linux/sound/soc/fsl/fsl_ssi.c
<<
>>
Prefs
   1/*
   2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
   3 *
   4 * Author: Timur Tabi <timur@freescale.com>
   5 *
   6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
   7 *
   8 * This file is licensed under the terms of the GNU General Public License
   9 * version 2.  This program is licensed "as is" without any warranty of any
  10 * kind, whether express or implied.
  11 *
  12 *
  13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
  14 *
  15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
  16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
  17 * one FIFO which combines all valid receive slots. We cannot even select
  18 * which slots we want to receive. The WM9712 with which this driver
  19 * was developed with always sends GPIO status data in slot 12 which
  20 * we receive in our (PCM-) data stream. The only chance we have is to
  21 * manually skip this data in the FIQ handler. With sampling rates different
  22 * from 48000Hz not every frame has valid receive data, so the ratio
  23 * between pcm data and GPIO status data changes. Our FIQ handler is not
  24 * able to handle this, hence this driver only works with 48000Hz sampling
  25 * rate.
  26 * Reading and writing AC97 registers is another challenge. The core
  27 * provides us status bits when the read register is updated with *another*
  28 * value. When we read the same register two times (and the register still
  29 * contains the same value) these status bits are not set. We work
  30 * around this by not polling these bits but only wait a fixed delay.
  31 */
  32
  33#include <linux/init.h>
  34#include <linux/io.h>
  35#include <linux/module.h>
  36#include <linux/interrupt.h>
  37#include <linux/clk.h>
  38#include <linux/device.h>
  39#include <linux/delay.h>
  40#include <linux/slab.h>
  41#include <linux/of_address.h>
  42#include <linux/of_irq.h>
  43#include <linux/of_platform.h>
  44
  45#include <sound/core.h>
  46#include <sound/pcm.h>
  47#include <sound/pcm_params.h>
  48#include <sound/initval.h>
  49#include <sound/soc.h>
  50#include <sound/dmaengine_pcm.h>
  51
  52#include "fsl_ssi.h"
  53#include "imx-pcm.h"
  54
  55#ifdef PPC
  56#define read_ssi(addr)                   in_be32(addr)
  57#define write_ssi(val, addr)             out_be32(addr, val)
  58#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
  59#else
  60#define read_ssi(addr)                   readl(addr)
  61#define write_ssi(val, addr)             writel(val, addr)
  62/*
  63 * FIXME: Proper locking should be added at write_ssi_mask caller level
  64 * to ensure this register read/modify/write sequence is race free.
  65 */
  66static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
  67{
  68        u32 val = readl(addr);
  69        val = (val & ~clear) | set;
  70        writel(val, addr);
  71}
  72#endif
  73
  74/**
  75 * FSLSSI_I2S_RATES: sample rates supported by the I2S
  76 *
  77 * This driver currently only supports the SSI running in I2S slave mode,
  78 * which means the codec determines the sample rate.  Therefore, we tell
  79 * ALSA that we support all rates and let the codec driver decide what rates
  80 * are really supported.
  81 */
  82#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  83                          SNDRV_PCM_RATE_CONTINUOUS)
  84
  85/**
  86 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
  87 *
  88 * This driver currently only supports the SSI running in I2S slave mode.
  89 *
  90 * The SSI has a limitation in that the samples must be in the same byte
  91 * order as the host CPU.  This is because when multiple bytes are written
  92 * to the STX register, the bytes and bits must be written in the same
  93 * order.  The STX is a shift register, so all the bits need to be aligned
  94 * (bit-endianness must match byte-endianness).  Processors typically write
  95 * the bits within a byte in the same order that the bytes of a word are
  96 * written in.  So if the host CPU is big-endian, then only big-endian
  97 * samples will be written to STX properly.
