linux/arch/x86/xen/mmu.c
<<
>>
Prefs
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49#include <linux/seq_file.h>
  50#include <linux/crash_dump.h>
  51
  52#include <trace/events/xen.h>
  53
  54#include <asm/pgtable.h>
  55#include <asm/tlbflush.h>
  56#include <asm/fixmap.h>
  57#include <asm/mmu_context.h>
  58#include <asm/setup.h>
  59#include <asm/paravirt.h>
  60#include <asm/e820.h>
  61#include <asm/linkage.h>
  62#include <asm/page.h>
  63#include <asm/init.h>
  64#include <asm/pat.h>
  65#include <asm/smp.h>
  66
  67#include <asm/xen/hypercall.h>
  68#include <asm/xen/hypervisor.h>
  69
  70#include <xen/xen.h>
  71#include <xen/page.h>
  72#include <xen/interface/xen.h>
  73#include <xen/interface/hvm/hvm_op.h>
  74#include <xen/interface/version.h>
  75#include <xen/interface/memory.h>
  76#include <xen/hvc-console.h>
  77
  78#include "multicalls.h"
  79#include "mmu.h"
  80#include "debugfs.h"
  81
  82/*
  83 * Protects atomic reservation decrease/increase against concurrent increases.
  84 * Also protects non-atomic updates of current_pages and balloon lists.
  85 */
  86DEFINE_SPINLOCK(xen_reservation_lock);
  87
  88#ifdef CONFIG_X86_32
  89/*
  90 * Identity map, in addition to plain kernel map.  This needs to be
  91 * large enough to allocate page table pages to allocate the rest.
  92 * Each page can map 2MB.
  93 */
  94#define LEVEL1_IDENT_ENTRIES    (PTRS_PER_PTE * 4)
  95static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  96#endif
  97#ifdef CONFIG_X86_64
  98/* l3 pud for userspace vsyscall mapping */
  99static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
 100#endif /* CONFIG_X86_64 */
 101
 102/*
 103 * Note about cr3 (pagetable base) values:
 104 *
 105 * xen_cr3 contains the current logical cr3 value; it contains the
 106 * last set cr3.  This may not be the current effective cr3, because
 107 * its update may be being lazily deferred.  However, a vcpu looking
 108 * at its own cr3 can use this value knowing that it everything will
 109 * be self-consistent.
 110 *
 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 112 * hypercall to set the vcpu cr3 is complete (so it may be a little
 113 * out of date, but it will never be set early).  If one vcpu is
 114 * looking at another vcpu's cr3 value, it should use this variable.
 115 */
 116DEFINE_PER_CPU(unsigned long, xen_cr3);  /* cr3 stored as physaddr */
 117DEFINE_PER_CPU(unsigned long, xen_current_cr3);  /* actual vcpu cr3 */
 118
 119
 120/*
 121 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 122 * redzone above it, so round it up to a PGD boundary.
 123 */
 124#define USER_LIMIT      ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 125
 126unsigned long arbitrary_virt_to_mfn(void *vaddr)
 127{
 128        xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 129
 130        return PFN_DOWN(maddr.maddr);
 131}
 132
 133xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 134{
 135        unsigned long address = (unsigned long)vaddr;
 136        unsigned int level;
 137        pte_t *pte;
 138        unsigned offset;
 139
 140        /*
 141         * if the PFN is in the linear mapped vaddr range, we can just use
 142         * the (quick) virt_to_machine() p2m lookup
 143         */
 144        if (virt_addr_valid(vaddr))
 145                return virt_to_machine(vaddr);
 146
 147        /* otherwise we have to do a (slower) full page-table walk */
 148
 149        pte = lookup_address(address, &level);
 150        BUG_ON(pte == NULL);
 151        offset = address & ~PAGE_MASK;
 152        return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 153}
 154EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 155
 156void make_lowmem_page_readonly(void *vaddr)
 157{
 158        pte_t *pte, ptev;
 159        unsigned long address = (unsigned long)vaddr;
 160        unsigned int level;
 161
 162        pte = lookup_address(address, &level);
 163        if (pte == NULL)
 164                return;         /* vaddr missing */
 165
 166        ptev = pte_wrprotect(*pte);
 167
 168        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 169                BUG();
 170}
 171
 172void make_lowmem_page_readwrite(void *vaddr)
 173{
 174        pte_t *pte, ptev;
 175        unsigned long address = (unsigned long)vaddr;
 176        unsigned int level;
 177
 178        pte = lookup_address(address, &level);
 179        if (pte == NULL)
 180                return;         /* vaddr missing */
 181
 182        ptev = pte_mkwrite(*pte);
 183
 184        if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 185                BUG();
 186}
 187
 188
 189static bool xen_page_pinned(void *ptr)
 190{
 191        struct page *page = virt_to_page(ptr);
 192
 193        return PagePinned(page);
 194}
 195
 196void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 197{
 198        struct multicall_space mcs;
 199        struct mmu_update *u;
 200
 201        trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 202
 203        mcs = xen_mc_entry(sizeof(*u));
 204        u = mcs.args;
 205
 206        /* ptep might be kmapped when using 32-bit HIGHPTE */
 207        u->ptr = virt_to_machine(ptep).maddr;
 208        u->val = pte_val_ma(pteval);
 209
 210        MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 211
 212        xen_mc_issue(PARAVIRT_LAZY_MMU);
 213}
 214EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 215
 216static void xen_extend_mmu_update(const struct mmu_update *update)
 217{
 218        struct multicall_space mcs;
 219        struct mmu_update *u;
 220
 221        mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 222
 223        if (mcs.mc != NULL) {
 224                mcs.mc->args[1]++;
 225        } else {
 226                mcs = __xen_mc_entry(sizeof(*u));
 227                MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 228        }
 229
 230        u = mcs.args;
 231        *u = *update;
 232}
 233
 234static void xen_extend_mmuext_op(const struct mmuext_op *op)
 235{
 236        struct multicall_space mcs;
 237        struct mmuext_op *u;
 238
 239        mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 240
 241        if (mcs.mc != NULL) {
 242                mcs.mc->args[1]++;
 243        } else {
 244                mcs = __xen_mc_entry(sizeof(*u));
 245                MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 246        }
 247
 248        u = mcs.args;
 249        *u = *op;
 250}
 251
 252static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 253{
 254        struct mmu_update u;
 255
 256        preempt_disable();
 257
 258        xen_mc_batch();
 259
 260        /* ptr may be ioremapped for 64-bit pagetable setup */
 261        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 262        u.val = pmd_val_ma(val);
 263        xen_extend_mmu_update(&u);
 264
 265        xen_mc_issue(PARAVIRT_LAZY_MMU);
 266
 267        preempt_enable();
 268}
 269
 270static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 271{
 272        trace_xen_mmu_set_pmd(ptr, val);
 273
 274        /* If page is not pinned, we can just update the entry
 275           directly */
 276        if (!xen_page_pinned(ptr)) {
 277                *ptr = val;
 278                return;
 279        }
 280
 281        xen_set_pmd_hyper(ptr, val);
 282}
 283
 284/*
 285 * Associate a virtual page frame with a given physical page frame
 286 * and protection flags for that frame.
 287 */
 288void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 289{
 290        set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 291}
 292
 293static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 294{
 295        struct mmu_update u;
 296
 297        if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 298                return false;
 299
 300        xen_mc_batch();
 301
 302        u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 303        u.val = pte_val_ma(pteval);
 304        xen_extend_mmu_update(&u);
 305
 306        xen_mc_issue(PARAVIRT_LAZY_MMU);
 307
 308        return true;
 309}
 310
 311static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 312{
 313        if (!xen_batched_set_pte(ptep, pteval)) {
 314                /*
 315                 * Could call native_set_pte() here and trap and
 316                 * emulate the PTE write but with 32-bit guests this
 317                 * needs two traps (one for each of the two 32-bit
 318                 * words in the PTE) so do one hypercall directly
 319                 * instead.
 320                 */
 321                struct mmu_update u;
 322
 323                u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 324                u.val = pte_val_ma(pteval);
 325                HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
 326        }
 327}
 328
 329static void xen_set_pte(pte_t *ptep, pte_t pteval)
 330{
 331        trace_xen_mmu_set_pte(ptep, pteval);
 332        __xen_set_pte(ptep, pteval);
 333}
 334
 335static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 336                    pte_t *ptep, pte_t pteval)
 337{
 338        trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 339        __xen_set_pte(ptep, pteval);
 340}
 341
 342pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 343                                 unsigned long addr, pte_t *ptep)
 344{
 345        /* Just return the pte as-is.  We preserve the bits on commit */
 346        trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 347        return *ptep;
 348}
 349
 350void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 351                                 pte_t *ptep, pte_t pte)
 352{
 353        struct mmu_update u;
 354
 355        trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 356        xen_mc_batch();
 357
 358        u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 359        u.val = pte_val_ma(pte);
 360        xen_extend_mmu_update(&u);
 361
 362        xen_mc_issue(PARAVIRT_LAZY_MMU);
 363}
 364
 365/* Assume pteval_t is equivalent to all the other *val_t types. */
 366static pteval_t pte_mfn_to_pfn(pteval_t val)
 367{
 368        if (val & _PAGE_PRESENT) {
 369                unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 370                unsigned long pfn = mfn_to_pfn(mfn);
 371
 372                pteval_t flags = val & PTE_FLAGS_MASK;
 373                if (unlikely(pfn == ~0))
 374                        val = flags & ~_PAGE_PRESENT;
 375                else
 376                        val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 377        }
 378
 379        return val;
 380}
 381
 382static pteval_t pte_pfn_to_mfn(pteval_t val)
 383{
 384        if (val & _PAGE_PRESENT) {
 385                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 386                pteval_t flags = val & PTE_FLAGS_MASK;
 387                unsigned long mfn;
 388
 389                if (!xen_feature(XENFEAT_auto_translated_physmap))
 390                        mfn = get_phys_to_machine(pfn);
 391                else
 392                        mfn = pfn;
 393                /*
 394                 * If there's no mfn for the pfn, then just create an
 395                 * empty non-present pte.  Unfortunately this loses
 396                 * information about the original pfn, so
 397                 * pte_mfn_to_pfn is asymmetric.
