linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/smp.c
   3 *
   4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/cache.h>
  17#include <linux/profile.h>
  18#include <linux/errno.h>
  19#include <linux/mm.h>
  20#include <linux/err.h>
  21#include <linux/cpu.h>
  22#include <linux/seq_file.h>
  23#include <linux/irq.h>
  24#include <linux/percpu.h>
  25#include <linux/clockchips.h>
  26#include <linux/completion.h>
  27#include <linux/cpufreq.h>
  28#include <linux/irq_work.h>
  29
  30#include <linux/atomic.h>
  31#include <asm/smp.h>
  32#include <asm/cacheflush.h>
  33#include <asm/cpu.h>
  34#include <asm/cputype.h>
  35#include <asm/exception.h>
  36#include <asm/idmap.h>
  37#include <asm/topology.h>
  38#include <asm/mmu_context.h>
  39#include <asm/pgtable.h>
  40#include <asm/pgalloc.h>
  41#include <asm/processor.h>
  42#include <asm/sections.h>
  43#include <asm/tlbflush.h>
  44#include <asm/ptrace.h>
  45#include <asm/smp_plat.h>
  46#include <asm/virt.h>
  47#include <asm/mach/arch.h>
  48#include <asm/mpu.h>
  49
  50/*
  51 * as from 2.5, kernels no longer have an init_tasks structure
  52 * so we need some other way of telling a new secondary core
  53 * where to place its SVC stack
  54 */
  55struct secondary_data secondary_data;
  56
  57/*
  58 * control for which core is the next to come out of the secondary
  59 * boot "holding pen"
  60 */
  61volatile int pen_release = -1;
  62
  63enum ipi_msg_type {
  64        IPI_WAKEUP,
  65        IPI_TIMER,
  66        IPI_RESCHEDULE,
  67        IPI_CALL_FUNC,
  68        IPI_CALL_FUNC_SINGLE,
  69        IPI_CPU_STOP,
  70        IPI_IRQ_WORK,
  71        IPI_COMPLETION,
  72};
  73
  74static DECLARE_COMPLETION(cpu_running);
  75
  76static struct smp_operations smp_ops;
  77
  78void __init smp_set_ops(struct smp_operations *ops)
  79{
  80        if (ops)
  81                smp_ops = *ops;
  82};
  83
  84static unsigned long get_arch_pgd(pgd_t *pgd)
  85{
  86        phys_addr_t pgdir = virt_to_idmap(pgd);
  87        BUG_ON(pgdir & ARCH_PGD_MASK);
  88        return pgdir >> ARCH_PGD_SHIFT;
  89}
  90
  91int __cpu_up(unsigned int cpu, struct task_struct *idle)
  92{
  93        int ret;
  94
  95        /*
  96         * We need to tell the secondary core where to find
  97         * its stack and the page tables.
  98         */
  99        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 100#ifdef CONFIG_ARM_MPU
 101        secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
 102#endif
 103
 104#ifdef CONFIG_MMU
 105        secondary_data.pgdir = get_arch_pgd(idmap_pgd);
 106        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 107#endif
 108        sync_cache_w(&secondary_data);
 109
 110        /*
 111         * Now bring the CPU into our world.
 112         */
 113        ret = boot_secondary(cpu, idle);
 114        if (ret == 0) {
 115                /*
 116                 * CPU was successfully started, wait for it
 117                 * to come online or time out.
 118                 */
 119                wait_for_completion_timeout(&cpu_running,
 120                                                 msecs_to_jiffies(1000));
 121
 122                if (!cpu_online(cpu)) {
 123                        pr_crit("CPU%u: failed to come online\n", cpu);
 124                        ret = -EIO;
 125                }
 126        } else {
 127                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 128        }
 129
 130
 131        memset(&secondary_data, 0, sizeof(secondary_data));
 132        return ret;
 133}
 134
 135/* platform specific SMP operations */
 136void __init smp_init_cpus(void)
 137{
 138        if (smp_ops.smp_init_cpus)
 139                smp_ops.smp_init_cpus();
 140}
 141
 142int boot_secondary(unsigned int cpu, struct task_struct *idle)
 143{
 144        if (smp_ops.smp_boot_secondary)
 145                return smp_ops.smp_boot_secondary(cpu, idle);
 146        return -ENOSYS;
 147}
 148
 149int platform_can_cpu_hotplug(void)
 150{
 151#ifdef CONFIG_HOTPLUG_CPU
 152        if (smp_ops.cpu_kill)
 153                return 1;
 154#endif
 155
 156        return 0;
 157}
 158
 159#ifdef CONFIG_HOTPLUG_CPU
 160static int platform_cpu_kill(unsigned int cpu)
 161{
 162        if (smp_ops.cpu_kill)
 163                return smp_ops.cpu_kill(cpu);
 164        return 1;
 165}
 166
 167static int platform_cpu_disable(unsigned int cpu)
 168{
 169        if (smp_ops.cpu_disable)
 170                return smp_ops.cpu_disable(cpu);
 171
 172        /*
 173         * By default, allow disabling all CPUs except the first one,
 174         * since this is special on a lot of platforms, e.g. because
 175         * of clock tick interrupts.
