linux/arch/parisc/mm/init.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>     /* for node_online_map */
  25#include <linux/pagemap.h>      /* for release_pages and page_cache_release */
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
  33
  34extern int  data_start;
  35extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
  36
  37#if PT_NLEVELS == 3
  38/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  39 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  40 * guarantee that global objects will be laid out in memory in the same order
  41 * as the order of declaration, so put these in different sections and use
  42 * the linker script to order them. */
  43pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  44#endif
  45
  46pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  47pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  48
  49#ifdef CONFIG_DISCONTIGMEM
  50struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  51signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  52#endif
  53
  54static struct resource data_resource = {
  55        .name   = "Kernel data",
  56        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  57};
  58
  59static struct resource code_resource = {
  60        .name   = "Kernel code",
  61        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  62};
  63
  64static struct resource pdcdata_resource = {
  65        .name   = "PDC data (Page Zero)",
  66        .start  = 0,
  67        .end    = 0x9ff,
  68        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
  69};
  70
  71static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  72
  73/* The following array is initialized from the firmware specific
  74 * information retrieved in kernel/inventory.c.
  75 */
  76
  77physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  78int npmem_ranges __read_mostly;
  79
  80#ifdef CONFIG_64BIT
  81#define MAX_MEM         (~0UL)
  82#else /* !CONFIG_64BIT */
  83#define MAX_MEM         (3584U*1024U*1024U)
  84#endif /* !CONFIG_64BIT */
  85
  86static unsigned long mem_limit __read_mostly = MAX_MEM;
  87
  88static void __init mem_limit_func(void)
  89{
  90        char *cp, *end;
  91        unsigned long limit;
  92
  93        /* We need this before __setup() functions are called */
  94
  95        limit = MAX_MEM;
  96        for (cp = boot_command_line; *cp; ) {
  97                if (memcmp(cp, "mem=", 4) == 0) {
  98                        cp += 4;
  99                        limit = memparse(cp, &end);
 100                        if (end != cp)
 101                                break;
 102                        cp = end;
 103                } else {
 104                        while (*cp != ' ' && *cp)
 105                                ++cp;
 106                        while (*cp == ' ')
 107                                ++cp;
 108                }
 109        }
 110
 111        if (limit < mem_limit)
 112                mem_limit = limit;
 113}
 114
 115#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 116
 117static void __init setup_bootmem(void)
 118{
 119        unsigned long bootmap_size;
 120        unsigned long mem_max;
 121        unsigned long bootmap_pages;
 122        unsigned long bootmap_start_pfn;
 123        unsigned long bootmap_pfn;
 124#ifndef CONFIG_DISCONTIGMEM
 125        physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 126        int npmem_holes;
 127#endif
 128        int i, sysram_resource_count;
 129
 130        disable_sr_hashing(); /* Turn off space register hashing */
 131
 132        /*
 133         * Sort the ranges. Since the number of ranges is typically
 134         * small, and performance is not an issue here, just do
 135         * a simple insertion sort.
 136         */
 137
 138        for (i = 1; i < npmem_ranges; i++) {
 139                int j;
 140
 141                for (j = i; j > 0; j--) {
 142                        unsigned long tmp;
 143
 144                        if (pmem_ranges[j-1].start_pfn <
 145                            pmem_ranges[j].start_pfn) {
 146
 147                                break;
 148                        }
 149                        tmp = pmem_ranges[j-1].start_pfn;
 150                        pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 151                        pmem_ranges[j].start_pfn = tmp;
 152                        tmp = pmem_ranges[j-1].pages;
 153                        pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 154                        pmem_ranges[j].pages = tmp;
 155                }
 156        }
 157
 158#ifndef CONFIG_DISCONTIGMEM
 159        /*
 160         * Throw out ranges that are too far apart (controlled by
 161         * MAX_GAP).