 398                 */
 399                if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 400                        mfn = 0;
 401                        flags = 0;
 402                } else {
 403                        /*
 404                         * Paramount to do this test _after_ the
 405                         * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
 406                         * IDENTITY_FRAME_BIT resolves to true.
 407                         */
 408                        mfn &= ~FOREIGN_FRAME_BIT;
 409                        if (mfn & IDENTITY_FRAME_BIT) {
 410                                mfn &= ~IDENTITY_FRAME_BIT;
 411                                flags |= _PAGE_IOMAP;
 412                        }
 413                }
 414                val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 415        }
 416
 417        return val;
 418}
 419
 420static pteval_t iomap_pte(pteval_t val)
 421{
 422        if (val & _PAGE_PRESENT) {
 423                unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 424                pteval_t flags = val & PTE_FLAGS_MASK;
 425
 426                /* We assume the pte frame number is a MFN, so
 427                   just use it as-is. */
 428                val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 429        }
 430
 431        return val;
 432}
 433
 434__visible pteval_t xen_pte_val(pte_t pte)
 435{
 436        pteval_t pteval = pte.pte;
 437#if 0
 438        /* If this is a WC pte, convert back from Xen WC to Linux WC */
 439        if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
 440                WARN_ON(!pat_enabled);
 441                pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
 442        }
 443#endif
 444        if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
 445                return pteval;
 446
 447        return pte_mfn_to_pfn(pteval);
 448}
 449PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 450
 451__visible pgdval_t xen_pgd_val(pgd_t pgd)
 452{
 453        return pte_mfn_to_pfn(pgd.pgd);
 454}
 455PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 456
 457/*
 458 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 459 * are reserved for now, to correspond to the Intel-reserved PAT
 460 * types.
 461 *
 462 * We expect Linux's PAT set as follows:
 463 *
 464 * Idx  PTE flags        Linux    Xen    Default
 465 * 0                     WB       WB     WB
 466 * 1            PWT      WC       WT     WT
 467 * 2        PCD          UC-      UC-    UC-
 468 * 3        PCD PWT      UC       UC     UC
 469 * 4    PAT              WB       WC     WB
 470 * 5    PAT     PWT      WC       WP     WT
 471 * 6    PAT PCD          UC-      rsv    UC-
 472 * 7    PAT PCD PWT      UC       rsv    UC
 473 */
 474
 475void xen_set_pat(u64 pat)
 476{
 477        /* We expect Linux to use a PAT setting of
 478         * UC UC- WC WB (ignoring the PAT flag) */
 479        WARN_ON(pat != 0x0007010600070106ull);
 480}
 481
 482__visible pte_t xen_make_pte(pteval_t pte)
 483{
 484        phys_addr_t addr = (pte & PTE_PFN_MASK);
 485#if 0
 486        /* If Linux is trying to set a WC pte, then map to the Xen WC.
 487         * If _PAGE_PAT is set, then it probably means it is really
 488         * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
 489         * things work out OK...
 490         *
 491         * (We should never see kernel mappings with _PAGE_PSE set,
 492         * but we could see hugetlbfs mappings, I think.).
 493         */
 494        if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
 495                if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
 496                        pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
 497        }
 498#endif
 499        /*
 500         * Unprivileged domains are allowed to do IOMAPpings for
 501         * PCI passthrough, but not map ISA space.  The ISA
 502         * mappings are just dummy local mappings to keep other
 503         * parts of the kernel happy.
 504         */
 505        if (unlikely(pte & _PAGE_IOMAP) &&
 506            (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 507                pte = iomap_pte(pte);
 508        } else {
 509                pte &= ~_PAGE_IOMAP;
 510                pte = pte_pfn_to_mfn(pte);
 511        }
 512
 513        return native_make_pte(pte);
 514}
 515PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 516
 517__visible pgd_t xen_make_pgd(pgdval_t pgd)
 518{
 519        pgd = pte_pfn_to_mfn(pgd);
 520        return native_make_pgd(pgd);
 521}
 522PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 523
 524__visible pmdval_t xen_pmd_val(pmd_t pmd)
 525{
 526        return pte_mfn_to_pfn(pmd.pmd);
 527}
 528PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 529
 530static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 531{
 532        struct mmu_update u;
 533
 534        preempt_disable();
 535
 536        xen_mc_batch();
 537
 538        /* ptr may be ioremapped for 64-bit pagetable setup */
 539        u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 540        u.val = pud_val_ma(val);
 541        xen_extend_mmu_update(&u);
 542
 543        xen_mc_issue(PARAVIRT_LAZY_MMU);
 544
 545        preempt_enable();
 546}
 547
 548static void xen_set_pud(pud_t *ptr, pud_t val)
 549{
 550        trace_xen_mmu_set_pud(ptr, val);
 551
 552        /* If page is not pinned, we can just update the entry
 553           directly */
 554        if (!xen_page_pinned(ptr)) {
 555                *ptr = val;
 556                return;
 557        }
 558
 559        xen_set_pud_hyper(ptr, val);
 560}
 561
 562#ifdef CONFIG_X86_PAE
 563static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 564{
 565        trace_xen_mmu_set_pte_atomic(ptep, pte);
 566        set_64bit((u64 *)ptep, native_pte_val(pte));
 567}
 568
 569static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 570{
 571        trace_xen_mmu_pte_clear(mm, addr, ptep);
 572        if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 573                native_pte_clear(mm, addr, ptep);
 574}
 575
 576static void xen_pmd_clear(pmd_t *pmdp)
 577{
 578        trace_xen_mmu_pmd_clear(pmdp);
 579        set_pmd(pmdp, __pmd(0));
 580}
 581#endif  /* CONFIG_X86_PAE */
 582
 583__visible pmd_t xen_make_pmd(pmdval_t pmd)
 584{
 585        pmd = pte_pfn_to_mfn(pmd);
 586        return native_make_pmd(pmd);
 587}
 588PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 589
 590#if PAGETABLE_LEVELS == 4
 591__visible pudval_t xen_pud_val(pud_t pud)
 592{
 593        return pte_mfn_to_pfn(pud.pud);
 594}
 595PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 596
 597__visible pud_t xen_make_pud(pudval_t pud)
 598{
 599        pud = pte_pfn_to_mfn(pud);
 600
 601        return native_make_pud(pud);
 602}
 603PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 604
 605static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 606{
 607        pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 608        unsigned offset = pgd - pgd_page;
 609        pgd_t *user_ptr = NULL;
 610
 611        if (offset < pgd_index(USER_LIMIT)) {
 612                struct page *page = virt_to_page(pgd_page);
 613                user_ptr = (pgd_t *)page->private;
 614                if (user_ptr)
 615                        user_ptr += offset;
 616        }
 617
 618        return user_ptr;
 619}
 620
 621static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 622{
 623        struct mmu_update u;
 624
 625        u.ptr = virt_to_machine(ptr).maddr;
 626        u.val = pgd_val_ma(val);
 627        xen_extend_mmu_update(&u);
 628}
 629
 630/*
 631 * Raw hypercall-based set_pgd, intended for in early boot before
 632 * there's a page structure.  This implies:
 633 *  1. The only existing pagetable is the kernel's
 634 *  2. It is always pinned
 635 *  3. It has no user pagetable attached to it
 636 */
 637static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 638{
 639        preempt_disable();
 640
 641        xen_mc_batch();
 642
 643        __xen_set_pgd_hyper(ptr, val);
 644
 645        xen_mc_issue(PARAVIRT_LAZY_MMU);
 646
 647        preempt_enable();
 648}
 649
 650static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 651{
 652        pgd_t *user_ptr = xen_get_user_pgd(ptr);
 653
 654        trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 655
 656        /* If page is not pinned, we can just update the entry
 657           directly */
 658        if (!xen_page_pinned(ptr)) {
 659                *ptr = val;
 660                if (user_ptr) {
 661                        WARN_ON(xen_page_pinned(user_ptr));
 662                        *user_ptr = val;
 663                }
 664                return;
 665        }
 666
 667        /* If it's pinned, then we can at least batch the kernel and
 668           user updates together. */
 669        xen_mc_batch();
 670
 671        __xen_set_pgd_hyper(ptr, val);
 672        if (user_ptr)
 673                __xen_set_pgd_hyper(user_ptr, val);
 674
 675        xen_mc_issue(PARAVIRT_LAZY_MMU);
 676}
 677#endif  /* PAGETABLE_LEVELS == 4 */
 678
 679/*
 680 * (Yet another) pagetable walker.  This one is intended for pinning a
 681 * pagetable.  This means that it walks a pagetable and calls the
 682 * callback function on each page it finds making up the page table,
 683 * at every level.  It walks the entire pagetable, but it only bothers
 684 * pinning pte pages which are below limit.  In the normal case this
 685 * will be STACK_TOP_MAX, but at boot we need to pin up to
 686 * FIXADDR_TOP.
