linux/arch/arm/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/nommu.c
   3 *
   4 * ARM uCLinux supporting functions.
   5 */
   6#include <linux/module.h>
   7#include <linux/mm.h>
   8#include <linux/pagemap.h>
   9#include <linux/io.h>
  10#include <linux/memblock.h>
  11#include <linux/kernel.h>
  12
  13#include <asm/cacheflush.h>
  14#include <asm/sections.h>
  15#include <asm/page.h>
  16#include <asm/setup.h>
  17#include <asm/traps.h>
  18#include <asm/mach/arch.h>
  19#include <asm/cputype.h>
  20#include <asm/mpu.h>
  21#include <asm/procinfo.h>
  22
  23#include "mm.h"
  24
  25#ifdef CONFIG_ARM_MPU
  26struct mpu_rgn_info mpu_rgn_info;
  27
  28/* Region number */
  29static void rgnr_write(u32 v)
  30{
  31        asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
  32}
  33
  34/* Data-side / unified region attributes */
  35
  36/* Region access control register */
  37static void dracr_write(u32 v)
  38{
  39        asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
  40}
  41
  42/* Region size register */
  43static void drsr_write(u32 v)
  44{
  45        asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
  46}
  47
  48/* Region base address register */
  49static void drbar_write(u32 v)
  50{
  51        asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
  52}
  53
  54static u32 drbar_read(void)
  55{
  56        u32 v;
  57        asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
  58        return v;
  59}
  60/* Optional instruction-side region attributes */
  61
  62/* I-side Region access control register */
  63static void iracr_write(u32 v)
  64{
  65        asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
  66}
  67
  68/* I-side Region size register */
  69static void irsr_write(u32 v)
  70{
  71        asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
  72}
  73
  74/* I-side Region base address register */
  75static void irbar_write(u32 v)
  76{
  77        asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
  78}
  79
  80static unsigned long irbar_read(void)
  81{
  82        unsigned long v;
  83        asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
  84        return v;
  85}
  86
  87/* MPU initialisation functions */
  88void __init sanity_check_meminfo_mpu(void)
  89{
  90        int i;
  91        struct membank *bank = meminfo.bank;
  92        phys_addr_t phys_offset = PHYS_OFFSET;
  93        phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
  94
  95        /* Initially only use memory continuous from PHYS_OFFSET */
  96        if (bank_phys_start(&bank[0]) != phys_offset)
  97                panic("First memory bank must be contiguous from PHYS_OFFSET");
  98
  99        /* Banks have already been sorted by start address */
 100        for (i = 1; i < meminfo.nr_banks; i++) {
 101                if (bank[i].start <= bank_phys_end(&bank[0]) &&
 102                    bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
 103                        bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
 104                } else {
 105                        pr_notice("Ignoring RAM after 0x%.8lx. "
 106                        "First non-contiguous (ignored) bank start: 0x%.8lx\n",
 107                                (unsigned long)bank_phys_end(&bank[0]),
 108                                (unsigned long)bank_phys_start(&bank[i]));
 109                        break;
 110                }
 111        }
 112        /* All contiguous banks are now merged in to the first bank */
 113        meminfo.nr_banks = 1;
 114        specified_mem_size = bank[0].size;
 115
 116        /*
 117         * MPU has curious alignment requirements: Size must be power of 2, and
 118         * region start must be aligned to the region size
 119         */
 120        if (phys_offset != 0)
 121                pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
 122
 123        /*
 124         * Maximum aligned region might overflow phys_addr_t if phys_offset is
 125         * 0. Hence we keep everything below 4G until we take the smaller of
 126         * the aligned_region_size and rounded_mem_size, one of which is
 127         * guaranteed to be smaller than the maximum physical address.