 176         */
 177        return cpu == 0 ? -EPERM : 0;
 178}
 179/*
 180 * __cpu_disable runs on the processor to be shutdown.
 181 */
 182int __cpu_disable(void)
 183{
 184        unsigned int cpu = smp_processor_id();
 185        int ret;
 186
 187        ret = platform_cpu_disable(cpu);
 188        if (ret)
 189                return ret;
 190
 191        /*
 192         * Take this CPU offline.  Once we clear this, we can't return,
 193         * and we must not schedule until we're ready to give up the cpu.
 194         */
 195        set_cpu_online(cpu, false);
 196
 197        /*
 198         * OK - migrate IRQs away from this CPU
 199         */
 200        migrate_irqs();
 201
 202        /*
 203         * Flush user cache and TLB mappings, and then remove this CPU
 204         * from the vm mask set of all processes.
 205         *
 206         * Caches are flushed to the Level of Unification Inner Shareable
 207         * to write-back dirty lines to unified caches shared by all CPUs.
 208         */
 209        flush_cache_louis();
 210        local_flush_tlb_all();
 211
 212        clear_tasks_mm_cpumask(cpu);
 213
 214        return 0;
 215}
 216
 217static DECLARE_COMPLETION(cpu_died);
 218
 219/*
 220 * called on the thread which is asking for a CPU to be shutdown -
 221 * waits until shutdown has completed, or it is timed out.
 222 */
 223void __cpu_die(unsigned int cpu)
 224{
 225        if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 226                pr_err("CPU%u: cpu didn't die\n", cpu);
 227                return;
 228        }
 229        printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
 230
 231        /*
 232         * platform_cpu_kill() is generally expected to do the powering off
 233         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 234         * be done by the CPU which is dying in preference to supporting
 235         * this call, but that means there is _no_ synchronisation between
 236         * the requesting CPU and the dying CPU actually losing power.
 237         */
 238        if (!platform_cpu_kill(cpu))
 239                printk("CPU%u: unable to kill\n", cpu);
 240}
 241
 242/*
 243 * Called from the idle thread for the CPU which has been shutdown.
 244 *
 245 * Note that we disable IRQs here, but do not re-enable them
 246 * before returning to the caller. This is also the behaviour
 247 * of the other hotplug-cpu capable cores, so presumably coming
 248 * out of idle fixes this.
 249 */
 250void __ref cpu_die(void)
 251{
 252        unsigned int cpu = smp_processor_id();
 253
 254        idle_task_exit();
 255
 256        local_irq_disable();
 257
 258        /*
 259         * Flush the data out of the L1 cache for this CPU.  This must be
 260         * before the completion to ensure that data is safely written out
 261         * before platform_cpu_kill() gets called - which may disable
 262         * *this* CPU and power down its cache.
 263         */
 264        flush_cache_louis();
 265
 266        /*
 267         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 268         * this returns, power and/or clocks can be removed at any point
 269         * from this CPU and its cache by platform_cpu_kill().
 270         */
 271        complete(&cpu_died);
 272
 273        /*
 274         * Ensure that the cache lines associated with that completion are
 275         * written out.  This covers the case where _this_ CPU is doing the
 276         * powering down, to ensure that the completion is visible to the
 277         * CPU waiting for this one.
 278         */
 279        flush_cache_louis();
 280
 281        /*
 282         * The actual CPU shutdown procedure is at least platform (if not
 283         * CPU) specific.  This may remove power, or it may simply spin.