 687 *
 688 * For 32-bit the important bit is that we don't pin beyond there,
 689 * because then we start getting into Xen's ptes.
 690 *
 691 * For 64-bit, we must skip the Xen hole in the middle of the address
 692 * space, just after the big x86-64 virtual hole.
 693 */
 694static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 695                          int (*func)(struct mm_struct *mm, struct page *,
 696                                      enum pt_level),
 697                          unsigned long limit)
 698{
 699        int flush = 0;
 700        unsigned hole_low, hole_high;
 701        unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 702        unsigned pgdidx, pudidx, pmdidx;
 703
 704        /* The limit is the last byte to be touched */
 705        limit--;
 706        BUG_ON(limit >= FIXADDR_TOP);
 707
 708        if (xen_feature(XENFEAT_auto_translated_physmap))
 709                return 0;
 710
 711        /*
 712         * 64-bit has a great big hole in the middle of the address
 713         * space, which contains the Xen mappings.  On 32-bit these
 714         * will end up making a zero-sized hole and so is a no-op.
 715         */
 716        hole_low = pgd_index(USER_LIMIT);
 717        hole_high = pgd_index(PAGE_OFFSET);
 718
 719        pgdidx_limit = pgd_index(limit);
 720#if PTRS_PER_PUD > 1
 721        pudidx_limit = pud_index(limit);
 722#else
 723        pudidx_limit = 0;
 724#endif
 725#if PTRS_PER_PMD > 1
 726        pmdidx_limit = pmd_index(limit);
 727#else
 728        pmdidx_limit = 0;
 729#endif
 730
 731        for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 732                pud_t *pud;
 733
 734                if (pgdidx >= hole_low && pgdidx < hole_high)
 735                        continue;
 736
 737                if (!pgd_val(pgd[pgdidx]))
 738                        continue;
 739
 740                pud = pud_offset(&pgd[pgdidx], 0);
 741
 742                if (PTRS_PER_PUD > 1) /* not folded */
 743                        flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 744
 745                for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 746                        pmd_t *pmd;
 747
 748                        if (pgdidx == pgdidx_limit &&
 749                            pudidx > pudidx_limit)
 750                                goto out;
 751
 752                        if (pud_none(pud[pudidx]))
 753                                continue;
 754
 755                        pmd = pmd_offset(&pud[pudidx], 0);
 756
 757                        if (PTRS_PER_PMD > 1) /* not folded */
 758                                flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 759
 760                        for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 761                                struct page *pte;
 762
 763                                if (pgdidx == pgdidx_limit &&
 764                                    pudidx == pudidx_limit &&
 765                                    pmdidx > pmdidx_limit)
 766                                        goto out;
 767
 768                                if (pmd_none(pmd[pmdidx]))
 769                                        continue;
 770
 771                                pte = pmd_page(pmd[pmdidx]);
 772                                flush |= (*func)(mm, pte, PT_PTE);
 773                        }
 774                }
 775        }
 776
 777out:
 778        /* Do the top level last, so that the callbacks can use it as
 779           a cue to do final things like tlb flushes. */
 780        flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 781
 782        return flush;
 783}
 784
 785static int xen_pgd_walk(struct mm_struct *mm,
 786                        int (*func)(struct mm_struct *mm, struct page *,
 787                                    enum pt_level),
 788                        unsigned long limit)
 789{
 790        return __xen_pgd_walk(mm, mm->pgd, func, limit);
 791}
 792
 793/* If we're using split pte locks, then take the page's lock and
 794   return a pointer to it.  Otherwise return NULL. */
 795static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 796{
 797        spinlock_t *ptl = NULL;
 798
 799#if USE_SPLIT_PTE_PTLOCKS
 800        ptl = ptlock_ptr(page);
 801        spin_lock_nest_lock(ptl, &mm->page_table_lock);
 802#endif
 803
 804        return ptl;
 805}
 806
 807static void xen_pte_unlock(void *v)
 808{
 809        spinlock_t *ptl = v;
 810        spin_unlock(ptl);
 811}
 812
 813static void xen_do_pin(unsigned level, unsigned long pfn)
 814{
 815        struct mmuext_op op;
 816
 817        op.cmd = level;
 818        op.arg1.mfn = pfn_to_mfn(pfn);
 819
 820        xen_extend_mmuext_op(&op);
 821}
 822
 823static int xen_pin_page(struct mm_struct *mm, struct page *page,
 824                        enum pt_level level)
 825{
 826        unsigned pgfl = TestSetPagePinned(page);
 827        int flush;
 828
 829        if (pgfl)
 830                flush = 0;              /* already pinned */
 831        else if (PageHighMem(page))
 832                /* kmaps need flushing if we found an unpinned
 833                   highpage */
 834                flush = 1;
 835        else {
 836                void *pt = lowmem_page_address(page);
 837                unsigned long pfn = page_to_pfn(page);
 838                struct multicall_space mcs = __xen_mc_entry(0);
 839                spinlock_t *ptl;
 840
 841                flush = 0;
 842
 843                /*
 844                 * We need to hold the pagetable lock between the time
 845                 * we make the pagetable RO and when we actually pin
 846                 * it.  If we don't, then other users may come in and
 847                 * attempt to update the pagetable by writing it,
 848                 * which will fail because the memory is RO but not
 849                 * pinned, so Xen won't do the trap'n'emulate.
 850                 *
 851                 * If we're using split pte locks, we can't hold the
 852                 * entire pagetable's worth of locks during the
 853                 * traverse, because we may wrap the preempt count (8
 854                 * bits).  The solution is to mark RO and pin each PTE
 855                 * page while holding the lock.  This means the number
 856                 * of locks we end up holding is never more than a
 857                 * batch size (~32 entries, at present).
 858                 *
 859                 * If we're not using split pte locks, we needn't pin
 860                 * the PTE pages independently, because we're
 861                 * protected by the overall pagetable lock.
 862                 */
 863                ptl = NULL;
 864                if (level == PT_PTE)
 865                        ptl = xen_pte_lock(page, mm);
 866
 867                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 868                                        pfn_pte(pfn, PAGE_KERNEL_RO),
 869                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 870
 871                if (ptl) {
 872                        xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 873
 874                        /* Queue a deferred unlock for when this batch
 875                           is completed. */
 876                        xen_mc_callback(xen_pte_unlock, ptl);
 877                }
 878        }
 879
 880        return flush;
 881}
 882
 883/* This is called just after a mm has been created, but it has not
 884   been used yet.  We need to make sure that its pagetable is all
 885   read-only, and can be pinned. */
 886static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 887{
 888        trace_xen_mmu_pgd_pin(mm, pgd);
 889
 890        xen_mc_batch();
 891
 892        if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 893                /* re-enable interrupts for flushing */
 894                xen_mc_issue(0);
 895
 896                kmap_flush_unused();
 897
 898                xen_mc_batch();
 899        }
 900
 901#ifdef CONFIG_X86_64
 902        {
 903                pgd_t *user_pgd = xen_get_user_pgd(pgd);
 904
 905                xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 906
 907                if (user_pgd) {
 908                        xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 909                        xen_do_pin(MMUEXT_PIN_L4_TABLE,
 910                                   PFN_DOWN(__pa(user_pgd)));
 911                }
 912        }
 913#else /* CONFIG_X86_32 */
 914#ifdef CONFIG_X86_PAE
 915        /* Need to make sure unshared kernel PMD is pinnable */
 916        xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 917                     PT_PMD);
 918#endif
 919        xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 920#endif /* CONFIG_X86_64 */
 921        xen_mc_issue(0);
 922}
 923
 924static void xen_pgd_pin(struct mm_struct *mm)
 925{
 926        __xen_pgd_pin(mm, mm->pgd);
 927}
 928
 929/*
 930 * On save, we need to pin all pagetables to make sure they get their
 931 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 932 * them (unpinned pgds are not currently in use, probably because the
 933 * process is under construction or destruction).
 934 *
 935 * Expected to be called in stop_machine() ("equivalent to taking
 936 * every spinlock in the system"), so the locking doesn't really
 937 * matter all that much.
 938 */
 939void xen_mm_pin_all(void)
 940{
 941        struct page *page;
 942
 943        spin_lock(&pgd_lock);
 944
 945        list_for_each_entry(page, &pgd_list, lru) {
 946                if (!PagePinned(page)) {
 947                        __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 948                        SetPageSavePinned(page);
 949                }
 950        }
 951
 952        spin_unlock(&pgd_lock);
 953}
 954
 955/*
 956 * The init_mm pagetable is really pinned as soon as its created, but
 957 * that's before we have page structures to store the bits.  So do all
 958 * the book-keeping now.
 959 */
 960static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 961                                  enum pt_level level)
 962{
 963        SetPagePinned(page);
 964        return 0;
 965}
 966
 967static void __init xen_mark_init_mm_pinned(void)
 968{
 969        xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 970}
 971
 972static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 973                          enum pt_level level)
 974{
 975        unsigned pgfl = TestClearPagePinned(page);
 976
 977        if (pgfl && !PageHighMem(page)) {
 978                void *pt = lowmem_page_address(page);
 979                unsigned long pfn = page_to_pfn(page);
 980                spinlock_t *ptl = NULL;
 981                struct multicall_space mcs;
 982
 983                /*
 984                 * Do the converse to pin_page.  If we're using split
 985                 * pte locks, we must be holding the lock for while
 986                 * the pte page is unpinned but still RO to prevent
 987                 * concurrent updates from seeing it in this
 988                 * partially-pinned state.