 128         */
 129        aligned_region_size = (phys_offset - 1) ^ (phys_offset);
 130        /* Find the max power-of-two sized region that fits inside our bank */
 131        rounded_mem_size = (1 <<  __fls(bank[0].size)) - 1;
 132
 133        /* The actual region size is the smaller of the two */
 134        aligned_region_size = aligned_region_size < rounded_mem_size
 135                                ? aligned_region_size + 1
 136                                : rounded_mem_size + 1;
 137
 138        if (aligned_region_size != specified_mem_size)
 139                pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
 140                                (unsigned long)specified_mem_size,
 141                                (unsigned long)aligned_region_size);
 142
 143        meminfo.bank[0].size = aligned_region_size;
 144        pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
 145                (unsigned long)phys_offset,
 146                (unsigned long)aligned_region_size,
 147                (unsigned long)bank_phys_end(&bank[0]));
 148
 149}
 150
 151static int mpu_present(void)
 152{
 153        return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
 154}
 155
 156static int mpu_max_regions(void)
 157{
 158        /*
 159         * We don't support a different number of I/D side regions so if we
 160         * have separate instruction and data memory maps then return
 161         * whichever side has a smaller number of supported regions.
 162         */
 163        u32 dregions, iregions, mpuir;
 164        mpuir = read_cpuid(CPUID_MPUIR);
 165
 166        dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
 167
 168        /* Check for separate d-side and i-side memory maps */
 169        if (mpuir & MPUIR_nU)
 170                iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
 171
 172        /* Use the smallest of the two maxima */
 173        return min(dregions, iregions);
 174}
 175
 176static int mpu_iside_independent(void)
 177{
 178        /* MPUIR.nU specifies whether there is *not* a unified memory map */
 179        return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
 180}
 181
 182static int mpu_min_region_order(void)
 183{
 184        u32 drbar_result, irbar_result;
 185        /* We've kept a region free for this probing */
 186        rgnr_write(MPU_PROBE_REGION);
 187        isb();
 188        /*
 189         * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
 190         * region order
 191        */
 192        drbar_write(0xFFFFFFFC);
 193        drbar_result = irbar_result = drbar_read();
 194        drbar_write(0x0);
 195        /* If the MPU is non-unified, we use the larger of the two minima*/
 196        if (mpu_iside_independent()) {
 197                irbar_write(0xFFFFFFFC);
 198                irbar_result = irbar_read();
 199                irbar_write(0x0);
 200        }
 201        isb(); /* Ensure that MPU region operations have completed */
 202        /* Return whichever result is larger */
 203        return __ffs(max(drbar_result, irbar_result));
 204}
 205
 206static int mpu_setup_region(unsigned int number, phys_addr_t start,
 207                        unsigned int size_order, unsigned int properties)
 208{
 209        u32 size_data;
 210
 211        /* We kept a region free for probing resolution of MPU regions*/
 212        if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
 213                return -ENOENT;
 214
 215        if (size_order > 32)
 216                return -ENOMEM;
 217
 218        if (size_order < mpu_min_region_order())
 219                return -ENOMEM;
 220
 221        /* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
 222        size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
 223
 224        dsb(); /* Ensure all previous data accesses occur with old mappings */
 225        rgnr_write(number);
 226        isb();
 227        drbar_write(start);
 228        dracr_write(properties);
 229        isb(); /* Propagate properties before enabling region */
 230        drsr_write(size_data);
 231
 232        /* Check for independent I-side registers */
 233        if (mpu_iside_independent()) {
 234                irbar_write(start);
 235                iracr_write(properties);
 236                isb();
 237                irsr_write(size_data);
 238        }
 239        isb();
 240
 241        /* Store region info (we treat i/d side the same, so only store d) */
 242        mpu_rgn_info.rgns[number].dracr = properties;
 243        mpu_rgn_info.rgns[number].drbar = start;
 244        mpu_rgn_info.rgns[number].drsr = size_data;
 245        return 0;
 246}
 247
 248/*
 249* Set up default MPU regions, doing nothing if there is no MPU
 250*/
 251void __init mpu_setup(void)
 252{
 253        int region_err;
 254        if (!mpu_present())
 255                return;
 256
 257        region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
 258                                        ilog2(meminfo.bank[0].size),
 259                                        MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
 260        if (region_err) {
 261                panic("MPU region initialization failure! %d", region_err);
 262        } else {
 263                pr_info("Using ARMv7 PMSA Compliant MPU. "
 264                         "Region independence: %s, Max regions: %d\n",
 265                        mpu_iside_independent() ? "Yes" : "No",
 266                        mpu_max_regions());
 267        }
 268}
 269#else
 270static void sanity_check_meminfo_mpu(void) {}
 271static void __init mpu_setup(void) {}
 272#endif /* CONFIG_ARM_MPU */
 273
 274void __init arm_mm_memblock_reserve(void)
 275{
 276#ifndef CONFIG_CPU_V7M
 277        /*
 278         * Register the exception vector page.