 284         *
 285         * Platforms are generally expected *NOT* to return from this call,
 286         * although there are some which do because they have no way to
 287         * power down the CPU.  These platforms are the _only_ reason we
 288         * have a return path which uses the fragment of assembly below.
 289         *
 290         * The return path should not be used for platforms which can
 291         * power off the CPU.
 292         */
 293        if (smp_ops.cpu_die)
 294                smp_ops.cpu_die(cpu);
 295
 296        pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
 297                cpu);
 298
 299        /*
 300         * Do not return to the idle loop - jump back to the secondary
 301         * cpu initialisation.  There's some initialisation which needs
 302         * to be repeated to undo the effects of taking the CPU offline.
 303         */
 304        __asm__("mov    sp, %0\n"
 305        "       mov     fp, #0\n"
 306        "       b       secondary_start_kernel"
 307                :
 308                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 309}
 310#endif /* CONFIG_HOTPLUG_CPU */
 311
 312/*
 313 * Called by both boot and secondaries to move global data into
 314 * per-processor storage.
 315 */
 316static void smp_store_cpu_info(unsigned int cpuid)
 317{
 318        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 319
 320        cpu_info->loops_per_jiffy = loops_per_jiffy;
 321        cpu_info->cpuid = read_cpuid_id();
 322
 323        store_cpu_topology(cpuid);
 324}
 325
 326/*
 327 * This is the secondary CPU boot entry.  We're using this CPUs
 328 * idle thread stack, but a set of temporary page tables.
 329 */
 330asmlinkage void secondary_start_kernel(void)
 331{
 332        struct mm_struct *mm = &init_mm;
 333        unsigned int cpu;
 334
 335        /*
 336         * The identity mapping is uncached (strongly ordered), so
 337         * switch away from it before attempting any exclusive accesses.
 338         */
 339        cpu_switch_mm(mm->pgd, mm);
 340        local_flush_bp_all();
 341        enter_lazy_tlb(mm, current);
 342        local_flush_tlb_all();
 343
 344        /*
 345         * All kernel threads share the same mm context; grab a
 346         * reference and switch to it.
 347         */
 348        cpu = smp_processor_id();
 349        atomic_inc(&mm->mm_count);
 350        current->active_mm = mm;
 351        cpumask_set_cpu(cpu, mm_cpumask(mm));
 352
 353        cpu_init();
 354
 355        printk("CPU%u: Booted secondary processor\n", cpu);
 356
 357        preempt_disable();
 358        trace_hardirqs_off();
 359
 360        /*
 361         * Give the platform a chance to do its own initialisation.
 362         */
 363        if (smp_ops.smp_secondary_init)
 364                smp_ops.smp_secondary_init(cpu);
 365
 366        notify_cpu_starting(cpu);
 367
 368        calibrate_delay();
 369
 370        smp_store_cpu_info(cpu);
 371
 372        /*
 373         * OK, now it's safe to let the boot CPU continue.  Wait for
 374         * the CPU migration code to notice that the CPU is online
 375         * before we continue - which happens after __cpu_up returns.
 376         */
 377        set_cpu_online(cpu, true);
 378        complete(&cpu_running);
 379
 380        local_irq_enable();
 381        local_fiq_enable();
 382
 383        /*
 384         * OK, it's off to the idle thread for us
 385         */
 386        cpu_startup_entry(CPUHP_ONLINE);
 387}
 388
 389void __init smp_cpus_done(unsigned int max_cpus)
 390{
 391        printk(KERN_INFO "SMP: Total of %d processors activated.\n",
 392               num_online_cpus());
 393
 394        hyp_mode_check();
 395}
 396
 397void __init smp_prepare_boot_cpu(void)
 398{
 399        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 400}
 401
 402void __init smp_prepare_cpus(unsigned int max_cpus)
 403{
 404        unsigned int ncores = num_possible_cpus();
 405
 406        init_cpu_topology();
 407
 408        smp_store_cpu_info(smp_processor_id());
 409
 410        /*
 411         * are we trying to boot more cores than exist?