 989                 */
 990                if (level == PT_PTE) {
 991                        ptl = xen_pte_lock(page, mm);
 992
 993                        if (ptl)
 994                                xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
 995                }
 996
 997                mcs = __xen_mc_entry(0);
 998
 999                MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1000                                        pfn_pte(pfn, PAGE_KERNEL),
1001                                        level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1002
1003                if (ptl) {
1004                        /* unlock when batch completed */
1005                        xen_mc_callback(xen_pte_unlock, ptl);
1006                }
1007        }
1008
1009        return 0;               /* never need to flush on unpin */
1010}
1011
1012/* Release a pagetables pages back as normal RW */
1013static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1014{
1015        trace_xen_mmu_pgd_unpin(mm, pgd);
1016
1017        xen_mc_batch();
1018
1019        xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1020
1021#ifdef CONFIG_X86_64
1022        {
1023                pgd_t *user_pgd = xen_get_user_pgd(pgd);
1024
1025                if (user_pgd) {
1026                        xen_do_pin(MMUEXT_UNPIN_TABLE,
1027                                   PFN_DOWN(__pa(user_pgd)));
1028                        xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1029                }
1030        }
1031#endif
1032
1033#ifdef CONFIG_X86_PAE
1034        /* Need to make sure unshared kernel PMD is unpinned */
1035        xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1036                       PT_PMD);
1037#endif
1038
1039        __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1040
1041        xen_mc_issue(0);
1042}
1043
1044static void xen_pgd_unpin(struct mm_struct *mm)
1045{
1046        __xen_pgd_unpin(mm, mm->pgd);
1047}
1048
1049/*
1050 * On resume, undo any pinning done at save, so that the rest of the
1051 * kernel doesn't see any unexpected pinned pagetables.
1052 */
1053void xen_mm_unpin_all(void)
1054{
1055        struct page *page;
1056
1057        spin_lock(&pgd_lock);
1058
1059        list_for_each_entry(page, &pgd_list, lru) {
1060                if (PageSavePinned(page)) {
1061                        BUG_ON(!PagePinned(page));
1062                        __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1063                        ClearPageSavePinned(page);
1064                }
1065        }
1066
1067        spin_unlock(&pgd_lock);
1068}
1069
1070static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1071{
1072        spin_lock(&next->page_table_lock);
1073        xen_pgd_pin(next);
1074        spin_unlock(&next->page_table_lock);
1075}
1076
1077static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1078{
1079        spin_lock(&mm->page_table_lock);
1080        xen_pgd_pin(mm);
1081        spin_unlock(&mm->page_table_lock);
1082}
1083
1084
1085#ifdef CONFIG_SMP
1086/* Another cpu may still have their %cr3 pointing at the pagetable, so
1087   we need to repoint it somewhere else before we can unpin it. */
1088static void drop_other_mm_ref(void *info)
1089{
1090        struct mm_struct *mm = info;
1091        struct mm_struct *active_mm;
1092
1093        active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1094
1095        if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1096                leave_mm(smp_processor_id());
1097
1098        /* If this cpu still has a stale cr3 reference, then make sure
1099           it has been flushed. */
1100        if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1101                load_cr3(swapper_pg_dir);
1102}
1103
1104static void xen_drop_mm_ref(struct mm_struct *mm)
1105{
1106        cpumask_var_t mask;
1107        unsigned cpu;
1108
1109        if (current->active_mm == mm) {
1110                if (current->mm == mm)
1111                        load_cr3(swapper_pg_dir);
1112                else
1113                        leave_mm(smp_processor_id());
1114        }
1115
1116        /* Get the "official" set of cpus referring to our pagetable. */
1117        if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1118                for_each_online_cpu(cpu) {
1119                        if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1120                            && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1121                                continue;
1122                        smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1123                }
1124                return;
1125        }
1126        cpumask_copy(mask, mm_cpumask(mm));
1127
1128        /* It's possible that a vcpu may have a stale reference to our
1129           cr3, because its in lazy mode, and it hasn't yet flushed
1130           its set of pending hypercalls yet.  In this case, we can
1131           look at its actual current cr3 value, and force it to flush
1132           if needed. */
1133        for_each_online_cpu(cpu) {
1134                if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1135                        cpumask_set_cpu(cpu, mask);
1136        }
1137
1138        if (!cpumask_empty(mask))
1139                smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1140        free_cpumask_var(mask);
1141}
1142#else
1143static void xen_drop_mm_ref(struct mm_struct *mm)
1144{
1145        if (current->active_mm == mm)
1146                load_cr3(swapper_pg_dir);
1147}
1148#endif
1149
1150/*
1151 * While a process runs, Xen pins its pagetables, which means that the
1152 * hypervisor forces it to be read-only, and it controls all updates
1153 * to it.  This means that all pagetable updates have to go via the
1154 * hypervisor, which is moderately expensive.
1155 *
1156 * Since we're pulling the pagetable down, we switch to use init_mm,
1157 * unpin old process pagetable and mark it all read-write, which
1158 * allows further operations on it to be simple memory accesses.
1159 *
1160 * The only subtle point is that another CPU may be still using the
1161 * pagetable because of lazy tlb flushing.  This means we need need to
1162 * switch all CPUs off this pagetable before we can unpin it.
1163 */
1164static void xen_exit_mmap(struct mm_struct *mm)
1165{
1166        get_cpu();              /* make sure we don't move around */
1167        xen_drop_mm_ref(mm);
1168        put_cpu();
1169
1170        spin_lock(&mm->page_table_lock);
1171
1172        /* pgd may not be pinned in the error exit path of execve */
1173        if (xen_page_pinned(mm->pgd))
1174                xen_pgd_unpin(mm);
1175
1176        spin_unlock(&mm->page_table_lock);
1177}
1178
1179static void xen_post_allocator_init(void);
1180
1181#ifdef CONFIG_X86_64
1182static void __init xen_cleanhighmap(unsigned long vaddr,
1183                                    unsigned long vaddr_end)
1184{
1185        unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1186        pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1187
1188        /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1189         * We include the PMD passed in on _both_ boundaries. */
1190        for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1191                        pmd++, vaddr += PMD_SIZE) {
1192                if (pmd_none(*pmd))
1193                        continue;
1194                if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1195                        set_pmd(pmd, __pmd(0));
1196        }
1197        /* In case we did something silly, we should crash in this function
1198         * instead of somewhere later and be confusing. */
1199        xen_mc_flush();
1200}
1201static void __init xen_pagetable_p2m_copy(void)
1202{
1203        unsigned long size;
1204        unsigned long addr;
1205        unsigned long new_mfn_list;
1206
1207        if (xen_feature(XENFEAT_auto_translated_physmap))
1208                return;
1209
1210        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1211
1212        new_mfn_list = xen_revector_p2m_tree();
1213        /* No memory or already called. */
1214        if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1215                return;
1216
1217        /* using __ka address and sticking INVALID_P2M_ENTRY! */
1218        memset((void *)xen_start_info->mfn_list, 0xff, size);
1219
1220        /* We should be in __ka space. */
1221        BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1222        addr = xen_start_info->mfn_list;
1223        /* We roundup to the PMD, which means that if anybody at this stage is
1224         * using the __ka address of xen_start_info or xen_start_info->shared_info
1225         * they are in going to crash. Fortunatly we have already revectored
1226         * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1227        size = roundup(size, PMD_SIZE);
1228        xen_cleanhighmap(addr, addr + size);
1229
1230        size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1231        memblock_free(__pa(xen_start_info->mfn_list), size);
1232        /* And revector! Bye bye old array */
1233        xen_start_info->mfn_list = new_mfn_list;
1234
1235        /* At this stage, cleanup_highmap has already cleaned __ka space
1236         * from _brk_limit way up to the max_pfn_mapped (which is the end of
1237         * the ramdisk). We continue on, erasing PMD entries that point to page
1238         * tables - do note that they are accessible at this stage via __va.