 162         */
 163
 164        for (i = 1; i < npmem_ranges; i++) {
 165                if (pmem_ranges[i].start_pfn -
 166                        (pmem_ranges[i-1].start_pfn +
 167                         pmem_ranges[i-1].pages) > MAX_GAP) {
 168                        npmem_ranges = i;
 169                        printk("Large gap in memory detected (%ld pages). "
 170                               "Consider turning on CONFIG_DISCONTIGMEM\n",
 171                               pmem_ranges[i].start_pfn -
 172                               (pmem_ranges[i-1].start_pfn +
 173                                pmem_ranges[i-1].pages));
 174                        break;
 175                }
 176        }
 177#endif
 178
 179        if (npmem_ranges > 1) {
 180
 181                /* Print the memory ranges */
 182
 183                printk(KERN_INFO "Memory Ranges:\n");
 184
 185                for (i = 0; i < npmem_ranges; i++) {
 186                        unsigned long start;
 187                        unsigned long size;
 188
 189                        size = (pmem_ranges[i].pages << PAGE_SHIFT);
 190                        start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 191                        printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 192                                i,start, start + (size - 1), size >> 20);
 193                }
 194        }
 195
 196        sysram_resource_count = npmem_ranges;
 197        for (i = 0; i < sysram_resource_count; i++) {
 198                struct resource *res = &sysram_resources[i];
 199                res->name = "System RAM";
 200                res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 201                res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 202                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 203                request_resource(&iomem_resource, res);
 204        }
 205
 206        /*
 207         * For 32 bit kernels we limit the amount of memory we can
 208         * support, in order to preserve enough kernel address space
 209         * for other purposes. For 64 bit kernels we don't normally
 210         * limit the memory, but this mechanism can be used to
 211         * artificially limit the amount of memory (and it is written
 212         * to work with multiple memory ranges).
 213         */
 214
 215        mem_limit_func();       /* check for "mem=" argument */
 216
 217        mem_max = 0;
 218        for (i = 0; i < npmem_ranges; i++) {
 219                unsigned long rsize;
 220
 221                rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 222                if ((mem_max + rsize) > mem_limit) {
 223                        printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 224                        if (mem_max == mem_limit)
 225                                npmem_ranges = i;
 226                        else {
 227                                pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 228                                                       - (mem_max >> PAGE_SHIFT);
 229                                npmem_ranges = i + 1;
 230                                mem_max = mem_limit;
 231                        }
 232                        break;
 233                }
 234                mem_max += rsize;
 235        }
 236
 237        printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 238
 239#ifndef CONFIG_DISCONTIGMEM
 240        /* Merge the ranges, keeping track of the holes */
 241
 242        {
 243                unsigned long end_pfn;
 244                unsigned long hole_pages;
 245
 246                npmem_holes = 0;
 247                end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 248                for (i = 1; i < npmem_ranges; i++) {
 249
 250                        hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 251                        if (hole_pages) {
 252                                pmem_holes[npmem_holes].start_pfn = end_pfn;
 253                                pmem_holes[npmem_holes++].pages = hole_pages;
 254                                end_pfn += hole_pages;
 255                        }
 256                        end_pfn += pmem_ranges[i].pages;
 257                }
 258
 259                pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 260                npmem_ranges = 1;
 261        }
 262#endif
 263
 264        bootmap_pages = 0;
 265        for (i = 0; i < npmem_ranges; i++)
 266                bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 267
 268        bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 269
 270#ifdef CONFIG_DISCONTIGMEM
 271        for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 272                memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 273                NODE_DATA(i)->bdata = &bootmem_node_data[i];
 274        }
 275        memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 276
 277        for (i = 0; i < npmem_ranges; i++) {
 278                node_set_state(i, N_NORMAL_MEMORY);
 279                node_set_online(i);
 280        }
 281#endif
 282
 283        /*
 284         * Initialize and free the full range of memory in each range.
