linux/arch/sparc/net/bpf_jit_comp.c
<<
>>
Prefs
   1#include <linux/moduleloader.h>
   2#include <linux/workqueue.h>
   3#include <linux/netdevice.h>
   4#include <linux/filter.h>
   5#include <linux/cache.h>
   6#include <linux/if_vlan.h>
   7
   8#include <asm/cacheflush.h>
   9#include <asm/ptrace.h>
  10
  11#include "bpf_jit.h"
  12
  13int bpf_jit_enable __read_mostly;
  14
  15static inline bool is_simm13(unsigned int value)
  16{
  17        return value + 0x1000 < 0x2000;
  18}
  19
  20static void bpf_flush_icache(void *start_, void *end_)
  21{
  22#ifdef CONFIG_SPARC64
  23        /* Cheetah's I-cache is fully coherent.  */
  24        if (tlb_type == spitfire) {
  25                unsigned long start = (unsigned long) start_;
  26                unsigned long end = (unsigned long) end_;
  27
  28                start &= ~7UL;
  29                end = (end + 7UL) & ~7UL;
  30                while (start < end) {
  31                        flushi(start);
  32                        start += 32;
  33                }
  34        }
  35#endif
  36}
  37
  38#define SEEN_DATAREF 1 /* might call external helpers */
  39#define SEEN_XREG    2 /* ebx is used */
  40#define SEEN_MEM     4 /* use mem[] for temporary storage */
  41
  42#define S13(X)          ((X) & 0x1fff)
  43#define IMMED           0x00002000
  44#define RD(X)           ((X) << 25)
  45#define RS1(X)          ((X) << 14)
  46#define RS2(X)          ((X))
  47#define OP(X)           ((X) << 30)
  48#define OP2(X)          ((X) << 22)
  49#define OP3(X)          ((X) << 19)
  50#define COND(X)         ((X) << 25)
  51#define F1(X)           OP(X)
  52#define F2(X, Y)        (OP(X) | OP2(Y))
  53#define F3(X, Y)        (OP(X) | OP3(Y))
  54
  55#define CONDN           COND(0x0)
  56#define CONDE           COND(0x1)
  57#define CONDLE          COND(0x2)
  58#define CONDL           COND(0x3)
  59#define CONDLEU         COND(0x4)
  60#define CONDCS          COND(0x5)
  61#define CONDNEG         COND(0x6)
  62#define CONDVC          COND(0x7)
  63#define CONDA           COND(0x8)
  64#define CONDNE          COND(0x9)
  65#define CONDG           COND(0xa)
  66#define CONDGE          COND(0xb)
  67#define CONDGU          COND(0xc)
  68#define CONDCC          COND(0xd)
  69#define CONDPOS         COND(0xe)
  70#define CONDVS          COND(0xf)
  71
  72#define CONDGEU         CONDCC
  73#define CONDLU          CONDCS
  74
  75#define WDISP22(X)      (((X) >> 2) & 0x3fffff)
  76
  77#define BA              (F2(0, 2) | CONDA)
  78#define BGU             (F2(0, 2) | CONDGU)
  79#define BLEU            (F2(0, 2) | CONDLEU)
  80#define BGEU            (F2(0, 2) | CONDGEU)
  81#define BLU             (F2(0, 2) | CONDLU)
  82#define BE              (F2(0, 2) | CONDE)
  83#define BNE             (F2(0, 2) | CONDNE)
  84
  85#ifdef CONFIG_SPARC64
  86#define BNE_PTR         (F2(0, 1) | CONDNE | (2 << 20))
  87#else
  88#define BNE_PTR         BNE
  89#endif
  90
  91#define SETHI(K, REG)   \
  92        (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  93#define OR_LO(K, REG)   \
  94        (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  95
  96#define ADD             F3(2, 0x00)
  97#define AND             F3(2, 0x01)
  98#define ANDCC           F3(2, 0x11)
  99#define OR              F3(2, 0x02)
 100#define XOR             F3(2, 0x03)
 101#define SUB             F3(2, 0x04)
 102#define SUBCC           F3(2, 0x14)
 103#define MUL             F3(2, 0x0a)     /* umul */
 104#define DIV             F3(2, 0x0e)     /* udiv */
 105#define SLL             F3(2, 0x25)
 106#define SRL             F3(2, 0x26)
 107#define JMPL            F3(2, 0x38)
 108#define CALL            F1(1)
 109#define BR              F2(0, 0x01)
 110#define RD_Y            F3(2, 0x28)
 111#define WR_Y            F3(2, 0x30)
 112
 113#define LD32            F3(3, 0x00)
 114#define LD8             F3(3, 0x01)
 115#define LD16            F3(3, 0x02)
 116#define LD64            F3(3, 0x0b)
 117#define ST32            F3(3, 0x04)
 118
 119#ifdef CONFIG_SPARC64
 120#define LDPTR           LD64
 121#define BASE_STACKFRAME 176
 122#else
 123#define LDPTR           LD32
 124#define BASE_STACKFRAME 96
 125#endif
 126
 127#define LD32I           (LD32 | IMMED)
 128#define LD8I            (LD8 | IMMED)
 129#define LD16I           (LD16 | IMMED)
 130#define LD64I           (LD64 | IMMED)
 131#define LDPTRI          (LDPTR | IMMED)
 132#define ST32I           (ST32 | IMMED)
 133
 134#define emit_nop()              \
 135do {                            \
 136        *prog++ = SETHI(0, G0); \
 137} while (0)
 138
 139#define emit_neg()                                      \