1239         * For good measure we also round up to the PMD - which means that if
1240         * anybody is using __ka address to the initial boot-stack - and try
1241         * to use it - they are going to crash. The xen_start_info has been
1242         * taken care of already in xen_setup_kernel_pagetable. */
1243        addr = xen_start_info->pt_base;
1244        size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1245
1246        xen_cleanhighmap(addr, addr + size);
1247        xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1248#ifdef DEBUG
1249        /* This is superflous and is not neccessary, but you know what
1250         * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1251         * anything at this stage. */
1252        xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1253#endif
1254}
1255#endif
1256
1257static void __init xen_pagetable_init(void)
1258{
1259        paging_init();
1260        xen_setup_shared_info();
1261#ifdef CONFIG_X86_64
1262        xen_pagetable_p2m_copy();
1263#endif
1264        xen_post_allocator_init();
1265}
1266static void xen_write_cr2(unsigned long cr2)
1267{
1268        this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1269}
1270
1271static unsigned long xen_read_cr2(void)
1272{
1273        return this_cpu_read(xen_vcpu)->arch.cr2;
1274}
1275
1276unsigned long xen_read_cr2_direct(void)
1277{
1278        return this_cpu_read(xen_vcpu_info.arch.cr2);
1279}
1280
1281void xen_flush_tlb_all(void)
1282{
1283        struct mmuext_op *op;
1284        struct multicall_space mcs;
1285
1286        trace_xen_mmu_flush_tlb_all(0);
1287
1288        preempt_disable();
1289
1290        mcs = xen_mc_entry(sizeof(*op));
1291
1292        op = mcs.args;
1293        op->cmd = MMUEXT_TLB_FLUSH_ALL;
1294        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1295
1296        xen_mc_issue(PARAVIRT_LAZY_MMU);
1297
1298        preempt_enable();
1299}
1300static void xen_flush_tlb(void)
1301{
1302        struct mmuext_op *op;
1303        struct multicall_space mcs;
1304
1305        trace_xen_mmu_flush_tlb(0);
1306
1307        preempt_disable();
1308
1309        mcs = xen_mc_entry(sizeof(*op));
1310
1311        op = mcs.args;
1312        op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1313        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1314
1315        xen_mc_issue(PARAVIRT_LAZY_MMU);
1316
1317        preempt_enable();
1318}
1319
1320static void xen_flush_tlb_single(unsigned long addr)
1321{
1322        struct mmuext_op *op;
1323        struct multicall_space mcs;
1324
1325        trace_xen_mmu_flush_tlb_single(addr);
1326
1327        preempt_disable();
1328
1329        mcs = xen_mc_entry(sizeof(*op));
1330        op = mcs.args;
1331        op->cmd = MMUEXT_INVLPG_LOCAL;
1332        op->arg1.linear_addr = addr & PAGE_MASK;
1333        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1334
1335        xen_mc_issue(PARAVIRT_LAZY_MMU);
1336
1337        preempt_enable();
1338}
1339
1340static void xen_flush_tlb_others(const struct cpumask *cpus,
1341                                 struct mm_struct *mm, unsigned long start,
1342                                 unsigned long end)
1343{
1344        struct {
1345                struct mmuext_op op;
1346#ifdef CONFIG_SMP
1347                DECLARE_BITMAP(mask, num_processors);
1348#else
1349                DECLARE_BITMAP(mask, NR_CPUS);
1350#endif
1351        } *args;
1352        struct multicall_space mcs;
1353
1354        trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1355
1356        if (cpumask_empty(cpus))
1357                return;         /* nothing to do */
1358
1359        mcs = xen_mc_entry(sizeof(*args));
1360        args = mcs.args;
1361        args->op.arg2.vcpumask = to_cpumask(args->mask);
1362
1363        /* Remove us, and any offline CPUS. */
1364        cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1365        cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1366
1367        args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1368        if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1369                args->op.cmd = MMUEXT_INVLPG_MULTI;
1370                args->op.arg1.linear_addr = start;
1371        }
1372
1373        MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1374
1375        xen_mc_issue(PARAVIRT_LAZY_MMU);
1376}
1377
1378static unsigned long xen_read_cr3(void)
1379{
1380        return this_cpu_read(xen_cr3);
1381}
1382
1383static void set_current_cr3(void *v)
1384{
1385        this_cpu_write(xen_current_cr3, (unsigned long)v);
1386}
1387
1388static void __xen_write_cr3(bool kernel, unsigned long cr3)
1389{
1390        struct mmuext_op op;
1391        unsigned long mfn;
1392
1393        trace_xen_mmu_write_cr3(kernel, cr3);
1394
1395        if (cr3)
1396                mfn = pfn_to_mfn(PFN_DOWN(cr3));
1397        else
1398                mfn = 0;
1399
1400        WARN_ON(mfn == 0 && kernel);
1401
1402        op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1403        op.arg1.mfn = mfn;
1404
1405        xen_extend_mmuext_op(&op);
1406
1407        if (kernel) {
1408                this_cpu_write(xen_cr3, cr3);
1409
1410                /* Update xen_current_cr3 once the batch has actually
1411                   been submitted. */
1412                xen_mc_callback(set_current_cr3, (void *)cr3);
1413        }
1414}
1415static void xen_write_cr3(unsigned long cr3)
1416{
1417        BUG_ON(preemptible());
1418
1419        xen_mc_batch();  /* disables interrupts */
1420
1421        /* Update while interrupts are disabled, so its atomic with
1422           respect to ipis */
1423        this_cpu_write(xen_cr3, cr3);
1424
1425        __xen_write_cr3(true, cr3);
1426
1427#ifdef CONFIG_X86_64
1428        {
1429                pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1430                if (user_pgd)
1431                        __xen_write_cr3(false, __pa(user_pgd));
1432                else
1433                        __xen_write_cr3(false, 0);
1434        }
1435#endif
1436
1437        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1438}
1439
1440#ifdef CONFIG_X86_64
1441/*
1442 * At the start of the day - when Xen launches a guest, it has already
1443 * built pagetables for the guest. We diligently look over them
1444 * in xen_setup_kernel_pagetable and graft as appropiate them in the
1445 * init_level4_pgt and its friends. Then when we are happy we load
1446 * the new init_level4_pgt - and continue on.
1447 *
1448 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1449 * up the rest of the pagetables. When it has completed it loads the cr3.
1450 * N.B. that baremetal would start at 'start_kernel' (and the early
1451 * #PF handler would create bootstrap pagetables) - so we are running
1452 * with the same assumptions as what to do when write_cr3 is executed
1453 * at this point.
1454 *
1455 * Since there are no user-page tables at all, we have two variants
1456 * of xen_write_cr3 - the early bootup (this one), and the late one
1457 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1458 * the Linux kernel and user-space are both in ring 3 while the
1459 * hypervisor is in ring 0.
1460 */
1461static void __init xen_write_cr3_init(unsigned long cr3)
1462{
1463        BUG_ON(preemptible());
1464
1465        xen_mc_batch();  /* disables interrupts */
1466
1467        /* Update while interrupts are disabled, so its atomic with
1468           respect to ipis */
1469        this_cpu_write(xen_cr3, cr3);
1470
1471        __xen_write_cr3(true, cr3);
1472
1473        xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1474}
1475#endif
1476
1477static int xen_pgd_alloc(struct mm_struct *mm)
1478{
1479        pgd_t *pgd = mm->pgd;
1480        int ret = 0;
1481
1482        BUG_ON(PagePinned(virt_to_page(pgd)));
1483
1484#ifdef CONFIG_X86_64
1485        {
1486                struct page *page = virt_to_page(pgd);
1487                pgd_t *user_pgd;
1488
1489                BUG_ON(page->private != 0);
1490
1491                ret = -ENOMEM;
1492
1493                user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1494                page->private = (unsigned long)user_pgd;
1495
1496                if (user_pgd != NULL) {
1497                        user_pgd[pgd_index(VSYSCALL_START)] =
1498                                __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1499                        ret = 0;
1500                }
1501
1502                BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1503        }
1504#endif
1505
1506        return ret;
1507}
1508
1509static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1510{
1511#ifdef CONFIG_X86_64
1512        pgd_t *user_pgd = xen_get_user_pgd(pgd);
1513
1514        if (user_pgd)
1515                free_page((unsigned long)user_pgd);
1516#endif
1517}
1518
1519#ifdef CONFIG_X86_32
1520static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1521{
1522        /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1523        if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1524                pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1525                               pte_val_ma(pte));
1526
1527        return pte;
1528}
1529#else /* CONFIG_X86_64 */
1530static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1531{
1532        return pte;
1533}
1534#endif /* CONFIG_X86_64 */
1535
1536/*
1537 * Init-time set_pte while constructing initial pagetables, which
1538 * doesn't allow RO page table pages to be remapped RW.
1539 *
1540 * If there is no MFN for this PFN then this page is initially
1541 * ballooned out so clear the PTE (as in decrease_reservation() in
1542 * drivers/xen/balloon.c).
1543 *
1544 * Many of these PTE updates are done on unpinned and writable pages
1545 * and doing a hypercall for these is unnecessary and expensive.  At
1546 * this point it is not possible to tell if a page is pinned or not,
1547 * so always write the PTE directly and rely on Xen trapping and
1548 * emulating any updates as necessary.