 285         * Note that the only writing these routines do are to the bootmap,
 286         * and we've made sure to locate the bootmap properly so that they
 287         * won't be writing over anything important.
 288         */
 289
 290        bootmap_pfn = bootmap_start_pfn;
 291        max_pfn = 0;
 292        for (i = 0; i < npmem_ranges; i++) {
 293                unsigned long start_pfn;
 294                unsigned long npages;
 295
 296                start_pfn = pmem_ranges[i].start_pfn;
 297                npages = pmem_ranges[i].pages;
 298
 299                bootmap_size = init_bootmem_node(NODE_DATA(i),
 300                                                bootmap_pfn,
 301                                                start_pfn,
 302                                                (start_pfn + npages) );
 303                free_bootmem_node(NODE_DATA(i),
 304                                  (start_pfn << PAGE_SHIFT),
 305                                  (npages << PAGE_SHIFT) );
 306                bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 307                if ((start_pfn + npages) > max_pfn)
 308                        max_pfn = start_pfn + npages;
 309        }
 310
 311        /* IOMMU is always used to access "high mem" on those boxes
 312         * that can support enough mem that a PCI device couldn't
 313         * directly DMA to any physical addresses.
 314         * ISA DMA support will need to revisit this.
 315         */
 316        max_low_pfn = max_pfn;
 317
 318        /* bootmap sizing messed up? */
 319        BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 320
 321        /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 322
 323#define PDC_CONSOLE_IO_IODC_SIZE 32768
 324
 325        reserve_bootmem_node(NODE_DATA(0), 0UL,
 326                        (unsigned long)(PAGE0->mem_free +
 327                                PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 328        reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
 329                        (unsigned long)(_end - KERNEL_BINARY_TEXT_START),
 330                        BOOTMEM_DEFAULT);
 331        reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 332                        ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 333                        BOOTMEM_DEFAULT);
 334
 335#ifndef CONFIG_DISCONTIGMEM
 336
 337        /* reserve the holes */
 338
 339        for (i = 0; i < npmem_holes; i++) {
 340                reserve_bootmem_node(NODE_DATA(0),
 341                                (pmem_holes[i].start_pfn << PAGE_SHIFT),
 342                                (pmem_holes[i].pages << PAGE_SHIFT),
 343                                BOOTMEM_DEFAULT);
 344        }
 345#endif
 346
 347#ifdef CONFIG_BLK_DEV_INITRD
 348        if (initrd_start) {
 349                printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 350                if (__pa(initrd_start) < mem_max) {
 351                        unsigned long initrd_reserve;
 352
 353                        if (__pa(initrd_end) > mem_max) {
 354                                initrd_reserve = mem_max - __pa(initrd_start);
 355                        } else {
 356                                initrd_reserve = initrd_end - initrd_start;
 357                        }
 358                        initrd_below_start_ok = 1;
 359                        printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 360
 361                        reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 362                                        initrd_reserve, BOOTMEM_DEFAULT);
 363                }
 364        }
 365#endif
 366
 367        data_resource.start =  virt_to_phys(&data_start);
 368        data_resource.end = virt_to_phys(_end) - 1;
 369        code_resource.start = virt_to_phys(_text);
 370        code_resource.end = virt_to_phys(&data_start)-1;
 371
 372        /* We don't know which region the kernel will be in, so try
 373         * all of them.