 140do {    /* sub %g0, r_A, r_A */                         \
 141        *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
 142} while (0)
 143
 144#define emit_reg_move(FROM, TO)                         \
 145do {    /* or %g0, FROM, TO */                          \
 146        *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
 147} while (0)
 148
 149#define emit_clear(REG)                                 \
 150do {    /* or %g0, %g0, REG */                          \
 151        *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
 152} while (0)
 153
 154#define emit_set_const(K, REG)                                  \
 155do {    /* sethi %hi(K), REG */                                 \
 156        *prog++ = SETHI(K, REG);                                \
 157        /* or REG, %lo(K), REG */                               \
 158        *prog++ = OR_LO(K, REG);                                \
 159} while (0)
 160
 161        /* Emit
 162         *
 163         *      OP      r_A, r_X, r_A
 164         */
 165#define emit_alu_X(OPCODE)                                      \
 166do {                                                            \
 167        seen |= SEEN_XREG;                                      \
 168        *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
 169} while (0)
 170
 171        /* Emit either:
 172         *
 173         *      OP      r_A, K, r_A
 174         *
 175         * or
 176         *
 177         *      sethi   %hi(K), r_TMP
 178         *      or      r_TMP, %lo(K), r_TMP
 179         *      OP      r_A, r_TMP, r_A
 180         *
 181         * depending upon whether K fits in a signed 13-bit
 182         * immediate instruction field.  Emit nothing if K
 183         * is zero.
 184         */
 185#define emit_alu_K(OPCODE, K)                                   \
 186do {                                                            \
 187        if (K) {                                                \
 188                unsigned int _insn = OPCODE;                    \
 189                _insn |= RS1(r_A) | RD(r_A);                    \
 190                if (is_simm13(K)) {                             \
 191                        *prog++ = _insn | IMMED | S13(K);       \
 192                } else {                                        \
 193                        emit_set_const(K, r_TMP);               \
 194                        *prog++ = _insn | RS2(r_TMP);           \
 195                }                                               \
 196        }                                                       \
 197} while (0)
 198
 199#define emit_loadimm(K, DEST)                                           \
 200do {                                                                    \
 201        if (is_simm13(K)) {                                             \
 202                /* or %g0, K, DEST */                                   \
 203                *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
 204        } else {                                                        \
 205                emit_set_const(K, DEST);                                \
 206        }                                                               \
 207} while (0)
 208
 209#define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
 210do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 211        BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));    \
 212        *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
 213} while (0)
 214
 215#define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
 216do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 217        BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));       \
 218        *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
 219} while (0)
 220
 221#define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
 222do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 223        BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));       \
 224        *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
 225} while (0)
 226
 227#define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
 228do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 229        *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
 230} while (0)
 231
 232#define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
 233do {    BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));        \
 234        __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
 235} while (0)
 236
 237#define emit_ldmem(OFF, DEST)                                   \
 238do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST);     \