  98 */
  99#ifdef __BIG_ENDIAN
 100#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
 101         SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
 102         SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
 103#else
 104#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
 105         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
 106         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
 107#endif
 108
 109/* SIER bitflag of interrupts to enable */
 110#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
 111                    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
 112                    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
 113                    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
 114                    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
 115
 116/**
 117 * fsl_ssi_private: per-SSI private data
 118 *
 119 * @ssi: pointer to the SSI's registers
 120 * @ssi_phys: physical address of the SSI registers
 121 * @irq: IRQ of this SSI
 122 * @first_stream: pointer to the stream that was opened first
 123 * @second_stream: pointer to second stream
 124 * @playback: the number of playback streams opened
 125 * @capture: the number of capture streams opened
 126 * @cpu_dai: the CPU DAI for this device
 127 * @dev_attr: the sysfs device attribute structure
 128 * @stats: SSI statistics
 129 * @name: name for this device
 130 */
 131struct fsl_ssi_private {
 132        struct ccsr_ssi __iomem *ssi;
 133        dma_addr_t ssi_phys;
 134        unsigned int irq;
 135        struct snd_pcm_substream *first_stream;
 136        struct snd_pcm_substream *second_stream;
 137        unsigned int fifo_depth;
 138        struct snd_soc_dai_driver cpu_dai_drv;
 139        struct device_attribute dev_attr;
 140        struct platform_device *pdev;
 141
 142        bool new_binding;
 143        bool ssi_on_imx;
 144        bool imx_ac97;
 145        bool use_dma;
 146        struct clk *clk;
 147        struct snd_dmaengine_dai_dma_data dma_params_tx;
 148        struct snd_dmaengine_dai_dma_data dma_params_rx;
 149        struct imx_dma_data filter_data_tx;
 150        struct imx_dma_data filter_data_rx;
 151        struct imx_pcm_fiq_params fiq_params;
 152
 153        struct {
 154                unsigned int rfrc;
 155                unsigned int tfrc;
 156                unsigned int cmdau;
 157                unsigned int cmddu;
 158                unsigned int rxt;
 159                unsigned int rdr1;
 160                unsigned int rdr0;
 161                unsigned int tde1;
 162                unsigned int tde0;
 163                unsigned int roe1;
 164                unsigned int roe0;
 165                unsigned int tue1;
 166                unsigned int tue0;
 167                unsigned int tfs;
 168                unsigned int rfs;
 169                unsigned int tls;
 170                unsigned int rls;
 171                unsigned int rff1;
 172                unsigned int rff0;
 173                unsigned int tfe1;
 174                unsigned int tfe0;
 175        } stats;
 176
 177        char name[1];
 178};
 179
 180/**
 181 * fsl_ssi_isr: SSI interrupt handler
 182 *
 183 * Although it's possible to use the interrupt handler to send and receive
 184 * data to/from the SSI, we use the DMA instead.  Programming is more
 185 * complicated, but the performance is much better.
 186 *
 187 * This interrupt handler is used only to gather statistics.
 188 *
 189 * @irq: IRQ of the SSI device
 190 * @dev_id: pointer to the ssi_private structure for this SSI device
 191 */
 192static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
 193{
 194        struct fsl_ssi_private *ssi_private = dev_id;
 195        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 196        irqreturn_t ret = IRQ_NONE;
 197        __be32 sisr;
 198        __be32 sisr2 = 0;
 199
 200        /* We got an interrupt, so read the status register to see what we
 201           were interrupted for.  We mask it with the Interrupt Enable register
 202           so that we only check for events that we're interested in.
 203         */
 204        sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
 205
 206        if (sisr & CCSR_SSI_SISR_RFRC) {
 207                ssi_private->stats.rfrc++;
 208                sisr2 |= CCSR_SSI_SISR_RFRC;
 209                ret = IRQ_HANDLED;
 210        }
 211
 212        if (sisr & CCSR_SSI_SISR_TFRC) {
 213                ssi_private->stats.tfrc++;
 214                sisr2 |= CCSR_SSI_SISR_TFRC;
 215                ret = IRQ_HANDLED;
 216        }
 217
 218        if (sisr & CCSR_SSI_SISR_CMDAU) {
 219                ssi_private->stats.cmdau++;
 220                ret = IRQ_HANDLED;
 221        }
 222
 223        if (sisr & CCSR_SSI_SISR_CMDDU) {
 224                ssi_private->stats.cmddu++;
 225                ret = IRQ_HANDLED;
 226        }
 227
 228        if (sisr & CCSR_SSI_SISR_RXT) {
 229                ssi_private->stats.rxt++;
 230                ret = IRQ_HANDLED;
 231        }
 232
 233        if (sisr & CCSR_SSI_SISR_RDR1) {
 234                ssi_private->stats.rdr1++;
 235                ret = IRQ_HANDLED;
 236        }
 237
 238        if (sisr & CCSR_SSI_SISR_RDR0) {
 239                ssi_private->stats.rdr0++;
 240                ret = IRQ_HANDLED;
 241        }
 242
 243        if (sisr & CCSR_SSI_SISR_TDE1) {
 244                ssi_private->stats.tde1++;
 245                ret = IRQ_HANDLED;
 246        }
 247
 248        if (sisr & CCSR_SSI_SISR_TDE0) {
 249                ssi_private->stats.tde0++;
 250                ret = IRQ_HANDLED;
 251        }
 252
 253        if (sisr & CCSR_SSI_SISR_ROE1) {
 254                ssi_private->stats.roe1++;
 255                sisr2 |= CCSR_SSI_SISR_ROE1;
 256                ret = IRQ_HANDLED;
 257        }
 258
 259        if (sisr & CCSR_SSI_SISR_ROE0) {
 260                ssi_private->stats.roe0++;
 261                sisr2 |= CCSR_SSI_SISR_ROE0;
 262                ret = IRQ_HANDLED;
 263        }
 264
 265        if (sisr & CCSR_SSI_SISR_TUE1) {
 266                ssi_private->stats.tue1++;
 267                sisr2 |= CCSR_SSI_SISR_TUE1;
 268                ret = IRQ_HANDLED;
 269        }
 270
 271        if (sisr & CCSR_SSI_SISR_TUE0) {
 272                ssi_private->stats.tue0++;