 374         */
 375        for (i = 0; i < sysram_resource_count; i++) {
 376                struct resource *res = &sysram_resources[i];
 377                request_resource(res, &code_resource);
 378                request_resource(res, &data_resource);
 379        }
 380        request_resource(&sysram_resources[0], &pdcdata_resource);
 381}
 382
 383static int __init parisc_text_address(unsigned long vaddr)
 384{
 385        static unsigned long head_ptr __initdata;
 386
 387        if (!head_ptr)
 388                head_ptr = PAGE_MASK & (unsigned long)
 389                        dereference_function_descriptor(&parisc_kernel_start);
 390
 391        return core_kernel_text(vaddr) || vaddr == head_ptr;
 392}
 393
 394static void __init map_pages(unsigned long start_vaddr,
 395                             unsigned long start_paddr, unsigned long size,
 396                             pgprot_t pgprot, int force)
 397{
 398        pgd_t *pg_dir;
 399        pmd_t *pmd;
 400        pte_t *pg_table;
 401        unsigned long end_paddr;
 402        unsigned long start_pmd;
 403        unsigned long start_pte;
 404        unsigned long tmp1;
 405        unsigned long tmp2;
 406        unsigned long address;
 407        unsigned long vaddr;
 408        unsigned long ro_start;
 409        unsigned long ro_end;
 410        unsigned long fv_addr;
 411        unsigned long gw_addr;
 412        extern const unsigned long fault_vector_20;
 413        extern void * const linux_gateway_page;
 414
 415        ro_start = __pa((unsigned long)_text);
 416        ro_end   = __pa((unsigned long)&data_start);
 417        fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 418        gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 419
 420        end_paddr = start_paddr + size;
 421
 422        pg_dir = pgd_offset_k(start_vaddr);
 423
 424#if PTRS_PER_PMD == 1
 425        start_pmd = 0;
 426#else
 427        start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 428#endif
 429        start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 430
 431        address = start_paddr;
 432        vaddr = start_vaddr;
 433        while (address < end_paddr) {
 434#if PTRS_PER_PMD == 1
 435                pmd = (pmd_t *)__pa(pg_dir);
 436#else
 437                pmd = (pmd_t *)pgd_address(*pg_dir);
 438
 439                /*
 440                 * pmd is physical at this point
 441                 */
 442
 443                if (!pmd) {
 444                        pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 445                        pmd = (pmd_t *) __pa(pmd);
 446                }
 447
 448                pgd_populate(NULL, pg_dir, __va(pmd));
 449#endif
 450                pg_dir++;
 451
 452                /* now change pmd to kernel virtual addresses */
 453
 454                pmd = (pmd_t *)__va(pmd) + start_pmd;
 455                for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 456
 457                        /*
 458                         * pg_table is physical at this point
 459                         */
 460
 461                        pg_table = (pte_t *)pmd_address(*pmd);
 462                        if (!pg_table) {
 463                                pg_table = (pte_t *)
 464                                        alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 465                                pg_table = (pte_t *) __pa(pg_table);
 466                        }
 467
 468                        pmd_populate_kernel(NULL, pmd, __va(pg_table));
 469
 470                        /* now change pg_table to kernel virtual addresses */
 471
 472                        pg_table = (pte_t *) __va(pg_table) + start_pte;
 473                        for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 474                                pte_t pte;
 475
 476                                /*
 477                                 * Map the fault vector writable so we can
 478                                 * write the HPMC checksum.
 479                                 */
 480                                if (force)
 481                                        pte =  __mk_pte(address, pgprot);
 482                                else if (parisc_text_address(vaddr) &&
 483                                         address != fv_addr)
 484                                        pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 485                                else
 486#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 487                                if (address >= ro_start && address < ro_end
 488                                                        && address != fv_addr
 489                                                        && address != gw_addr)
 490                                        pte = __mk_pte(address, PAGE_KERNEL_RO);
 491                                else
 492#endif
 493                                        pte = __mk_pte(address, pgprot);
 494
 495                                if (address >= end_paddr) {
 496                                        if (force)
 497                                                break;
 498                                        else
 499                                                pte_val(pte) = 0;
 500                                }
 501
 502                                set_pte(pg_table, pte);
 503
 504                                address += PAGE_SIZE;
 505                                vaddr += PAGE_SIZE;
 506                        }
 507                        start_pte = 0;
 508
 509                        if (address >= end_paddr)
 510                            break;
 511                }
 512                start_pmd = 0;
 513        }
 514}
 515
 516void free_initmem(void)
 517{
 518        unsigned long init_begin = (unsigned long)__init_begin;
 519        unsigned long init_end = (unsigned long)__init_end;
 520
 521        /* The init text pages are marked R-X.  We have to
 522         * flush the icache and mark them RW-
 523         *
 524         * This is tricky, because map_pages is in the init section.