 239} while (0)
 240
 241#define emit_stmem(OFF, SRC)                                    \
 242do {    *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC);      \
 243} while (0)
 244
 245#ifdef CONFIG_SMP
 246#ifdef CONFIG_SPARC64
 247#define emit_load_cpu(REG)                                              \
 248        emit_load16(G6, struct thread_info, cpu, REG)
 249#else
 250#define emit_load_cpu(REG)                                              \
 251        emit_load32(G6, struct thread_info, cpu, REG)
 252#endif
 253#else
 254#define emit_load_cpu(REG)      emit_clear(REG)
 255#endif
 256
 257#define emit_skb_loadptr(FIELD, DEST) \
 258        emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
 259#define emit_skb_load32(FIELD, DEST) \
 260        emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
 261#define emit_skb_load16(FIELD, DEST) \
 262        emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
 263#define __emit_skb_load8(FIELD, DEST) \
 264        __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 265#define emit_skb_load8(FIELD, DEST) \
 266        emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 267
 268#define emit_jmpl(BASE, IMM_OFF, LREG) \
 269        *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
 270
 271#define emit_call(FUNC)                                 \
 272do {    void *_here = image + addrs[i] - 8;             \
 273        unsigned int _off = (void *)(FUNC) - _here;     \
 274        *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
 275        emit_nop();                                     \
 276} while (0)
 277
 278#define emit_branch(BR_OPC, DEST)                       \
 279do {    unsigned int _here = addrs[i] - 8;              \
 280        *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
 281} while (0)
 282
 283#define emit_branch_off(BR_OPC, OFF)                    \
 284do {    *prog++ = BR_OPC | WDISP22(OFF);                \
 285} while (0)
 286
 287#define emit_jump(DEST)         emit_branch(BA, DEST)
 288
 289#define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
 290#define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
 291
 292#define emit_cmp(R1, R2) \
 293        *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
 294
 295#define emit_cmpi(R1, IMM) \
 296        *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 297
 298#define emit_btst(R1, R2) \
 299        *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
 300
 301#define emit_btsti(R1, IMM) \
 302        *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 303
 304#define emit_sub(R1, R2, R3) \
 305        *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
 306
 307#define emit_subi(R1, IMM, R3) \
 308        *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 309
 310#define emit_add(R1, R2, R3) \
 311        *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
 312
 313#define emit_addi(R1, IMM, R3) \
 314        *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 315
 316#define emit_and(R1, R2, R3) \
 317        *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
 318
 319#define emit_andi(R1, IMM, R3) \
 320        *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 321
 322#define emit_alloc_stack(SZ) \
 323        *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 324
 325#define emit_release_stack(SZ) \
 326        *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 327
 328/* A note about branch offset calculations.  The addrs[] array,
 329 * indexed by BPF instruction, records the address after all the
 330 * sparc instructions emitted for that BPF instruction.
 331 *
 332 * The most common case is to emit a branch at the end of such
 333 * a code sequence.  So this would be two instructions, the
 334 * branch and it's delay slot.
 335 *
 336 * Therefore by default the branch emitters calculate the branch
 337 * offset field as:
 338 *
 339 *      destination - (addrs[i] - 8)
 340 *
 341 * This "addrs[i] - 8" is the address of the branch itself or
 342 * what "." would be in assembler notation.  The "8" part is
 343 * how we take into consideration the branch and it's delay
 344 * slot mentioned above.
 345 *
 346 * Sometimes we need to emit a branch earlier in the code
 347 * sequence.  And in these situations we adjust "destination"
 348 * to accomodate this difference.  For example, if we needed
 349 * to emit a branch (and it's delay slot) right before the
 350 * final instruction emitted for a BPF opcode, we'd use
 351 * "destination + 4" instead of just plain "destination" above.
 352 *
 353 * This is why you see all of these funny emit_branch() and
 354 * emit_jump() calls with adjusted offsets.