 412         */
 413        if (max_cpus > ncores)
 414                max_cpus = ncores;
 415        if (ncores > 1 && max_cpus) {
 416                /*
 417                 * Initialise the present map, which describes the set of CPUs
 418                 * actually populated at the present time. A platform should
 419                 * re-initialize the map in the platforms smp_prepare_cpus()
 420                 * if present != possible (e.g. physical hotplug).
 421                 */
 422                init_cpu_present(cpu_possible_mask);
 423
 424                /*
 425                 * Initialise the SCU if there are more than one CPU
 426                 * and let them know where to start.
 427                 */
 428                if (smp_ops.smp_prepare_cpus)
 429                        smp_ops.smp_prepare_cpus(max_cpus);
 430        }
 431}
 432
 433static void (*smp_cross_call)(const struct cpumask *, unsigned int);
 434
 435void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 436{
 437        if (!smp_cross_call)
 438                smp_cross_call = fn;
 439}
 440
 441void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 442{
 443        smp_cross_call(mask, IPI_CALL_FUNC);
 444}
 445
 446void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 447{
 448        smp_cross_call(mask, IPI_WAKEUP);
 449}
 450
 451void arch_send_call_function_single_ipi(int cpu)
 452{
 453        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
 454}
 455
 456#ifdef CONFIG_IRQ_WORK
 457void arch_irq_work_raise(void)
 458{
 459        if (is_smp())
 460                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 461}
 462#endif
 463
 464static const char *ipi_types[NR_IPI] = {
 465#define S(x,s)  [x] = s
 466        S(IPI_WAKEUP, "CPU wakeup interrupts"),
 467        S(IPI_TIMER, "Timer broadcast interrupts"),
 468        S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 469        S(IPI_CALL_FUNC, "Function call interrupts"),
 470        S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
 471        S(IPI_CPU_STOP, "CPU stop interrupts"),
 472        S(IPI_IRQ_WORK, "IRQ work interrupts"),
 473        S(IPI_COMPLETION, "completion interrupts"),
 474};
 475
 476void show_ipi_list(struct seq_file *p, int prec)
 477{
 478        unsigned int cpu, i;
 479
 480        for (i = 0; i < NR_IPI; i++) {
 481                seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 482
 483                for_each_online_cpu(cpu)
 484                        seq_printf(p, "%10u ",
 485                                   __get_irq_stat(cpu, ipi_irqs[i]));
 486
 487                seq_printf(p, " %s\n", ipi_types[i]);
 488        }
 489}
 490
 491u64 smp_irq_stat_cpu(unsigned int cpu)
 492{
 493        u64 sum = 0;
 494        int i;
 495
 496        for (i = 0; i < NR_IPI; i++)
 497                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 498
 499        return sum;
 500}
 501
 502#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 503void tick_broadcast(const struct cpumask *mask)
 504{
 505        smp_cross_call(mask, IPI_TIMER);
 506}
 507#endif
 508
 509static DEFINE_RAW_SPINLOCK(stop_lock);
 510
 511/*
 512 * ipi_cpu_stop - handle IPI from smp_send_stop()
 513 */
 514static void ipi_cpu_stop(unsigned int cpu)
 515{
 516        if (system_state == SYSTEM_BOOTING ||
 517            system_state == SYSTEM_RUNNING) {
 518                raw_spin_lock(&stop_lock);
 519                printk(KERN_CRIT "CPU%u: stopping\n", cpu);
 520                dump_stack();
 521                raw_spin_unlock(&stop_lock);
 522        }
 523
 524        set_cpu_online(cpu, false);
 525
 526        local_fiq_disable();
 527        local_irq_disable();
 528
 529        while (1)
 530                cpu_relax();
 531}
 532
 533static DEFINE_PER_CPU(struct completion *, cpu_completion);
 534
 535int register_ipi_completion(struct completion *completion, int cpu)
 536{
 537        per_cpu(cpu_completion, cpu) = completion;
 538        return IPI_COMPLETION;
 539}
 540
 541static void ipi_complete(unsigned int cpu)
 542{
 543        complete(per_cpu(cpu_completion, cpu));
 544}
 545
 546/*
 547 * Main handler for inter-processor interrupts
 548 */
 549asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 550{
 551        handle_IPI(ipinr, regs);
 552}
 553
 554void handle_IPI(int ipinr, struct pt_regs *regs)
 555{
 556        unsigned int cpu = smp_processor_id();
 557        struct pt_regs *old_regs = set_irq_regs(regs);
 558
 559        if (ipinr < NR_IPI)
 560                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 561