 525         * Do a dummy remap of the data section first (the data
 526         * section is already PAGE_KERNEL) to pull in the TLB entries
 527         * for map_kernel */
 528        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 529                  PAGE_KERNEL_RWX, 1);
 530        /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 531         * map_pages */
 532        map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 533                  PAGE_KERNEL, 1);
 534
 535        /* force the kernel to see the new TLB entries */
 536        __flush_tlb_range(0, init_begin, init_end);
 537        /* Attempt to catch anyone trying to execute code here
 538         * by filling the page with BRK insns.
 539         */
 540        memset((void *)init_begin, 0x00, init_end - init_begin);
 541        /* finally dump all the instructions which were cached, since the
 542         * pages are no-longer executable */
 543        flush_icache_range(init_begin, init_end);
 544        
 545        free_initmem_default(-1);
 546
 547        /* set up a new led state on systems shipped LED State panel */
 548        pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 549}
 550
 551
 552#ifdef CONFIG_DEBUG_RODATA
 553void mark_rodata_ro(void)
 554{
 555        /* rodata memory was already mapped with KERNEL_RO access rights by
 556           pagetable_init() and map_pages(). No need to do additional stuff here */
 557        printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 558                (unsigned long)(__end_rodata - __start_rodata) >> 10);
 559}
 560#endif
 561
 562
 563/*
 564 * Just an arbitrary offset to serve as a "hole" between mapping areas
 565 * (between top of physical memory and a potential pcxl dma mapping
 566 * area, and below the vmalloc mapping area).
 567 *
 568 * The current 32K value just means that there will be a 32K "hole"
 569 * between mapping areas. That means that  any out-of-bounds memory
 570 * accesses will hopefully be caught. The vmalloc() routines leaves
 571 * a hole of 4kB between each vmalloced area for the same reason.
 572 */
 573
 574 /* Leave room for gateway page expansion */
 575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 576#error KERNEL_MAP_START is in gateway reserved region
 577#endif
 578#define MAP_START (KERNEL_MAP_START)
 579
 580#define VM_MAP_OFFSET  (32*1024)
 581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 582                                     & ~(VM_MAP_OFFSET-1)))
 583
 584void *parisc_vmalloc_start __read_mostly;
 585EXPORT_SYMBOL(parisc_vmalloc_start);
 586
 587#ifdef CONFIG_PA11
 588unsigned long pcxl_dma_start __read_mostly;
 589#endif
 590
 591void __init mem_init(void)
 592{
 593        /* Do sanity checks on page table constants */
 594        BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 595        BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 596        BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 597        BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 598                        > BITS_PER_LONG);
 599
 600        high_memory = __va((max_pfn << PAGE_SHIFT));
 601        set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
 602        free_all_bootmem();
 603
 604#ifdef CONFIG_PA11
 605        if (hppa_dma_ops == &pcxl_dma_ops) {
 606                pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 607                parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 608                                                + PCXL_DMA_MAP_SIZE);
 609        } else {
 610                pcxl_dma_start = 0;
 611                parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 612        }
 613#else
 614        parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 615#endif
 616
 617        mem_init_print_info(NULL);
 618#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 619        printk("virtual kernel memory layout:\n"
 620               "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 621               "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 622               "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 623               "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 624               "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 625
 626               (void*)VMALLOC_START, (void*)VMALLOC_END,
 627               (VMALLOC_END - VMALLOC_START) >> 20,
 628
 629               __va(0), high_memory,