 273                sisr2 |= CCSR_SSI_SISR_TUE0;
 274                ret = IRQ_HANDLED;
 275        }
 276
 277        if (sisr & CCSR_SSI_SISR_TFS) {
 278                ssi_private->stats.tfs++;
 279                ret = IRQ_HANDLED;
 280        }
 281
 282        if (sisr & CCSR_SSI_SISR_RFS) {
 283                ssi_private->stats.rfs++;
 284                ret = IRQ_HANDLED;
 285        }
 286
 287        if (sisr & CCSR_SSI_SISR_TLS) {
 288                ssi_private->stats.tls++;
 289                ret = IRQ_HANDLED;
 290        }
 291
 292        if (sisr & CCSR_SSI_SISR_RLS) {
 293                ssi_private->stats.rls++;
 294                ret = IRQ_HANDLED;
 295        }
 296
 297        if (sisr & CCSR_SSI_SISR_RFF1) {
 298                ssi_private->stats.rff1++;
 299                ret = IRQ_HANDLED;
 300        }
 301
 302        if (sisr & CCSR_SSI_SISR_RFF0) {
 303                ssi_private->stats.rff0++;
 304                ret = IRQ_HANDLED;
 305        }
 306
 307        if (sisr & CCSR_SSI_SISR_TFE1) {
 308                ssi_private->stats.tfe1++;
 309                ret = IRQ_HANDLED;
 310        }
 311
 312        if (sisr & CCSR_SSI_SISR_TFE0) {
 313                ssi_private->stats.tfe0++;
 314                ret = IRQ_HANDLED;
 315        }
 316
 317        /* Clear the bits that we set */
 318        if (sisr2)
 319                write_ssi(sisr2, &ssi->sisr);
 320
 321        return ret;
 322}
 323
 324static int fsl_ssi_setup(struct fsl_ssi_private *ssi_private)
 325{
 326        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 327        u8 i2s_mode;
 328        u8 wm;
 329        int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
 330
 331        if (ssi_private->imx_ac97)
 332                i2s_mode = CCSR_SSI_SCR_I2S_MODE_NORMAL | CCSR_SSI_SCR_NET;
 333        else
 334                i2s_mode = CCSR_SSI_SCR_I2S_MODE_SLAVE;
 335
 336        /*
 337         * Section 16.5 of the MPC8610 reference manual says that the SSI needs
 338         * to be disabled before updating the registers we set here.
 339         */
 340        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
 341
 342        /*
 343         * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
 344         * enable the transmit and receive FIFO.
 345         *
 346         * FIXME: Little-endian samples require a different shift dir
 347         */
 348        write_ssi_mask(&ssi->scr,
 349                CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
 350                CCSR_SSI_SCR_TFR_CLK_DIS |
 351                i2s_mode |
 352                (synchronous ? CCSR_SSI_SCR_SYN : 0));
 353
 354        write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
 355                 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
 356                 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
 357
 358        write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
 359                 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
 360                 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
 361        /*
 362         * The DC and PM bits are only used if the SSI is the clock master.
 363         */
 364
 365        /*
 366         * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
 367         * use FIFO 1. We program the transmit water to signal a DMA transfer
 368         * if there are only two (or fewer) elements left in the FIFO. Two
 369         * elements equals one frame (left channel, right channel). This value,
 370         * however, depends on the depth of the transmit buffer.
 371         *
 372         * We set the watermark on the same level as the DMA burstsize.  For
 373         * fiq it is probably better to use the biggest possible watermark
 374         * size.
 375         */
 376        if (ssi_private->use_dma)
 377                wm = ssi_private->fifo_depth - 2;
 378        else
 379                wm = ssi_private->fifo_depth;
 380
 381        write_ssi(CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
 382                CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm),
 383                &ssi->sfcsr);
 384
 385        /*
 386         * For ac97 interrupts are enabled with the startup of the substream
 387         * because it is also running without an active substream. Normally SSI
 388         * is only enabled when there is a substream.
 389         */
 390        if (ssi_private->imx_ac97) {
 391                /*
 392                 * Setup the clock control register
 393                 */
 394                write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
 395                                &ssi->stccr);
 396                write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
 397                                &ssi->srccr);
 398
 399                /*
 400                 * Enable AC97 mode and startup the SSI
 401                 */
 402                write_ssi(CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV,
 403                                &ssi->sacnt);
 404                write_ssi(0xff, &ssi->saccdis);
 405                write_ssi(0x300, &ssi->saccen);
 406
 407                /*
 408                 * Enable SSI, Transmit and Receive
 409                 */
 410                write_ssi_mask(&ssi->scr, 0, CCSR_SSI_SCR_SSIEN |
 411                                CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
 412
 413                write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi->sor);
 414        }
 415
 416        return 0;
 417}
 418
 419
 420/**
 421 * fsl_ssi_startup: create a new substream
 422 *
 423 * This is the first function called when a stream is opened.
 424 *
 425 * If this is the first stream open, then grab the IRQ and program most of
 426 * the SSI registers.
 427 */
 428static int fsl_ssi_startup(struct snd_pcm_substream *substream,
 429                           struct snd_soc_dai *dai)
 430{
 431        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 432        struct fsl_ssi_private *ssi_private =
 433                snd_soc_dai_get_drvdata(rtd->cpu_dai);
 434        int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
 435
 436        /*
 437         * If this is the first stream opened, then request the IRQ
 438         * and initialize the SSI registers.
