backlog.gro_list = NULL;
6955                sd->backlog.gro_count = 0;
6956
6957#ifdef CONFIG_NET_FLOW_LIMIT
6958                sd->flow_limit = NULL;
6959#endif
6960        }
6961
6962        dev_boot_phase = 0;
6963
6964        /* The loopback device is special if any other network devices
6965         * is present in a network namespace the loopback device must
6966         * be present. Since we now dynamically allocate and free the
6967         * loopback device ensure this invariant is maintained by
6968         * keeping the loopback device as the first device on the
6969         * list of network devices.  Ensuring the loopback devices
6970         * is the first device that appears and the last network device
6971         * that disappears.
6972         */
6973        if (register_pernet_device(&loopback_net_ops))
6974                goto out;
6975
6976        if (register_pernet_device(&default_device_ops))
6977                goto out;
6978
6979        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6980        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6981
6982        hotcpu_notifier(dev_cpu_callback, 0);
6983        dst_init();
6984        rc = 0;
6985out:
6986        return rc;
6987}
6988
6989subsys_initcall(net_dev_init);
6990