1549 */
1550static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1551{
1552        if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1553                pte = mask_rw_pte(ptep, pte);
1554        else
1555                pte = __pte_ma(0);
1556
1557        native_set_pte(ptep, pte);
1558}
1559
1560static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1561{
1562        struct mmuext_op op;
1563        op.cmd = cmd;
1564        op.arg1.mfn = pfn_to_mfn(pfn);
1565        if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1566                BUG();
1567}
1568
1569/* Early in boot, while setting up the initial pagetable, assume
1570   everything is pinned. */
1571static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1572{
1573#ifdef CONFIG_FLATMEM
1574        BUG_ON(mem_map);        /* should only be used early */
1575#endif
1576        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1577        pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1578}
1579
1580/* Used for pmd and pud */
1581static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1582{
1583#ifdef CONFIG_FLATMEM
1584        BUG_ON(mem_map);        /* should only be used early */
1585#endif
1586        make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1587}
1588
1589/* Early release_pte assumes that all pts are pinned, since there's
1590   only init_mm and anything attached to that is pinned. */
1591static void __init xen_release_pte_init(unsigned long pfn)
1592{
1593        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1594        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1595}
1596
1597static void __init xen_release_pmd_init(unsigned long pfn)
1598{
1599        make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1600}
1601
1602static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1603{
1604        struct multicall_space mcs;
1605        struct mmuext_op *op;
1606
1607        mcs = __xen_mc_entry(sizeof(*op));
1608        op = mcs.args;
1609        op->cmd = cmd;
1610        op->arg1.mfn = pfn_to_mfn(pfn);
1611
1612        MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1613}
1614
1615static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1616{
1617        struct multicall_space mcs;
1618        unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1619
1620        mcs = __xen_mc_entry(0);
1621        MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1622                                pfn_pte(pfn, prot), 0);
1623}
1624
1625/* This needs to make sure the new pte page is pinned iff its being
1626   attached to a pinned pagetable. */
1627static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1628                                    unsigned level)
1629{
1630        bool pinned = PagePinned(virt_to_page(mm->pgd));
1631
1632        trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1633
1634        if (pinned) {
1635                struct page *page = pfn_to_page(pfn);
1636
1637                SetPagePinned(page);
1638
1639                if (!PageHighMem(page)) {
1640                        xen_mc_batch();
1641
1642                        __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1643
1644                        if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1645                                __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1646
1647                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1648                } else {
1649                        /* make sure there are no stray mappings of
1650                           this page */
1651                        kmap_flush_unused();
1652                }
1653        }
1654}
1655
1656static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1657{
1658        xen_alloc_ptpage(mm, pfn, PT_PTE);
1659}
1660
1661static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1662{
1663        xen_alloc_ptpage(mm, pfn, PT_PMD);
1664}
1665
1666/* This should never happen until we're OK to use struct page */
1667static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1668{
1669        struct page *page = pfn_to_page(pfn);
1670        bool pinned = PagePinned(page);
1671
1672        trace_xen_mmu_release_ptpage(pfn, level, pinned);
1673
1674        if (pinned) {
1675                if (!PageHighMem(page)) {
1676                        xen_mc_batch();
1677
1678                        if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1679                                __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1680
1681                        __set_pfn_prot(pfn, PAGE_KERNEL);
1682
1683                        xen_mc_issue(PARAVIRT_LAZY_MMU);
1684                }
1685                ClearPagePinned(page);
1686        }
1687}
1688
1689static void xen_release_pte(unsigned long pfn)
1690{
1691        xen_release_ptpage(pfn, PT_PTE);
1692}
1693
1694static void xen_release_pmd(unsigned long pfn)
1695{
1696        xen_release_ptpage(pfn, PT_PMD);
1697}
1698
1699#if PAGETABLE_LEVELS == 4
1700static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1701{
1702        xen_alloc_ptpage(mm, pfn, PT_PUD);
1703}
1704
1705static void xen_release_pud(unsigned long pfn)
1706{
1707        xen_release_ptpage(pfn, PT_PUD);
1708}
1709#endif
1710
1711void __init xen_reserve_top(void)
1712{
1713#ifdef CONFIG_X86_32
1714        unsigned long top = HYPERVISOR_VIRT_START;
1715        struct xen_platform_parameters pp;
1716
1717        if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1718                top = pp.virt_start;
1719
1720        reserve_top_address(-top);
1721#endif  /* CONFIG_X86_32 */
1722}
1723
1724/*
1725 * Like __va(), but returns address in the kernel mapping (which is
1726 * all we have until the physical memory mapping has been set up.
1727 */
1728static void *__ka(phys_addr_t paddr)
1729{
1730#ifdef CONFIG_X86_64
1731        return (void *)(paddr + __START_KERNEL_map);
1732#else
1733        return __va(paddr);
1734#endif
1735}
1736
1737/* Convert a machine address to physical address */
1738static unsigned long m2p(phys_addr_t maddr)
1739{
1740        phys_addr_t paddr;
1741
1742        maddr &= PTE_PFN_MASK;
1743        paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1744
1745        return paddr;
1746}
1747
1748/* Convert a machine address to kernel virtual */
1749static void *m2v(phys_addr_t maddr)
1750{
1751        return __ka(m2p(maddr));
1752}
1753
1754/* Set the page permissions on an identity-mapped pages */
1755static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1756{
1757        unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1758        pte_t pte = pfn_pte(pfn, prot);
1759
1760        /* For PVH no need to set R/O or R/W to pin them or unpin them. */
1761        if (xen_feature(XENFEAT_auto_translated_physmap))
1762                return;
1763
1764        if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1765                BUG();
1766}
1767static void set_page_prot(void *addr, pgprot_t prot)
1768{
1769        return set_page_prot_flags(addr, prot, UVMF_NONE);
1770}
1771#ifdef CONFIG_X86_32
1772static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1773{
1774        unsigned pmdidx, pteidx;
1775        unsigned ident_pte;
1776        unsigned long pfn;
1777
1778        level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1779                                      PAGE_SIZE);
1780
1781        ident_pte = 0;
1782        pfn = 0;
1783        for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1784                pte_t *pte_page;
1785
1786                /* Reuse or allocate a page of ptes */
1787                if (pmd_present(pmd[pmdidx]))
1788                        pte_page = m2v(pmd[pmdidx].pmd);
1789                else {
1790                        /* Check for free pte pages */
1791                        if (ident_pte == LEVEL1_IDENT_ENTRIES)
1792                                break;
1793
1794                        pte_page = &level1_ident_pgt[ident_pte];
1795                        ident_pte += PTRS_PER_PTE;
1796
1797                        pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1798                }
1799
1800                /* Install mappings */
1801                for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1802                        pte_t pte;
1803
1804#ifdef CONFIG_X86_32
1805                        if (pfn > max_pfn_mapped)
1806                                max_pfn_mapped = pfn;
1807#endif
1808
1809                        if (!pte_none(pte_page[pteidx]))
1810                                continue;
1811
1812                        pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1813                        pte_page[pteidx] = pte;
1814                }
1815        }
1816
1817        for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1818                set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1819
1820        set_page_prot(pmd, PAGE_KERNEL_RO);
1821}
1822#endif
1823void __init xen_setup_machphys_mapping(void)
1824{
1825        struct xen_machphys_mapping mapping;
1826
1827        if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1828                machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1829                machine_to_phys_nr = mapping.max_mfn + 1;
1830        } else {
1831                machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1832        }
1833#ifdef CONFIG_X86_32
1834        WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1835                < machine_to_phys_mapping);
1836#endif
1837}
1838
1839#ifdef CONFIG_X86_64
1840static void convert_pfn_mfn(void *v)
1841{
1842        pte_t *pte = v;
1843        int i;
1844
1845        /* All levels are converted the same way, so just treat them
1846           as ptes. */
1847        for (i = 0; i < PTRS_PER_PTE; i++)
1848                pte[i] = xen_make_pte(pte[i].pte);
1849}
1850static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1851                                 unsigned long addr)
1852{
1853        if (*pt_base == PFN_DOWN(__pa(addr))) {
1854                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1855                clear_page((void *)addr);
1856                (*pt_base)++;
1857        }
1858        if (*pt_end == PFN_DOWN(__pa(addr))) {
1859                set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1860                clear_page((void *)addr);
1861                (*pt_end)--;
1862        }
1863}
1864/*
1865 * Set up the initial kernel pagetable.
1866 *
1867 * We can construct this by grafting the Xen provided pagetable into
1868 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1869 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1870 * means that only the kernel has a physical mapping to start with -
1871 * but that's enough to get __va working.  We need to fill in the rest
1872 * of the physical mapping once some sort of allocator has been set
1873 * up.
1874 * NOTE: for PVH, the page tables are native.
1875 */
1876void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1877{
1878        pud_t *l3;
1879        pmd_t *l2;
1880        unsigned long addr[3];
1881        unsigned long pt_base, pt_end;
1882        unsigned i;
1883
1884        /* max_pfn_mapped is the last pfn mapped in the initial memory
1885         * mappings. Considering that on Xen after the kernel mappings we
1886         * have the mappings of some pages that don't exist in pfn space, we
1887         * set max_pfn_mapped to the last real pfn mapped. */
1888        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1889
1890        pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1891        pt_end = pt_base + xen_start_info->nr_pt_frames;
1892
1893        /* Zap identity mapping */
1894        init_level4_pgt[0] = __pgd(0);
1895
1896        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1897                /* Pre-constructed entries are in pfn, so convert to mfn */
1898                /* L4[272] -> level3_ident_pgt
1899                 * L4[511] -> level3_kernel_pgt */
1900                convert_pfn_mfn(init_level4_pgt);
1901
1902                /* L3_i[0] -> level2_ident_pgt */
1903                convert_pfn_mfn(level3_ident_pgt);
1904                /* L3_k[510] -> level2_kernel_pgt
1905                 * L3_i[511] -> level2_fixmap_pgt */
1906                convert_pfn_mfn(level3_kernel_pgt);
1907        }
1908        /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1909        l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1910        l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1911
1912        addr[0] = (unsigned long)pgd;
1913        addr[1] = (unsigned long)l3;
1914        addr[2] = (unsigned long)l2;
1915        /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1916         * Both L4[272][0] and L4[511][511] have entries that point to the same
1917         * L2 (PMD) tables. Meaning that if you modify it in __va space
1918         * it will be also modified in the __ka space! (But if you just
1919         * modify the PMD table to point to other PTE's or none, then you
1920         * are OK - which is what cleanup_highmap does) */
1921        copy_page(level2_ident_pgt, l2);
1922        /* Graft it onto L4[511][511] */
1923        copy_page(level2_kernel_pgt, l2);
1924
1925        /* Get [511][510] and graft that in level2_fixmap_pgt */
1926        l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1927        l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1928        copy_page(level2_fixmap_pgt, l2);
1929        /* Note that we don't do anything with level1_fixmap_pgt which
1930         * we don't need. */
1931        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1932                /* Make pagetable pieces RO */
1933                set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1934                set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1935                set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1936                set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1937                set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1938                set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1939                set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1940
1941                /* Pin down new L4 */
1942                pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1943                                  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1944
1945                /* Unpin Xen-provided one */
1946                pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1947
1948                /*
1949                 * At this stage there can be no user pgd, and no page
1950                 * structure to attach it to, so make sure we just set kernel
1951                 * pgd.
1952                 */
1953                xen_mc_batch();
1954                __xen_write_cr3(true, __pa(init_level4_pgt));
1955                xen_mc_issue(PARAVIRT_LAZY_CPU);
1956        } else
1957                native_write_cr3(__pa(init_level4_pgt));
1958
1959        /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1960         * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1961         * the initial domain. For guests using the toolstack, they are in:
1962         * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1963         * rip out the [L4] (pgd), but for guests we shave off three pages.