 439         */
 440        if (!ssi_private->first_stream) {
 441                ssi_private->first_stream = substream;
 442
 443                /*
 444                 * fsl_ssi_setup was already called by ac97_init earlier if
 445                 * the driver is in ac97 mode.
 446                 */
 447                if (!ssi_private->imx_ac97)
 448                        fsl_ssi_setup(ssi_private);
 449        } else {
 450                if (synchronous) {
 451                        struct snd_pcm_runtime *first_runtime =
 452                                ssi_private->first_stream->runtime;
 453                        /*
 454                         * This is the second stream open, and we're in
 455                         * synchronous mode, so we need to impose sample
 456                         * sample size constraints. This is because STCCR is
 457                         * used for playback and capture in synchronous mode,
 458                         * so there's no way to specify different word
 459                         * lengths.
 460                         *
 461                         * Note that this can cause a race condition if the
 462                         * second stream is opened before the first stream is
 463                         * fully initialized.  We provide some protection by
 464                         * checking to make sure the first stream is
 465                         * initialized, but it's not perfect.  ALSA sometimes
 466                         * re-initializes the driver with a different sample
 467                         * rate or size.  If the second stream is opened
 468                         * before the first stream has received its final
 469                         * parameters, then the second stream may be
 470                         * constrained to the wrong sample rate or size.
 471                         */
 472                        if (first_runtime->sample_bits) {
 473                                snd_pcm_hw_constraint_minmax(substream->runtime,
 474                                                SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
 475                                first_runtime->sample_bits,
 476                                first_runtime->sample_bits);
 477                        }
 478                }
 479
 480                ssi_private->second_stream = substream;
 481        }
 482
 483        return 0;
 484}
 485
 486/**
 487 * fsl_ssi_hw_params - program the sample size
 488 *
 489 * Most of the SSI registers have been programmed in the startup function,
 490 * but the word length must be programmed here.  Unfortunately, programming
 491 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 492 * cause a problem with supporting simultaneous playback and capture.  If
 493 * the SSI is already playing a stream, then that stream may be temporarily
 494 * stopped when you start capture.
 495 *
 496 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 497 * clock master.
 498 */
 499static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
 500        struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
 501{
 502        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
 503        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 504        unsigned int sample_size =
 505                snd_pcm_format_width(params_format(hw_params));
 506        u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
 507        int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
 508
 509        /*
 510         * If we're in synchronous mode, and the SSI is already enabled,
 511         * then STCCR is already set properly.
 512         */
 513        if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
 514                return 0;
 515
 516        /*
 517         * FIXME: The documentation says that SxCCR[WL] should not be
 518         * modified while the SSI is enabled.  The only time this can
 519         * happen is if we're trying to do simultaneous playback and
 520         * capture in asynchronous mode.  Unfortunately, I have been enable
 521         * to get that to work at all on the P1022DS.  Therefore, we don't
 522         * bother to disable/enable the SSI when setting SxCCR[WL], because
 523         * the SSI will stop anyway.  Maybe one day, this will get fixed.
 524         */
 525
 526        /* In synchronous mode, the SSI uses STCCR for capture */
 527        if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
 528            ssi_private->cpu_dai_drv.symmetric_rates)
 529                write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
 530        else
 531                write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
 532
 533        return 0;
 534}
 535
 536/**
 537 * fsl_ssi_trigger: start and stop the DMA transfer.
 538 *
 539 * This function is called by ALSA to start, stop, pause, and resume the DMA
 540 * transfer of data.
 541 *
 542 * The DMA channel is in external master start and pause mode, which
 543 * means the SSI completely controls the flow of data.
 544 */
 545static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
 546                           struct snd_soc_dai *dai)
 547{
 548        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 549        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
 550        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 551        unsigned int sier_bits;
 552
 553        /*
 554         *  Enable only the interrupts and DMA requests
 555         *  that are needed for the channel. As the fiq
 556         *  is polling for this bits, we have to ensure
 557         *  that this are aligned with the preallocated
 558         *  buffers
 559         */
 560
 561        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 562                if (ssi_private->use_dma)
 563                        sier_bits = SIER_FLAGS;
 564                else
 565                        sier_bits = CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TFE0_EN;
 566        } else {
 567                if (ssi_private->use_dma)
 568                        sier_bits = SIER_FLAGS;
 569                else
 570                        sier_bits = CCSR_SSI_SIER_RIE | CCSR_SSI_SIER_RFF0_EN;
 571        }
 572
 573        switch (cmd) {
 574        case SNDRV_PCM_TRIGGER_START:
 575        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 576                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 577                        write_ssi_mask(&ssi->scr, 0,
 578                                CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
 579                else
 580                        write_ssi_mask(&ssi->scr, 0,
 581                                CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
 582                break;
 583
 584        case SNDRV_PCM_TRIGGER_STOP:
 585        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 586                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 587                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
 588                else
 589                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
 590
 591                if (!ssi_private->imx_ac97 && (read_ssi(&ssi->scr) &
 592                                        (CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
 593                        write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
 594                break;
 595
 596        default:
 597                return -EINVAL;
 598        }
 599
 600        write_ssi(sier_bits, &ssi->sier);
 601
 602        return 0;
 603}
 604
 605/**
 606 * fsl_ssi_shutdown: shutdown the SSI
 607 *
 608 * Shutdown the SSI if there are no other substreams open.