 355 */
 356
 357void bpf_jit_compile(struct sk_filter *fp)
 358{
 359        unsigned int cleanup_addr, proglen, oldproglen = 0;
 360        u32 temp[8], *prog, *func, seen = 0, pass;
 361        const struct sock_filter *filter = fp->insns;
 362        int i, flen = fp->len, pc_ret0 = -1;
 363        unsigned int *addrs;
 364        void *image;
 365
 366        if (!bpf_jit_enable)
 367                return;
 368
 369        addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
 370        if (addrs == NULL)
 371                return;
 372
 373        /* Before first pass, make a rough estimation of addrs[]
 374         * each bpf instruction is translated to less than 64 bytes
 375         */
 376        for (proglen = 0, i = 0; i < flen; i++) {
 377                proglen += 64;
 378                addrs[i] = proglen;
 379        }
 380        cleanup_addr = proglen; /* epilogue address */
 381        image = NULL;
 382        for (pass = 0; pass < 10; pass++) {
 383                u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
 384
 385                /* no prologue/epilogue for trivial filters (RET something) */
 386                proglen = 0;
 387                prog = temp;
 388
 389                /* Prologue */
 390                if (seen_or_pass0) {
 391                        if (seen_or_pass0 & SEEN_MEM) {
 392                                unsigned int sz = BASE_STACKFRAME;
 393                                sz += BPF_MEMWORDS * sizeof(u32);
 394                                emit_alloc_stack(sz);
 395                        }
 396
 397                        /* Make sure we dont leek kernel memory. */
 398                        if (seen_or_pass0 & SEEN_XREG)
 399                                emit_clear(r_X);
 400
 401                        /* If this filter needs to access skb data,
 402                         * load %o4 and %o5 with:
 403                         *  %o4 = skb->len - skb->data_len
 404                         *  %o5 = skb->data
 405                         * And also back up %o7 into r_saved_O7 so we can
 406                         * invoke the stubs using 'call'.
 407                         */
 408                        if (seen_or_pass0 & SEEN_DATAREF) {
 409                                emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
 410                                emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
 411                                emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
 412                                emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
 413                        }
 414                }
 415                emit_reg_move(O7, r_saved_O7);
 416
 417                switch (filter[0].code) {
 418                case BPF_S_RET_K:
 419                case BPF_S_LD_W_LEN:
 420                case BPF_S_ANC_PROTOCOL:
 421                case BPF_S_ANC_PKTTYPE:
 422                case BPF_S_ANC_IFINDEX:
 423                case BPF_S_ANC_MARK:
 424                case BPF_S_ANC_RXHASH:
 425                case BPF_S_ANC_VLAN_TAG:
 426                case BPF_S_ANC_VLAN_TAG_PRESENT:
 427                case BPF_S_ANC_CPU:
 428                case BPF_S_ANC_QUEUE:
 429                case BPF_S_LD_W_ABS:
 430                case BPF_S_LD_H_ABS:
 431                case BPF_S_LD_B_ABS:
 432                        /* The first instruction sets the A register (or is
 433                         * a "RET 'constant'")
 434                         */
 435                        break;
 436                default:
 437                        /* Make sure we dont leak kernel information to the
 438                         * user.
 439                         */
 440                        emit_clear(r_A); /* A = 0 */
 441                }
 442
 443                for (i = 0; i < flen; i++) {
 444                        unsigned int K = filter[i].k;
 445                        unsigned int t_offset;
 446                        unsigned int f_offset;
 447                        u32 t_op, f_op;
 448                        int ilen;
 449
 450                        switch (filter[i].code) {
 451                        case BPF_S_ALU_ADD_X:   /* A += X; */
 452                                emit_alu_X(ADD);
 453                                break;
 454                        case BPF_S_ALU_ADD_K:   /* A += K; */
 455                                emit_alu_K(ADD, K);
 456                                break;
 457                        case BPF_S_ALU_SUB_X:   /* A -= X; */
 458                                emit_alu_X(SUB);
 459                                break;
 460                        case BPF_S_ALU_SUB_K:   /* A -= K */
 461                                emit_alu_K(SUB, K);
 462                                break;
 463                        case BPF_S_ALU_AND_X:   /* A &= X */
 464                                emit_alu_X(AND);
 465                                break;
 466                        case BPF_S_ALU_AND_K:   /* A &= K */
 467                                emit_alu_K(AND, K);
 468                                break;
 469                        case BPF_S_ALU_OR_X:    /* A |= X */
 470                                emit_alu_X(OR);
 471                                break;
 472                        case BPF_S_ALU_OR_K:    /* A |= K */
 473                                emit_alu_K(OR, K);
 474                                break;
 475                        case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
 476                        case BPF_S_ALU_XOR_X:
 477                                emit_alu_X(XOR);
 478                                break;
 479                        case BPF_S_ALU_XOR_K:   /* A ^= K */
 480                                emit_alu_K(XOR, K);
 481                                break;
 482                        case BPF_S_ALU_LSH_X:   /* A <<= X */
 483                                emit_alu_X(SLL);
 484                                break;
 485                        case BPF_S_ALU_LSH_K:   /* A <<= K */
 486                                emit_alu_K(SLL, K);
 487                                break;
 488                        case BPF_S_ALU_RSH_X:   /* A >>= X */
 489                                emit_alu_X(SRL);
 490                                break;
 491                        case BPF_S_ALU_RSH_K:   /* A >>= K */
 492                                emit_alu_K(SRL, K);
 493                                break;
 494                        case BPF_S_ALU_MUL_X:   /* A *= X; */
 495                                emit_alu_X(MUL);
 496                                break;
 497                        case BPF_S_ALU_MUL_K:   /* A *= K */
 498                                emit_alu_K(MUL, K);
 499                                break;
 500                        case BPF_S_ALU_DIV_K:   /* A /= K with K != 0*/
 501                                if (K == 1)
 502                                        break;
 503                                emit_write_y(G0);
 504#ifdef CONFIG_SPARC32
 505                                /* The Sparc v8 architecture requires
 506                                 * three instructions between a %y
 507                                 * register write and the first use.