1964         */
1965        for (i = 0; i < ARRAY_SIZE(addr); i++)
1966                check_pt_base(&pt_base, &pt_end, addr[i]);
1967
1968        /* Our (by three pages) smaller Xen pagetable that we are using */
1969        memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1970        /* Revector the xen_start_info */
1971        xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1972}
1973#else   /* !CONFIG_X86_64 */
1974static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1975static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1976
1977static void __init xen_write_cr3_init(unsigned long cr3)
1978{
1979        unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1980
1981        BUG_ON(read_cr3() != __pa(initial_page_table));
1982        BUG_ON(cr3 != __pa(swapper_pg_dir));
1983
1984        /*
1985         * We are switching to swapper_pg_dir for the first time (from
1986         * initial_page_table) and therefore need to mark that page
1987         * read-only and then pin it.
1988         *
1989         * Xen disallows sharing of kernel PMDs for PAE
1990         * guests. Therefore we must copy the kernel PMD from
1991         * initial_page_table into a new kernel PMD to be used in
1992         * swapper_pg_dir.
1993         */
1994        swapper_kernel_pmd =
1995                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1996        copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1997        swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1998                __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1999        set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2000
2001        set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2002        xen_write_cr3(cr3);
2003        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2004
2005        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2006                          PFN_DOWN(__pa(initial_page_table)));
2007        set_page_prot(initial_page_table, PAGE_KERNEL);
2008        set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2009
2010        pv_mmu_ops.write_cr3 = &xen_write_cr3;
2011}
2012
2013void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2014{
2015        pmd_t *kernel_pmd;
2016
2017        initial_kernel_pmd =
2018                extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2019
2020        max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
2021                                  xen_start_info->nr_pt_frames * PAGE_SIZE +
2022                                  512*1024);
2023
2024        kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2025        copy_page(initial_kernel_pmd, kernel_pmd);
2026
2027        xen_map_identity_early(initial_kernel_pmd, max_pfn);
2028
2029        copy_page(initial_page_table, pgd);
2030        initial_page_table[KERNEL_PGD_BOUNDARY] =
2031                __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2032
2033        set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2034        set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2035        set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2036
2037        pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2038
2039        pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2040                          PFN_DOWN(__pa(initial_page_table)));
2041        xen_write_cr3(__pa(initial_page_table));
2042
2043        memblock_reserve(__pa(xen_start_info->pt_base),
2044                         xen_start_info->nr_pt_frames * PAGE_SIZE);
2045}
2046#endif  /* CONFIG_X86_64 */
2047
2048static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2049
2050static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2051{
2052        pte_t pte;
2053
2054        phys >>= PAGE_SHIFT;
2055
2056        switch (idx) {
2057        case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2058        case FIX_RO_IDT:
2059#ifdef CONFIG_X86_32
2060        case FIX_WP_TEST:
2061        case FIX_VDSO:
2062# ifdef CONFIG_HIGHMEM
2063        case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2064# endif
2065#else
2066        case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
2067        case VVAR_PAGE:
2068#endif
2069        case FIX_TEXT_POKE0:
2070        case FIX_TEXT_POKE1:
2071                /* All local page mappings */
2072                pte = pfn_pte(phys, prot);
2073                break;
2074
2075#ifdef CONFIG_X86_LOCAL_APIC
2076        case FIX_APIC_BASE:     /* maps dummy local APIC */
2077                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2078                break;
2079#endif
2080
2081#ifdef CONFIG_X86_IO_APIC
2082        case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2083                /*
2084                 * We just don't map the IO APIC - all access is via
2085                 * hypercalls.  Keep the address in the pte for reference.
2086                 */
2087                pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2088                break;
2089#endif
2090
2091        case FIX_PARAVIRT_BOOTMAP:
2092                /* This is an MFN, but it isn't an IO mapping from the
2093                   IO domain */
2094                pte = mfn_pte(phys, prot);
2095                break;
2096
2097        default:
2098                /* By default, set_fixmap is used for hardware mappings */
2099                pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
2100                break;
2101        }
2102
2103        __native_set_fixmap(idx, pte);
2104
2105#ifdef CONFIG_X86_64
2106        /* Replicate changes to map the vsyscall page into the user
2107           pagetable vsyscall mapping. */
2108        if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
2109            idx == VVAR_PAGE) {
2110                unsigned long vaddr = __fix_to_virt(idx);
2111                set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2112        }
2113#endif
2114}
2115
2116static void __init xen_post_allocator_init(void)
2117{
2118        if (xen_feature(XENFEAT_auto_translated_physmap))
2119                return;
2120
2121        pv_mmu_ops.set_pte = xen_set_pte;
2122        pv_mmu_ops.set_pmd = xen_set_pmd;
2123        pv_mmu_ops.set_pud = xen_set_pud;
2124#if PAGETABLE_LEVELS == 4
2125        pv_mmu_ops.set_pgd = xen_set_pgd;
2126#endif
2127
2128        /* This will work as long as patching hasn't happened yet
2129           (which it hasn't) */
2130        pv_mmu_ops.alloc_pte = xen_alloc_pte;
2131        pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2132        pv_mmu_ops.release_pte = xen_release_pte;
2133        pv_mmu_ops.release_pmd = xen_release_pmd;
2134#if PAGETABLE_LEVELS == 4
2135        pv_mmu_ops.alloc_pud = xen_alloc_pud;
2136        pv_mmu_ops.release_pud = xen_release_pud;
2137#endif
2138
2139#ifdef CONFIG_X86_64
2140        pv_mmu_ops.write_cr3 = &xen_write_cr3;
2141        SetPagePinned(virt_to_page(level3_user_vsyscall));
2142#endif
2143        xen_mark_init_mm_pinned();
2144}
2145
2146static void xen_leave_lazy_mmu(void)
2147{
2148        preempt_disable();
2149        xen_mc_flush();
2150        paravirt_leave_lazy_mmu();
2151        preempt_enable();
2152}
2153
2154static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2155        .read_cr2 = xen_read_cr2,
2156        .write_cr2 = xen_write_cr2,
2157
2158        .read_cr3 = xen_read_cr3,
2159        .write_cr3 = xen_write_cr3_init,
2160
2161        .flush_tlb_user = xen_flush_tlb,
2162        .flush_tlb_kernel = xen_flush_tlb,
2163        .flush_tlb_single = xen_flush_tlb_single,
2164        .flush_tlb_others = xen_flush_tlb_others,
2165
2166        .pte_update = paravirt_nop,
2167        .pte_update_defer = paravirt_nop,
2168
2169        .pgd_alloc = xen_pgd_alloc,
2170        .pgd_free = xen_pgd_free,
2171
2172        .alloc_pte = xen_alloc_pte_init,
2173        .release_pte = xen_release_pte_init,
2174        .alloc_pmd = xen_alloc_pmd_init,
2175        .release_pmd = xen_release_pmd_init,
2176
2177        .set_pte = xen_set_pte_init,
2178        .set_pte_at = xen_set_pte_at,
2179        .set_pmd = xen_set_pmd_hyper,
2180
2181        .ptep_modify_prot_start = __ptep_modify_prot_start,
2182        .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2183
2184        .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2185        .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2186
2187        .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2188        .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2189
2190#ifdef CONFIG_X86_PAE
2191        .set_pte_atomic = xen_set_pte_atomic,
2192        .pte_clear = xen_pte_clear,
2193        .pmd_clear = xen_pmd_clear,
2194#endif  /* CONFIG_X86_PAE */
2195        .set_pud = xen_set_pud_hyper,
2196
2197        .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2198        .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2199
2200#if PAGETABLE_LEVELS == 4
2201        .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2202        .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2203        .set_pgd = xen_set_pgd_hyper,
2204
2205        .alloc_pud = xen_alloc_pmd_init,
2206        .release_pud = xen_release_pmd_init,
2207#endif  /* PAGETABLE_LEVELS == 4 */
2208
2209        .activate_mm = xen_activate_mm,
2210        .dup_mmap = xen_dup_mmap,
2211        .exit_mmap = xen_exit_mmap,
2212
2213        .lazy_mode = {
2214                .enter = paravirt_enter_lazy_mmu,
2215                .leave = xen_leave_lazy_mmu,
2216                .flush = paravirt_flush_lazy_mmu,
2217        },
2218
2219        .set_fixmap = xen_set_fixmap,
2220};
2221
2222void __init xen_init_mmu_ops(void)
2223{
2224        x86_init.paging.pagetable_init = xen_pagetable_init;
2225
2226        /* Optimization - we can use the HVM one but it has no idea which
2227         * VCPUs are descheduled - which means that it will needlessly IPI
2228         * them. Xen knows so let it do the job.
2229         */
2230        if (xen_feature(XENFEAT_auto_translated_physmap)) {
2231                pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2232                return;
2233        }
2234        pv_mmu_ops = xen_mmu_ops;
2235
2236        memset(dummy_mapping, 0xff, PAGE_SIZE);
2237}
2238
2239/* Protected by xen_reservation_lock. */
2240#define MAX_CONTIG_ORDER 9 /* 2MB */
2241static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2242
2243#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2244static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2245                                unsigned long *in_frames,
2246                                unsigned long *out_frames)
2247{
2248        int i;
2249        struct multicall_space mcs;
2250
2251        xen_mc_batch();
2252        for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2253                mcs = __xen_mc_entry(0);
2254
2255                if (in_frames)
2256                        in_frames[i] = virt_to_mfn(vaddr);
2257
2258                MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2259                __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2260
2261                if (out_frames)
2262                        out_frames[i] = virt_to_pfn(vaddr);
2263        }
2264        xen_mc_issue(0);
2265}
2266
2267/*
2268 * Update the pfn-to-mfn mappings for a virtual address range, either to
2269 * point to an array of mfns, or contiguously from a single starting
2270 * mfn.