 609 */
 610static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
 611                             struct snd_soc_dai *dai)
 612{
 613        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 614        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
 615
 616        if (ssi_private->first_stream == substream)
 617                ssi_private->first_stream = ssi_private->second_stream;
 618
 619        ssi_private->second_stream = NULL;
 620}
 621
 622static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
 623{
 624        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
 625
 626        if (ssi_private->ssi_on_imx && ssi_private->use_dma) {
 627                dai->playback_dma_data = &ssi_private->dma_params_tx;
 628                dai->capture_dma_data = &ssi_private->dma_params_rx;
 629        }
 630
 631        return 0;
 632}
 633
 634static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
 635        .startup        = fsl_ssi_startup,
 636        .hw_params      = fsl_ssi_hw_params,
 637        .shutdown       = fsl_ssi_shutdown,
 638        .trigger        = fsl_ssi_trigger,
 639};
 640
 641/* Template for the CPU dai driver structure */
 642static struct snd_soc_dai_driver fsl_ssi_dai_template = {
 643        .probe = fsl_ssi_dai_probe,
 644        .playback = {
 645                /* The SSI does not support monaural audio. */
 646                .channels_min = 2,
 647                .channels_max = 2,
 648                .rates = FSLSSI_I2S_RATES,
 649                .formats = FSLSSI_I2S_FORMATS,
 650        },
 651        .capture = {
 652                .channels_min = 2,
 653                .channels_max = 2,
 654                .rates = FSLSSI_I2S_RATES,
 655                .formats = FSLSSI_I2S_FORMATS,
 656        },
 657        .ops = &fsl_ssi_dai_ops,
 658};
 659
 660static const struct snd_soc_component_driver fsl_ssi_component = {
 661        .name           = "fsl-ssi",
 662};
 663
 664/**
 665 * fsl_ssi_ac97_trigger: start and stop the AC97 receive/transmit.
 666 *
 667 * This function is called by ALSA to start, stop, pause, and resume the
 668 * transfer of data.
 669 */
 670static int fsl_ssi_ac97_trigger(struct snd_pcm_substream *substream, int cmd,
 671                           struct snd_soc_dai *dai)
 672{
 673        struct snd_soc_pcm_runtime *rtd = substream->private_data;
 674        struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(
 675                        rtd->cpu_dai);
 676        struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
 677
 678        switch (cmd) {
 679        case SNDRV_PCM_TRIGGER_START:
 680        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 681                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 682                        write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_TIE |
 683                                        CCSR_SSI_SIER_TFE0_EN);
 684                else
 685                        write_ssi_mask(&ssi->sier, 0, CCSR_SSI_SIER_RIE |
 686                                        CCSR_SSI_SIER_RFF0_EN);
 687                break;
 688
 689        case SNDRV_PCM_TRIGGER_STOP:
 690        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 691                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 692                        write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_TIE |
 693                                        CCSR_SSI_SIER_TFE0_EN, 0);
 694                else
 695                        write_ssi_mask(&ssi->sier, CCSR_SSI_SIER_RIE |
 696                                        CCSR_SSI_SIER_RFF0_EN, 0);
 697                break;
 698
 699        default:
 700                return -EINVAL;
 701        }
 702
 703        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 704                write_ssi(CCSR_SSI_SOR_TX_CLR, &ssi->sor);
 705        else
 706                write_ssi(CCSR_SSI_SOR_RX_CLR, &ssi->sor);
 707
 708        return 0;
 709}
 710
 711static const struct snd_soc_dai_ops fsl_ssi_ac97_dai_ops = {
 712        .startup        = fsl_ssi_startup,
 713        .shutdown       = fsl_ssi_shutdown,
 714        .trigger        = fsl_ssi_ac97_trigger,
 715};
 716
 717static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
 718        .ac97_control = 1,
 719        .playback = {
 720                .stream_name = "AC97 Playback",
 721                .channels_min = 2,
 722                .channels_max = 2,
 723                .rates = SNDRV_PCM_RATE_8000_48000,
 724                .formats = SNDRV_PCM_FMTBIT_S16_LE,
 725        },