 508                                 */
 509                                emit_nop();
 510                                emit_nop();
 511                                emit_nop();
 512#endif
 513                                emit_alu_K(DIV, K);
 514                                break;
 515                        case BPF_S_ALU_DIV_X:   /* A /= X; */
 516                                emit_cmpi(r_X, 0);
 517                                if (pc_ret0 > 0) {
 518                                        t_offset = addrs[pc_ret0 - 1];
 519#ifdef CONFIG_SPARC32
 520                                        emit_branch(BE, t_offset + 20);
 521#else
 522                                        emit_branch(BE, t_offset + 8);
 523#endif
 524                                        emit_nop(); /* delay slot */
 525                                } else {
 526                                        emit_branch_off(BNE, 16);
 527                                        emit_nop();
 528#ifdef CONFIG_SPARC32
 529                                        emit_jump(cleanup_addr + 20);
 530#else
 531                                        emit_jump(cleanup_addr + 8);
 532#endif
 533                                        emit_clear(r_A);
 534                                }
 535                                emit_write_y(G0);
 536#ifdef CONFIG_SPARC32
 537                                /* The Sparc v8 architecture requires
 538                                 * three instructions between a %y
 539                                 * register write and the first use.
 540                                 */
 541                                emit_nop();
 542                                emit_nop();
 543                                emit_nop();
 544#endif
 545                                emit_alu_X(DIV);
 546                                break;
 547                        case BPF_S_ALU_NEG:
 548                                emit_neg();
 549                                break;
 550                        case BPF_S_RET_K:
 551                                if (!K) {
 552                                        if (pc_ret0 == -1)
 553                                                pc_ret0 = i;
 554                                        emit_clear(r_A);
 555                                } else {
 556                                        emit_loadimm(K, r_A);
 557                                }
 558                                /* Fallthrough */
 559                        case BPF_S_RET_A:
 560                                if (seen_or_pass0) {
 561                                        if (i != flen - 1) {
 562                                                emit_jump(cleanup_addr);
 563                                                emit_nop();
 564                                                break;
 565                                        }
 566                                        if (seen_or_pass0 & SEEN_MEM) {
 567                                                unsigned int sz = BASE_STACKFRAME;
 568                                                sz += BPF_MEMWORDS * sizeof(u32);
 569                                                emit_release_stack(sz);
 570                                        }
 571                                }
 572                                /* jmpl %r_saved_O7 + 8, %g0 */
 573                                emit_jmpl(r_saved_O7, 8, G0);
 574                                emit_reg_move(r_A, O0); /* delay slot */
 575                                break;
 576                        case BPF_S_MISC_TAX:
 577                                seen |= SEEN_XREG;
 578                                emit_reg_move(r_A, r_X);
 579                                break;
 580                        case BPF_S_MISC_TXA:
 581                                seen |= SEEN_XREG;
 582                                emit_reg_move(r_X, r_A);
 583                                break;
 584                        case BPF_S_ANC_CPU:
 585                                emit_load_cpu(r_A);
 586                                break;
 587                        case BPF_S_ANC_PROTOCOL:
 588                                emit_skb_load16(protocol, r_A);
 589                                break;
 590#if 0
 591                                /* GCC won't let us take the address of
 592                                 * a bit field even though we very much
 593                                 * know what we are doing here.