 630               ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 631
 632               __init_begin, __init_end,
 633               ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 634
 635               _etext, _edata,
 636               ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 637
 638               _text, _etext,
 639               ((unsigned long)_etext - (unsigned long)_text) >> 10);
 640#endif
 641}
 642
 643unsigned long *empty_zero_page __read_mostly;
 644EXPORT_SYMBOL(empty_zero_page);
 645
 646void show_mem(unsigned int filter)
 647{
 648        int total = 0,reserved = 0;
 649        pg_data_t *pgdat;
 650
 651        printk(KERN_INFO "Mem-info:\n");
 652        show_free_areas(filter);
 653
 654        for_each_online_pgdat(pgdat) {
 655                unsigned long flags;
 656                int zoneid;
 657
 658                pgdat_resize_lock(pgdat, &flags);
 659                for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 660                        struct zone *zone = &pgdat->node_zones[zoneid];
 661                        if (!populated_zone(zone))
 662                                continue;
 663
 664                        total += zone->present_pages;
 665                        reserved = zone->present_pages - zone->managed_pages;
 666                }
 667                pgdat_resize_unlock(pgdat, &flags);
 668        }
 669
 670        printk(KERN_INFO "%d pages of RAM\n", total);
 671        printk(KERN_INFO "%d reserved pages\n", reserved);
 672
 673#ifdef CONFIG_DISCONTIGMEM
 674        {
 675                struct zonelist *zl;
 676                int i, j;
 677
 678                for (i = 0; i < npmem_ranges; i++) {
 679                        zl = node_zonelist(i, 0);
 680                        for (j = 0; j < MAX_NR_ZONES; j++) {
 681                                struct zoneref *z;
 682                                struct zone *zone;
 683
 684                                printk("Zone list for zone %d on node %d: ", j, i);
 685                                for_each_zone_zonelist(zone, z, zl, j)
 686                                        printk("[%d/%s] ", zone_to_nid(zone),
 687                                                                zone->name);
 688                                printk("\n");
 689                        }
 690                }
 691        }
 692#endif
 693}
 694
 695/*
 696 * pagetable_init() sets up the page tables
 697 *
 698 * Note that gateway_init() places the Linux gateway page at page 0.
 699 * Since gateway pages cannot be dereferenced this has the desirable
 700 * side effect of trapping those pesky NULL-reference errors in the
 701 * kernel.
 702 */
 703static void __init pagetable_init(void)
 704{
 705        int range;
 706
 707        /* Map each physical memory range to its kernel vaddr */
 708
 709        for (range = 0; range < npmem_ranges; range++) {
 710                unsigned long start_paddr;
 711                unsigned long end_paddr;
 712                unsigned long size;
 713
 714                start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 715                end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 716                size = pmem_ranges[range].pages << PAGE_SHIFT;
 717
 718                map_pages((unsigned long)__va(start_paddr), start_paddr,
 719                          size, PAGE_KERNEL, 0);
 720        }
 721
 722#ifdef CONFIG_BLK_DEV_INITRD
 723        if (initrd_end && initrd_end > mem_limit) {
 724                printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 725                map_pages(initrd_start, __pa(initrd_start),
 726                          initrd_end - initrd_start, PAGE_KERNEL, 0);
 727        }
 728#endif
 729
 730        empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 731        memset(empty_zero_page, 0, PAGE_SIZE);
 732}
 733
 734static void __init gateway_init(void)
 735{
 736        unsigned long linux_gateway_page_addr;
 737        /* FIXME: This is 'const' in order to trick the compiler
 738           into not treating it as DP-relative data. */
 739        extern void * const linux_gateway_page;
 740
 741        linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 742
 743        /*
 744         * Setup Linux Gateway page.
 745         *
 746         * The Linux gateway page will reside in kernel space (on virtual
 747         * page 0), so it doesn't need to be aliased into user space.