2271 */
2272static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2273                                     unsigned long *mfns,
2274                                     unsigned long first_mfn)
2275{
2276        unsigned i, limit;
2277        unsigned long mfn;
2278
2279        xen_mc_batch();
2280
2281        limit = 1u << order;
2282        for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2283                struct multicall_space mcs;
2284                unsigned flags;
2285
2286                mcs = __xen_mc_entry(0);
2287                if (mfns)
2288                        mfn = mfns[i];
2289                else
2290                        mfn = first_mfn + i;
2291
2292                if (i < (limit - 1))
2293                        flags = 0;
2294                else {
2295                        if (order == 0)
2296                                flags = UVMF_INVLPG | UVMF_ALL;
2297                        else
2298                                flags = UVMF_TLB_FLUSH | UVMF_ALL;
2299                }
2300
2301                MULTI_update_va_mapping(mcs.mc, vaddr,
2302                                mfn_pte(mfn, PAGE_KERNEL), flags);
2303
2304                set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2305        }
2306
2307        xen_mc_issue(0);
2308}
2309
2310/*
2311 * Perform the hypercall to exchange a region of our pfns to point to
2312 * memory with the required contiguous alignment.  Takes the pfns as
2313 * input, and populates mfns as output.
2314 *
2315 * Returns a success code indicating whether the hypervisor was able to
2316 * satisfy the request or not.
2317 */
2318static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2319                               unsigned long *pfns_in,
2320                               unsigned long extents_out,
2321                               unsigned int order_out,
2322                               unsigned long *mfns_out,
2323                               unsigned int address_bits)
2324{
2325        long rc;
2326        int success;
2327
2328        struct xen_memory_exchange exchange = {
2329                .in = {
2330                        .nr_extents   = extents_in,
2331                        .extent_order = order_in,
2332                        .extent_start = pfns_in,
2333                        .domid        = DOMID_SELF
2334                },
2335                .out = {
2336                        .nr_extents   = extents_out,
2337                        .extent_order = order_out,
2338                        .extent_start = mfns_out,
2339                        .address_bits = address_bits,
2340                        .domid        = DOMID_SELF
2341                }
2342        };
2343
2344        BUG_ON(extents_in << order_in != extents_out << order_out);
2345
2346        rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2347        success = (exchange.nr_exchanged == extents_in);
2348
2349        BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2350        BUG_ON(success && (rc != 0));
2351
2352        return success;
2353}
2354
2355int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2356                                 unsigned int address_bits,
2357                                 dma_addr_t *dma_handle)
2358{
2359        unsigned long *in_frames = discontig_frames, out_frame;
2360        unsigned long  flags;
2361        int            success;
2362        unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2363
2364        /*
2365         * Currently an auto-translated guest will not perform I/O, nor will
2366         * it require PAE page directories below 4GB. Therefore any calls to
2367         * this function are redundant and can be ignored.
2368         */
2369
2370        if (xen_feature(XENFEAT_auto_translated_physmap))
2371                return 0;
2372
2373        if (unlikely(order > MAX_CONTIG_ORDER))
2374                return -ENOMEM;
2375
2376        memset((void *) vstart, 0, PAGE_SIZE << order);
2377
2378        spin_lock_irqsave(&xen_reservation_lock, flags);
2379
2380        /* 1. Zap current PTEs, remembering MFNs. */
2381        xen_zap_pfn_range(vstart, order, in_frames, NULL);
2382
2383        /* 2. Get a new contiguous memory extent. */
2384        out_frame = virt_to_pfn(vstart);
2385        success = xen_exchange_memory(1UL << order, 0, in_frames,
2386                                      1, order, &out_frame,
2387                                      address_bits);
2388
2389        /* 3. Map the new extent in place of old pages. */
2390        if (success)
2391                xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2392        else
2393                xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2394
2395        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2396
2397        *dma_handle = virt_to_machine(vstart).maddr;
2398        return success ? 0 : -ENOMEM;
2399}
2400EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2401
2402void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2403{
2404        unsigned long *out_frames = discontig_frames, in_frame;
2405        unsigned long  flags;
2406        int success;
2407        unsigned long vstart;
2408
2409        if (xen_feature(XENFEAT_auto_translated_physmap))
2410                return;
2411
2412        if (unlikely(order > MAX_CONTIG_ORDER))
2413                return;
2414
2415        vstart = (unsigned long)phys_to_virt(pstart);
2416        memset((void *) vstart, 0, PAGE_SIZE << order);
2417
2418        spin_lock_irqsave(&xen_reservation_lock, flags);
2419
2420        /* 1. Find start MFN of contiguous extent. */
2421        in_frame = virt_to_mfn(vstart);
2422
2423        /* 2. Zap current PTEs. */
2424        xen_zap_pfn_range(vstart, order, NULL, out_frames);
2425
2426        /* 3. Do the exchange for non-contiguous MFNs. */
2427        success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2428                                        0, out_frames, 0);
2429
2430        /* 4. Map new pages in place of old pages. */
2431        if (success)
2432                xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2433        else
2434                xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2435
2436        spin_unlock_irqrestore(&xen_reservation_lock, flags);
2437}
2438EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2439
2440#ifdef CONFIG_XEN_PVHVM
2441#ifdef CONFIG_PROC_VMCORE
2442/*
2443 * This function is used in two contexts:
2444 * - the kdump kernel has to check whether a pfn of the crashed kernel
2445 *   was a ballooned page. vmcore is using this function to decide
2446 *   whether to access a pfn of the crashed kernel.
2447 * - the kexec kernel has to check whether a pfn was ballooned by the
2448 *   previous kernel. If the pfn is ballooned, handle it properly.
2449 * Returns 0 if the pfn is not backed by a RAM page, the caller may
2450 * handle the pfn special in this case.
2451 */
2452static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2453{
2454        struct xen_hvm_get_mem_type a = {
2455                .domid = DOMID_SELF,
2456                .pfn = pfn,
2457        };
2458        int ram;
2459
2460        if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2461                return -ENXIO;
2462
2463        switch (a.mem_type) {
2464                case HVMMEM_mmio_dm:
2465                        ram = 0;
2466                        break;
2467                case HVMMEM_ram_rw:
2468                case HVMMEM_ram_ro:
2469                default:
2470                        ram = 1;
2471                        break;
2472        }
2473
2474        return ram;
2475}
2476#endif
2477
2478static void xen_hvm_exit_mmap(struct mm_struct *mm)
2479{
2480        struct xen_hvm_pagetable_dying a;
2481        int rc;
2482
2483        a.domid = DOMID_SELF;
2484        a.gpa = __pa(mm->pgd);
2485        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2486        WARN_ON_ONCE(rc < 0);
2487}
2488
2489static int is_pagetable_dying_supported(void)
2490{
2491        struct xen_hvm_pagetable_dying a;
2492        int rc = 0;
2493
2494        a.domid = DOMID_SELF;
2495        a.gpa = 0x00;
2496        rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2497        if (rc < 0) {
2498                printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2499                return 0;
2500        }
2501        return 1;
2502}
2503
2504void __init xen_hvm_init_mmu_ops(void)
2505{
2506        if (is_pagetable_dying_supported())
2507                pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2508#ifdef CONFIG_PROC_VMCORE
2509        register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2510#endif
2511}
2512#endif
2513
2514#define REMAP_BATCH_SIZE 16
2515
2516struct remap_data {
2517        unsigned long mfn;
2518        pgprot_t prot;
2519        struct mmu_update *mmu_update;
2520};
2521
2522static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2523                                 unsigned long addr, void *data)
2524{
2525        struct remap_data *rmd = data;
2526        pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2527
2528        rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2529        rmd->mmu_update->val = pte_val_ma(pte);
2530        rmd->mmu_update++;
2531
2532        return 0;
2533}
2534
2535int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2536                               unsigned long addr,
2537                               xen_pfn_t mfn, int nr,
2538                               pgprot_t prot, unsigned domid,
2539                               struct page **pages)
2540
2541{
2542        struct remap_data rmd;
2543        struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2544        int batch;
2545        unsigned long range;
2546        int err = 0;
2547
2548        if (xen_feature(XENFEAT_auto_translated_physmap))
2549                return -EINVAL;
2550
2551        prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2552
2553        BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2554
2555        rmd.mfn = mfn;
2556        rmd.prot = prot;
2557
2558        while (nr) {
2559                batch = min(REMAP_BATCH_SIZE, nr);
2560                range = (unsigned long)batch << PAGE_SHIFT;
2561
2562                rmd.mmu_update = mmu_update;
2563                err = apply_to_page_range(vma->vm_mm, addr, range,
2564                                          remap_area_mfn_pte_fn, &rmd);
2565                if (err)
2566                        goto out;
2567
2568                err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2569                if (err < 0)
2570                        goto out;
2571
2572                nr -= batch;
2573                addr += range;
2574        }
2575
2576        err = 0;
2577out:
2578
2579        xen_flush_tlb_all();
2580
2581        return err;
2582}
2583EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2584
2585/* Returns: 0 success */
2586int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2587                               int numpgs, struct page **pages)
2588{
2589        if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2590                return 0;
2591
2592        return -EINVAL;
2593}
2594EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2595