 726        .capture = {
 727                .stream_name = "AC97 Capture",
 728                .channels_min = 2,
 729                .channels_max = 2,
 730                .rates = SNDRV_PCM_RATE_48000,
 731                .formats = SNDRV_PCM_FMTBIT_S16_LE,
 732        },
 733        .ops = &fsl_ssi_ac97_dai_ops,
 734};
 735
 736
 737static struct fsl_ssi_private *fsl_ac97_data;
 738
 739static void fsl_ssi_ac97_init(void)
 740{
 741        fsl_ssi_setup(fsl_ac97_data);
 742}
 743
 744static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
 745                unsigned short val)
 746{
 747        struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
 748        unsigned int lreg;
 749        unsigned int lval;
 750
 751        if (reg > 0x7f)
 752                return;
 753
 754
 755        lreg = reg <<  12;
 756        write_ssi(lreg, &ssi->sacadd);
 757
 758        lval = val << 4;
 759        write_ssi(lval , &ssi->sacdat);
 760
 761        write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
 762                        CCSR_SSI_SACNT_WR);
 763        udelay(100);
 764}
 765
 766static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
 767                unsigned short reg)
 768{
 769        struct ccsr_ssi *ssi = fsl_ac97_data->ssi;
 770
 771        unsigned short val = -1;
 772        unsigned int lreg;
 773
 774        lreg = (reg & 0x7f) <<  12;
 775        write_ssi(lreg, &ssi->sacadd);
 776        write_ssi_mask(&ssi->sacnt, CCSR_SSI_SACNT_RDWR_MASK,
 777                        CCSR_SSI_SACNT_RD);
 778
 779        udelay(100);
 780
 781        val = (read_ssi(&ssi->sacdat) >> 4) & 0xffff;
 782
 783        return val;
 784}
 785
 786static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
 787        .read           = fsl_ssi_ac97_read,
 788        .write          = fsl_ssi_ac97_write,
 789};
 790
 791/* Show the statistics of a flag only if its interrupt is enabled.  The
 792 * compiler will optimze this code to a no-op if the interrupt is not
 793 * enabled.
 794 */
 795#define SIER_SHOW(flag, name) \
 796        do { \
 797                if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
 798                        length += sprintf(buf + length, #name "=%u\n", \
 799                                ssi_private->stats.name); \
 800        } while (0)
 801
 802
 803/**
 804 * fsl_sysfs_ssi_show: display SSI statistics
 805 *
 806 * Display the statistics for the current SSI device.  To avoid confusion,
 807 * we only show those counts that are enabled.
 808 */
 809static ssize_t fsl_sysfs_ssi_show(struct device *dev,
 810        struct device_attribute *attr, char *buf)
 811{
 812        struct fsl_ssi_private *ssi_private =
 813                container_of(attr, struct fsl_ssi_private, dev_attr);
 814        ssize_t length = 0;
 815
 816        SIER_SHOW(RFRC_EN, rfrc);
 817        SIER_SHOW(TFRC_EN, tfrc);
 818        SIER_SHOW(CMDAU_EN, cmdau);
 819        SIER_SHOW(CMDDU_EN, cmddu);
 820        SIER_SHOW(RXT_EN, rxt);
 821        SIER_SHOW(RDR1_EN, rdr1);
 822        SIER_SHOW(RDR0_EN, rdr0);
 823        SIER_SHOW(TDE1_EN, tde1);
 824        SIER_SHOW(TDE0_EN, tde0);
 825        SIER_SHOW(ROE1_EN, roe1);
 826        SIER_SHOW(ROE0_EN, roe0);
 827        SIER_SHOW(TUE1_EN, tue1);
 828        SIER_SHOW(TUE0_EN, tue0);
 829        SIER_SHOW(TFS_EN, tfs);
 830        SIER_SHOW(RFS_EN, rfs);
 831        SIER_SHOW(TLS_EN, tls);
 832        SIER_SHOW(RLS_EN, rls);
 833        SIER_SHOW(RFF1_EN, rff1);
 834        SIER_SHOW(RFF0_EN, rff0);
 835        SIER_SHOW(TFE1_EN, tfe1);
 836        SIER_SHOW(TFE0_EN, tfe0);
 837
 838        return length;
 839}
 840
 841/**
 842 * Make every character in a string lower-case
 843 */
 844static void make_lowercase(char *s)
 845{
 846        char *p = s;
 847        char c;
 848
 849        while ((c = *p)) {
 850                if ((c >= 'A') && (c <= 'Z'))
 851                        *p = c + ('a' - 'A');
 852                p++;
 853        }
 854}
 855
 856static int fsl_ssi_probe(struct platform_device *pdev)
 857{
 858        struct fsl_ssi_private *ssi_private;
 859        int ret = 0;
 860        struct device_attribute *dev_attr = NULL;
 861        struct device_node *np = pdev->dev.of_node;
 862        const char *p, *sprop;
 863        const uint32_t *iprop;
 864        struct resource res;
 865        char name[64];
 866        bool shared;
 867        bool ac97 = false;
 868
 869        /* SSIs that are not connected on the board should have a
 870         *      status = "disabled"
 871         * property in their device tree nodes.