 748         */
 749
 750        map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 751                  PAGE_SIZE, PAGE_GATEWAY, 1);
 752}
 753
 754#ifdef CONFIG_HPUX
 755void
 756map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 757{
 758        pgd_t *pg_dir;
 759        pmd_t *pmd;
 760        pte_t *pg_table;
 761        unsigned long start_pmd;
 762        unsigned long start_pte;
 763        unsigned long address;
 764        unsigned long hpux_gw_page_addr;
 765        /* FIXME: This is 'const' in order to trick the compiler
 766           into not treating it as DP-relative data. */
 767        extern void * const hpux_gateway_page;
 768
 769        hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 770
 771        /*
 772         * Setup HP-UX Gateway page.
 773         *
 774         * The HP-UX gateway page resides in the user address space,
 775         * so it needs to be aliased into each process.
 776         */
 777
 778        pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 779
 780#if PTRS_PER_PMD == 1
 781        start_pmd = 0;
 782#else
 783        start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 784#endif
 785        start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 786
 787        address = __pa(&hpux_gateway_page);
 788#if PTRS_PER_PMD == 1
 789        pmd = (pmd_t *)__pa(pg_dir);
 790#else
 791        pmd = (pmd_t *) pgd_address(*pg_dir);
 792
 793        /*
 794         * pmd is physical at this point
 795         */
 796
 797        if (!pmd) {
 798                pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 799                pmd = (pmd_t *) __pa(pmd);
 800        }
 801
 802        __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 803#endif
 804        /* now change pmd to kernel virtual addresses */
 805
 806        pmd = (pmd_t *)__va(pmd) + start_pmd;
 807
 808        /*
 809         * pg_table is physical at this point
 810         */
 811
 812        pg_table = (pte_t *) pmd_address(*pmd);
 813        if (!pg_table)
 814                pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 815
 816        __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 817
 818        /* now change pg_table to kernel virtual addresses */
 819
 820        pg_table = (pte_t *) __va(pg_table) + start_pte;
 821        set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 822}
 823EXPORT_SYMBOL(map_hpux_gateway_page);
 824#endif
 825
 826void __init paging_init(void)
 827{
 828        int i;
 829
 830        setup_bootmem();
 831        pagetable_init();
 832        gateway_init();
 833        flush_cache_all_local(); /* start with known state */
 834        flush_tlb_all_local(NULL);
 835
 836        for (i = 0; i < npmem_ranges; i++) {
 837                unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 838
 839                zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 840
 841#ifdef CONFIG_DISCONTIGMEM
 842                /* Need to initialize the pfnnid_map before we can initialize
 843                   the zone */
 844                {
 845                    int j;
 846                    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 847                         j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 848                         j++) {
 849                        pfnnid_map[j] = i;
 850                    }
 851                }
 852#endif
 853
 854                free_area_init_node(i, zones_size,
 855                                pmem_ranges[i].start_pfn, NULL);
 856        }
 857}
 858
 859#ifdef CONFIG_PA20
 860
 861/*
 862 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 863 * limiting factor (space ids are 32 bits).
 864 */
 865
 866#define NR_SPACE_IDS 262144
 867
 868#else
 869
 870/*
 871 * Currently we have a one-to-one relationship between space IDs and
 872 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 873 * support 15 bit protection IDs, so that is the limiting factor.
 874 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 875 * probably not worth the effort for a special case here.