 594                                 */
 595                        case BPF_S_ANC_PKTTYPE:
 596                                __emit_skb_load8(pkt_type, r_A);
 597                                emit_alu_K(SRL, 5);
 598                                break;
 599#endif
 600                        case BPF_S_ANC_IFINDEX:
 601                                emit_skb_loadptr(dev, r_A);
 602                                emit_cmpi(r_A, 0);
 603                                emit_branch(BNE_PTR, cleanup_addr + 4);
 604                                emit_nop();
 605                                emit_load32(r_A, struct net_device, ifindex, r_A);
 606                                break;
 607                        case BPF_S_ANC_MARK:
 608                                emit_skb_load32(mark, r_A);
 609                                break;
 610                        case BPF_S_ANC_QUEUE:
 611                                emit_skb_load16(queue_mapping, r_A);
 612                                break;
 613                        case BPF_S_ANC_HATYPE:
 614                                emit_skb_loadptr(dev, r_A);
 615                                emit_cmpi(r_A, 0);
 616                                emit_branch(BNE_PTR, cleanup_addr + 4);
 617                                emit_nop();
 618                                emit_load16(r_A, struct net_device, type, r_A);
 619                                break;
 620                        case BPF_S_ANC_RXHASH:
 621                                emit_skb_load32(rxhash, r_A);
 622                                break;
 623                        case BPF_S_ANC_VLAN_TAG:
 624                        case BPF_S_ANC_VLAN_TAG_PRESENT:
 625                                emit_skb_load16(vlan_tci, r_A);
 626                                if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
 627                                        emit_andi(r_A, VLAN_VID_MASK, r_A);
 628                                } else {
 629                                        emit_loadimm(VLAN_TAG_PRESENT, r_TMP);
 630                                        emit_and(r_A, r_TMP, r_A);
 631                                }
 632                                break;
 633
 634                        case BPF_S_LD_IMM:
 635                                emit_loadimm(K, r_A);
 636                                break;
 637                        case BPF_S_LDX_IMM:
 638                                emit_loadimm(K, r_X);
 639                                break;
 640                        case BPF_S_LD_MEM:
 641                                emit_ldmem(K * 4, r_A);
 642                                break;
 643                        case BPF_S_LDX_MEM:
 644                                emit_ldmem(K * 4, r_X);
 645                                break;
 646                        case BPF_S_ST:
 647                                emit_stmem(K * 4, r_A);
 648                                break;
 649                        case BPF_S_STX:
 650                                emit_stmem(K * 4, r_X);
 651                                break;
 652
 653#define CHOOSE_LOAD_FUNC(K, func) \
 654        ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 655
 656                        case BPF_S_LD_W_ABS:
 657                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
 658common_load:                    seen |= SEEN_DATAREF;
 659                                emit_loadimm(K, r_OFF);
 660                                emit_call(func);
 661                                break;
 662                        case BPF_S_LD_H_ABS:
 663                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
 664                                goto common_load;
 665                        case BPF_S_LD_B_ABS:
 666                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
 667                                goto common_load;
 668                        case BPF_S_LDX_B_MSH:
 669                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
 670                                goto common_load;
 671                        case BPF_S_LD_W_IND:
 672                                func = bpf_jit_load_word;
 673common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
 674                                if (K) {
 675                                        if (is_simm13(K)) {
 676                                                emit_addi(r_X, K, r_OFF);
 677                                        } else {
 678                                                emit_loadimm(K, r_TMP);
 679                                                emit_add(r_X, r_TMP, r_OFF);
 680                                        }
 681                                } else {
 682                                        emit_reg_move(r_X, r_OFF);
 683                                }
 684                                emit_call(func);
 685                                break;
 686                        case BPF_S_LD_H_IND:
 687                                func = bpf_jit_load_half;
 688                                goto common_load_ind;
 689                        case BPF_S_LD_B_IND:
 690                                func = bpf_jit_load_byte;
 691                                goto common_load_ind;
 692                        case BPF_S_JMP_JA:
 693                                emit_jump(addrs[i + K]);
 694                                emit_nop();
 695                                break;
 696
 697#define COND_SEL(CODE, TOP, FOP)        \
 698        case CODE:                      \
 699                t_op = TOP;             \
 700                f_op = FOP;             \
 701                goto cond_branch
 702
 703                        COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
 704                        COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
 705                        COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