 872         */
 873        if (!of_device_is_available(np))
 874                return -ENODEV;
 875
 876        /* We only support the SSI in "I2S Slave" mode */
 877        sprop = of_get_property(np, "fsl,mode", NULL);
 878        if (!sprop) {
 879                dev_err(&pdev->dev, "fsl,mode property is necessary\n");
 880                return -EINVAL;
 881        }
 882        if (!strcmp(sprop, "ac97-slave")) {
 883                ac97 = true;
 884        } else if (strcmp(sprop, "i2s-slave")) {
 885                dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
 886                return -ENODEV;
 887        }
 888
 889        /* The DAI name is the last part of the full name of the node. */
 890        p = strrchr(np->full_name, '/') + 1;
 891        ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private) + strlen(p),
 892                              GFP_KERNEL);
 893        if (!ssi_private) {
 894                dev_err(&pdev->dev, "could not allocate DAI object\n");
 895                return -ENOMEM;
 896        }
 897
 898        strcpy(ssi_private->name, p);
 899
 900        ssi_private->use_dma = !of_property_read_bool(np,
 901                        "fsl,fiq-stream-filter");
 902
 903        if (ac97) {
 904                memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
 905                                sizeof(fsl_ssi_ac97_dai));
 906
 907                fsl_ac97_data = ssi_private;
 908                ssi_private->imx_ac97 = true;
 909
 910                snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
 911        } else {
 912                /* Initialize this copy of the CPU DAI driver structure */
 913                memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
 914                       sizeof(fsl_ssi_dai_template));
 915        }
 916        ssi_private->cpu_dai_drv.name = ssi_private->name;
 917
 918        /* Get the addresses and IRQ */
 919        ret = of_address_to_resource(np, 0, &res);
 920        if (ret) {
 921                dev_err(&pdev->dev, "could not determine device resources\n");
 922                return ret;
 923        }
 924        ssi_private->ssi = of_iomap(np, 0);
 925        if (!ssi_private->ssi) {
 926                dev_err(&pdev->dev, "could not map device resources\n");
 927                return -ENOMEM;
 928        }
 929        ssi_private->ssi_phys = res.start;
 930
 931        ssi_private->irq = irq_of_parse_and_map(np, 0);
 932        if (!ssi_private->irq) {
 933                dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
 934                return -ENXIO;
 935        }
 936
 937        /* Are the RX and the TX clocks locked? */
 938        if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
 939                ssi_private->cpu_dai_drv.symmetric_rates = 1;
 940
 941        /* Determine the FIFO depth. */
 942        iprop = of_get_property(np, "fsl,fifo-depth", NULL);
 943        if (iprop)
 944                ssi_private->fifo_depth = be32_to_cpup(iprop);
 945        else
 946                /* Older 8610 DTs didn't have the fifo-depth property */
 947                ssi_private->fifo_depth = 8;
 948
 949        if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
 950                u32 dma_events[2];
 951                ssi_private->ssi_on_imx = true;
 952
 953                ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
 954                if (IS_ERR(ssi_private->clk)) {
 955                        ret = PTR_ERR(ssi_private->clk);
 956                        dev_err(&pdev->dev, "could not get clock: %d\n", ret);
 957                        goto error_irqmap;
 958                }
 959                ret = clk_prepare_enable(ssi_private->clk);
 960                if (ret) {
 961                        dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n",
 962                                ret);
 963                        goto error_irqmap;
 964                }
 965
 966                /*
 967                 * We have burstsize be "fifo_depth - 2" to match the SSI
 968                 * watermark setting in fsl_ssi_startup().
 969                 */
 970                ssi_private->dma_params_tx.maxburst =
 971                        ssi_private->fifo_depth - 2;
 972                ssi_private->dma_params_rx.maxburst =
 973                        ssi_private->fifo_depth - 2;
 974                ssi_private->dma_params_tx.addr =
 975                        ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
 976                ssi_private->dma_params_rx.addr =
 977                        ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
 978                ssi_private->dma_params_tx.filter_data =
 979                        &ssi_private->filter_data_tx;
 980                ssi_private->dma_params_rx.filter_data =
 981                        &ssi_private->filter_data_rx;
 982                if (!of_property_read_bool(pdev->dev.of_node, "dmas") &&
 983                                ssi_private->use_dma) {
 984                        /*
 985                         * FIXME: This is a temporary solution until all
 986                         * necessary dma drivers support the generic dma
 987                         * bindings.