 562        switch (ipinr) {
 563        case IPI_WAKEUP:
 564                break;
 565
 566#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 567        case IPI_TIMER:
 568                irq_enter();
 569                tick_receive_broadcast();
 570                irq_exit();
 571                break;
 572#endif
 573
 574        case IPI_RESCHEDULE:
 575                scheduler_ipi();
 576                break;
 577
 578        case IPI_CALL_FUNC:
 579                irq_enter();
 580                generic_smp_call_function_interrupt();
 581                irq_exit();
 582                break;
 583
 584        case IPI_CALL_FUNC_SINGLE:
 585                irq_enter();
 586                generic_smp_call_function_single_interrupt();
 587                irq_exit();
 588                break;
 589
 590        case IPI_CPU_STOP:
 591                irq_enter();
 592                ipi_cpu_stop(cpu);
 593                irq_exit();
 594                break;
 595
 596#ifdef CONFIG_IRQ_WORK
 597        case IPI_IRQ_WORK:
 598                irq_enter();
 599                irq_work_run();
 600                irq_exit();
 601                break;
 602#endif
 603
 604        case IPI_COMPLETION:
 605                irq_enter();
 606                ipi_complete(cpu);
 607                irq_exit();
 608                break;
 609
 610        default:
 611                printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
 612                       cpu, ipinr);
 613                break;
 614        }
 615        set_irq_regs(old_regs);
 616}
 617
 618void smp_send_reschedule(int cpu)
 619{
 620        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 621}
 622
 623void smp_send_stop(void)
 624{
 625        unsigned long timeout;
 626        struct cpumask mask;
 627
 628        cpumask_copy(&mask, cpu_online_mask);
 629        cpumask_clear_cpu(smp_processor_id(), &mask);
 630        if (!cpumask_empty(&mask))
 631                smp_cross_call(&mask, IPI_CPU_STOP);
 632
 633        /* Wait up to one second for other CPUs to stop */
 634        timeout = USEC_PER_SEC;
 635        while (num_online_cpus() > 1 && timeout--)
 636                udelay(1);
 637
 638        if (num_online_cpus() > 1)
 639                pr_warning("SMP: failed to stop secondary CPUs\n");
 640}
 641
 642/*
 643 * not supported here
 644 */
 645int setup_profiling_timer(unsigned int multiplier)
 646{
 647        return -EINVAL;
 648}
 649
 650#ifdef CONFIG_CPU_FREQ
 651
 652static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 653static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 654static unsigned long global_l_p_j_ref;
 655static unsigned long global_l_p_j_ref_freq;
 656
 657static int cpufreq_callback(struct notifier_block *nb,
 658                                        unsigned long val, void *data)
 659{
 660        struct cpufreq_freqs *freq = data;
 661        int cpu = freq->cpu;
 662
 663        if (freq->flags & CPUFREQ_CONST_LOOPS)
 664                return NOTIFY_OK;
 665
 666        if (!per_cpu(l_p_j_ref, cpu)) {
 667                per_cpu(l_p_j_ref, cpu) =
 668                        per_cpu(cpu_data, cpu).loops_per_jiffy;
 669                per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 670                if (!global_l_p_j_ref) {
 671                        global_l_p_j_ref = loops_per_jiffy;
 672                        global_l_p_j_ref_freq = freq->old;
 673                }
 674        }
 675
 676        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 677            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
 678            (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
 679                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 680                                                global_l_p_j_ref_freq,
 681                                                freq->new);
 682                per_cpu(cpu_data, cpu).loops_per_jiffy =
 683                        cpufreq_scale(per_cpu(l_p_j_ref, cpu),
 684                                        per_cpu(l_p_j_ref_freq, cpu),
 685                                        freq->new);
 686        }
 687        return NOTIFY_OK;
 688}
 689
 690static struct notifier_block cpufreq_notifier = {
 691        .notifier_call  = cpufreq_callback,
 692};
 693
 694static int __init register_cpufreq_notifier(void)
 695{
 696        return cpufreq_register_notifier(&cpufreq_notifier,
 697                                                CPUFREQ_TRANSITION_NOTIFIER);
 698}
 699core_initcall(register_cpufreq_notifier);
 700
 701#endif
 702