 279         * some architectures which the DRAM is the exception vector to trap,
 280         * alloc_page breaks with error, although it is not NULL, but "0."
 281         */
 282        memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
 283#else /* ifndef CONFIG_CPU_V7M */
 284        /*
 285         * There is no dedicated vector page on V7-M. So nothing needs to be
 286         * reserved here.
 287         */
 288#endif
 289}
 290
 291void __init sanity_check_meminfo(void)
 292{
 293        phys_addr_t end;
 294        sanity_check_meminfo_mpu();
 295        end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
 296        high_memory = __va(end - 1) + 1;
 297}
 298
 299/*
 300 * early_paging_init() recreates boot time page table setup, allowing machines
 301 * to switch over to a high (>4G) address space on LPAE systems
 302 */
 303void __init early_paging_init(const struct machine_desc *mdesc,
 304                              struct proc_info_list *procinfo)
 305{
 306}
 307
 308/*
 309 * paging_init() sets up the page tables, initialises the zone memory
 310 * maps, and sets up the zero page, bad page and bad page tables.
 311 */
 312void __init paging_init(const struct machine_desc *mdesc)
 313{
 314        early_trap_init((void *)CONFIG_VECTORS_BASE);
 315        mpu_setup();
 316        bootmem_init();
 317}
 318
 319/*
 320 * We don't need to do anything here for nommu machines.
 321 */
 322void setup_mm_for_reboot(void)
 323{
 324}
 325
 326void flush_dcache_page(struct page *page)
 327{
 328        __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
 329}
 330EXPORT_SYMBOL(flush_dcache_page);
 331
 332void flush_kernel_dcache_page(struct page *page)
 333{
 334        __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
 335}
 336EXPORT_SYMBOL(flush_kernel_dcache_page);
 337
 338void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
 339                       unsigned long uaddr, void *dst, const void *src,
 340                       unsigned long len)
 341{
 342        memcpy(dst, src, len);
 343        if (vma->vm_flags & VM_EXEC)
 344                __cpuc_coherent_user_range(uaddr, uaddr + len);
 345}
 346
 347void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
 348                                size_t size, unsigned int mtype)
 349{
 350        if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
 351                return NULL;
 352        return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
 353}
 354EXPORT_SYMBOL(__arm_ioremap_pfn);
 355
 356void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
 357                           size_t size, unsigned int mtype, void *caller)
 358{
 359        return __arm_ioremap_pfn(pfn, offset, size, mtype);
 360}
 361
 362void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
 363                            unsigned int mtype)
 364{
 365        return (void __iomem *)phys_addr;
 366}
 367EXPORT_SYMBOL(__arm_ioremap);
 368
 369void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
 370
 371void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
 372                                   unsigned int mtype, void *caller)
 373{
 374        return __arm_ioremap(phys_addr, size, mtype);
 375}
 376
 377void (*arch_iounmap)(volatile void __iomem *);
 378
 379void __arm_iounmap(volatile void __iomem *addr)
 380{
 381}
 382EXPORT_SYMBOL(__arm_iounmap);
 383