 988                         */
 989                        ret = of_property_read_u32_array(pdev->dev.of_node,
 990                                        "fsl,ssi-dma-events", dma_events, 2);
 991                        if (ret && ssi_private->use_dma) {
 992                                dev_err(&pdev->dev, "could not get dma events but fsl-ssi is configured to use DMA\n");
 993                                goto error_clk;
 994                        }
 995                }
 996
 997                shared = of_device_is_compatible(of_get_parent(np),
 998                            "fsl,spba-bus");
 999
1000                imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
1001                        dma_events[0], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1002                imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
1003                        dma_events[1], shared ? IMX_DMATYPE_SSI_SP : IMX_DMATYPE_SSI);
1004        } else if (ssi_private->use_dma) {
1005                /* The 'name' should not have any slashes in it. */
1006                ret = devm_request_irq(&pdev->dev, ssi_private->irq,
1007                                        fsl_ssi_isr, 0, ssi_private->name,
1008                                        ssi_private);
1009                if (ret < 0) {
1010                        dev_err(&pdev->dev, "could not claim irq %u\n",
1011                                        ssi_private->irq);
1012                        goto error_irqmap;
1013                }
1014        }
1015
1016        /* Initialize the the device_attribute structure */
1017        dev_attr = &ssi_private->dev_attr;
1018        sysfs_attr_init(&dev_attr->attr);
1019        dev_attr->attr.name = "statistics";
1020        dev_attr->attr.mode = S_IRUGO;
1021        dev_attr->show = fsl_sysfs_ssi_show;
1022
1023        ret = device_create_file(&pdev->dev, dev_attr);
1024        if (ret) {
1025                dev_err(&pdev->dev, "could not create sysfs %s file\n",
1026                        ssi_private->dev_attr.attr.name);
1027                goto error_clk;
1028        }
1029
1030        /* Register with ASoC */
1031        dev_set_drvdata(&pdev->dev, ssi_private);
1032
1033        ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1034                                         &ssi_private->cpu_dai_drv, 1);
1035        if (ret) {
1036                dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1037                goto error_dev;
1038        }
1039
1040        if (ssi_private->ssi_on_imx) {
1041                if (!ssi_private->use_dma) {
1042
1043                        /*
1044                         * Some boards use an incompatible codec. To get it
1045                         * working, we are using imx-fiq-pcm-audio, that
1046                         * can handle those codecs. DMA is not possible in this
1047                         * situation.
1048                         */
1049
1050                        ssi_private->fiq_params.irq = ssi_private->irq;
1051                        ssi_private->fiq_params.base = ssi_private->ssi;
1052                        ssi_private->fiq_params.dma_params_rx =
1053                                &ssi_private->dma_params_rx;
1054                        ssi_private->fiq_params.dma_params_tx =
1055                                &ssi_private->dma_params_tx;
1056
1057                        ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1058                        if (ret)
1059                                goto error_dev;
1060                } else {
1061                        ret = imx_pcm_dma_init(pdev);
1062                        if (ret)
1063                                goto error_dev;
1064                }
1065        }
1066
1067        /*
1068         * If codec-handle property is missing from SSI node, we assume
1069         * that the machine driver uses new binding which does not require
1070         * SSI driver to trigger machine driver's probe.
1071         */
1072        if (!of_get_property(np, "codec-handle", NULL)) {
1073                ssi_private->new_binding = true;
1074                goto done;
1075        }
1076
1077        /* Trigger the machine driver's probe function.  The platform driver
1078         * name of the machine driver is taken from /compatible property of the
1079         * device tree.  We also pass the address of the CPU DAI driver
1080         * structure.
1081         */
1082        sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1083        /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1084        p = strrchr(sprop, ',');
1085        if (p)
1086                sprop = p + 1;
1087        snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1088        make_lowercase(name);
1089
1090        ssi_private->pdev =
1091                platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
1092        if (IS_ERR(ssi_private->pdev)) {
1093                ret = PTR_ERR(ssi_private->pdev);
1094                dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1095                goto error_dai;
1096        }
1097
1098done:
1099        if (ssi_private->imx_ac97)
1100                fsl_ssi_ac97_init();
1101
1102        return 0;
1103
1104error_dai:
1105        if (ssi_private->ssi_on_imx)
1106                imx_pcm_dma_exit(pdev);
1107        snd_soc_unregister_component(&pdev->dev);
1108
1109error_dev:
1110        device_remove_file(&pdev->dev, dev_attr);
1111
1112error_clk:
1113        if (ssi_private->ssi_on_imx)
1114                clk_disable_unprepare(ssi_private->clk);
1115
1116error_irqmap:
1117        irq_dispose_mapping(ssi_private->irq);
1118
1119        return ret;
1120}
1121
1122static int fsl_ssi_remove(struct platform_device *pdev)
1123{
1124        struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
1125
1126        if (!ssi_private->new_binding)
1127                platform_device_unregister(ssi_private->pdev);
1128        if (ssi_private->ssi_on_imx)
1129                imx_pcm_dma_exit(pdev);
1130        snd_soc_unregister_component(&pdev->dev);
1131        device_remove_file(&pdev->dev, &ssi_private->dev_attr);
1132        if (ssi_private->ssi_on_imx)
1133                clk_disable_unprepare(ssi_private->clk);
1134        irq_dispose_mapping(ssi_private->irq);
1135
1136        return 0;
1137}
1138
1139static const struct of_device_id fsl_ssi_ids[] = {
1140        { .compatible = "fsl,mpc8610-ssi", },
1141        { .compatible = "fsl,imx21-ssi", },
1142        {}
1143};
1144MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
1145
1146static struct platform_driver fsl_ssi_driver = {
1147        .driver = {
1148                .name = "fsl-ssi-dai",
1149                .owner = THIS_MODULE,
1150                .of_match_table = fsl_ssi_ids,
1151        },
1152        .probe = fsl_ssi_probe,
1153        .remove = fsl_ssi_remove,
1154};
1155
1156module_platform_driver(fsl_ssi_driver);
1157
1158MODULE_ALIAS("platform:fsl-ssi-dai");
1159MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1160MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1161MODULE_LICENSE("GPL v2");
1162