 876 */
 877
 878#define NR_SPACE_IDS 32768
 879
 880#endif  /* !CONFIG_PA20 */
 881
 882#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 883#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 884
 885static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 886static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 887static unsigned long space_id_index;
 888static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 889static unsigned long dirty_space_ids = 0;
 890
 891static DEFINE_SPINLOCK(sid_lock);
 892
 893unsigned long alloc_sid(void)
 894{
 895        unsigned long index;
 896
 897        spin_lock(&sid_lock);
 898
 899        if (free_space_ids == 0) {
 900                if (dirty_space_ids != 0) {
 901                        spin_unlock(&sid_lock);
 902                        flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 903                        spin_lock(&sid_lock);
 904                }
 905                BUG_ON(free_space_ids == 0);
 906        }
 907
 908        free_space_ids--;
 909
 910        index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 911        space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 912        space_id_index = index;
 913
 914        spin_unlock(&sid_lock);
 915
 916        return index << SPACEID_SHIFT;
 917}
 918
 919void free_sid(unsigned long spaceid)
 920{
 921        unsigned long index = spaceid >> SPACEID_SHIFT;
 922        unsigned long *dirty_space_offset;
 923
 924        dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 925        index &= (BITS_PER_LONG - 1);
 926
 927        spin_lock(&sid_lock);
 928
 929        BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 930
 931        *dirty_space_offset |= (1L << index);
 932        dirty_space_ids++;
 933
 934        spin_unlock(&sid_lock);
 935}
 936
 937
 938#ifdef CONFIG_SMP
 939static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 940{
 941        int i;
 942
 943        /* NOTE: sid_lock must be held upon entry */
 944
 945        *ndirtyptr = dirty_space_ids;
 946        if (dirty_space_ids != 0) {
 947            for (i = 0; i < SID_ARRAY_SIZE; i++) {
 948                dirty_array[i] = dirty_space_id[i];
 949                dirty_space_id[i] = 0;
 950            }
 951            dirty_space_ids = 0;
 952        }
 953
 954        return;
 955}
 956
 957static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 958{
 959        int i;
 960
 961        /* NOTE: sid_lock must be held upon entry */
 962
 963        if (ndirty != 0) {
 964                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 965                        space_id[i] ^= dirty_array[i];
 966                }
 967
 968                free_space_ids += ndirty;
 969                space_id_index = 0;
 970        }
 971}
 972
 973#else /* CONFIG_SMP */
 974
 975static void recycle_sids(void)
 976{
 977        int i;
 978
 979        /* NOTE: sid_lock must be held upon entry */
 980
 981        if (dirty_space_ids != 0) {
 982                for (i = 0; i < SID_ARRAY_SIZE; i++) {
 983                        space_id[i] ^= dirty_space_id[i];
 984                        dirty_space_id[i] = 0;
 985                }
 986
 987                free_space_ids += dirty_space_ids;
 988                dirty_space_ids = 0;
 989                space_id_index = 0;
 990        }
 991}
 992#endif
 993
 994/*
 995 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 996 * purged, we can safely reuse the space ids that were released but
 997 * not flushed from the tlb.
 998 */
 999
1000#ifdef CONFIG_SMP
1001
1002static unsigned long recycle_ndirty;
1003static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1004static unsigned int recycle_inuse;
1005
1006void flush_tlb_all(void)
1007{
1008        int do_recycle;
1009
1010        __inc_irq_stat(irq_tlb_count);
1011        do_recycle = 0;
1012        spin_lock(&sid_lock);
1013        if (dirty_space_ids > RECYCLE_THRESHOLD) {
1014            BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1015            get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1016            recycle_inuse++;
1017            do_recycle++;
1018        }
1019        spin_unlock(&sid_lock);
1020        on_each_cpu(flush_tlb_all_local, NULL, 1);
1021        if (do_recycle) {
1022            spin_lock(&sid_lock);
1023            recycle_sids(recycle_ndirty,recycle_dirty_array);
1024            recycle_inuse = 0;
1025            spin_unlock(&sid_lock);
1026        }
1027}
1028#else
1029void flush_tlb_all(void)
1030{
1031        __inc_irq_stat(irq_tlb_count);
1032        spin_lock(&sid_lock);
1033        flush_tlb_all_local(NULL);
1034        recycle_sids();
1035        spin_unlock(&sid_lock);
1036}
1037#endif
1038
1039#ifdef CONFIG_BLK_DEV_INITRD
1040void free_initrd_mem(unsigned long start, unsigned long end)
1041{
1042        free_reserved_area((void *)start, (void *)end, -1, "initrd");
1043}
1044#endif
1045