 706                        COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
 707                        COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
 708                        COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
 709                        COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
 710                        COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
 711
 712cond_branch:                    f_offset = addrs[i + filter[i].jf];
 713                                t_offset = addrs[i + filter[i].jt];
 714
 715                                /* same targets, can avoid doing the test :) */
 716                                if (filter[i].jt == filter[i].jf) {
 717                                        emit_jump(t_offset);
 718                                        emit_nop();
 719                                        break;
 720                                }
 721
 722                                switch (filter[i].code) {
 723                                case BPF_S_JMP_JGT_X:
 724                                case BPF_S_JMP_JGE_X:
 725                                case BPF_S_JMP_JEQ_X:
 726                                        seen |= SEEN_XREG;
 727                                        emit_cmp(r_A, r_X);
 728                                        break;
 729                                case BPF_S_JMP_JSET_X:
 730                                        seen |= SEEN_XREG;
 731                                        emit_btst(r_A, r_X);
 732                                        break;
 733                                case BPF_S_JMP_JEQ_K:
 734                                case BPF_S_JMP_JGT_K:
 735                                case BPF_S_JMP_JGE_K:
 736                                        if (is_simm13(K)) {
 737                                                emit_cmpi(r_A, K);
 738                                        } else {
 739                                                emit_loadimm(K, r_TMP);
 740                                                emit_cmp(r_A, r_TMP);
 741                                        }
 742                                        break;
 743                                case BPF_S_JMP_JSET_K:
 744                                        if (is_simm13(K)) {
 745                                                emit_btsti(r_A, K);
 746                                        } else {
 747                                                emit_loadimm(K, r_TMP);
 748                                                emit_btst(r_A, r_TMP);
 749                                        }
 750                                        break;
 751                                }
 752                                if (filter[i].jt != 0) {
 753                                        if (filter[i].jf)
 754                                                t_offset += 8;
 755                                        emit_branch(t_op, t_offset);
 756                                        emit_nop(); /* delay slot */
 757                                        if (filter[i].jf) {
 758                                                emit_jump(f_offset);
 759                                                emit_nop();
 760                                        }
 761                                        break;
 762                                }
 763                                emit_branch(f_op, f_offset);
 764                                emit_nop(); /* delay slot */
 765                                break;
 766
 767                        default:
 768                                /* hmm, too complex filter, give up with jit compiler */
 769                                goto out;
 770                        }
 771                        ilen = (void *) prog - (void *) temp;
 772                        if (image) {
 773                                if (unlikely(proglen + ilen > oldproglen)) {
 774                                        pr_err("bpb_jit_compile fatal error\n");
 775                                        kfree(addrs);
 776                                        module_free(NULL, image);
 777                                        return;
 778                                }
 779                                memcpy(image + proglen, temp, ilen);
 780                        }
 781                        proglen += ilen;
 782                        addrs[i] = proglen;
 783                        prog = temp;
 784                }
 785                /* last bpf instruction is always a RET :
 786                 * use it to give the cleanup instruction(s) addr
 787                 */
 788                cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
 789                if (seen_or_pass0 & SEEN_MEM)
 790                        cleanup_addr -= 4; /* add %sp, X, %sp; */
 791
 792                if (image) {
 793                        if (proglen != oldproglen)
 794                                pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
 795                                       proglen, oldproglen);
 796                        break;
 797                }
 798                if (proglen == oldproglen) {
 799                        image = module_alloc(proglen);
 800                        if (!image)
 801                                goto out;
 802                }
 803                oldproglen = proglen;
 804        }
 805
 806        if (bpf_jit_enable > 1)
 807                bpf_jit_dump(flen, proglen, pass, image);
 808
 809        if (image) {
 810                bpf_flush_icache(image, image + proglen);
 811                fp->bpf_func = (void *)image;
 812        }
 813out:
 814        kfree(addrs);
 815        return;
 816}
 817
 818void bpf_jit_free(struct sk_filter *fp)
 819{
 820        if (fp->bpf_func != sk_run_filter)
 821                module_free(NULL, fp->bpf_func);
 822        kfree(fp);
 823}
 824